On the Modified Warm Deep Water Flow toward the Filchner Ronne Ice Shelf: Observations and Model Results

Svenja Ryan ¹, Michael Schröder ¹, Ralph Timmermann ¹, Tore Hattermann ¹,² and Torsten Kanzow ¹

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
²Akvaplan-niva AS, High North Research Centre, Tromsø, Norway
Why the Filchner Ronne Ice Shelf?

FRIS plays key role in bottom water formation. By volume, the largest ice shelf in Antarctica.

No warm water enters cavity.
Why the Filchner Ronne Ice Shelf?

FRIS plays key role in bottom water formation

By volume, the largest ice shelf in Antarctica
Why the Filchner Ronne Ice Shelf?

FRIS plays key role in bottom water formation

By volume, the largest ice shelf in Antarctica

No warm water enters cavity
The Filchner Ronne Ice Shelf

- Filchner Sill
- A23-A
- Weddell Sea
- Ronne Trough
- Berckner Bank
- Berckner Island

Observed inflow

Modelled inflow

Summary/Outlook
The Filchner Ronne Ice Shelf

Introduction

Observed inflow

FESOM

Modelled inflow

Summary/Outlook

The Filchner Ronne Ice Shelf

Ryan et al., 2017

Arthun et al., 2012

Hellmer et al., 2012

Three two year-long time series at 76°S (2014-2016)

MWDW Inflow Filchner

Ocean Sciences Meeting, 15.01.2018

Svenja Ryan
The Filchner Ronne Ice Shelf

Hellmer et al., 2012

Ryan et al., 2017

Arthun et al., 2012

Three two year-long time series at 76°S (2014-2016)
The Filchner Ronne Ice Shelf

MWDW Inflow Filchner

Ocean Sciences Meeting, 15.01.2018

Svenja Ryan
The Filchner Ronne Ice Shelf

Three two year-long time series at 76°S (2014-2016)

Ryan et al., 2017
Arthun et al., 2012
Hellmer et al., 2012
Seasonal Hydrography Filchner Trough

- thick ISW layer filling the trough
- MWDW enters over the eastern shelf
Seasonal Hydrography Filchner Trough

- thick ISW layer filling the trough
- MWDW enters over the eastern shelf
Seasonal Hydrography Filchner Trough

- thick ISW layer filling the trough
- MWDW enters over the eastern shelf
- persistant inflow of MWDW in summer
- strong seasonal shift in circulation
Seasonal Hydrography Filchner Trough

- seasonal intrusion of MWDW

MWDW Inflow Filchner

Ocean Sciences Meeting, 15.01.2018

Svenja Ryan 4
Seasonal Hydrography Filchner Trough

- Seasonal intrusion of MWDW

![Graph showing temperature and salinity changes over time with depth and location markers.](image-url)

MWDW Inflow Filchner

Ocean Sciences Meeting, 15.01.2018
Svenja Ryan
Seasonal Hydrography Filchner Trough

- Seasonal intrusion of MWDW

Graphical Representation

- Temperature, Salinity
- Velocity

Temperature Profile

- Observed inflow
- FESOM
- Modelled inflow
- Summary/Outlook
Seasonal Hydrography Filchner Trough

- Seasonal intrusion of MWDW
- Shelf convection in winter
Seasonal Hydrography Filchner Trough

- seasonal intrusion of MWDW
- shelf convection in winter
- connection to slope front position

Introduction
Observed inflow
FESOM
Modelled inflow
Summary/Outlook

MWDW Inflow Filchner

Ocean Sciences Meeting, 15.01.2018
Svenja Ryan
Seasonal Hydrography Filchner Trough

- seasonal intrusion of MWDW
- shelf convection in winter
- connection to slope front position
Finite Element Sea Ice-Ocean Model (FESOM)

- unstructured mesh
- primitive-equation, hydrostatic global ocean model
- dynamic-thermodynamic sea-ice and ice-shelf component
- hybrid vertical coordinate with 22 sigma-layers and 36 z-layers, transition at 2500 m
- forced with NCEP-CFSR reanalysis (1979-2010)
- initialised with World Ocean Data Atlas 2013
New high resolution configuration

New high resolution configuration

Configuration leads to significantly improved:

- general Weddell Gyre circulation
- slope front properties
Introduction

Sensitivity test: Slope front restoring

- Implement data into World Ocean Data Atlas (2013)
- restore model upstream of the study area (3 hourly)

Hattermann, in prep.
Sensitivity test: Slope front restoring

- Implement data into World Ocean Data Atlas (2013)
- restore model upstream of the study area (3 hourly)

Hattermann, in prep.
• Hydrographic shelf break properties cannot be reproduced in high resolution run

• Restoring upstream leads to a realistic representation
Modelled inflow eastern shelf

Model reproduces seasonal southward flow of MWDW and deep convection in winter over eastern shelf.
Modelled inflow eastern shelf

Model reproduces seasonal southward flow of MWDW and deep convection in winter over eastern shelf.
Modelled inflow eastern shelf

Model reproduces seasonal southward flow of MWDW and deep convection in winter over eastern shelf.
Does MWDW reach and enter the cavity?

• significant modification of MWDW on the shelf
Does MWDW reach and enter the cavity?

- significant modification of MWDW on the shelf
- traces of warm water reach the ice front every year...
Does MWDW reach and enter the cavity?

- significant modification of MWDW on the shelf
- traces of warm water reach the ice front every year...
- ... and can enter the cavity
Summary

- Strong seasonal cycle over shelf east of the Filchner Trough driven by winter convection and seasonal uplift of Antarctic Slope Front
- Deep convection in winter erodes MWDW on shelf, limiting a year long southward heat transport
- The correct representation of the shelf break hydrography in the model is crucial to achieve a realistic hydrography and inflow on the continental shelf
Summary

- Strong seasonal cycle over shelf east of the Filchner Trough driven by winter convection and seasonal uplift of Antarctic Slope Front

- deep convection in winter erodes MWDW on shelf, limiting a year long southward heat transport

- the correct representation of the shelf break hydrography in the model is crucial to achieve a realistic hydrography and inflow on the continental shelf
Improved Slope Front Current

Only oceanic heat supply for Weddell Gyre via the eastern inflow of Circumpolar Deep Water → has to be captured by model

→ New configuration leads to realistic gyre structure and transports
Erosion of dense layer by MWDW