IPCC AR5: Projections of Arctic Sea Ice Change

K. Riemann-Campe\(^{(1)}\), R. Gerdes\(^{(1)}\), M. Karcher\(^{(1,2)}\), F. Kauker\(^{(1,2)}\)

\(^{(1)}\)Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

\(^{(2)}\)O.A.Sys - Ocean Atmosphere Systems
Overview

- IPCC AR5/CMIP5 climate model simulations
 - what kind of models
 - large uncertainty range
- How to narrow the uncertainty range?
- Why are there still large differences?
- Summary
CMIP5 climate models

- Coupled Model Intercomparison Project (CMIP)
 standard experimental protocol for studying the output of coupled atmos.-ocean general circulation models
- by World Climate Research Programme (WCRP)
- standard experiments:
 - historical simulation (1850-2005)
 - future emission scenarios (2006-2100)
- IPCC AR5: CMIP5
How to narrow the uncertainty range?

Composite GCM Sfc. air temperature RMSE

Overland et al., 2011 DOI:10.1175/2010jcli3462.1
How to select the better models?
Sea ice area misfit: model - observations

<table>
<thead>
<tr>
<th>rank</th>
<th>OSI SAF 1979-2005 WP4.1 regions</th>
<th>norm. misfit WP4.1 regions</th>
<th>OSI SAF 1979-2005 whole Arctic</th>
<th>norm. misfit whole Arctic</th>
<th>SSMI IFREMER 1992-2005 whole Arctic</th>
<th>norm. misfit whole Arctic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPI-ESM-LR</td>
<td>1.000</td>
<td>MPI-ESM-LR</td>
<td>1.000</td>
<td>MPI-ESM-LR</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>MIROC4h</td>
<td>0.998</td>
<td>MPI-ESM-P</td>
<td>0.984</td>
<td>MPI-ESM-MR</td>
<td>0.959</td>
</tr>
<tr>
<td>3</td>
<td>MPI-ESM-MR</td>
<td>0.997</td>
<td>MPI-ESM-MR</td>
<td>0.980</td>
<td>CCSM4</td>
<td>0.952</td>
</tr>
<tr>
<td>4</td>
<td>GFDL-CM3</td>
<td>0.988</td>
<td>NorESM1-M</td>
<td>0.930</td>
<td>EC-EARTH</td>
<td>0.945</td>
</tr>
<tr>
<td>5</td>
<td>NorESM1-M</td>
<td>0.979</td>
<td>NorESM1-ME</td>
<td>0.890</td>
<td>MPI-ESM-P</td>
<td>0.945</td>
</tr>
<tr>
<td>6</td>
<td>MPI-ESM-P</td>
<td>0.966</td>
<td>CCSM4</td>
<td>0.888</td>
<td>CESM1-CAM-1FV2</td>
<td>0.944</td>
</tr>
<tr>
<td>7</td>
<td>ACCESS1-0</td>
<td>0.926</td>
<td>GFDL-CM3</td>
<td>0.853</td>
<td>NorESM1-ME</td>
<td>0.937</td>
</tr>
<tr>
<td>8</td>
<td>NorESM1-ME</td>
<td>0.882</td>
<td>IPSL-CM5A-MR</td>
<td>0.853</td>
<td>NorESM1-M</td>
<td>0.934</td>
</tr>
<tr>
<td>9</td>
<td>INMCM4</td>
<td>0.878</td>
<td>MIROC-ESM</td>
<td>0.847</td>
<td>GFDL-CM3</td>
<td>0.932</td>
</tr>
<tr>
<td>10</td>
<td>CCSM4</td>
<td>0.859</td>
<td>MIROC-ESM-CHEM</td>
<td>0.840</td>
<td>CNRM-CM5</td>
<td>0.913</td>
</tr>
</tbody>
</table>

ACCESS report D1.51 by AWI (http://access-eu.org/en/deliverables2/wp1.html)
Future development of sea ice concentration

Future change in September sic mean(2025-2040) - mean(1991-2005); RCP 4.5
Why are there still large differences?

- global climate models
- different sea ice models
- other reasons?
 - yearly (Jul-Jun) sea ice area in the Barents Sea is strongly linked to warm Atlantic water inflow (Arthun et al., 2012; DOI: 10.1175/jcli-d-11-00466.1)
 - Arctic wide summer sea ice area is strongly linked to 2 m air temperature
 - are these links similar in the models?
Yearly Barents Sea sea ice area and warm Atlantic water inflow
Arctic wide September sea ice area and yearly T2m: 66° N-90° N
Summary

• CMIP5 models have different strengths in different regions
• a subset of models reduces the uncertainty range considerably
• still large differences are due to
 • applying different sea ice models
 • different distributions of ocean currents and air temperature
 in past and future simulations
• CMIP5 models help a lot, but analyse with caution