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Abstract A reconstruction method was developed for hyperspectral remote sensing reflectance (Rrs)
data in the visible domain (400–700 nm) based on in situ observations. A total of 2,647 Rrs spectra were
collected over a wide variety of water environments including open ocean, coastal and inland waters. Ten
schemes with different band numbers (6 to 15) were tested based on a nonlinear model. It was found that
the accuracy of the reconstruction increased with the increase of input band numbers. Eight of these
schemes met the accuracy criterion with the mean absolute error (MAE) and mean relative error (MRE)
values between reconstructed and in situ Rrs less than 0.00025 sr21 and 5%, respectively. We chose the
eight-band scheme for further evaluation because of its decent performance. The results revealed that the
parameterization derived by the eight-band scheme was efficient for restoring Rrs spectra from different
water bodies. In contrast to the previous studies that used a linear model with 15 spectral bands, the nonlin-
ear model with the eight-band scheme yielded a comparable reconstruction performance. The MAE and
MRE values were generally less than 0.00016 sr21 and 3% respectively; much lower than the uncertainties in
satellite-derived Rrs products. Furthermore, a preliminary experiment of this method on the data from the
Hyperspectral Imager for the Coastal Ocean (HICO) showed high potential in the future applications for
reconstructing Rrs spectra from space-borne optical sensors. Overall, the eight-band scheme with our non-
linear model was proven to be optimal for hyperspectral Rrs reconstruction in the visible domain.

1. Introduction

Remote sensing reflectance (Rrs, sr21), which is approximately a function of both the absorption and back-
scattering coefficients of the water optical constituents, is generally defined as the ratio of the water-
leaving radiance to the downwelling irradiance just above the water surface. As one of the most important
ocean color parameters, Rrs has been widely used to retrieve concentrations of chlorophyll-a (Chl-a), total
suspended material (TSM) and colored dissolved organic matter (CDOM) (Moisan et al., 2011; Qiu, 2013; Sis-
wanto et al., 2011; Zhang et al., 2017). The inherent optical properties (IOPs) of the optically active constitu-
ents (OACs) can also be efficiently retrieved by Rrs data, mainly in the visible domain (Lee et al., 2002). With
the development of satellite sensors, currently there are numerous satellite products for various ocean color
parameters with large spatial and temporal coverage, based on satellite-derived Rrs data (IOCCG, 1999).
Therefore, it is crucial to acquire Rrs data with high accuracy and spectral integrity without losing important
optical information in order to sufficiently represent the actual water optical conditions.

However, due to limitations of technology and high costs, most ocean color sensors have been multi-
spectrally designed in the visible range, e.g., the Coastal Zone Color Scanner (CZCS), the Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS), the Moderate-Resolution Imaging Spectrometer (MODIS), the
Medium Resolution Imaging Spectrometer (MERIS), and Sentinel-3 Ocean and Land Color Instrument
(OLCI). A few hyperspectral sensors have been or will be designed, such as the Hyperspectral Imager for
the Coastal Ocean (HICO, 2011–2015) (Lucke et al., 2011) and the upcoming hyperspectral missions –
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Plankton-Aerosol-Clouds-Ecosystems (PACE), Environmental Mapping and Analysis Program (EnMAP)
(Guanter et al., 2015), Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015), etc. Although the bands
of the currently existing sensors onboard these satellites have been designed to be capable of retriev-
ing the optical characteristics of water surfaces, optical data from multispectral sensors can still not pro-
vide adequate information on the surface layer of water body compared with hyperspectral
observations. Therefore, to enhance the capability for identifying various optical features of different
OACs, it is important to acquire hyperspectral measurements. Here ‘‘hyperspectral’’ represents continu-
ous spectral observations with a short spectral interval (� 5 nm) within a given spectral range. The sci-
entific question is then whether the full spectral information can be extracted from the available
multispectral Rrs data, so that potential applications based on the reconstructed Rrs can be further
implemented to satellite data.

A number of previous studies have focused on the relationship between spectral characteristics and data at
given multi-bands intending to recapture information at more bands. By using principal component analy-
sis (PCA), Mueller (1976) found that the first three principal components of the radiance spectra (422.5–
692.5 nm, 5 nm interval) measured from waters off the Oregon coast could represent changes of the ocean
color spectra. Consistent findings were reported by Sathyendranath et al. (1989), showing that the pigment
inversion algorithms could yield nearly the same retrievals with observations at 6 bands in a range of
413.5–762.25 nm, compared to 32 bands in the New York Bight (Sathyendranath et al., 1994). Moreover,
Flink et al. (2001) found that more than 96% of the variance of spectral measurements in two Swedish lakes
could be well approximated by the first three principal components. Similar results were also demonstrated
by means of empirical orthogonal functions (EOFs) (Craig et al., 2012; Lubac & Loisel, 2007; Tool & Siegel,
2001). Becker et al. (2005) and Dekker et al. (1992) suggested that 8 bands in the visible to NIR (near-infra-
red) region and 9 bands in the 500–800 nm range should contain the majority of the full spectral informa-
tion for some cases, respectively. M�elin and Sclep (2015) applied an in-water bio-optical model to perform
band shifting, successfully expressing Rrs at for a missing wavelength based on data at neighboring bands.
These studies have clearly shown that radiometric data have strong interdependence among adjacent
bands because of the signal overlap, implying that it is possible to construct Rrs at one position by a combi-
nation of data at other wavelengths.

Studies on how to reconstruct hyperspectral reflectance spectra using multispectral data were rarely
reported until the 1990s. Spitzer and Wernand (1986) proposed a linear transformation method for retriev-
ing the complete solar irradiance spectra (400–720 nm), followed by Wernand et al. (1997) that successfully
reconstructed full reflectance spectra in the range 400–720 nm (20 nm interval) through multivariant linear
regression analysis (MLRA), with utilization of the radiometric measurements in five bands (412, 492, 556,
620, and 672 nm) collected from the Dutch and Belgian coastal waters as well as the Strait of Dover. Lee
et al. (2014) reconstructed hyperspectral Rrs spectra in the range of 400–700 nm (5 nm interval) using 15
specific bands with satisfactory precision based on a worldwide Rrs data set, echoing the finding that
approximately 15 bands within the visible domain are adequate for retrieving optical signals in most coastal
and oceanic waters (Lee & Carder, 2002; Lee et al., 2007). More recently, Sun et al. (2015) finetuned the
parameterization derived by Lee et al. (2014) for the Rrs data (400–750 nm, 5 nm interval) collected in highly
turbid/eutrophic inland waters which were absent in former studies. The results showed sufficient accuracy
in both magnitudes and spectral shapes for restoring the diverse Rrs spectra in inland waters. Moreover,
Sun et al. (2015) also verified the feasibility of using MERIS and MODIS bands for the Rrs reconstruction, indi-
cating that the available bands on existing multispectral sensors may not be optimal for reconstructing full
Rrs spectra in the visible domain.

Most of the aforementioned work was based on a linear model for reconstruction. However, the results indi-
cated that, to a certain extent, larger errors tended to appear at the red bands (> 600 nm) due to under-
sampling and the limitations of a linear model (Lee et al., 2014; Sun et al., 2015; Wernand et al., 1997).
Although it is possible to improve the model performance with more input data, the number of the avail-
able bands in the visible domain is insufficient (less than 15) for most satellite-derived Rrs data. It is yet to be
known whether there is an optimal scheme which requires less input bands but still restores maximum
spectral information, and whether a nonlinear reconstruction model works better than the linear one. As a
potential reference for future applications in ocean color remote sensing, the objective of this paper is to
identify the band positions that are optimal for hyperspectral Rrs reconstruction in the visible domain by
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using a novel nonlinear model. Since remote sensed Rrs data are
observed worldwide, the proposed reconstruction method is devel-
oped on the basis of a global Rrs data set allowing for applications to
various water bodies.

2. Data and Methods

2.1. Field Measurements
In situ hyperspectral Rrs used in this study were collected from the
SeaWiFS Bio-optical Archive and Storage System (SeaBASS) (Werdell &
Bailey, 2002) and several cruises conducted in waters in China (sum-
marized in Table 1). SeaBASS is a repository of in situ bio-optical data
with the purpose of acquiring a data set of sufficient quality, volume
and diversity to support scientific analyses. It is comprised of both vol-
untarily contributed and funded data, including the measurements of
apparent optical properties (AOPs), IOPs, phytoplankton pigment con-
centrations and other related oceanographic and atmospheric data.

All of these data were contributed by investigators worldwide, covering the Pacific and the South Atlantic
Oceans, the Arabian Sea, the Mediterranean Sea, and the Gulf of Mexico. Due to lack of observations in Chi-
na’s aquatic environments in SeaBASS, field hyperspectral Rrs measurements from several cruises conducted
in the South China Sea, the East China Sea, the Yellow Sea, the Bohai Sea, and the inland waters of China
were also included.

As the in situ Rrs both from the SeaBASS data set and from cruises were obtained using different measuring
methods or optical instruments, including the ASD Field spectroradiometer (350–1;050 nm, 1.5 nm interval)
and the Hyper-Profiler II (349.4–804.0 nm, 3.3 nm interval), it is necessary to preprocess and unify the data.
For the remote sensing reflectance measured just beneath the water surface (rrs, sr21), we applied the
water-air interface transfer formula to convert rrs to Rrs based upon a semi-empirical relationship as
expressed in Eq. (1) (Lee et al., 1998, 1999). We focused on the Rrs data in the visible domain of 400–700 nm
in this study due to the fact that in both ultraviolet (UV) and NIR bands noise may occur and overwhelm the
spectral information (Lee et al., 2013). In order to capture the information of the original spectra as much as
possible and ensure the data quality, the Rrs spectra were all resampled into 1 nm resolution and smoothed
with a 5-nm moving average filter to eliminate noise.

A total of 2,647 Rrs spectra representing different aquatic systems (Figure 1) were carefully selected on the
global scale, covering blue clear waters in open oceans, blue to green (even yellow/brown) coastal waters
and highly turbid waters. The concentrations of Chl-a and TSM ranged from 0.02 to over 100 mg m23 and 1
to over 100 g m23, respectively. Due to more complex water constituents and anthropogenic influences,
the mean concentrations of Chl-a and TSM were 30.2 mg m23 and 49.7 g m23 respectively for turbid inland
waters, which were much higher than those of most sea waters (< 1.0 mg m23 for Chl-a and< 5 g m23 for
TSM).

Rrs �
0:5rrs

121:5rrs
(1)

2.2. Remotely Sensed Data
One scene of HICO image for the area of the Yellow River estuary (19 August 2013) was obtained from the
Earth Observing System Data and Information System (EOSDIS: earthdata.nasa.gov). Figure 2a shows the
HICO true color image covering more than 8,000 km2 with a spatial resolution of approximately 90 m.
Hyperspectral atmospheric corrections were processed using the Level-2 generator (L2GEN) distributed in
the SeaWiFS Data Analysis System (SeaDAS, version 7.4) (Ibrahim et al., 2018). Figure 2b shows the corre-
sponding distribution map of Chl-a retrieved by the Ocean Color Index (OCI) algorithm (Hu et al., 2012). The
reconstruction method was applied to HICO measured Rrs data within the range of 400–700 nm with
5.7 nm interval (52 bands) to preliminarily test its feasibility in satellite remote sensing data.

Table 1
Summary of the In Situ Data Set Used in This Study

Source Date Samples

Lake Chaohu Jun. 2009 30
Lake Dianchi Sep., Dec. 2009 31
Lake Taihu Apr. 2009/May,

Aug. 2010/ May 2011
148

Three Gorges Reservoir Aug. 2009 23
Offshore of Zhejiang Province May 2016 15
South China Sea Mar. 2017 20
Yellow Sea & East China Sea Sep. 2003/ May, Nov. 2014/

Aug. 2015/Jul. 2016
198

SeaBASSa 1998–2015 2,182
Total sample 2,647

aData available at http://seabass.gsfc.nasa.gov/ for detailed information of
SeaBASS data set.
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2.3. Description of Reconstruction Models
In a linear model, Rrs reconstruction in a specific wavelength is expressed as

Rrc
rsðkjÞ5

XM

i51

Kij RrsðkiÞ (2)

where the superscript rc means reconstruction and Kij denotes empirical coefficient for the i-th input Rrs(ki)
toward the j-th output Rrc rs(kj). M represents the total input band number. Due to the insufficient

Figure 2. (a) True color image of HICO within the area of the Yellow River estuary of China (composite of HICO bands 42,
27 and 11) on Aug 19, 2013. (b) Distribution of chlorophyll-a concentration derived from OCI algorithm.

Figure 1. Geographic distribution of in situ data set used in this study.
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interpretation ability for the linear model for Rrs reconstruction in the red bands, a nonlinear method was
proposed in this study

ln Rrc
rsðkjÞ

� �
5
XM

i51

Kij ln RrsðkiÞ½ � (3)

In order to avoid unnecessary calculation errors during the process of multivariate nonlinear regression, we
further reformulated Eq. (3) as:

Rrc
rsðkjÞ5exp

XM

i51

Kij ln RrsðkiÞ½ �
( )

(4)

If no special explanation is given, the model (or logarithmic model) mentioned hereafter refers to Eq. (4).

2.4. Establishment of Reconstruction Schemes
Due to limited priori knowledge, it is difficult to determine the bands that possess better capability for cap-
turing spectral signatures. Although the method of PCA or EOF can diagnose the representative features of
Rrs spectra in terms of several eigenvalues, the most significant bands for reconstruction are still unknown.
However, a spectral analysis approach proposed by Lee et al. (2007) on the dominant band locations of sig-
natures using derivative analysis can be taken as a reference to solve this problem. Derivative analysis plays
an important role in enhancing the spectral features of hyperspectral measurements and thus has been
widely used in many of the relevant studies (Becker et al., 2005; Holden & Ledrew, 1998; Tsai & Philpot,
1998; Wang et al., 2016; Xi & Zhang, 2011; Xi et al., 2015). Commonly used first and second derivative trans-
formations are expressed in Eq. (5) and Eq. (6):

dRrs

dk

����
i

� RrsðkjÞ2RrsðkiÞ
Dk

Dk5kj2ki
� �

(5)

d2Rrs

dk2 5
d

dk
dRrs

dk

� �
(6)

Peaks and troughs in spectra showing the most significant signal changes can be located via derivative
analysis, so that the bands that have the greatest possibility in capturing the changes of spectra can be
identified as candidates for the reconstruction schemes. Based on all available in situ hyperspectral Rrs

data in the range of 400–700 nm with 1 nm interval, we developed a 15-band scheme and established
another nine schemes with less input bands. The detailed procedure for establishing the schemes is shown
in Figure 3 and summarized as following:

Figure 3. Flowchart of the procedure to establish the schemes.
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1. We separated the full visible range into three sub-ranges, i.e., blue (400–499 nm), green (500–600 nm)
and red (601–700 nm). In each sub-range, we chose five alternative bands to reconstruct Rrs spectra
using the logarithmic model. The bands were derived using the equations (5) and (6). For instance, 412,
438, 449, 459, and 474 nm were selected as one possible sub-scheme and used to reconstruct Rrs data in
the blue range, similarly 507, 534, 554, 581, and 593 nm for the green range, and 601, 615, 635, 677, and
698 nm for the red range.

2. When all the possible sub-schemes were tested, we chose those with the better performance for further
recombination. In this case, the numbers of the bands for selected sub-schemes were 5, 5, and 3 for
blue, green, and red sub-ranges, respectively. Hence, a total of 75 possible schemes were used to extract
Rrs spectra in 400–700 nm.

3. The first reconstruction scheme consisted of the best 15 new bands that were selected from the 75
schemes. In order to maintain the reconstruction performance but take into account as few bands as
possible, we tried to remove one band from the 15 bands and used the remaining 14 bands for
reconstruction.

4. By evaluating the errors, we removed the band which was least sensitive to the reconstruction and two
bands on both sides of that position were shifted to be closer to each other, in order to construct the
second scheme with 14 bands.

5. Step (4) was repeated until the six-band scheme was established.

Note that the bands using in the first schemes were not exactly the same as those candidates in step (1)
because adjustments had to be made on the bands around the joints of sub-ranges.

2.5. Evaluation Methods and Accuracy Criterion
To evaluate the performance of the reconstruction method described above, the mean absolute error
(MAE) and mean relative error (MRE) between the measured Rtrue rs and reconstructed Rrc rs were calcu-
lated for all the 301 bands (400–700 nm with 1 nm interval) as below:

MAEðkjÞ5
1
N

XN

i51

����Rrc
rsðkjÞ2Rtrue

rs ðkjÞ
���� (7)

MREðkjÞ5
1
N

XN

i51

���� Rrc
rsðkjÞ2Rtrue

rs ðkjÞ
Rtrue

rs ðkjÞ

����3100% (8)

Where the collected and well processed Rrs measurements were taken as proxies of ‘‘ground truth’’ with the
superscript true. The subscript i and j mean i-th in situ spectrum and j-th reconstructed band, respectively.
N is the total number of Rrs measurements in the data set. Besides the MAE and MRE, the correlation coeffi-
cients (R2) for each parameterization were also calculated. The median absolute percent difference (MPD)
was defined in Eq. (9) to quantify the difference between the satellite-derived Rsat rs and reconstructed Rrc
rs at j-th pixel of the observed area (ki means i-th output band):

MPDj5median

���� Rrc
rsðkiÞ2Rsat

rs ðkiÞ
Rsat

rs ðkiÞ

����3100% (9)

However, the error in the reconstructed Rrs spectra deemed to be acceptable was yet to be defined.
It was thus necessary to determine a criterion that could preliminarily assess whether the band set-
ting was sufficiently accurate for the reconstruction scheme procedure. According to previous stud-
ies involving satellite-derived Rrs data (Hooker & Esaias, 1993; Hu et al., 2013; Qi et al., 2017), the
objective accuracy criterion introduced in the present study was that the MRE and MAE at every out-
put band must be within 5% and 0.00025 sr21, respectively, for the whole visible range. These
thresholds were set according to the fact that the uncertainties of satellite-retrieved Rrs for blue
bands over clear waters had been widely accepted to be within 5%, while Rrs uncertainties (in %) in
longer bands were significantly higher under the same aquatic conditions. Moreover, the MODIS-
and SeaWiFS-derived Rrs uncertainties were nearly 0.00025 sr21 in green-red bands, which were
smaller than those in blue bands for oligotrophic waters (Chl-a< 0.1 mg m23) by a factor of two
(Gordon, 1997; Hu et al., 2013).
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3. Results

3.1. Variability of Rrs Spectra
Figure 4a exhibits examples of Rrs spectra to emphasize the large variability in both magnitudes and spec-
tral shapes. Figure 4b shows the corresponding mean Rrs, standard deviation (SD), and coefficient of varia-
tion (CV, defined as the standard deviation divided by the mean) for all Rrs spectra. CV varied approximately
from 100% in the shorter bands to 200% in bands above 500 nm, implying a significant variation through-
out all bands, especially the green-red bands. The Rrs measurements from blue oceanic waters showed rela-
tively lower values and monotonically decreasing spectral shape in the range of 400–700 nm. Note that the
values close to zero at bands beyond 600 nm were critical due to the strong absorption of pure water in the
red bands (Pope & Fry, 1997). The Rrs spectra with higher magnitudes and more variation in spectral shapes
typically represented optically-complex waters, with strong impact of the absorption of phytoplankton and
CDOM in blue bands, the backscattering of particulate sediments near green bands, the Chl-a fluorescence
near 680 nm (Gordon, 1979; Pope & Fry, 1997), and possibly the bottom effects (Lee et al., 1998, 1999).

It is well acknowledged that the oceanic bio-optical variables are approximately log-normally distributed
(Campbell, 1995). It is thus reasonable to assume that Rrs data also obey the lognormal model (Matsuoka
et al., 2016). Figure 5 shows the frequency of natural log-transformed Rrs averaged with respect to wave-
lengths. The mean and standard deviation of its fitting to a Gaussian function curve was 25.7 and 1.05,
passing the t-test with a confidence level of 95%. This distribution was a combination of different kinds of
Rrs spectra from various water types. The small peak around 23.5 was attributable to highly turbid waters
with mean Rrs close to 0.03 sr21. It is noteworthy that the lognormal distribution was more standard if Rrs

data only represent the same water body. Nevertheless, the lognormal distribution of large data set of Rrs

data provided the basis for the reconstruction model shown in Eq. (4).

3.2. Reconstruction Schemes
Spectral derivative analysis is able to eliminate background interference and distinguish overlapping sig-
natures between neighboring bands. Mathematically, the band where the first-order derivative becomes
zero corresponds to the existence of an extreme value (peak or trough) of an Rrs spectrum, whereas
second-order derivative equal to zero pinpoints the spectral inflection. Both of these zeroes indicate the
exact locations where important signal information of Rrs exist. The distributions of the frequency where
the first- and second-order derivatives equal to zero are shown in Figure 6, where higher frequency value
indicated more important spectral information at the corresponding band. A total of 35 alternative input
bands were diagnosed. Finally, ten reconstruction schemes, notated as S01 to S10, were established by
following the above mentioned procedure (Figure 3), with the band number decreasing from 15 to 6
(Table 2). The performance of each scheme was assessed below by statistically comparing the recon-
structed Rrs to the in situ ones.

Figure 4. (a) Examples of measured Rrs spectra used in this study. (b) Mean, standard deviation (SD), and coefficient of
variation (CV) of the whole Rrs data set.
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3.3. Reconstructed Hyperspectral Rrs

Upon development of the logarithmic model, we randomly selected 80% of the total spectra (N 5 2,118,
namely main data set) for assessing schemes S01–S10. Figures 7a–7c) shows the MAE, MRE and R2 values in
each band (x-axis) of each scheme (y-axis). Remarkably, the logarithmic model showed satisfactory results,
with most schemes achieving the accuracy criterion except for S09 and S10. The MRE of S09 and S10
exceeded 5% at several red bands and MAE exceeded 0.00025 sr21 at a few blue and green bands for S10.
Most of the MAE and MRE for S01–S08 were generally< 0.00012 sr21 and< 3%, respectively, with R2 rang-
ing from 0.9965 to 1.0, except for the bands beyond 600 nm, especially from 650 to 700 nm, the MRE
increased by about 1–2% compared to those of the shorter bands. In addition, the three statistical parame-
ters were averaged over the entire output bands for each of the schemes S01–S10, as shown in Figures 7d–
7f, to highlight the representative performance of each scheme. The results showed that the errors (MAE

Figure 5. Histogram showing frequency of natural log-transformed Rrs averaged on wavelengths. Black line shows the
corresponding normal distribution with mean and standard deviation.

Figure 6. Frequency distribution of bands where the first-order (a) and second-order (b) derivatives of Rrs equal to zero.
Triangle marks represent the positions of these bands (listed in blue for first-order and red for second-order derivatives).
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and MRE) were increasing and R2 was decreasing relatively steadily from S01 to S10, despite of the relatively
sharp changes observed from S07 to S08 and S09 to S10.

The remaining 20% of the data set (N 5 529, namely validation data set) was used to validate the model
regarding the derived Kij matrices. Figure 8a presents the percentage of different ranges of MRE for each
scheme, showing that the results from two data sets were in good agreement. These results suggested that
the model was applicable for diverse Rrs spectra. Apparently, the predominant range of MRE was 0–1% for
S01 to S03, 1–2% for S04 to S07, 2–3% for S08 to S09 and 4–5% for S10. High errors (> 4%) were found in
S09 and S10, where the MRE within 6–7% accounted for a majority. Figures 8b–8d exhibit the distributions
of the model coefficients K between input and output bands for S01, S05 and S08 as examples, showing
that the closer the i-th input and j-th output band are, the greater the Kij value is. It means that the informa-
tion of the reconstructed spectrum at one output band is mostly provided by the spectral values at adjacent
bands since they are highly correlated.

3.4. Preliminary Application to HICO Data
To determine whether our method could work well for satellite remote sensing data, we conducted a pre-
liminary experiment by directly applying the model expressed by Eq. (4) with the parameterization derived
from S08 to HICO data. Since the required eight bands in S08 are not all available from the HICO data,
instead, we used the closest eight bands of HICO to extract Rrs spectra, which are band 10 (404 nm), band
21 (467 nm), band 32 (530 nm), band 40 (576 nm), band 46 (610 nm), band 54 (656 nm), band 58 (679 nm),
and band 61 (696 nm). Figure 9a shows that the majority of MPD values from HICO-derived and recon-
structed Rrs results fell in the range of 3–6%. Higher reflectance near the coast resulted in lower MPD and
vice versa. Figures 9b and 9c) shows that MAE and MRE results were generally under 0.0005 sr21 and 5%,
respectively. High discrepancies in the range 400–450 nm were caused by the unrealistic humps of atmo-
spherically corrected Rrs data (Ibrahim et al., 2018), as the reconstruction scheme did not duplicate the
errors from the atmospheric correction (Figure 9d). In general, the preliminary experiment on HICO data
suggested that the proposed reconstruction scheme was promising for the future applications in optical
sensors from space.

4. Discussion

In order to build up the new 15-band scheme based on our data set, both characteristic locations and data
validity for modeling were considered, which made the procedure more practical for retrieving Rrs data at
each output band. Compared to the proposed approach by Lee et al. (2014), the mean errors of S01 were
generally about 0.25% higher in the range 420–520 nm, but about 1.0% lower in 600–700 nm (figures not
shown), due to the fact that more input bands were considered in the red domain rather than the green or
blue ranges. This configuration has brought many benefits indeed. Theoretically, the error at each output

Table 2
Band Placements for the Established 10 Reconstruction Schemes (S01-S10)

Band # S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

1 402 402 402 404 404 404 405 407 410 410
2 420 420 425 435 443 450 452 465 474 500
3 443 449 455 474 488 501 500 530 543 571
4 466 488 492 516 531 540 542 578 588 635
5 493 516 525 554 565 580 580 613 634 675
6 516 543 557 581 595 608 613 659 675 698
7 543 571 585 604 619 639 659 681 698
8 571 593 606 629 650 663 681 698
9 593 610 629 652 672 683 698
10 610 629 652 672 687 698
11 629 652 672 687 698
12 652 672 687 698
13 672 687 698
14 687 698
15 698 units: nm
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band was restrained by the two adjacent input bands, therefore the accuracy was lower when the scheme
had fewer input bands which might result in sudden increase in MRE at the red bands (Figure 7b) and the
variation patterns in Figures 7d–7f) in S10.

S01–S08 satisfy well the objective accuracy criterion introduced in this paper, although unexpectedly high
errors appear in schemes S01–S10 at several bands. This suggests that with less than eight bands Rrs spectra
may not be able to provide adequate spectral features to reconstruct hyperspectral Rrs with sufficient accu-
racy at each band. More channels of a sensor require more storage units onboard the satellite, demanding
more financial expense and high technical support. A compromise between the accuracy and band number
should be considered in order to determine an optimal scheme. The performance of S08 can be summa-
rized as (1) the maximal MAE (MRE) was located around 500 (640) nm about 0.00016 sr21 (4%), and (2) most
of MRE values are between �0% and 3%, accounting for> 80% of the total (Figure 8a). This implies that the
coefficient matrix derived by S08 contains the majority of the typical spectral characteristics from our exten-
sive data set. With the satisfactory accuracy and a minimum of required input bands, S08 was chosen as the
optimal scheme for supplementary evaluation.

Figure 7. (a–c) Distributions of MAE, MRE and R2 in 400–700 nm varied with schemes S1–S10 (N 5 2,118); (d–f) Averaged MAE, MRE and R2 upon band with SD for
each scheme, respectively.
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4.1. Assessment in Different Water Types
4.1.1. Simple Classification of Water Types
The above results showed a well reconstruction effect of the modeling with respect to the entire data set
(namely overall modeling). However, the samples in the data set were collected from different water types.
Does the reconstruction model fit for different separate water types? Or whether the performance is better
if we establish reconstruction models for each water type (namely separate modeling)? For this purpose, we
divided the data set into three classes. Firstly, a simple classification approach, Rrs(440)/Rrs(550), was used to
separate the samples collected in the ocean into two types, with the value� 1.0 as Type 1 and< 1.0 as
Type 2, respectively. The Rrs spectra from inland turbid waters were considered as Type 3. Figure 10a shows
the scatterplots of Rrs(440) versus Rrs(550) for all the three types. Figure 10b displays the mean Rrs spectrum
for each classification with corresponding standard deviation, representing general spectral shapes and
magnitudes for the three water types. Particularly, the mean Rrs(440) and Rrs(550) in Type 3 are both over 4
times higher than that from Type 2 (mostly coastal waters), showing further the diversity of these water
types, thus it is reasonable to exclude the inland turbid waters from Type 2 and regard them as another dis-
tinct classification. Note that the classification method used in this study is only to test and assess how the
sensitivity of the reconstruction method varies on different water types; classified water types by this classi-
fication approach are not exhaustive.

Figure 8. (a) Percentage of different ranges of MRE for the main data set (N 5 2,118, left) and validation data set (N 5 529, right). (b–d) The distribution of the
model coefficients derived using Eq. (4) for S01, S05, and S08, respectively.
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Figure 9. Distribution of (a) MPD, (b) MAE, (c) MRE, and (d) three selected pairs of HICO-derived and reconstructed Rrs

spectra. The red square marks in (b) and (c) denote mean errors that are beyond the criterion, and the black dashed line
in (d) indicates the position of the hump.

Figure 10. (a) Scatterplot of Rrs(440) versus Rrs(550) for the three water types. (b) The mean spectrum for each water type
with the corresponding standard deviation.
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4.1.2. Assessment for Reconstructions Based on Different Water Types
Three new coefficient matrices were finally determined, corresponding to respective spectral features for
each water type (Type 1, 2 and 3). Figure 11 exhibits the distributions of MAE and MRE for S08 when apply-
ing separate and overall modeling to the validation data set (20% of each classified Rrs subset). For Type 1,
the notable distinctions were found in MRE values around 600–700 nm between the separate and the over-
all modeling, because extremely low values in the red band of the Rrs in open ocean waters resulted in low
MAE values but high MRE values (Werdell et al., 2013). The retrievals of the two modelings beyond 600 nm
were thought to be equally effective, except that the errors of the overall modeling were slightly higher
than those from the separate modeling in the green range. Interestingly, the accuracy of the overall model-
ing was in agreement with that of the separate modeling in Type 2. Whereas for Type 3, the peak of the
amplitude for MAE in Figure 11b approached 0.0003 sr21 near 560 nm, about 0.0001 sr21 higher than the
amplitude in Figure 11a in the blue-green range. It is not surprising due to the relatively higher spectral
complexity in Rrs and fewer samples compared to that of Type 1 and Type 2. However, since the magnitude
of mean Rrs spectrum for Type 3 was about 4 times higher than those in the other two types (Figure 10), the
reconstruction accuracy of the overall modeling for highly turbid waters was acceptable (MRE< 1% at blue-
green bands and< 0.5% at red bands). In conclusion, despite of a few exceptions, the accuracy criterion
was generally met in the three water types for overall modeling. The coefficient matrix determined by the
overall modeling using S08 in this study was proven suitable for open ocean and coastal waters, as well as
China’s inland turbid waters (see examples given in Figure 12).

4.2. Comparison With Other Methods
Previously, Lee et al. (2014) and Sun et al. (2015) both developed reconstruction methods for hyperspectral
Rrs in the visible range using a linear model with the same 15 bands (C1 in Table 3) but a different data set.
To test whether the reconstruction method using S08 with a logarithmic model was comparable to previ-
ously proposed methods, we applied the three coefficient matrices (namely, K_S08, K_Lee and K_Sun,
respectively) directly to our data set, which covered the spectra used in those two studies. The evaluation
and inter-comparison of the three approaches illustrated in Figure 13 showed that the errors from K_Lee
and K_Sun were generally lower in the blue-green range compared with that of K_S08 due to more input
bands placed there, specially in 400–530 nm, where there were seven bands in C1 but only three in S08.
The MAE and MRE were mainly within 0.00004 sr21 and 1% respectively at the blue bands for K_Lee and
K_Sun but less than 0.00016 sr21 and 3% for K_S08. For the red bands, K_Sun performs poorly due to the
lack of Rrs spectra from relatively clear waters (Type 1 or 2), leading to an inaccurate estimation, such as

Figure 11. Distributions of MAE and MRE of the separate (a, c) and overall (b, d) modeling using S08 for waters based on
validation data set.
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spectrum 1 in Figure 13d. However, the accuracy of K_Lee was comparable to that of K_S08 within the
range of 600–700 nm, where the MAE and MRE were< 0.00008 sr21 and< 4% respectively, though there
was one band less in S08 than that in C1. The restored spectra by the three methods showed a fine confor-
mance to the in situ data, which was also reflected in the distribution of R2 that approached 1.0. In sum-
mary, the utilization of the eight-band scheme and logarithmic model yielded comparable retrievals with
less input bands, suggesting notable potential in future applications.

4.3. Logarithmic Model Versus Linear Model
It is difficult to reconstruct hyperspectral Rrs spectra in the red range
due to the contributions of Chl-a absorption that causes a trough near
675 nm, and Chl-a fluorescence that causes an abrupt reflectance
peak near 685 nm. A linear model with Rrs(k) at a few bands can only
capture limited information of such spectral features located in the
red domain. Moreover, Rrs is essentially a nonlinear function of IOPs,
which is due to the broadband effect of the optical attributes of IOPs
(Vaillancourt et al., 2004; Zhou et al., 2012), leading to the signal over-
lap between adjacent bands. Therefore, the contributions to Rrs from
the absorption or total backscattering coefficients of different water
components can hardly be quantified by simply using linear opera-
tions. A logarithmic reconstruction model for Rrs inspired by its lognor-
mal distribution is however more appropriate to interpret the strong
covariation of Rrs at adjacent bands.

Five independent schemes listed in Table 3 were performed to verify
the practical capability of the logarithmic and linear models. The band
settings included two published schemes named C1 (710 nm was
replaced with 700 nm here) and C2, referred to Lee et al. (2014) and
Sathyendranath et al. (1989), as well as the spectral bands of MERIS,

Figure 12. Four pairs of the reconstructed and in situ Rrs spectra in each water type selected from the validation data set for overall modeling using S08.

Table 3
Band Placements of Referenced Schemes Together With MERIS, MODIS and
GOCI bands in 400–700 nm

Band # C1a C2a MERIS MODIS GOCI

1 400 400 412 412 412
2 425 410 443 443 443
3 445 420 490 488 490
4 460 440 510 531 555
5 475 480 560 547 660
6 495 500 620 667 680
7 515 510 665 678
8 545 530 681
9 565 540
10 580 560
11 605 580
12 640 590
13 665 630
14 685 700
15 700 (710) units: nm

aC1 and C2 are referred to Lee et al. (2014), Sathyendranath et al. (1989),
respectively.
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MODIS and the Geostationary Ocean Color Imager (GOCI). The results in Figure 14 revealed that the statisti-
cal parameters generated by the two models were quite coincident when the input bands were sufficiently
dense, such as in the range of 400–600 nm in C1 and C2. In addition, we found a remarkably improved per-
formance for the logarithmic model in the red bands. This finding was more prominent when input bands
were decreased, e.g., bands of MODIS and GOCI. We can conclude that the logarithmic model outperforms
the linear model in terms of stability and flexibility in reconstructing hyperspectral Rrs and it has a great
potential in providing reliable retrievals with a well-chosen scheme.

4.4. Interpretation for In Situ Rrs Uncertainties
The above analysis is based on the assumption that the in situ Rrs measurements are error-free, yet no abso-
lutely accurate values for any in situ Rrs measurement in reality. But note that the established strategy in
this study is still feasible and also of great significance for Rrs reconstruction. The uncertainties of in situ
radiometric data were primarily influenced by (1) the measuring methods, such as the above-surface
method and in-water profiling method, and (2) the natural conditions of environments, such as wind speed
and cloud conditions. To reduce random uncertainties of in situ measurement in future, the observation
data should be acquired by using single calibrated optical instrument under the same measurement proto-
col and post-process. On the other hand, the proposed Rrs reconstruction strategy in this study will not be
almost affected by the in situ measurement, since its development is completely based on mathematical
analysis method, and does not focus on the data source. Also, the uncertainties produced by our strategy
are very weak, mostly in 1–5% range, which is roughly equivalent with in situ measurement errors in ideal
conditions (Hooker & Maritorena, 2000; Qi et al., 2017). In short, more and more accurate in situ Rrs observa-
tions are always expected by the community, which will serve better for the Rrs reconstruction strategy. This
work needs more effort in future.

Figure 13. Distribution of (a) MAE, (b) MRE, (c) R2 resulted from the three coefficient matrices of S08, Lee et al. (2014), and
Sun et al. (2015) applied to validation data set, and (d) comparisons between four selected in situ Rrs spectra and the cor-
responding reconstructed Rrs spectra by the three algorithms.
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4.5. Implication for Future Applications
The reconstruction method developed in the present study consists of two parts: the multi-band scheme
(mainly, S08) and the logarithmic model. As we have discussed above, this method can retrieve missing Rrs

data in the visible domain with high accuracy using eight-band measurements for global waters, indicating
that S08 can serve as the optimal scheme. In terms of the sensor design, the performance of its preliminary
application to HICO data implies that an optical sensor with the proposed eight bands can capture hyper-
spectral information by using this reconstruction method. Thus, the eight-band scheme can serve as a refer-
ence or an alternative choice for the band settings of future multiband sensors.

When data from a hyperspectral sensor or the eight-band scheme is not available, this method provides an
alternative option for restoring Rrs with multi-bands on a specific satellite sensor. Since more algorithms
have recently been specifically designed for existing satellite optical sensors (Hu et al., 2012; Qiu et al.,
2017), this method also helps to generalize the algorithms by reconstructing spectra at identical bands for
different sensors. Moreover, the method has provided a new insight for comparison of satellite-derived Rrs

data from different sensors, and also benefits the radiometric calibration from the reconstructed full spectral
data in the visible range.

It is however noteworthy that a comprehensive reconstruction method that can capture the full spectral infor-
mation, such as chlorophyll fluorescence or absorption peaks by specific pigments (e.g., phycocyanin of cyano-
bacteria), is still a big challenge. For an improvement in the reconstruction method, extreme cases such as Rrs

data from blooming waters should be included to further optimize the parameterization. It is also worthwhile
to expand the spectral range of reconstruction from 400–700 nm to 350–800 nm including consideration for
the atmospheric corrections and inversion algorithms of Chl-a and CDOM (IOCCG, 1998; Wei et al., 2016).

5. Conclusion

In the present study, a new reconstruction method for hyperspectral Rrs in the visible domain was proposed
on the basis of extensive observations collected from various water environments including open ocean

Figure 14. Comparison of the statistical parameters between linear and logarithmic model using five different band settings listed in Table 3, including two previ-
ously proposed schemes and spectral bands of MERIS, MODIS, and GOCI sensors within 400–700 nm. All in situ Rrs spectra were used.
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waters, coastal waters and highly turbid inland waters. Ten alternative schemes were determined by the
logarithmic model, with the number of the bands taken into account ranging from 6 to 15. The reconstruc-
tion accuracy decreased with reductions in the input band number, while the accuracy of first eight
schemes met well the objective criterion introduced in this study. Generally, errors in the retrievals were
lower than the uncertainties in the satellite-retrieved Rrs in blue bands. We also found that the logarithmic
model outperformed the commonly used linear model due to its outstanding interpretation of the interde-
pendence of Rrs for adjacent bands.

With thorough consideration of pros and cons, the eight-band scheme was ultimately selected for further
comparative analysis. Results revealed that the parameterization derived by the eight-band scheme worked
well for Rrs data in different water types. For an independent data set, the MAE and MRE values between in
situ and reconstructed Rrs were generally< 0.00016 sr21 and< 3% with R2> 0.999. The performance was
also compared with a previously proposed linear model based on a 15-band scheme. Results implied that
the eight-band scheme had great potential to be an optimal scheme as it contains only eight input bands
but yields remarkable performance based on the logarithmic model.

In addition, a preliminary application of the eight-band scheme was performed on HICO-derived Rrs data at
eight of the HICO bands, showing a promising perspective for further applications in optical satellite remote
sensing. The reconstruction schemes presented in the study, especially the eight-band scheme, may pro-
vide significant implications for the future sensor design. In the meantime, our method plays an important
role in discovering additional potential applications of satellite Rrs data and helps motivate the develop-
ment and improvement of ocean color inversion algorithms.
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