Snow Cover Impacts on Antarctic Sea Ice

Leonard Rossmann¹, Stefanie Arndt¹, Michael Lehning^{3,4}, Nander Wever⁵, Lars Kaleschke², Nina Maaß², Marcel Nicolaus¹

¹Alfred-Wegner-Institut Helmholltz-Zentrum für Polar- und Meeresforschung, ²Universität Hamburg DFG Fördernummer: NI 1096/5-1 SNF Fördernummer: 20002E-³ School of Architecture, Civil and Enviromental Engineering, École polytechnique fédérale de Lausanne, ⁴WSL-Institut für Schnee- und Lawinenforschung SLF, ⁵Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder CO, USA

Poster Nr.: Fri 230 OS-5 343

160667

Background:

The slight increase of Antarctic sea ice extent over the last years is in contrast to the observations in the Arctic, and the causes are not well understood yet. Besides atmospheric and oceanic processes, the heterogeneous and year-round thick snow cover on Antarctic sea

ice is a major factor governing the sea ice mass balance.This impacts the surface energy balance, as well as the global climate and ice-associated ecosystems. The snow cover properties dominate the retrieval of many airborne and satellite observations and thus determine to a major factor the uncertainties. Hence, information about snow on sea ice is needed to improve remote sensing algorithms and climate models regarding Antarctic-wide snow depth distribution and seasonality. This we achieve by deploying an ice tethered autonomous platform. The so call Snow Buoys detect snow height changes with four ultra-sonic sensors. Furthermore, it measures position, air temperature and pressure. Since 2013, 27 Snow Buoys have been deployed on sea ice in the Weddell Sea.

RESULTS 1:

Comparison between different data types •AMSR2 is the space borne snow depth retrieval from the Advanced Microwave Scanning Radiometer 2 satellite provided by the University of Bremen.

FESOM is the Finite-Element Sea ice-Ocean Model product, provided by the AWI (data courtesy of Lukrecia Stulic).

•ORAS5 is the Ocean Re-Analysis System product provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Data courtesy of Steffen Tietsche

AMSR2 Dec 2016

Snow Buoy trajectories

KA2694/7-1

•Well established numerical snow model (Lehning et al., 2002b)

•New implemented sea ice branch

RESULTS 2:

₩₩₩<u>₩</u>₩₩

The plots show snow depth distribution in the Weddell Sea from four products during different timings of the year. AMSR2, FESOM and ORAS5 over and underestimate the snow depth seen by Snow Buoys.

• Snowmelt occurs when Snow Buoy reaches the marginal ice zone

 Layering, grain metamorthisim, melt Ifreeze cycles and snow ice formations are representive in the model

Conclusions •The products of AMSR2, FESOM and ORAS5 show a clear mismatch to the snow depth of the autonomous Snow Buoys.

•SNOWPACK with input from ECMWF reproduces the snow depth with a root mean square error of 9 cm.

•SNOWPACK reproduces the snow metamorphism and snow ice formation, which influences space borne retrieval algorithms and the mass and energy balance.

Outlook

•We will derive snow stratigraphies along buoy trajectories to support remote sensing data interpretation. •Grain type/size evolution and snow ice formation will a major part of future studies in order to link to remote sensing operations.

 The co-deployed IMBs will act for further validation of the SNOWPACK sea ice model.

•A direct link between SNOWPACK and FESOM will improve the snow depth in FESOM tremendously. This will enable us to generate a Weddell Sea wide snow depth product.

Lehning et al., 2002a Lehning, M., Bartelt, P., Brown, R.L., Fierz, C., and Satyawali, P.K. 2002. A physical SNOWPACK model for the Swiss avalanche warning, Part II. Snow microstructure, Cold Regions Science and Technology 35, 2002, 147-167.

Tietsche, S., Balmaseda, M. a., Zuo, H., & Mogensen, K. (2015). Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5. Climate Dynamics. http://doi.org/10.1007/s00382-015-2673-3, ORAS5 data courtesy of Steffen Tietsche (ECMWF)

Acknowlegements

We thank the Deutsche Forschungs Gemeinschaft (DFG) and the Schweizer sche Nationalfonds zur Förderung der wissenschaftlichen Forschung (SNF) for co-funding this project All presented Snow Buoys were funded through ACROSS and FRAM. They are available from Meereisportal http://www.meereisportal.de (Funding: RE KLIM-2013-04) And further Thanks goes to Steffan Tietsche and Lukrecia Stulic for providing the ORAS5 and FESOM data sets (respectively) I thank my co authors and especially Marcel Nicolaus for their contribution

UH DER FORSCHUN

BREMERHAVEN

Am Handelshafen 1 27570 Bremerhaver Telefon 0471 4831-0 www.awi.de