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Soil Properties

Active Layer Temperatures: recorded in high-resolution Permafrost Temperatures: recorded in borehole, Active Layer Thickness: maximum annual thaw depth
soil profile from 1998 to 2017. Mean annual, winter (DJF), installed in 2009. Mean annual, winter, and estimated by Stefan-Model.
and summer (JJA) temperatures were aggregated. summer temperatures were aggregated.
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Air Temperature Radiation

Mean annual air temperature: from 1998 to 2016. Data- Mean monthly temperature: from Mean annual net radiation: from 1998 to 2016. Large e — o
gaps were filled with air temperatures recorded in 1998 to 2016. Absolute minimum and data-gaps excluded from annual mean aggregation. : —
Ny-Alesund, 2.7 km east of Bayelva. maximum values, and the mean value Mean monthly shortwave radiation: upward and : v
of all months. downward components from 2010 to 2017. E
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End of snow-cover: final day of snow-cover was Effective Snow Depth: Normalized Temperature P: temporal offset between air and soill
determined using two different approaches: Amplitude: temperature amplitudes
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