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Abstract In times of warming in polar regions, the prediction of ice sheet discharge is of utmost
importance to society, because of its impact on sea level rise. In simulations the flow rate of ice is usually
implemented as proportional to the differential stress to the power of the exponent n = 3. This exponent
influences the softness of the modeled ice, as higher values would produce faster flow under equal stress. We
show that the stress exponent, which best fits the observed state of the Greenland Ice Sheet, equals n = 4. Our
results, which are not dependent on a possible basal sliding component of flow, indicate that most of the
interior northern ice sheet is currently frozen to bedrock, except for the large ice streams and marginal ice.

Plain Language Summary Ice in the polar ice sheets flows toward the oceans under its own
weight. Knowing how fast the ice flows is of crucial importance to predict future sea level rise. The flow
has two components: (1) internal shearing flow of ice and (2) basal motion, which is sliding along the base of
ice sheets, especially when the ice melts at this base. To determine the first component, we need to know
how soft the ice is. By considering the flow velocities at the surface of the northern Greenland Ice Sheet and
calculating the stresses that cause the flow, we determined that the ice is effectively softer than is usually
assumed. Previous studies indicated that the base of the ice is thawed in large parts (up to about 50%) of the
Greenland Ice Sheet. Our study shows that that is probably overestimated, because these studies assumed
ice to be harder than it actually is. Our new assessment reduces the area with basal motion and thus melting
to about 6–13% in the Greenland study area.

1. Introduction

Ice is constantly transported from ice sheets to the surrounding oceans by gravity-driven flow. The flow velo-
city of ice is assumed to have two main components. First, ice exhibits crystal-plastic behavior that leads to
nonlinear viscous flow (Budd & Jacka, 1989; Durham et al., 1983; Glen, 1952, 1955; Goldsby & Kohlstedt,
2001; Hutter, 1983; Treverrow et al., 2012; Weertman, 1983). The second is basal motion due to sliding over
the bedrock or shearing within subglacial sediments, when the base is thawed (Bell et al., 2014;
Fahnestock et al., 2001; Hewitt, 2013; MacGregor et al., 2016; Rignot & Mouginot, 2012; Sergienko et al.,
2014; Stokes et al., 2007; Wolovick et al., 2014). Recent studies have proposed that basal motion may domi-
nate ice transport in up to 50% of the Greenland ice sheet area (Rignot & Mouginot, 2012); MacGregor et al.,
2016). These studies used measurements of surface velocities in combination with inverse modeling, to
determine the contribution of each of the two velocity components to the total ice transport rate. An under-
estimate of the internal deformation rate of the ice automatically leads to an overestimate of the basal
motion. A correct description of the ice flow law is therefore crucial to understand current ice transport rates
and predict their possible future changes (Clark et al., 2016; Gillet-Chaulet et al., 2012; Graversen et al., 2011;
Intergovernmental Panel on Climate Change, 2014; Ren et al., 2011).

Experiments and observations on ice sheets and glaciers suggest that the quasi-viscous rheology of ice can
be described with a power law, also known as Glen’s law (Glen, 1952, 1955), of the form:

_ε ¼ Aσn (1)

with _ε the strain rate, σ the differential stress, n the stress exponent, and A the temperature-dependent rate
factor. Stress exponents in the range from one to five are obtained from observations on natural ice flows
(borehole deformation measurements, ice flow velocities, etc.; Cuffey & Kavanaugh, 2011; Gillet-Chaulet
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et al., 2011; Hutter, 1983; Pettit & Waddington, 2003) and laboratory experiments on polycrystalline ice aggre-
gates at stresses mostly below 1 MPa, as is typical for ice sheets (Durham et al., 1983; Glen, 1955; Goldsby &
Kohlstedt, 2001; Hooke, 1981; Treverrow et al., 2012; Weertman, 1983). Although the exact value of the stress
exponent of ice under Earth conditions is far from certain, the current literature almost invariably assumes
that n = 3. Here we reassess and challenge the paradigmatic assumption that n = 3 by determining n in situ
in the northern Greenland Ice Sheet (GrIS).

2. Materials and Methods

The surface velocity (vs) of an ice sheet is the sum of vice, caused by bedrock-parallel shearing inside the ice,
and vbase due to basal motion. We use the Shallow Ice Approximation (SIA; Budd & Jacka, 1989; Hutter, 1983),
which ignores all stresses other than the shear stresses resolved on planes parallel to the bedrock. This is valid
in areas where all other stress components are small (Kirchner et al., 2016). The advantage of using the SIA
here is that no assumptions need to be made on far-field stresses. Measurements obtained from one point
on the ice sheet are thus independent of such assumptions. vice can be related to the driving stress (τ) with

vice ¼ 2A
nþ 1

Hτn: (2)

The driving stress is proportional to the surface gradient (∇S) and local ice sheet thickness (H), according to

τ ¼ �ρgH∇S; (3)

with ρ the ice density of 917 kg/m3 and g the 9.81 m/s2 gravitational acceleration. Several studies have used
this approach, with the a priori assumption that n = 3 in Glen’s law, to determine the amount of basal motion
(MacGregor et al., 2016) and/or the rate factor A (Rignot & Mouginot, 2012). We use the same approach here,
but instead, we determine the stress exponent for an area that covers most of the north of GrIS (Figure 1a).

3. Data

We used surface and bedrock elevation data (Bamber et al., 2013) on a rectangular 500-m resolution grid, to
determine ice sheet thickness H and surface elevation S for every grid point in the northern part of Greenland.
Data analysis was restricted to areas where H> 200 m. As the SIA is only an appropriate approximation of the
stress state in the ice sheet away from the fast-flowing ice streams, the ice sheet margins and divides
(Kirchner et al., 2016), we only take into account data from areas away from these (except for divides, which
are discussed below). The driving stress (τ) was obtained from the surface gradient, using equation (3)
(Figure 1b). Absolute surface velocities (vs) and directions of surface flow were obtained from the
MEaSUREs velocity data set (Joughin et al., 2010a, 2010b) with data from the years 2000–2008. The surface
elevation of GrIS shows undulations and, hence, variations in surface slope, on the 5- to 20-km scale
(Sergienko et al., 2014). Surface roughness was removed with a low-pass filter applied to the surface elevation
data. After considering several cutoff wavelengths, we found that a 20-km low-pass filter gives the optimal
compromise between spatial resolution and data quality, with a smooth distribution of τ (Figures 1b and 2)
and a good alignment of the directions of observed surface velocities vs and τ, except near divides
(Figure S1b in the supporting information). The alignment is a prerequisite for the validity of equation (2).
Furthermore, 20 km is about 10 times the ice sheet thickness, at which distance longitudinal stresses are
eliminated, making the SIA an appropriate approach (Kamb & Echelmeyer, 1986).

4. Results and Discussion

From equation (2) it follows that

log
vs
H

� �
¼ n log τð Þ þ C with C ¼ log

2A
nþ 1

þ vbase
Hτn

� �
(4)

Thus, a double logarithmic plot of the ratio vs/H and the driving stress τ can be used to determine the stress
exponent n from a linear regression. This double logarithmic plot now shows a good correlation (Figure 3).
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Scatter in the vs/H data can in part be explained by noise and errors in the velocity and bedrock elevation
data. With a noise in the order of ±1 m/year in the velocity data, errors are in the order of ±15% at
τ = 0.05 MPa, but lower at higher τ. The stress exponent (n) was determined from vs/H and τ data in a
328,162-km2 reference area (Figure 1a). A value of n = 4.10 was obtained from linear regression of the data
points on the log (vs/H) versus log (τ) graph (Figure 3), for points where τ > 0.04 MPa (87% of the
reference area). The regression gives a standard error of r2 = 0.925 and 95% bootstrapped confidence
limits at 4.04 and 4.14.

Assuming n = 4 and no basal motion, log (A’) was calculated for each data point with log (A’) = log (vs/H)-4τ.
The flow factor An = 4 for n = 4 was then obtained by averaging all A’ values and using An = 4=〈A

0
〉·(n + 1)/2

(based on equation (2)). The rate factor thus obtained for the reference area is
An = 4 = 3.3 · 10�5 MPa�4 s�1. As with the published An = 3 = 1.2 · 10�6 MPa�3 s�1 for GrIS of Rignot and
Mouginot (2012), this is an average rate factor for the whole ice sheet region under consideration.

The flow factor A is a function of a number of state variables, such as lattice preferred orientation (Faria et al.,
2014; Graham et al., 2018; Treverrow et al., 2012), grain size (de Bresser et al., 2001; Platt & Behr, 2011),

Figure 1. Results of the analysis for the northern Greenland Ice Sheet. (a) Map of northern Greenland showing the surface
velocity (vs) distribution, the main ice streams and deep drilling sites, and the outline of the reference area. (b) Map of
the driving stress (τ in MPa) calculated with equation (3), using surface elevation data that were subjected to a 20-km low-
pass filter. (c) Map of the surface velocity component (vice,n = 4), caused by internal shearing of the ice, calculated with the
new n = 4 flow law. (d) Predicted basal velocity, calculated by subtracting vice,n = 4 from vs.
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impurity content (Faria et al., 2009; Paterson, 1991), and temperature.
The data plotted in Figure 3 are sampled over a large reference area in
which one or more of these variables may potentially vary systematically
with τ. If this variation correlates with τ, the slope in the vs/H versus τ plot
would change and an apparent n-value would be obtained. It has been
argued that glacial ice is softer than Holocene ice, due to the difference
in impurity content (Faria et al., 2009; Paterson, 1991). The relative propor-
tion of glacial ice decreases from the divides toward the margins
(MacGregor et al., 2015). This would imply a negative correlation between
A and τ and would actually lower the apparent n. Basal temperature is
expected to increase, lattice preferred orientation to strengthen, and grain
size to decrease with increasing τ toward the margins. Unfortunately, it is
not known by how much, because very few direct measurements are
available as most drill holes were sunk on divides or close to the ice sheet
margin. It would be highly coincidental if the variation in these variables
would correlate with τ to raise the slope in Figure 3 from the usually
assumed n = 3 to exactly four over a large area in the ice sheet. We
therefore assume that the observed slope in Figure 3 reflects the stress
exponent to be used in the flow law (equation (1)).

It is of interest to note that Glen (1955) himself wrote “... it is noteworthy that practically observable long-time
creep rates, as in a glacier, would probably depend on a higher power of the stress than the 3.2 found here.”
One should note that Glen’s law is typically based on the stress/strain rate points from the minimum strain
rate or peak/yield stress (Budd & Jacka, 1989; Glen, 1955), rather than those corresponding to steady state
flow or tertiary creep. Glen (1955) derives a strain rate minimum n value of 3.2 and shows (Figure 12 in
Glen, 1955) data for quasi-viscous creep rate that give n = 4. More recent experiments (Qi et al., 2017;
Treverrow et al., 2012) give a peak stress (=minimum strain rate) n value of ~3, but a steady state flow stress
n value closer to 4, consistent with the n = 4 flow law derived by Durham et al. (1983) and Azuma and Higashi
(1984). Considering the high finite strains prevalent in ice sheets, the use of steady state flow data appears to
be more appropriate, as is corroborated by our in situ determination of n = 4. Another factor may be that an
apparent n = 3 could result from erroneously fitting a stress exponent to data that have been derived in the
stress range at the transition between the dislocation creep regime (n = 4) and the regime of basal dislocation
glide accompanying grain-boundary sliding (n = 1.8; Goldsby & Kohlstedt, 2001). The good correlation
between the ratio vs/H and the driving stress τ that gives n = 4 breaks down at low τ, which is mostly the case

at divides. First, the SIA model does not apply at domes and divides,
because flattening stresses cannot be ignored here (Kirchner et al.,
2016; Raymond, 1983). This leads to faster flow than predicted by the
SIA model and deviating flow directions (Figure S1). Second, grain
size-sensitive creep mechanisms may contribute significantly to flow
at low stresses, reducing the stress exponent (Goldsby, 2006; Goldsby
& Kohlstedt, 2001; Pettit & Waddington, 2003). The transition to this
low-stress regime has been proposed to range from 0.02 to 0.05 MPa
(Budd & Jacka, 1989; Pettit & Waddington, 2003). Our data suggest that
n = 4 applies to driving stresses above about 0.04 MPa (Figure 3), which
is in agreement with the aforementioned studies.

The choice of the stress exponent is of utmost importance in determin-
ing the amount of basal motion in Greenland’s ice sheet. A stress expo-
nent that is too low leads to an overestimate of the viscosity at high
driving stresses and, therefore, an underestimate of the internal defor-
mation velocity vice. This in turn leads to an overestimate of the basal
velocity, vbase. Using the same approach as Rignot and Mouginot
(2012) andMacGregor et al. (2016), we mapped the ratio and difference
of the actual vs and the one predicted with the measured n = 4 flow law
(vice,n = 4) for internal shearing of the ice only (Figures 1c and 1d). Basal

Figure 2. Effect of the choice of low-pass filter on the linear regression of the
logarithms of the mean vertical shear strain rate (vs/H) versus the driving stress
(τ) data. Blue circles: Stress exponent (n) with error bars representing the 95%
bootstrapped confidence intervals. Red squares: Correlation coefficient (r2).

Figure 3. Log (vs/H) versus log (τ) based on data in the reference area. The clas-
sical n = 3 flow law (Rignot & Mouginot, 2012) and our new best fit flow law with
n = 4 are shown (see supporting information data set DS01 for the raw data).
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motion is most likely in areas where the ratio vs/vice,n = 4 exceeds two (the n = 4 law accounts for<50% of the
actual surface velocity) and where the actual surface velocity exceeds vice,n = 4 by ≥20 m/year (Rignot &
Mouginot, 2012; Figure 4). Both indicators for basal motion are fulfilled in ~6% of the northern GrIS area
where τ > 0.04 MPa, while only one of the two criteria is fulfilled in another ~7%. Enhanced velocities are
found at the margins of the ice sheet and at ice streams. The enhanced velocities (most distinct in
Northeast Greenland Ice Stream (NEGIS)) are clear indications for an additional transport mechanism, most
probably basal motion due to a thawed base (Fahnestock et al., 2001). However, the use of n = 4
significantly reduces the area with significant basal motion compared to current estimates that are based
on an n = 3 rheology (MacGregor et al., 2016; Rignot & Mouginot, 2012).

When calculating the mismatch between observed velocities and calculated velocities with n = 4, our results
indicate that the base of the ice may be thawed at the location of NorthGrip (Dahl-Jensen et al., 2003; but
note that τ < 0.04; Figure 4). NorthGrip lies in the west of a large area that includes the onset of NEGIS and
where large patches of basal melting are indicated, consistent with enhanced geothermal heat flow in this
region (Fahnestock et al., 2001; Rogozhina et al., 2016).

5. Conclusions

A stress exponent of four has now been determined in situ, for the first time in a large area in an ice sheet,
consistent with experimental data that use the flow or steady strain rate/stress (Durham et al., 1983; Qi
et al., 2017; Treverrow et al., 2012) rather than the strain rate minimum or peak stress and in situ measure-
ments on much smaller areas (Gillet-Chaulet et al., 2011). Above, we highlighted the implications of a higher
n than commonly assumed on estimates of the amount of basal motion in the northern part of GrIS. Since the

Figure 4. Distribution of the likelihood of basal motion. We use two criteria: (i) the surface velocity (vs) is more than double
the predicted basal velocity (vbase) and (ii) vs minus vbase exceeds 20 m/year. Basal motion ismost likely when both criteria
apply, and probable when one of two applies. Areas deemed likely thawed by MacGregor et al. (2016) and areas where vs
exceeds the velocity predicted by the n = 3 flow law (vice,n = 3) by ≥20 m/year according to Rignot and Mouginot (2012) are
much larger than predicted by our n = 4 flow law. Areas where the driving stress is less than 0.04 MPa are shownwith dashes.
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stress exponent is a material property of ice, this observation is not restricted to GrIS but also applicable to the
Antarctic Ice Sheet and mountain glaciers. However, the implications reach much further. (i) Strong,
centimeter-scale flow heterogeneity in ice is observed in numerical simulations of ice deformation (Llorens
et al., 2016; using n = 3) and disturbances in layering in ice cores (Jansen et al., 2016). Our unpublished simu-
lations show that the heterogeneity increases when n is raised and extends to all scales, as is observed in
rocks (Carreras, 2001; de Riese et al., 2018). (ii) Overestimating basal motion can lead to misinterpretations
of the cause for large-scale folding observed in radar stratigraphy (compare Wolovick et al., 2014, and Bons
et al., 2016). (iii) The vertical-velocity profile depends on n. As a consequence, the total mass flux at a given
surface velocity and ice thickness is about 5% higher for n = 4 compared to n = 3. Models that use n = 3
(Gillet-Chaulet et al., 2012; Graversen et al., 2011; Karlsson & Dahl-Jensen, 2015; Ren et al., 2011) may thus
underestimate ice fluxes or may compensate for this by invoking basal motion. Increasing n also reduces
the kink-point height h in the velocity profile that is used in the Dansgaard-Johnsen model to predict age-
depth relationships (Dansgaard & Johnsen, 1969). This has implications for inferences on the amount of basal
melting based on measurements of h (e.g., Fahnestock et al., 2001; MacGregor et al., 2016). (iv) The even
stronger nonlinearity with n = 4 means that the ice sheet is responding faster to changes in boundary con-
ditions, which also means that changing and retreating grounding lines can affect the flux of inland ice in
shorter times (Gillet-Chaulet et al., 2011). It remains to be determined whether these implications in combi-
nation make ice sheets less or more stable under changing conditions. What can be inferred is that the inter-
nal deformation of ice plays a bigger role than hitherto assumed. Considering the importance of correctly
predicting ice sheet behavior and related sea level rise, with results of models feeding into global political-
economical decisions, it is imperative that ice flow modelers start considering n = 4, at least as an alternative
to only n = 3.
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