

Sea ice dynamics solvers in the MITgcm

Martin Losch (Alfred-Wegener-Institut, Bremerhaven) Jean-Michel Campin (MIT, Cambridge, MA)

COMMODORE, Paris, 2018

Complicated dynamics

which satellite?

HELMHOLTZ

Complicated dynamics

MITgcm (Menemenlis, Hill)

HELMHOLTZ

Outline: Sea-ice solvers in MITgcm

- Picard solvers (LSR, Krylov)
- JFNK solver
- EVP solvers: mEVP, aEVP

• new MEB rheology in the pipeline

sea ice dynamics are very non-linear

$$m\frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot \sigma + R, \qquad R = \text{other terms}$$
with $\sigma_{ij} = \frac{P}{2\Delta} \left\{ 2\dot{e}_{ij} e^{-2} + \left[(1 - e^{-2})(\dot{e}_{11} + \dot{e}_{22}) - \Delta \right] \delta_{ij} \right\}$
with abbreviations
$$\Delta = \sqrt{(\dot{e}_{11} + \dot{e}_{22})^2 + e^{-2} \left[(\dot{e}_{11} - \dot{e}_{22})^2 + 4\dot{e}_{12} \right]}$$

$$\dot{e}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \text{(strain rates)}$$

$$m\frac{\partial \mathbf{u}}{\partial t} \propto \frac{\partial}{\partial x_i} \left(\frac{P}{\Delta} \frac{\partial u_i}{\partial x_j} \right) + \text{similar terms}$$

solution techniques: Picard method

$$\mathbf{A}(\mathbf{u}) \cdot \mathbf{u} = \mathbf{b}$$

$$\Rightarrow \text{ solve } \mathbf{A}(\mathbf{u}_{n-1}) \cdot \mathbf{u}_n = \mathbf{b}$$

- traditional method, e.g., PSOR, Hibler (1979), LSOR, Zhang and Hibler (1997), (Gauss-Seidel) for linear solver
- Krylov method for linear solver (Lemieux and Tremblay, 2009), requires preconditioner
- stable, but slow

$$\mathbf{F}(\mathbf{u}) = \mathbf{A}(\mathbf{u}) \cdot \mathbf{u} - \mathbf{b}$$

$$\mathbf{F}(\mathbf{u}_n) = \mathbf{F}(\mathbf{u}_{n-1}) + \mathbf{F}' \Big|_{\mathbf{u}_{n-1}} \delta \mathbf{u} \stackrel{!}{=} 0$$

$$\Rightarrow \text{ solve } \mathbf{F}'_{n-1} \delta \mathbf{u} = -\mathbf{F}(\mathbf{u}_{n-1}) \quad \Rightarrow \quad \mathbf{u}_n = \mathbf{u}_{n-1} + \delta \mathbf{u}$$

Ω ΔΛ//

- better (quadratic) convergence near minimum (Lemieux et al. 2010, 2012, Losch et al 2014)
- preconditioner for Krylov solver necessary
- expensive
- unstable, especially at high resolution
- stabilization (e.g. Mehlmann and Richter 2017, involves mixing JFNK and Picard methods)

Picard vs. JFNK

HELMHOLTZ

Picard vs. JFNK

"Timing" of solvers

HELMHOLTZ

Does it matter?

Losch et al. (2014) HELMHOLTZ

solution method: EVP variants

$$\sigma_{ij} = \frac{P}{2\Delta} \left\{ 2\dot{\epsilon}_{ij} e^{-2} + \left[(1 - e^{-2})(\dot{\epsilon}_{11} + \dot{\epsilon}_{22}) - \Delta \right] \delta_{ij} \right\}$$
$$\frac{\Delta e^2}{P} \sigma_{ij} + \left[\frac{\Delta (1 - e^2)}{2P} (\sigma_{11} + \sigma_{22}) + \frac{\Delta}{2} \right] \delta_{ij} = \dot{\epsilon}_{ij}$$

• Hunke and Dukowicz (1997)

 \Leftrightarrow

- does not converge (definitely not to VP, Lemieux et al. 2012, Losch and Danilov 2012)
- adding inertial term to momentum equations fixes convergence (Lemieux et al. 2012, Bouillon et al 2013)
- m(odified)EVP, a(daptive)EVP (Kimmritz et al 2015, 2016, 2017)

solution method: EVP variants

$$\sigma_{ij} = \frac{P}{2\Delta} \left\{ 2\dot{\epsilon}_{ij} e^{-2} + \left[(1 - e^{-2})(\dot{\epsilon}_{11} + \dot{\epsilon}_{22}) - \Delta \right] \delta_{ij} \right\}$$
$$\Leftrightarrow \left(\frac{1}{E} \frac{\partial \sigma_{ij}}{\partial t} + \right) \frac{\Delta e^2}{P} \sigma_{ij} + \left[\frac{\Delta (1 - e^2)}{2P} (\sigma_{11} + \sigma_{22}) + \frac{\Delta}{2} \right] \delta_{ij} = \dot{\epsilon}_{ij}$$

• Hunke and Dukowicz (1997)

- does not converge (definitely not to VP, Lemieux et al. 2012, Losch and Danilov 2012)
- adding inertial term to momentum equations fixes convergence (Lemieux et al. 2012, Bouillon et al 2013)
- m(odified)EVP, a(daptive)EVP (Kimmritz et al 2015, 2016, 2017)

based on Lemieux et al. (2012), Bouillon et al. (2013), add "inertial-like" term to momentum equations

$$\boldsymbol{\sigma}^{p+1} - \boldsymbol{\sigma}^{p} = \frac{1}{\alpha} \Big(\boldsymbol{\sigma}(\mathbf{u}^{p}) - \boldsymbol{\sigma}^{p} \Big),$$
$$\mathbf{u}^{p+1} - \mathbf{u}^{p} = \frac{1}{\beta} \Big(\frac{\Delta t}{m} \nabla \cdot \boldsymbol{\sigma}^{p+1} + \frac{\Delta t}{m} \mathbf{R}^{p+1/2}$$

based on Lemieux et al. (2012), Bouillon et al. (2013), add "inertial-like" term to momentum equations

$$\boldsymbol{\sigma}^{p+1} - \boldsymbol{\sigma}^{p} = \frac{1}{\alpha} \Big(\boldsymbol{\sigma}(\mathbf{u}^{p}) - \boldsymbol{\sigma}^{p} \Big),$$
$$\mathbf{u}^{p+1} - \mathbf{u}^{p} = \frac{1}{\beta} \Big(\frac{\Delta t}{m} \nabla \cdot \boldsymbol{\sigma}^{p+1} + \frac{\Delta t}{m} \mathbf{R}^{p+1/2} + \mathbf{u}_{n} - \mathbf{u}^{p} \Big)$$

based on Lemieux et al. (2012), Bouillon et al. (2013), add "inertial-like" term to momentum equations

 $p \rightarrow \infty$

$$\sigma^{p+1} - \sigma^p = \frac{1}{\alpha} \Big(\sigma(\mathbf{u}^p) - \sigma^p \Big),$$
$$\mathbf{u}^{p+1} - \mathbf{u}^p = \frac{1}{\beta} \Big(\frac{\Delta t}{m} \nabla \cdot \sigma^{p+1} + \frac{\Delta t}{m} \mathbf{R}^{p+1/2} + \mathbf{u}_n - \mathbf{u}^p \Big)$$
now, with $\sigma^{p+1} = \lim_{n \to \infty} \sigma^p$ and $\mathbf{u}_{n+1} := \lim_{n \to \infty} \mathbf{u}^p$

the discretized equations converge to true VP

 $p \rightarrow \infty$

$$\frac{m}{\Delta t} \left(\mathbf{u}_{n+1} - \mathbf{u}_n \right) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{u}_{n+1}) + \mathbf{R}^*$$

with $\mathbf{R}^* := \lim_{p \to \infty} \mathbf{R}^{p+1/2}$

New momentum equations

$$\sigma^{p+1} - \sigma^{p} = \frac{1}{\alpha} \Big(\sigma(\mathbf{u}^{p}) - \sigma^{p} \Big),$$

$$\mathbf{u}^{p+1} - \mathbf{u}^{p} = \frac{1}{\beta} \Big(\frac{\Delta t}{m} \nabla \cdot \sigma^{p+1} + \frac{\Delta t}{m} \mathbf{R}^{p+1/2} + \mathbf{u}_{n} - \mathbf{u}^{p} \Big)$$

with
$$\alpha \beta \gg \gamma = \frac{P}{2\Delta} \frac{(c\pi)^{2}}{A} \frac{\Delta t}{m}$$

from stability analysis (Kimmritz et al, 2015, 2016).

modified EVP: α, β = constant, order(300) adaptive EVP: $\alpha = \beta = (4\gamma)^{1/2}$

Parameter α (aEVP, N = 500)

31/03/93

30/09/93

Kimmritz, Losch, Danilov (2017)

Convergence to VP solution: JFNK — aEVP difference in ice thickness (m) at 27 km resolution

50 EVP iterations

200 EVP iterations

Kimmritz et al. (2017)

MITgcm as a testbed: scalability

high resolution simulations

EVP "convergence" (in FESOM)

Koldunov et al., submitted manuscript, grid resolution ~ 4 km HELMHOLTZ

EVP "convergence" (in FESOM)

Koldunov et al., submitted manuscript, grid resolution ~ 4 km

HELMHOLTZ

Convergence to VP solution: ice thickness (m) at 4.5 km grid spacing

$$\alpha\beta \gg \gamma = \zeta \frac{(c\pi)^2}{A_c} \frac{\Delta t}{m}$$

stability parameter depends on grid spacing and local ice viscosity

$$\frac{1}{E}\frac{\partial\sigma}{\partial t} + \frac{1}{\lambda}\sigma = K:\dot{\epsilon}$$

- violation of a Mohr-Coulomb failure criterion determines a damage parameter
- damage parameter affects ice strength, elasticity
- (Girard et al 2011, Rampal et al 2015, Dansereau et al 2016)
- In the pipeline for the MITgcm

0001/01/08 09:00

Summary

- Viscous Plastic rheology:
 - Picard solvers with LSR and Krylov solvers
 - JFNK solver
 - many EVP variants, especially stable EVP algorithms (Kimmritz et al. 2015, 2016)
- Maxwell Elasto-Brittle rheology (not quite, yet)
- all in the same code framework (no confounders in comparisons)
- main issues remain, especially at high resolution: convergence, stability vs. geophysical plausibility vs. time to solution