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ABSTRACT

An intense biomass-burning (BB) event from
North America in July 2015 was observed
over Ny-Ålesund (Spitsbergen, European Arc-
tic). An extreme air pollution took place and
aerosol optical depth (AOD) of more than 1 at
500nm occurs in middle and lower troposphere.
We analyse data from the multi-wavelength
Raman-lidar KARL of Alfred Wegener Insti-
tute to derive microphysical properties of the
aerosol of one interesting layer from 3186 to
3306 m via regularization. We found credible
and confidential microphysical parameters.

1 INTRODUCTION

The data for this work was obtained in Ny-
Ålesund, Spitsbergen, in the European Arc-
tic on 10 July 2015. An intensive event of
BB aerosol originating from the boreal North
America was observed for several days around
that period at different Arctic sites (Markow-
icz et al. [1]) and produced an AOD(500) >1.
Profiles of extinction and backscatter were ob-
tained by the “3+2” Raman lidar KARL accord-
ing to the method of Ansmann [2] with 10min /
30m resolution.

This event of BB aerosol and the KARL li-
dar are described also in [3]. The extinction
and backscatter coefficient profiles are shown
in Fig 1. For the inversion of the microphysics
we selected an altitude range from 3186m to
3306m because a contemporaneous radiosonde
showed a humidity about 80-85% and, hence,
we expected a larger effective radius and a
lower refractive index (RI) as was reported for
dry BB aerosol in literature. Wandinger et
al [4] derived for example effective radii of
0.25µm and RI of 1.56–1.66 for the real (Re)

and 0.05i–0.07i for the imaginary part (Im).

2 METHODOLOGY

The model relating the optical parameters Γ(λ )
with the volume size distribution v(r) is de-
scribed by the action of a Fredholm integral op-
erator of the 1st kind with the kernel function
K(r,λ ;m) = 3

4r
Q(r,λ ;m) and

Γ(λ ) =
∫ rmax

rmin

K(r,λ ;m)v(r)dr, (1)

where λ is the wavelength, r is the radius,
rmin, rmax are suitable lower and upper radius
bounds, m is the complex RI, Γ(λ ) denotes ei-
ther the extinction or backscatter coefficients,
and Q stands for either the extinction or the
backscatter (dimensionless) Mie efficiencies re-
spectively. The wavelength in our measurement
cases can only take three discrete values 355,
532, and 1064 nm, since all the measurements
were performed with the Raman lidar forming
data sets of 3 backscatter coefficients in all three
wavelengths and 2 extinction coefficients in the
first two. Identifying Γ(λ ) as our measure-
ment data and v(r) as the unknown volume dis-
tribution, the problem reduces to the inversion
of Eq. (1). Knowing the volume distribution,
we can then extract the following microphysi-
cal parameters
• total surface-area concentration (µm2cm−3)
st = 3

∫ v(r)
r

dr

• total volume concentration (µm3cm−3)
vt =

∫
v(r)dr

• total number concentration (cm−3)

nt = 3/4π
∫ v(r)

r3 dr

• effective radius (µm) reff = 3 vt

st
.

In addition, the complex RI and the single scat-
tering albedo (SSA) in 355 nm and 532 nm
are retrieved. Note, that in this work the com-
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Table 1: Retrieved RI and SSA using both methods.

TSVD
best
point

TSVD
mean

TSVD
devia-
tion

ITER

RI Re 1.45 1.48 ±0.02 1.49
RI Im 0.001 0.007 ±0.005 0.01
SSA
(355)

0.981 0.919 ±0.030 —

SSA
(532)

0.987 0.942 ±0.017 —

mon assumption of wavelength-independent RI
is made, as a member of the predefined grid in-
troduced, see e.g. [5, 6, 7]. Solving Eq. (1)
requires discretization, regularization and a pa-
rameter choice rule, see e.g. [5, 8].

2.1 TSVD regularization

We discretized Eq. (1) with spline collocation.
The volume distribution v(r) is approximated
with respect to the B-spline functions φ j by
vn = ∑

n
j=1 b jφ j, reducing the problem to the de-

termination of the coefficients b j. The contin-
uous problem (Eq. (1)) is now replaced by a
discrete one Ab = Γ, where the matrix elements
of the linear system are
Ai j =

∫ rmax
rmin

K(λi,r;m)φ j(r)dr (2)
and Γ is a vector now. By doing so, we have
already projected our problem to a finite n-
dimensional space. Clearly, the decision about
the projected dimension (n) and order (d) of the
base functions φ j is critical, since an appropri-
ate representation of our solution strongly de-
pends on it. This is not done at once; on the
contrary, the algorithm constructs a linear sys-
tem (5× n) for each value of n and d specified
and every RI within our predefined grid. For
example, we first fix the refractive index, and
calculate the kernel functions, then decide for
candidates for n and d, e.g., n = 3, . . . ,8 and
d = 3,4 which define a B-spline function and
finally calculate the matrix elements from Eq.
(2). For more particular details on the B-spline
basis in the frame of a non-negative size distri-
bution, we are looking for, see [5].

Each linear system is solved by first expanding
the matrix using Singular Value Decomposition
(SVD). Potential noise in our matrix will be
magnified as a result of the singular values clus-
tering to zero. We would like to prevent this be-
havior by including only a part of the SVD, i.e
defining a certain cut-off level k, above which
the most noisy solution coefficients are filtered
out. This regularization procedure is known as
Truncated SVD (TSVD), see [5].The parameter
choice rule consists in selecting an appropriate
triple (n,d,k) heuristically.

2.2 Iterative regularization

A particular iterative regularization (ITER)
was used additionally to retrieve microphysical
properties of this event. This method is based
on Runge-Kutta regularization, see [8, 9]. Since
the noise level of the backscatter and extinc-
tion profile is often not known or only a roughly
estimation is available, a heuristical parameter
choice rule is used here too, the well-known L-
curve method. This method was developed to
retrieve the fine mode only until 1.25µm.

3 RESULTS

The retrieval by TSVD was first done with a re-
fractive index grid with a resolution of 40x40
points and a range for the Re of RI from 1.3-
1.8 and for the Im from 0-0.05. We found that
the best possible RI’s lay on a diagonal pattern
what is an indication of precise measurements
in agreement with investigated simulations, see
[10]. The best points are situated in the range
1.4-1.55 for Re and 0-0.025 for Im. There-
fore, the retrieval was done a second time on
those ranges with a grid resolution of 20x20,
see Fig. 2 (top). We selected the 12 points with
a relative residual norm below 8% and a similar
shape of the volume distribution. The best point
(7.22%) was found for m = 1.45 + 0.00132i.
Averaging all 12 selected RI points results in
m = 1.48 + 0.00713i, see Table 1. Addition-
ally, the second algorithm ITER found a sim-
ilar value m = 1.49+ 0.01i which is in accor-
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Figure 1: Optical backscatter and extinction coefficient

profiles from Raman lidar KARL and aerosol layer of

interest (dotted horizontal lines).

Figure 2: Top: Retrieved complex refractive index grid.

Bottom: 12 retrieved volume distributions (thin black

lines) and mean distribution (thick blue line).

dance with the deviation level from the first al-
gorithm, see Table 1. Comparing both algo-
rithms for the used B-spline bases yields: Both

Figure 3: Retrieved volume distribution of the best

point, see Fig. 2 with TSVD and two log-normal modes

for fine and coarse mode (green lines).

Table 2: Retrieved microphysical properties of the

inverted and fitted distributions. Values in brackets stand

for: (.) best point and {.} used rmin=0.125 µm (regular

used rmin=0.001 µm ).

mean
TSVD

fine
mode

coarse
mode

rmed — 0.19
(0.22)

1.60
(1.11)

σ — 1.71
(1.63)

1.08
(1.24)

reff 0.45
±0.01
(0.46)

0.40
——
(0.39)

1.63
——
(1.24)

vt 83.7
±2.24
(87.0)

66.3
——
(59.2)

6.1
——-
(24.02)

st 561
±2.5
(564)

501
——
(454)

11.25
——
(58.2)

nt {477}
({479})

602
(478)

0.35
(3.5)

determined for all selected distributions n = 8
(only two outliers n = 7,9) and d = 3 for the
number and degree of the used splines, respec-
tively. Moreover, with respect to TSVD no ad-
ditional cut of any singular value was neces-
sary. The retrieved mean volume distribution,
see Fig. 2 bottom (blue line), and in particu-
lar the best point distribution shows obviously
a bi-modal volume distribution, one for the fine
mode and one for the coarse mode particles. It
is commonly assumed that the number distribu-
tion is a log-normal distribution, this property
is also true for the surface-area and the volume
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distribution with the same geometric standard
deviation as well. Therefore, we separated the
distribution into two modes by using two log-
normal distributions such that the sum of both
modes (brown line) fits the retrieved volume
distribution well, see Fig. 3. Finally, we sum-
marized all microphysical parameters in Table 2
for the whole distribution as well as for the two
modes separately. We remark, that for the to-
tal number concentration of the complete mean
distribution the Aitken-mode (first part of the
fine mode) was excluded since even very small
uncertainties in the volume distribution by di-
viding by r3 with very small radii lead to a huge
amplification.

4 CONCLUSIONS

We found for the effective radius of the com-
plete mean distribution reff = 0.45±0.01µm as
well as for the fine and coarse mode 0.40µm
and 1.24µm, respectively. Our expectation was
approved. Because of the large humidity 80-
85% in the regarded particle layer, the effective
radius of the BB-particles is larger as usual in
the literature, e.g. 0.25µm in [4]. Furthermore,
in agreement the RI is indeed lower in both
parts for such wet particles, compare the Intro-
duction last part and Table 1. Analyzing the
whole profile is an ongoing work but some of
the particle properties between 2km and 3.3km
altitude are also discussed in [3].
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