7. WMO Data Assimilation Symposium 2017, Florianopolis, Brazil

Building a Scalable Ensemble Data Assimilation System for Coupled Models

Lars Nerger, Dmitry Sidorenko

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

Motivation

How to build an efficient data assimilation system – in a simple way?

- 1. Extend model to integrate an ensemble
 - mainly: adapt parallelization
- 2. Add analysis step to the model
 - just an update in between time steps

Here discussed for a coupled model

Example: ECHAM6-FESOM (AWI-CM)

D. Sidorenko et al., Clim. Dyn. 44 (2015) 757

PDAF: A tool for data assimilation

Parallel Data Assimilation Framework

PDAF - Parallel Data Assimilation Framework

- a program library for ensemble data assimilation
- provide support for parallel ensemble forecasts
- provide fully-implemented & parallelized filters and smoothers (EnKF, LETKF, NETF, EWPF ... easy to add more)
- easily useable with (probably) any numerical model (applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, …)
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- first public release in 2004; continued development
- ~250 registered users; community contributions

Open source: Code, documentation & tutorials at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Parallel Data Assimilation Framework

Assumption: Users know their model

→ let users implement DA system in model context

For users, model is not just a forward operator

→ let users extend they model for data assimilation

Keep simple things simple:

- Define subroutine interfaces to separate model and assimilation based on arrays
- No object-oriented programming (most models don't use it; most model developers don't know it; not many objects would be involved)
- Users directly implement observation specific routines (no indirect description of e.g. observation layout)

Ensemble Filter Analysis Step

Logical separation of assimilation system

- ← Explicit interface
- --- Indirect exchange (module/common)

Nerger, L., Hiller, W. Software for Ensemble-based DA Systems – Implementation and Scalability. Computers and Geosciences 55 (2013) 110-118

Parallel Data

Assimilation Framework

Extending a Model for Data Assimilation

Parallel Data Assimilation Framework

Framework solution with generic filter implementation

Simple Subroutine Interfaces

Example: observation operator

```
SUBROUTINE obs_op(step, dim, dim_obs, state, m_state)
IMPLICIT NONE
ARGUMENTS:
INTEGER, INTENT(in) :: step ! Current time step
INTEGER, INTENT(in) :: dim ! PE-local dimension of state
INTEGER, INTENT(in) :: dim_obs ! Dimension of observed state
REAL, INTENT(in) :: state(dim) ! PE-local model state
REAL, INTENT(inout) :: m_state(dim_obs) ! Observed state
```


Problem reduces to:

- 1. Insert assimilation subroutine calls to model codes
- 2. Configuration of parallelization (MPI communicators)
- 3. Implementation of compartment-specific user routines and linking with model codes at compile time

2-level Parallelism

- 1. Multiple concurrent model tasks
- 2. Each model task can be parallelized
- Analysis step is also parallelized
- Configured by "MPI Communicators"

2 compartment system – strongly coupled DA

Configure Parallelization – weakly coupled DA

Logical decomposition:

- Communicator for each
 - Coupled model task
 - Compartment in each task (init by coupler)
 - (Coupler *might want to split* MPI_COMM_WORLD)
 - Filter for each compartment
 - Connection for collecting ensembles for filtering
- Different compartments
 - Initialize distinct assimilation parameters
 - Use distinct user routines

Example: ECHAM6-FESOM

1.852 executables ECHAM and FESOM – do all coding twice

- add subroutine call into both models
- adapt model communicator (distinct names in the models)
- replace MPI_COMM_WORLD in communication routines for fluxes

In OASIS-MCT library

- Replace MPI_COMM_WORLD in OASIS coupler
- Let each model task write files with interpolation information

Strongly coupled: Parallelization of analysis step

We need innovation: $\mathbf{d} = \mathbf{H}\mathbf{x} - \mathbf{y}$

Observation operator links different compartments

- Compute part of **d** on process 'owning' the observation
- 2. Communicate **d** to processes for which observation is within localization radius

Execution times (weakly-coupled, DA only into ocean)

 Likely caused by MPI-communication (e.g. no optimal distribution of programs over compute nodes/racks)

Summary

- Status of AWI-CM/PDAF: ready to be used (Postdoc just started)
- Software framework simplifies building data assimilation systems
- Efficient online DA coupling; minimal model code changes
- Setup of data assimilation with coupled model
 - 1. Configuration of communicators
 - 2. Add routines for initialization & analysis step
 - 3. Implementation of case-specific user-routines
- Size of computing problem and communication layout might lead to tuning requirements

Thank you !

Lars.Nerger@awi.de - Building EnsDA System for Coupled Models

Current algorithms in PDAF

PDAF originated from comparison studies of different filters

Filters and smoothers

- EnKF (Evensen, 1994 + perturbed obs.)
- ETKF (Bishop et al., 2001)
- SEIK filter (Pham et al., 1998)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)

All methods include

- global and localized versions
- smoothers

Not yet released:

Parallel Data

Framework

- serial EnSRF
- particle filter
- EWPF

References

- http://pdaf.awi.de
- Nerger, L., Hiller, W. Software for Ensemble-based DA Systems – Implementation and Scalability. Computers and Geosciences 55 (2013) 110-118
- Nerger, L., Hiller, W., Schröter, J.(2005). PDAF The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, UK, 25 - 29 October 2004, pp. 63-83.