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Abstract

Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in

cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as

submarine canyons, where variable current regimes may occur, are particularly understud-

ied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new tech-

niques for investigating these ecosystems over prolonged periods. In this study a benthic

crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks

Canada was used to monitor community changes across 60 m2 of a cold-seep area of the

Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone

(OMZ). Short video-transects were run at 4-h intervals during the first week of successive

calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within

each recorded transect video megafauna abundances were computed and changes in envi-

ronmental conditions concurrently measured. The responses of fauna to environmental con-

ditions as a proxy of seasonality were assessed through analysis of abundances in a total of

438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cni-

daria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and

patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish

Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small

crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were

identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes

tanneri) were also indicated. Temporal variations in biodiversity and abundance in mega-

benthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or

down canyon), dissolved oxygen concentration and month of study. Also reported here for

the first time are transient mass aggregations of grooved tanner crabs through these depths

of the canyon system, in early spring and likely linked to the crab’s reproductive cycle.
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Introduction

The continental margins are characterized by high temporal variability in key benthic habitat

variables, (such as current regimes, sedimentation rates, and light intensity and spectral qual-

ity), with variability often related to depth [1]. In the aphotic deep sea, light intensity is often

assumed to be replaced by current regimes [2] as the zeitgeber (i.e., the environmental synchro-

nizer of biological rhythms) but recent data also suggest that indirect day-night synchroniza-

tion may occur as a result of the presence or absence of fauna making diel vertical migrations,

potentially between different depth strata within the water column [3, 4]. In general, beha-

vioural responses of deep-sea benthic and benthopelagic fauna to variations in light, internal

tides, and inertial current cycles remain poorly understood, in part because of a lack of contin-

uous monitoring. Continuous monitoring of oceanographic variables and hourly to seasonal

turnover of species compositions can permit the identification of environment drivers that

shape benthic community composition [3, 5, 6].

This lack of knowledge is particularly pronounced in regions with complex topography,

such as marine canyons, where detrital funneling and changing flow regimes may occur [7, 8].

This funneling and variability in flow have been identified as drivers of canyon high productiv-

ity and biodiversity [9–11]. The enhancement of primary productivity within these geomor-

phologies [10], concentrating zooplankton [12] and scavengers [13], contribute to an increase

food availability for benthos [7] and benthopelagic species [5], as well as driving seasonal

reproduction patterns of fishes, which may use canyons as breeding areas [14]. Predicting

patterns of megafaunal increase of abundance in submarine canyons is of relevance for ecosys-

tem and fishery management [15]. Although canyons may have an increased diversity and

abundance in fauna when compared to adjacent continental slopes, oxygen minimum zones

(OMZs), can prevent colonization by fauna less tolerant to low oxygen concentrations, hence

reducing the benefits of the locally elevated food availability [16]. The response of many

marine fauna to hypoxia still remains largely uncertain, so the degree to which locally low oxy-

gen concentration bottom waters may impact species abundance and biodiversity is difficult to

directly gauge [17, 18]. As a dynamic canyon system cutting through a Northeast Pacific OMZ

region, Barkley Canyon (off Vancouver Island, Canada), represents an optimal study site for

carrying out work aimed at improving our understanding of how deep-sea canyon communi-

ties respond to seasonal oxygen variations [19, 20]. Our study site in Barkley Canyon corre-

sponded to the core of the North Pacific OMZ between 600–700 m and 900–1100 [21].

The section of the Barkley Canyon investigated here (850–900 m depth) is also character-

ized by outcropping methane hydrate deposits that mark the boundary of the temperature-

pressure methane hydrate stability field [22]. The susceptibility of these gas hydrates, and their

associated faunal communities with their presence to ocean warming is significant. Despite

their low biodiversity, cold seeps are highly productive ecosystems [23] and are increasingly

recognized as providers of ecosystem services [24]. Oxygen depletion [25], changes in water-

mass circulation [26] and temperature increases [27] highlighted in future climate change

scenarios represent particular threats to cold seep ecosystems in low oxygen environments,

because of their potential impact on hydrate stability and worsening of hypoxia. At these cold

seeps, chemosynthetic microbial production driven by oxidation of reducing substances

(methane and sulphide) in discharging seafloor fluids sustains symbiont-bearing tubeworm

and bivalve communities [28, 29], and free-living bacterial mats (e.g., Beggiatoa sp.). These in

turn support higher order consumers, including fish, squid, octopii, echinoderms, other mol-

luscs, and crabs.

The recent extension of cabled observatory technologies to the deep sea is finally permitting

the continuous imaging and oceanographic monitoring required to investigate processes that
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shape submarine canyons and cold-seep communities [30–32] at hourly to annual time scales.

A new generation of tethered mobile Internet Operated Vehicles (IOV), such as benthic cra-

wlers, extends the potential observational footprint from a few square meters around fixed

seafloor platforms [33, 34], to hundreds of square meters [35] in areas surrounding seafloor

observatory nodes. This substantially extends our ability to document spatial habitat heteroge-

neity, and provides a larger sample size for detecting temporal variability. The crawler ‘Wally I’

is an advanced example of this mobile technology, and has been deployed in a cold-seep site in

Barkley Canyon at ~890 m for several years. In addition to supporting imaging equipment,

Wally I also hosts a complex suite of oceanographic sensors [35, 36].

In this study a 14 month temporally structured video-monitoring campaign to investigate

the megafaunal communities of a Barkley Canyon cold-seep ecosystem was conducted, in

order to test the hypotheses that (1) abundance, richness, and biodiversity changes within the

surveyed area are directly driven by the oceanographic parameters such as oxygen concentra-

tion, current velocity, upwelling events and indirectly by seasonal bethopelagic and nekto-

benthic migrations along the canyon; (2) IOV technology can be used as a solid faunistic

monitoring tool.

Materials and methods

The NEPTUNE network and the Barkley Canyon node

Authorization for installation of the infrastructure supporting this research was provided by

the Transport Canada (www.tc.gc.ca/), after Fisheries and Oceans Canada (http://www.dfo-

mpo.gc.ca/) assessed that the cabled installation would not have a negative impact on fish habi-

tat. Field studies did not involve endangered or protected species.

The NEPTUNE cabled observatory network, off Vancouver Island (BC, Canada) operated

by Ocean Networks Canada (ONC; www.oceannetworks.ca) [37] supports continuous multi-

parametric and video observations from coastal to deep-sea habitats, providing power and

data connectivity through a 840-km looped fiber-optical cable (Fig 1).

The observatory network is powered by a shore station located in Port Alberni, Vancouver

Island (see Fig 1A). This sophisticated interdisciplinary monitoring infrastructure supports a

node in Barkley Canyon at ~890 m depth (Fig 1B; 48˚18.890 N, 129˚03.480 W), a node which

has become an important hub for in-situ study of the environmental drivers modulating eco-

system functioning of deep-sea cold-seep communities [38, 36]. For the duration of the study

described herein, the Wally I crawler was in operation on the western flank of the main can-

yon, connected by an umbilical power and data cable to the node (Fig 1B). The node is also

within the local Oxygen Minimum Zone (OMZ), and thus a site of further global interest as a

location for ongoing monitoring during global environmental change. A full description of the

study site (Fig 1C and 1D) the images recorded by the crawler (Fig 1E) installed in this area

(Fig 1F) is provided in [35].

The ‘Wally I’ crawler deployment, connectivity, operations and sensor

systems

For the duration of the current study, the mobile ‘Wally I’ crawler was connected via a 70-m

fiber-optic tether to the Barkley Canyon node [35] with syntactic foam floats arrayed every 3

m along the tether to insure buoyancy and to preclude entanglement with the crawler tracks.

Crawler driving control and data acquisition were carried out in real-time via a custom web

interface, with sensor data and imagery automatically stored to the NEPTUNE archive at the

sampling resolution of each device [35].
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The ‘Wally I’ crawlers’ mobility is provided by a pair of caterpillar tracks, which may be

operated together, or independently to drive the vehicle forward, backward or to rotate it on

the seafloor. Movement commands are made directly from the home laboratory over an inter-

net connection.

Movement of the caterpillar tracks (and therefore, the vehicle) creates a footprint on the

seafloor that could potentially disturb infauna. To prevent these impacts influencing the col-

lected results transects aimed at collecting time series data are usually run over the same track,

hence reducing the impacts of the tracks on the ecosystem. Such an operational plan was car-

ried out in the current study (Fig 1E).

One of the primary sampling systems on the ‘Wally I’ crawler is the forward looking camera

system. Video footage can be acquired using the 470 Line ROS Inspector low-light, colour

camera, equipped with an 18X optical zoom whenever suitable illumination is also provided.

For the current study, 20 m transects were driven every 4 hours, over the first 5 days of each

month, from February 14th 2013 to April 14th 2014, with video data recorded on every

Fig 1. Overview map of the cold-seep site in Barkley Canyon (northeast Pacific, Canada). (A) The

cabled observatory network, The Barkley Canyon node, site of Wally I crawler deployment is highlighted by a

black dot. (B) High-resolution bathymetric map showing the region of Barkley Canyon investigated in the

current study. The black dots within the canyon axis represent the crawler node with the nearby mid-canyon

POD4 platform and other deeper nodes. (C) Image demonstrating the crawler Field Of View (FOV) as used to

acquire the faunal data. (D) Map showing position of navigation waypoints arranged around the hydrate

outcrop, the crawler (near waypoint no. 12 in this schematic) and the route from waypoint no. 10 to 14,

representing the survey transect analysis area. The cold seep community was distributed on a soft bottom

zone with no apparent emerging rocks. At the end of the transect analysis area, a 5 m depth cliff (dashed grey

line) separated our study area from a from the gas-hydrate mound (E) The crawler in operation.

https://doi.org/10.1371/journal.pone.0176917.g001
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occasion. For all transects, the camera was always oriented with a fixed tilt angle of 45˚ from

the horizontal, from a mounting position roughly 1m from the seafloor at the front of the

crawler. During operations, the crawler’s motion was kept at a near constant speed (0.02 m/s).

Light was provided by two Deep-Sea Power and Light-Variable intensity lamps [35]. Lights

were switched on during transect driving and turned off immediately after, in order to mini-

mize photic contamination in the area. The total observed seafloor area recorded within each

transect was approximately 60 m2.

The ‘Wally I’ crawler can mount a plethora of sensor systems, and for the duration of the

current study an upward facing 2-MHz ADCP (Nortek Aquadopp Profiler AQD 9917), mea-

suring water velocity and temperature at 1 mab and a Seapoint Turbidity Meter, measuring at

approx. 0.2–0.3 mab the turbidity were equipped. An adjacent observatory (the POD4 NEP-

TUNE node), situated at a distance of ~500 m from the site of crawler operations, within the

mid-canyon at 896 m depth (48˚18.89230 N, 126˚03.48040W; see Fig 1B) was simultaneously

recording pressure, water density data and oxygen, as collected respectively by a CTD (Sea-

Bird SeaCAT SBE16plus V2 7027) and an oxygen sensor (Sea-Bird SBE 63 630111). Collected

data at 1 min frequency throughout the entire survey period, both at times coinciding to the

collection of video transect data as well as during the periods of immobility between crawler

transects. These data are freely available online (http://dmas.uvic.ca/DataSearch). Additionally,

the Bakun Index, as a proxy of upwelling and downwelling processes, was also computed at

48N, 125W from National Oceanic and Atmospheric Administration (NOAA) / National

Marine Fisheries Service (NMFS) / Pacific Fisheries Environmental Group (PFEG) data.

Faunal data collection and treatment

Following collection of the transect video data, one user made visual counts of the megafauna

individuals present within each transect. The same user analysed all collected videos, identify-

ing individuals to the lowest taxonomic level as possible using the NEPTUNE Canada Fauna

Identification Guide [39]. All video recorded were archived and are available online through

the Oceans 2.0 portal (http://dmas.uvic.ca/DataSearch).

Although a near constant crawler speed and camera angle were maintained throughout the

duration of the study, occasional variabilities in field of view recorded did result from small

differences in seafloor relief across the transect survey length. To account for this, we analysed

only the portions of video data where 75% of the field of view encompassed the seabed, and

with sufficient water transparency for animal classification and counting.

Slight variabilities in transect duration also occurred, due to slight differences in seafloor

angle, firmness and due to technical driving and internet connectivity issues (e.g. interruption

of signal send / return from our working office in Barcelona to the Pacific). Therefore, to make

the biological data recorded as comparable as possible over the video transects collected, we

standardized visual counts for the each megafaunal taxa and transect to the maximum video

duration recorded within the study, which was 23 min.

In order to highlight species count patterns as proxies of seasonality, we plotted time series

of average visual counts (±sd) for each month, based on all transects recorded during the 5

days of monitoring at the start of each calendar month throughout the 14 month period. In the

resulting plots, we superimposed horizontal dashed lines representing the ‘Midline Estimated

Statistic of Rhythm (MESOR; [4])’, computed by re-averaging all monthly values. Their over-

laying onto the monthly plot allows the identification of significant seasonal increases or

decreases in abundance.

Current velocity component-vectors (i.e. North-South and East-West, xy direction data col-

lected via the ADCP system) were transformed to flow magnitude (m/s). All environmental
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data collected by the crawler and the POD4 node (see 2.2) were averaged into 4 h bins to

match the video-sampling frequency. Bakun Index values, the daily-averages of wind-driven

cross-shore transport, were computed from Fleet Numerical and Meteorology Oceanographic

Centered (FNMOC) 6-hourly surface pressure analyses.

Analysis of the community structure linkage with oceanographic

variables

A Kruskal Wallis test was carried out using the R statistical language [40], to detect significant

differences in the number of megafaunal visual counts (of each species or taxa logged) between

months, following the methodology presented in [41].

A Nonmetric Multidimensional Scaling (NMDS; [42]) analysis was performed in the R

library vegan [43] to visualize the level of similarity among species presence and visual

counts (i.e. assemblage structure) together with correlated environmental vectors into a

Cartesian plane. The Bray-Curtis dissimilarity Index was used to quantify the dissimilarity

between megafaunal species based on the time series visual counts, while a Wisconsin dou-

ble standardization was performed (since this improves the gradient detection ability of dis-

similarity indices; [44]). The significance of the estimated determination coefficients (r2) of

the environmental variables fitting onto the species ordination, produced by the NMDS

analysis, was estimated using a permutation test. Results of the species ordination using

NMDS and the correlation with the environmental variables are shown in a plot, with envi-

ronmental vectors (arrows) showing significant (p<0.05) maximum correlation with the

species ordination. Results are shown only for the environmental variables significantly cor-

related to the species ordination.

Biodiversity was calculated with two indices presented as mean diversity per month:

the Shannon index (H’) and the Simpson Index, presented as 1-D. In a similar manner, we

presented the species richness (S). The monthly abundance (number of individuals of all spe-

cies) was normalized to the maximum number of transects per month (i.e. 48). Herein we

refer to these means as biodiversity indices, Shannon index, Simpson Index or abundance as

appropriate.

Ethological remarks

Behavioural observations were logged for the motile fauna imaged during the crawler surveys.

These, though opportunistic, were described in order to increase general information on the

ethology of several deep-sea species, and may represent pivotal aspects of the functioning of

some ecosystems, particularly in terms of inter- and intraspecific relationships [45], and also

to help support the second hypothesis of the current study, that IOV technology has applica-

tion as a solid faunistic monitoring tool.

Results

438 video transects, representing a total of 92 h of footage of acceptable quality for analysis was

collected during the 14 month monitoring period. No video data was collected during March

2014 due technical problems. 7698 megafauna individuals, belonging to 6 phyla were observed

(S1 Table). These included representatives of 26 taxa, 12 of which could be identified to species

level, with remaining individuals classified to higher taxonomical levels (S1 Fig).

We detected considerable differences in megafaunal abundances, between species and tem-

porally, throughout the study period (see S1 Table). The most abundant species within the

study period were the sablefish (Anoplopoma fimbria) with 2214 visual counts, representing

29% of the total observed megafauna. Buccinids (Buccinoidea) were also abundant with 1318
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individuals representing 17% of the total megafauna. The third most abundant taxon was hag-

fish (Eptatretus stoutii; i.e. 852, as 11%). The fourth was abundant was Scyphomedusa (Poralia
rufescens) with 789 individuals (10%). Next were rockfish (i.e. from the family Sebastidae) with

573 filmed individuals (7%) and small crabs (of undefined taxon) showing a similar abundance

(N = 535, 7%). The final significantly abundant taxon, with 449 records, was ctenophores (Boli-
nopsis infundibulum), representing 6% of recordings of fauna.

Seasonal patterns

Time series analysis was carried out for the 7 most abundant megafaunal species (Fig 2, plotted

to show the occurrence of any monthly variation as a proxy of seasonal fluctuation). Grooved

tanner crab count time series were also plotted to show the particular variabilities in their

Fig 2. Visual counts time series (i.e. from 14th February 2013 to 14th April 2014) for the 7 most abundant

megafaunal species and the particular case of the grooved tanner crab, as reported by crawler video-

imaging. Average values (the grey dots) have been reported in order to better highlight the occurrence of

seasonal trends. From left to right and from top to bottom taxonomic units are: Rockfish (i.e. Sebastidae);

Sablefish (Anoplopoma fimbria); Hagfish (Eptatretus stoutii); Buccinid (Neptunidae); Small crab; Grooved

tanner crab (Chionnecetes tanneri); Ctenophore (Bolinopsis infundibulum); and finally, Scyphomedusa

(Poralia rufescens). Horizontal blue dashed lines correspond to the Midline Estimated Statistic of Rhythm

(MESOR) and horizontal blue lines identify significant seasonal increases visual counts increases. Blue

asterisks correspond to a month with no data due technical problems.

https://doi.org/10.1371/journal.pone.0176917.g002
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abundance resulting from their reproduction dynamics. Since no video data was collected dur-

ing March 2014, we assumed significant values during this month when the concomitant

months were significant. An overview of the time series analysis showed species peaking fre-

quently from February to August 2013 and from January to April 2014. A general lack of spe-

cies occurred during the central months of the study (autumn and December 2013).

A close-up of Fig 2 showed that rockfish were present in roughly consistent densities

throughout the observation period, though significantly higher (i.e. above the MESOR) num-

bers of them were observed during spring and August 2013 and from January to April 2014.

We observed a significant sharp peak in sablefish visual counts during late spring (March) and

summer 2013 reaching their maximum abundance in July, with a mean of 29.1±23.8 SD indi-

viduals per transect. Hagfish were also uniformly abundant throughout the study, with a mod-

est but significant count peak in February-March and July 2013, and another one of similar

magnitude in January 2014. Buccinids showed low but consistent abundances during much of

the survey period with a mean of 3.3±4.46 SD individuals per transect. Though a moderate but

significant increase occurred from May to June 2013 and a sharper one occurred in February

2013 (i.e. 18.3±18.9 SD individuals per transect).

Small crabs were rarely present during the study period, although their numbers were reach-

ing significant levels intermittently from August 2013 to April 2014 (i.e. August, October and

from December 2013 to April 2014), reaching a maximum in January (i.e. 4.5±6.7 SD individu-

als per transect). Grooved tanner crabs were present all year-round with visual counts increasing

moderately but significantly during March and April 2013 (1.6±3.7 and 1.6±2.1 SD individual

per transect, respectively) and again in April 2014, with 1.1±2 SD individuals per transect being

observed (coinciding with reproduction; see the Behavioural Remarks Section below). Another

significant peak was observed during early and mid-summer 2013 (June and July).

Ctenophore visual counts displayed clear seasonal patterning. A sharp increase in numbers

occurred during autumn with a maximum density observed in October 2013 (i.e. mean density

of 6.9±6.4 SD individuals per transect). Finally, the Scyphomedusa was significantly present

during almost all months of the monitoring period (i.e. from February to June and from

November to December 2013 and February 2014) with a moderate count decrease from mid-

summer to mid-autumn.

Fig 3 shows the time series data for the investigated oceanographic parameters, as measured

by the crawler on board sensors and the nearby POD4 network node. There were a few occa-

sional gaps in data acquisition produced by sensor malfunctions or data network issues. A pat-

terning in seasonality is evident in water density, temperature and turbidity measurements.

Additionally, the Bakun Index and oxygen concentrations measured during the 14 months of

the study showed seasonality in the values measured. Velocity was highly related to the diurnal

and semi-diurnal tidal cycle. The Bakun Index presented the lower values during February

2013, indicating predominant downwelling processes ongoing during that month. A progres-

sive increase in the Bakun Index led to positive values as sustained pulses (i.e. upwelling

events) from mid-April to August 2013. Coinciding with these upwelling events, we detected

the greatest recorded variations in turbidity. Elevated turbidity levels were coincident with the

first shallow water incursion in the local deep-sea area in August, which brought in warmer

and less salty waters. Oxygen levels ranged from 0.24 (October 2013) to 0.29 ml/l (March

2014), with a mean of 0.26 ml/l. Oxygen concentrations gradually decreased in August, reach-

ing their minimum values in September-October. Thereafter, oxygen progressively increased

to return to the initial concentrations by the end of the study. This lower oxygen period coin-

cides in time with Bakun Index reaching values close to zero. Water density also showed a

weak seasonal trend, with generally warmer and fresher water masses present at the study site

from July to October.
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Analysis of the community structure linkage with oceanographic

variables

Kruskal-Wallis tests (Table 1) revealed significant differences among months for the most

abundant species, with a p-values� 0.01.

Environmental parameter fitting onto species ordination as obtained from NMDS analysis

is shown in Fig 4. Current velocity, Bakun Index, dissolved oxygen and months were the ‘envi-

ronmental’ variables showing significant (p<0.05) maximum correlations with the species

ordination, with r2 values of 0.14, 0.29, 0.29, and 0.47 respectively. Month was included as a

Fig 3. Oceanographic parameters time series (i.e. from 14th February 2013 to 14th April 2014), as

recorded by crawler and the nearby POD4 platform within the Barkley Canyon. Average values (the grey

dots) have been reported in order to better highlight the occurrence of seasonal trends. Gaps in data acquisition

were due to instrument malfunctioning or downtime for the cabled infrastructure. These parameters are: (A)

Velocity; (B) Water Density; (C) Temperature; (D) Turbidity; (E) Bakun Index; and finally, (F) Oxygen. We used

up-looking and down-looking arrows to highlight upwelling and downwelling periods respectively.

https://doi.org/10.1371/journal.pone.0176917.g003

Table 1. Kruskal-Wallis test among the 14 months of the study for the 8 most abundant species with 13 degrees of freedom.

Taxonomical Units Common name x2 p-value

Sebastidae Rockfish 29.23 < 0.01

Anoplopoma fimbria Sablefish 346.80 <0.01e-15

Eptatretus stoutii Hagfish 44.39 <0.01e-4

Buccinoidea Buccinids 275.13 <0.01e-15

Small crabs 99.50 <0.01e-15

Chionoecetes tanneri Grooved tanner crab 46.81 <0.01e-4

Bolinopsis infundibulum Ctenophores 275.13 <0.01e-15

Poralia rufescens Scyphomedusa 27.30 <0.01

https://doi.org/10.1371/journal.pone.0176917.t001
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proxy for the presence of a seasonal pattern in abundance variations (See Fig 2 and S1 Table

for species individual counts). The Bakun Index was negatively correlated with the variable

month (Fig 4) likely resulting from the progressive change from predominantly upwelling to

downwelling conditions over the monitoring period (See Fig 3). A weaker negative correlation

was also observed between dissolved oxygen concentration and current velocity (Fig 4). An

inverse correlation between rockfish visual counts and Bakun Index values was also indicated

(i.e. increases in rockfish abundances were correlated with downwelling), whereas sablefish,

correlated with both Bakun Index and low current velocities. As with rockfish, elevated den-

sities of buccinids correlated with periods of sustained downwelling (i.e. negative Bakun

Index values), occurring toward the end of the monitoring period. A positive correlation with

increasing oxygen was also indicated for the buccinids. The similarities in the abundance

Fig 4. Results of fitting environmental variables onto species ordination. The increasing gradient of

the environmental variable is indicated by the vector direction. The vector length is proportional to the

correlation between the variable and the ordination pattern of the species. Species abbreviations are

(taxonomical order; see S1 Table): Eel (Eelpout, Licenchelys spp.); Dov (Dover sole, Microstomus pacificus);

Dee (Deep sea sole, Embassichthys bathybius); Pac (Pacific halibut, Hippoglossus stenolepis); Rat (Rattail,

Coryphaenoides spp.); Roc (Rockfish, i.e. Sebastidae); Bac (Blackfin poacher, Bathyagonus nigripinnis); Sab

(Sablefish, Anoplopoma fimbria); Hag (Hagfish Eptatretus stoutii); Sal (Salp, Salpidae); Dum (Dumbo octopus,

Grimpoteuthis sp.); Squ (Squid Gonapus sp.); Buc (Buccinids, Neptunidae); Bri (Brittle star, Ophiuroidea); Sf1

(Starfish, Asteroidea); Sf2 (Starfish, Zoroasteridae); St3 (Hippasteria sp.); Hol (Holoturian, Holoturoidea); Her

(Hermit crab, Diogenidae); Sca (Scarlet king crab, Lithodes couesi); Gro (Grooved tanner crab, Chionnecetes

tanneri); Sma (Small crabs); Cte (Ctenophore, Bolinopsis infundibulum); Scy (Scyphomedusa, Poralia

rufescens); Din (Dinner plate jelly, Solmissus sp.); Tra (Traquimedusa, Voragonema pedunculata).

https://doi.org/10.1371/journal.pone.0176917.g004
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curves of buccinids and rockfish is shown in Fig 4. In general, grooved tanner crabs were

observed in highest abundances during the first half of the study (from February to August

2013), with these higher abundances correlating with higher oxygen levels and lower current

velocities. Small crabs’ abundance was clearly higher during the second third of the study (Fig

4). In the case of ctenophores, NMDS showed that highest abundances correlated with lower

oxygen levels. The abundance of another cnidarian, the Scyphomedusa, was strongly associ-

ated with periods of weak current flow and higher oxygen concentrations.

Species richness was almost constant throughout the studied period (14.93 ±1.82 species/

60m2) with two moderate drops, one from March to June 2013 (13 species/60m2) and another

one of the same magnitude in October of the same year with similar levels lasting until the end

of the study (Fig 5D). Abundances increased progressively from low levels at the beginning of

the study (550.42 individuals/60m2 in February 2013) being in March 2013 very close to the

significant level (MESOR; 814.05 individuals/60m2). A significant peak occurred from June

to August 2013 (maximum 1810.56 individuals/60m2 in July) and again in February 2014

(1412.59 individuals/60m2; Fig 5B). The two biodiversity indices values (H’ and 1-D), respec-

tively Fig 5C and 5A, followed a very similar pattern. Both were relatively constant (H’: 1.83

±0.34; 1-D: 0.74±0.13) apart from 3 decreases below the significant levels leading to low points.

June to July (minimum being in July: 1.00), October 2013 (1.79) for H’ and June to July (mini-

mum being in July: 0.40) and September to October 2013 (minimum being in September:

0.71) for 1-D. Both indices experienced a drop in February 2014 (H’: 1.36; 1-D: 0.59).

Ethological remarks

Ethological observations were made for a range of different megafaunal species (see S2 Table

for dates and hours, S1 Fig for a reference on their physical appearance and S1 Table for their

total visual counts). Fishes were usually observed lying on the seabed, while ignoring the ap-

proaching crawler. Some species (e.g. Dover sole, Microstomus pacificus, Deep sea sole, Embas-
sichthys bathybius, Pacific halibut, Hippoglossus stenolepis, rockfish and hagfish) retreated

approximately 2 to 3 m when crawler approached too close If they were lying directly in front

of the crawler. Rattails (Coryphaenoides spp.) and Blackfin poacher (Bathyagonus nigripinnis)
did not react at all to the crawler approach.

We observed once the agonistic display of a rockfish toward the crawler, which consisted in

it approaching very close to the camera with its mouth open and then escaping (S2A Table).

Eelpouts were also seen escaping, by touching the seafloor and producing mud puffs, quickly

leaving the vicinity of the crawler. Sablefish approached the camera of the crawler and then

swam away from the field of view. During one encounter, a sablefish swam close to crawler for

approximately 10 m of the transect (S2B Table). On most occasions, sablefish appeared actively

swimming but in some occasions they were observed lying on the seabed. Hagfish were simi-

larly observed either laying on the seafloor or actively swimming but never drifting.

Dumbo octopii (Grimpoteuthis sp.) were observed lying on the seafloor on four occasions,

without reacting to the presence of the crawler. In contrast, another cephalopod (the squid

Gonapus sp.) quickly swam away releasing ink when it encountered the approaching crawler.

Feeding agonistic behaviour between grooved tanner crab and scarlet king crab (Lithodes
couesi) was observed (S2C Table). While a male scarlet king crab was trying to open a Calypto-
gena spp. clam, a grooved tanner crab appeared within the frame and tried to steal its prey (i.e.

by advancing its chelipeds toward the clam). This interaction took 8 minutes, during which

the scarlet king crab responded by hiding the prey below its body.

Grooved tanner crabs were particularly undisturbed by the presence of the crawler walking

very slowly upon encounter. Only one individual displayed an agonistic posture (S2D Table).
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Fig 5. Biodiversity, richness and megafaunal species visual counts (i.e. from 14th February 2013 to

14th April 2014) time series, as reported by crawler video-imaging. Biodiversity have been reported as

mean per month Shannon Index (C) and Simpson Index (A). Similarly, we reported the species richness (D).

Abundance (B) was normalized for the maximum transects of the study period (i.e. 48). Horizontal dashed

lines correspond to the Midline Estimated Statistic of Rhythm (MESOR).

https://doi.org/10.1371/journal.pone.0176917.g005
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Several observations on tanner crab reproductive behaviour were made in March and April

2013, and again in April 2014. Male and females were observed facing each other, touching

their respective maxillipeds whilst the male took both female claws. The couples either ignored

the crawler or avoided it. In the latter case, the males (considerably bigger than the female)

lifted his partner by one claw above its body and walked away from the crawler, to later restart

the mating (S2E Table). Finally, we detected on 5 occasions females carrying eggs from March

to April 2013 (S2F Table).

Discussion

This study represents the first, high resolution documentation of seasonal patterns in megafau-

nal abundances and biodiversity at a cold-seep site. Our results of the visual counts of individ-

uals observed across a 60 m2 area of seafloor, made throughout a 14 month period, provide

some indications of abundance patterns for different species through consecutive months, as a

proxy of seasonality in behaviour and recruitment. Year-long monitoring programs have been

used successfully in other studies to document seasonality in deep-sea megafaunal abundances

(see [46–47]. Similar species abundance levels at the beginning and end of our time series may

indicate annual patterns. We observed individuals belonging to 6 phyla as being particularly

abundant (26 taxa within cnidarians, ctenophores, arthropods, echinoderms, molluscs, and

chordates). Our results are comparable with those from two other studies conducted at fixed

observatory nodes in nearby non-seep regions of Barkley Canyon (see [33] and [48]). Slight

differences in visual counts and composition of the megafaunal communities between these

sites may be attributed either to the different methodological approaches (i.e., fixed versus

mobile observations), to differences in topography and oceanographic conditions occurring

along the depth gradient [33, 5, 18] or with proximity to the canyon walls.

Compared with imaging from a fixed camera platform, running imaging transects with the

crawler provided a larger sample of the less abundant, benthic and benthopelagic megafauna

that inhabited the seafloor and adjacent benthic boundary layer [22]. Nevertheless, we under-

line the necessity of combining video transects (as performed in the current study) with close-

up imaging of the seabed for detecting and identifying very small species (e.g., Caridea, Cirri-

peda or Heptacarpus sp.) as well as buccinids and small crab species), that are difficult to image

from a mobile platform.

Seasonal patterns and the oceanographic influences

We detected monthly patterns in abundances of 8 benthic megafaunal taxa (rockfish, sablefish,

hagfish, buccinids, small crabs, grooved tanner crab, ctenophores and Scyphomedusa) as

shown by the time series analysis, the Kruskal-Wallis test and the NMDS analysis. Monthly

abundance patterns can be considered a proxy of local seasonal drivers of species abundances

[34]. Massive seasonal bathymetric displacements of benthic or benthopelagic megafauna on

continental slopes can be linked to food availability [49–51], growth, and reproduction cycles

(e.g. [46, 52]), as well as to changes in predation pressure [53]. In high latitude biogeographic

regions such as the NE Pacific, which display strong seasonality in primary production [54],

such seasonal displacements may serve as integral energy pulses that support the trophic web

[55].

Conversely, less information exists on deep-sea populations’ responses to seasonal oceano-

graphic variations, especially where benthic habitats occur within OMZs (i.e. depth strata with

oxygen concentrations < 0.5 ml/l; [56]). The depth of our study site corresponds to the core of

the OMZ in the North Pacific [33]. The high-frequency variations in water mass physical prop-

erties (i.e., water density, O2 levels, current velocity and temperature) detected at this cold-
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seep site were relatively minor in comparison with those measured at shallower depths of the

canyon in [33]. This suggests that the region surveyed by the crawler in the current study, at

~890 m depth, was below the depths affected by shelf-edge upwelling, as observed at similar

depths. Our results in the seasonal patterns in abundances, as well as the NMDS analyses sug-

gest that some of our assessed species are indirectly influenced by upwelling (sablefish) and

downwelling (rockfish and buccinids). In [33], the authors suggested that an inverse correla-

tion of dissolved oxygen concentration and temperature could be an indication of water mass

changes, as seems also to have been the case in the area investigated in the current study. Sable-

fish day-night nektobenthic migrations in Barkley Canyon are in antiphase with current

speed, a possible compromise strategy between search for prey and energy saving due to physi-

ological limitations [5, 22]. Our data suggest that sablefish could follow a similar strategy also

at a seasonal scale with animals avoiding shallower depths affected by upwelling. This would

explain the peak in sablefish visual counts, the peak in total megafaunal abundance and the

sharp decrease of biodiversity in July. Significant seasonality in sablefish abundance has been

previously reported in SE Alaska, with the local population associated with deeper waters dur-

ing the winter period [55].

Buccinids exhibited a sharp increase in densities during February 2014. These gastropods

are both predators and scavengers, known to form aggregations either to exploit prey [45, 57]

or to mate [58]. They were not affected by currents above the seafloor, yet their maximum

abundances coincided with the most pronounced downwelling period of the year. NMDS

showed a positive correlation of buccinid abundances with increasing oxygen levels. In con-

trast, gastropods are known to be particularly resistant to hypoxia [59]. This suggests an indi-

rect effect of downwelling on the abundance of this species in our location. In agreement with

this, [48] found that B. viridum migrated from shallower depths to a location ~200 m from our

study area, presumably to avoid enhanced currents. Highest rockfish densities also coincided

with the strongest downwelling period (from January to April 2014). The NMDS indicated

that their abundances were affected by the same environmental factors that influenced bucci-

nid abundances. Although rockfish has often observed to be resident at fixed locations [60–

62], our findings suggest that at least some individuals move into this area to avoid enhanced

currents in a similar strategy to the buccinids. This hypothesis needs to be confirmed with fur-

ther studies. Although buccinids and rockfish were also observed outside of the strongest

downwelling periods, their numbers were close to the significant threshold and coincided with

Bakun Index values close to zero. Additionally, rockfish are the major contributors to sablefish

diet [63]. This could explain the decrease in rockfish counts during June and July when sable-

fish abundances were the highest of the study period.

Hagfish and the Scyphomedusa increased in abundance coinciding with an increase of oxy-

gen concentration following the period of low oxygen concentrations from August 2013 to

January 2014. NMDS outputs suggest that these species have their ideal oxygen threshold

above the minimum levels observed in our study. Data on small crab abundance suggest a

more complicated picture, with both seasonal (month-scale) fluctuations and diel trends nega-

tively correlated with oxygen levels [22].

A seasonally-related change in the depth zonation of the grooved tanner crab has been

reported for the US West coast, with local densities at particular depths varying temporally

and as a consequence of their growth and reproductive cycle [64]. Sexes are also completely

segregated by depth during spring and summer, whereas males and females mix in autumn

and winter months, when males move into deeper waters [65]. The observed peaks in visual

counts of individuals within the current study, during March-April and June-July 2013,

together with the subsequent sharp decrease and maintenance of low abundance maintained

until the next spring, could be related to a similar seasonal displacement. Here, high visual
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counts of small crabs were made in December 2013, with abundances remaining high through-

out winter. To our knowledge, there have been no previous studies of seasonal recruitment of

Chionoecetes tanneri, so this potential evidence of a synchronous recruitment event should be

considered with caution. According to [66] female Tanner crabs, which live at deeper water

depths than males, move shallower for egg release and mating in March and April. Their

higher abundance here in March-April, during higher oxygen levels, could be explained by a

requirement of egg-carrying females to reduce the energy investment for oxygenating their

eggs, as has been observed for other crustaceans [67]. To summarize, abundance trends and

ethological observations throughout the study period, suggest that a massive reproductive

aggregation of grooved tanner crab occurred during March and April 2013, following a previ-

ous migration from shallower waters (males) and deeper waters (females). This may have

resulted in an associated peak in recruits observed in from December 2013 to February 2014.

Ctenophores were present during the autumn months of 2013. In [33], the authors also

detected an increase in ctenophore visual counts in October-December at a nearby mid-can-

yon site. After occupying shallower depths near the surface ocean in spring and summer, a

period coinciding with the maximum surface chlorophyll levels, [68] found larger ctenophore

individuals overwintering in deep waters, where they prey on copepods. Such vertical displace-

ment of larger zooplankton represents a trade-off between feeding efficiency and predation

avoidance [69]. Ctenophores are able to perform vertical movements at various temporal scales

(i.e., diel, tidal, and seasonal migrations) thanks to their high tolerance of transient hypoxia

[70]. Our time series counts and NMDS outputs support the occurrence of a similar phenome-

non at the cold-seep site investigated here. We detected a subsequent increase in the visual

counts of the Scyphomedusa, a species previously reported as being associated with OMZs

[71]. Although little is known about the diet preferences of the species, other Scyphomedusa

prey on Bolinopsis infundibulum, which could explain the concurrent peaks of these two gelati-

nous species [72, 68]. The same occurrence pattern for this jellyfish has been also observed in

the mid-Barkley Canyon [33]. As previously mentioned, this species was not present in video-

data during the periods with the lowest oxygen levels, likely due to physiological limitation.

Although community composition differed throughout the study period, changes in species

richness did not reach an order of magnitude, with a similar number of species replacing some

of the previously existing ones. This was also reflected in the two biodiversity indices, which

maintained a relatively constant level apart from 3 sharp decreases leading to low points (i.e.

June-July, September-October 2013 and February 2014). In these particular periods, a single

species (i.e. sablefish, ctenophores and buccinids, respectively) was disproportionally abundant,

resulting in low biodiversity through low evenness. Taken together, these findings confirm our

first hypothesis that abundance, richness, and biodiversity annual changes in relation to oceano-

graphic conditions are directly driven by oxygen, current velocity, and upwelling/downwelling,

and indirectly driven by seasonal benthopelagic and nektobenthic migrations along the canyon.

Methodological remarks

Crawler motion produced a transient sediment clouds in the water column behind the vehicle.

Since all monitoring and environmental sensors were mounted at the front of the crawler, this

is not expected to have affected any of the data values measured by the sensors. Though capa-

ble of surveying similar areas of seafloor as ROVs, crawlers (particularly IOVs such as ‘Wally

I’) do not need ship assistance to operate, and in this study a crawler was efficiently used to

perform a long-duration, spatially extensive study. In addition, ROVs are commonly perceived

as “foreign objects” to the local or periodically visiting fauna, whereas permanently deployed,

slower moving IOVs are permanent elements of the local benthic panorama rapidly accepted
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by the resident fauna. Crawlers may therefore be considered a less intrusive ethological moni-

toring technology (e.g., for monitoring reproduction and making natural situation feeding

and agonistic behaviour observations), since they are likely “accepted” by the local fauna.

The disturbance caused by crawler lights on the behaviour of resident animals has not been

well investigated. Sablefish have been previously found to be attracted by observatory lights for

short periods of time and then to leave the field of view of cameras mounted on the NEPTUNE

nodes [5]. This short-duration light attraction suggests that animals are unlikely follow the

crawler during transects and therefore unlikely to be recounted erroneously as successively

imaged individuals. The remainder of the mobile species detected didn’t react or showed only

minor reactions to crawler presence, avoiding it only when it was in extremely close proximity.

In any case, bias generated by the presence of the crawler would have been maintained as con-

stant throughout the study period given the uniform methodology employed in collecting the

transect video data, and therefore not prevent the detection of seasonal patterns in megafauna

abundance or biodiversity, or the successful collection of ethological observations. Therefore,

our second hypothesis, that IOV technology represents a reliable faunal monitoring tool for

work in the deep sea is also confirmed.

Supporting information

S1 Table. Monthly total visual counts and percentages for the different megafaunal species

studied during the 14 months of video acquisition.

(TIF)

S2 Table. Date and time of the reported ethological remarks. (A) Rockfish (Sebatidae) ago-

nistic display against the crawler (i.e. approaching the camera with the open mouth and then

escaped). (B) Sablefish (Anoplopoma fimbria) swimming close to the crawler. (C) Male scarlet

king crab (Lithodes couesi) feeding behavior and agonistic interaction with a grooved tanner

crab. (D) Grooved tanner crab (Chionnecetes tanneri) agonistic display against the (i.e. an ele-

vated body posture and chelipeds forward projection). (E) Grooved tanner crab reproduction

behaviour. (F) Female grooved tanner crabs carrying eggs.

(TIF)

S3 Table. Visual counts of studied megafaunal species together with concomitant environ-

mental data averaged at 4 h frequency.

(XLSX)

S1 Fig. Photo-mosaic of all species portrayed with the camera installed on the crawler dur-

ing the 14 months of video acquisition. Individuals in images are: (A) Eelpout (Licenchelys
spp.). (B) Dover sole (Microstomus pacificus). (C) Deep sea sole (Embassichthys bathybius). (D)

Pacific halibut (Hippoglossus stenolepis). (E) Rattail (Coryphaenoides spp.). (F) Rockfish (Sebas-

tidae). (G) Rockfish (Sebastidae). (H) Rockfish (Sebastidae). (I) Blackfin poacher (Bathyagonus
nigripinnis). (J) Sablefish (Anoplopoma fimbria). (K) Hagfish. (L) Dumbo octopus (Grimpo-
teuthis spp.). (M) Squid. (N) Buccinids (Neptunidae). (O) Brittle star (Ophiuroidea). (P) Star-

fish (Asteroidea). (Q) Holoturian. (R) Hermit crab. (S) Scarlet king crab. (T) Grooved tanner

crab (Chionoecetes tanneri). (U) Male (left) and female (right) of grooved tanner crab facing

each other as a part of their reproduction behaviour. (V) Male (left) carrying out a female

(right) of grooved tanner crab as a part of their reproduction behaviour. (W) Small crabs,

probably small individuals of grooved tanner crab. (X) Ctenophore (Bolinopsis infundibulum).

(Y) Scyphomedusa (Poralia rufescens). (Z) Dinner plate jelly (Solmissus spp.). (AA) Traquime-

dusa (Voragonema pedunculata).

(TIF)
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