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Complicated dynamics

which satellite?



Complicated dynamics

MITgcm (Menemenlis, Hill)



Outline: Sea-ice solvers in MITgcm

• Picard solvers (LSR, Krylov) 
• JFNK solver 
• EVP solvers: mEVP, aEVP 

• new MEB rheology in the pipeline



sea ice dynamics are very non-linear
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solution techniques: Picard method

• traditional method, e.g., PSOR, Hibler 
(1979), LSOR, Zhang and Hibler (1997), 
(Gauss-Seidel) for linear solver 

• Krylov method for linear solver (Lemieux and 
Tremblay, 2009), requires preconditioner 

• stable, but slow

A(u) ⋅ u = b
⇒ solve A(un−1) ⋅ un = b



solution techniques: JFNK solver

• better (quadratic) convergence near minimum (Lemieux et 
al. 2010, 2012, Losch et al 2014) 

• preconditioner for Krylov solver necessary 
• expensive 
• unstable, especially at high resolution 
• stabilization (e.g. Mehlmann and Richter 2017, involves 

mixing JFNK and Picard methods)

F(u) = A(u) ⋅ u − b
F(un) = F(un−1) + F′�

un−1
δu != 0

⇒ solve F′�n−1 δu = − F(un−1) ⇒ un = un−1 + δu



Picard vs. JFNK



Picard vs. JFNK

structures [8]. Fig. 4 illustrates what we mean by sharp solution structures. It shows the shear deformation field on 7 January
1990 08Z simulated by the JFNK solver when using the 10-km resolution model and a cnl of 0.001. The shear deformation

(second strain rate invariant) is given by
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. As in Maslowski and Lipscomb [28], who used a model

with about the same spatial resolution (9 km), our model simulates basin scale linear kinematic features that resemble
the observed ones [29]. Note that the existence of these strong velocity gradients is physically based (VP rheology) and is
not a consequence of residual errors in the velocity field approximate solution.

Note that for the JFNK solver, the computational efficiency and failure rate depend on the chosen value of rest (Eq. (25))
and that some tuning might slightly modify these results. A larger rest tends to increase the computational efficiency and the
failure rate.

The lack of convergence (failures) of the JFNK solver and the standard solver is a global convergence issue. When the ini-
tial iterate is ‘‘sufficiently close” to the solution, the solvers always converge. The quality of the initial iterate is determined
by the time step compared to the forcing time scale and to the level of convergence of the previous time step solution. A 1-
month integration at 40-km resolution with a 1-minute time step (44,640 time steps) for cnl ¼ 0:001 shows that both solvers
always converge. Unfortunately, the use of such a small time step represents a prohibitive computational approach. We have
not investigated what is the maximum time step allowed (between 1 and 30 min at 40-km resolution) for the solvers to con-
verge in all cases.

To illustrate the high convergence rate of the JFNK method as opposed to the ones of Stand-cap and Stand-tanh, Fig. 5
shows the residual norm of the nonlinear system of equations as a function of the iteration (Newton iteration or OL iteration)
down to a small residual norm ð10!6Þ. This typical result is for 1 January 1990 18Z. The Stand-cap solver needs in this case
2631 OL iterations to reach a residual norm of 10!6 while it takes 24 Newton iterations for JFNK to satisfy the same criterion.
This might suggest that JFNK is more than a 100 times faster than the Stand-cap solver. This is however not the case because
one JFNK iteration involves more calculation (in the fast phase) than one OL iteration. JFNK is & 23 times faster than the
Stand-cap solver to reach a residual norm of 10!6. Compared to the Stand-tanh solver, JFNK is 6.4 times faster. The required
CPU time for JFNK is 2.41 s, 15.49 s for Stand-tanh and 55.07 s for Stand-cap.

Even though the convergence rate of the JFNK solver is high (especially in the fast phase), it is not quadratic because an
inexact Newton approach is used. Asymptotic quadratic convergence could be possible but at the expense of very small cðkÞ
values [8].

5.2. Discussion about the robustness of the standard and JFNK solvers

Both standard and JFNK solvers show a lack of robustness. Moreover, the failure rate for both solvers increases as the grid
is refined. However, the lack of robustness of the solvers might not be so dramatic for practical considerations. First, cnl ¼ 0:2
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Fig. 5. Residual norm (N m!2) of the nonlinear system of equations as a function of the OL iteration (or Newton iteration) on 1 January 1990 18Z. The spatial
resolution is 40 km.
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“Timing” of solvers



Does it matter?

after nearly 40 years of simulation: average of Oct, 1995

Losch et al. (2014)



solution method: EVP variants

• Hunke and Dukowicz (1997) 
• does not converge (definitely not to VP, Lemieux et al. 

2012, Losch and Danilov 2012) 
• adding inertial term to momentum equations fixes 

convergence (Lemieux et al. 2012, Bouillon et al 2013) 
• m(odified)EVP, a(daptive)EVP (Kimmritz et al 2015, 

2016, 2017)

σij = P
2Δ {2 ·ϵij e−2 + [(1 − e−2)( ·ϵ11 + ·ϵ22) − Δ] δij}
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New EVP equations
based on Lemieux et al. (2012), Bouillon et al. (2013), 
add “inertial-like” term to momentum equations 

now, with 

the discretized equations converge to true VP

or explicit, through the EVP formulation (Hunke and Dukowicz, 1997, Hunke113

and Lipscomb, 2008) where adding a pseudo-elastic term reduces the time step114

limitations. A discussion of the convergence issues can be found, for instance,115

in Bouillon et al. (2013), Kimmritz et al. (2015) and is not repeated here.116

The suggestion by Bouillon et al. (2013) is equivalent, up to details of treating117

the Coriolis and the ice-ocean drag terms, to formulating the mEVP method as:118
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and the time derivative, �t is the external time step of the sea ice model set by123

the ocean model, the index n labels the time levels of the model time, and the124
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iteration. The relaxation parameters ↵ and � in (4) and (5) are chosen to satisfy130

stability constraints, see Bouillon et al. (2013), Kimmritz et al. (2015). They131

replace the terms 2T/�te and (�⇤/m)(�t/�te), where T is the elastic damping132

time scale and �te the subcycling time step of standard EVP formulation; the133

parameter �⇤ was introduced in Lemieux et al. (2012). If (4) and (5) are iterated134

to convergence, their left hand sides can be set to zero leaving the VP solution:135
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New EVP equations
New momentum equations 

with 

from stability analysis (Kimmritz et al, 2015, 2016).
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Figure 2:
fig:alpha1month
The ↵ field in the aEVP computation with NEVP = 500 at the end of 31/03/93

(top left) and 30/09/93 (top right). Time series of maximal and root mean square values of

↵ at the last sub-cycling of each month (bottom).

lution and the mEVP (aEVP) scheme with NEV P = 50 and 200 are 8.7⇥10�3m256

(1.5⇥10�2m) and 1.2⇥10�2m (6.4⇥10�3m), while the rms di↵erences are twice257

as large (indicating that there are some outliers from the mean di↵erences). The258

di↵erences in the simulated � fields (right column in Fig. 3) are large only in259

the weaker ice zone. The absolute mean di↵erences from the reference solu-260

tion for the mEVP (aEVP) scheme for NEV P = 50 and 200 are 4.6 ⇥ 10�8s�1
261

(4.3 ⇥ 10�8s�1) and 3.9 ⇥ 10�8s�1 (3.7 ⇥ 10�8s�1). The rms di↵erences from262

the reference solution in � are three times bigger than the mean values. In263

contrast, in the central Arctic (aice > 0.99) the mean absolute di↵erences of the264
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Convergence to VP solution: 
JFNK — aEVP difference in ice 
thickness (m) at 27 km resolution

Figure 3:
fig:results_aEVP_0397
Mean di↵erences JFNK-mEVP with ↵ = � = 300 (rows 1 and 3) and JFNK-aEVP

(rows 2 and 4) for NEVP = 50 (rows 1 and 2) and NEV P = 200 (rows 3 and 4) for March

1997 for the ice thickness (left column) and the � field (right column).
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MITgcm as a testbed: scalability
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high resolution simulations





EVP “convergence” (in FESOM)

Koldunov et al., submitted manuscript, grid resolution ~ 4 km



EVP “convergence” (in FESOM)

Koldunov et al., submitted manuscript, grid resolution ~ 4 km



Convergence to 
VP solution: 
ice thickness (m) 
at 4.5 km grid 
spacing
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stability 
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ice viscosity



Maxwell Elasto-Brittle rheology

• violation of a Mohr-Coulomb failure criterion 
determines a damage parameter  

• damage parameter affects ice strength, 
elasticity 

• (Girard et al 2011, Rampal et al 2015, 
Dansereau et al 2016) 

• In the pipeline for the MITgcm
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not sure if I 
should show 
this



Summary

• Viscous Plastic rheology: 
- Picard solvers with LSR and Krylov solvers 
- JFNK solver 
- many EVP variants, especially stable EVP 

algorithms (Kimmritz et al. 2015, 2016) 
• Maxwell Elasto-Brittle rheology (not quite, yet) 
• all in the same code framework (no confounders in 

comparisons) 
• main issues remain, especially at high resolution: 

convergence, stability vs. geophysical plausibility vs. 
time to solution


