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Abstract. The Canadian Sea Ice and Snow Evolution (Can-
SISE) Network is a climate research network focused on de-
veloping and applying state-of-the-art observational data to
advance dynamical prediction, projections, and understand-
ing of seasonal snow cover and sea ice in Canada and the
circumpolar Arctic. This study presents an assessment from
the CanSISE Network of the ability of the second-generation
Canadian Earth System Model (CanESM2) and the Cana-
dian Seasonal to Interannual Prediction System (CanSIPS)
to simulate and predict snow and sea ice from seasonal to
multi-decadal timescales, with a focus on the Canadian sec-
tor. To account for observational uncertainty, model struc-
tural uncertainty, and internal climate variability, the analysis
uses multi-source observations, multiple Earth system mod-
els (ESMs) in Phase 5 of the Coupled Model Intercompar-
ison Project (CMIP5), and large initial-condition ensembles
of CanESM2 and other models. It is found that the ability

of the CanESM2 simulation to capture snow-related climate
parameters, such as cold-region surface temperature and pre-
cipitation, lies within the range of currently available interna-
tional models. Accounting for the considerable disagreement
among satellite-era observational datasets on the distribution
of snow water equivalent, CanESM2 has too much spring-
time snow mass over Canada, reflecting a broader northern
hemispheric positive bias. Biases in seasonal snow cover ex-
tent are generally less pronounced. CanESM2 also exhibits
retreat of springtime snow generally greater than observa-
tional estimates, after accounting for observational uncer-
tainty and internal variability. Sea ice is biased low in the
Canadian Arctic, which makes it difficult to assess the re-
alism of long-term sea ice trends there. The strengths and
weaknesses of the modelling system need to be understood
as a practical tradeoff: the Canadian models are relatively in-
expensive computationally because of their moderate resolu-
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tion, thus enabling their use in operational seasonal predic-
tion and for generating large ensembles of multidecadal sim-
ulations. Improvements in climate-prediction systems like
CanSIPS rely not just on simulation quality but also on us-
ing novel observational constraints and the ready transfer of
research to an operational setting. Improvements in seasonal
forecasting practice arising from recent research include ac-
curate initialization of snow and frozen soil, accounting for
observational uncertainty in forecast verification, and sea ice
thickness initialization using statistical predictors available
in real time.

1 Introduction

Seasonal snow cover and sea ice are integral to the cul-
tural identity, history, and economy of northern nations like
Canada. They also exert an enormous physical influence on
the Earth system, ranging from local interactions with winds
and temperatures in the Arctic and snow-covered regions,
to larger-scale interactions with weather systems and ocean
circulation, to global-scale influences on the Earth’s energy
balance. In recent decades, dramatic changes in Canada’s
snow cover and sea ice have been witnessed and documented
(Derksen et al., 2012; Najafi et al., 2016). This has driven the
need to better understand and predict these fields for the com-
ing seasons, years, and decades. To address this need, Canada
has helped lead the global effort to better observe and model
snow, sea ice, and related climate parameters (such as north-
ern high-latitude land-surface temperature and precipitation).
This effort includes Canadian contributions to the Interna-
tional Polar Year (e.g. Kulkarni et al., 2012), to the develop-
ment of Earth system model (ESM) and climate-prediction
systems (Merryfield et al., 2013a; Sigmond et al., 2013; van
den Hurk et al., 2016), and to leadership of ongoing field and
remote sensing efforts (King et al., 2015).

As part of Canada’s larger effort in snow and sea ice re-
search, the focus here is on seasonal and longer timescale
prediction of terrestrial snow, sea ice cover, and related cli-
mate variability. The purpose of this paper is to evaluate the
ability of Canada’s current ESM and climate-prediction sys-
tem to carry out this kind of prediction in the context of
the development of new observational products. This work
was undertaken by the Canadian Sea Ice and Snow Evo-
lution Network (CanSISE), a core project of the Climate
Change and Atmospheric Research Program of the Natu-
ral Sciences and Engineering Research Council of Canada
(CCAR/NSERC)1. Model evaluation, which typically com-

1The CanSISE Network was funded for 5 years starting in 2013.
It is a partnership between several Canadian universities (Toronto,
British Columbia, Guelph, McGill, Northern British Columbia, Vic-
toria, Waterloo, and York); ECCC (research groups include the
Canadian Ice Service (CIS) as well as the Canadian Centre for Cli-
mate Modelling and Analysis and the Climate Processes Section,

pares a model to observations, needs to account for several
sources of uncertainty, including impacts of spatial and tem-
poral sampling in the presence of internal climate variability
and observational uncertainty (whether instrumental error or
errors related to data processing and retrieval systems). Our
evaluation of Canadian models is helped by ready access and
comparison with output from internationally available mod-
els, to provide a suitable scientific context.

This study focuses on snow, sea ice, and related climate
parameters and processes relevant to the Canadian land mass
and the pan-Arctic region. The Canadian ESM and climate-
prediction system has been studied in a variety of related
settings (e.g. Arora et al., 2011; Merryfield et al., 2013a, b;
Gillet et al., 2012; Sigmond et al., 2013; Kirtman et al., 2013;
Flato et al., 2013). We here seek to more fully assess simula-
tion and prediction of seasonal snow cover and regional sea
ice variability accompanied by a more complete characteri-
zation of observational uncertainty, model structural uncer-
tainty, and internal climate variability. After reviewing the
current-generation Canadian Seasonal to Interannual Predic-
tion System and the second-generation Canadian Earth Sys-
tem Model (CanSIPS and CanESM2, respectively; Sect. 2),
we characterize climatological behaviour and trends for snow
and sea ice in these systems (Sect. 3), provide an overview of
recent developments in seasonal snow and sea ice prediction
(Sect. 4), and conclude (Sect. 5) with a summary and discus-
sion of new directions for prediction system development.

A companion paper from the CanSISE Network (Mudryk
et al., 2018) assesses 1981–2015 trends and 2020–2050 pro-
jections of Canadian snow cover and sea ice.

2 Models and data used

In Sect. 3, our analysis will focus on CanESM2 (Arora et al.,
2011; Scinocca et al., 2016). This is the ESM used by the
Canadian Centre for Climate Modelling and Analysis (CC-
Cma) of Environment and Climate Change Canada (ECCC)
for its contribution to Phase 5 of the Coupled Model In-
tercomparison Project (CMIP5). CanESM2 combines atmo-
sphere, ocean, land-surface (including snow), sea ice, and
carbon-cycle components in a coupled framework in which
all model components interact. The system can simulate the
past and projected state of global temperature, circulation,
carbon dioxide concentrations, etc. under the influence of ex-
ternal forcing, but independently of assimilated ocean and
atmospheric initialization data. As summarized in Arora et
al. (2011), the atmospheric and oceanic components are the
fourth-generation atmospheric and oceanic general circula-
tion models CanAM4 and CanOM4, the prognostic carbon-
cycle components are the Canadian Model of Ocean Car-
bon (CMOC) and the Canadian Terrestrial Ecosystem Model
(CTEM), the land-surface component (including the snow

which are in the Climate Research Division), and the Pacific Cli-
mate Impacts Consortium (PCIC).
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scheme) is version 3 of the Canadian Land Surface Scheme
(CLASS), and the sea ice component is the Flato and Hi-
bler (1992) cavitating fluid scheme. As with most other mod-
els participating in CMIP5, CanESM2 does not use flux ad-
justments that artificially constrain the climate system to be
in a state of energy and water balance. Following CMIP5 pro-
tocols, the model includes concentrations and emissions of
greenhouse gases, aerosol and aerosol-precursor emissions,
and prescriptions for land-cover change (Arora et al., 2011).

CanESM2 has moderate spatial resolution compared to
other CMIP5 models (approximately 2.8◦ horizontal grid
spacing and up to 35 vertical levels in the atmosphere; ap-
proximately 100 km horizontal grid spacing and up to 40 lev-
els in the ocean). This resolution accounts for constraints on
available computing resources. It sufficiently resolves salient
features of the global atmospheric ocean circulation while
still permitting the execution of large initial-condition en-
sembles of model simulations to adequately sample inter-
nal variability under different external forcings. We note that
ECCC has also made a complementary multi-year invest-
ment in regional climate modelling (Scinocca et al., 2016) to
provide higher resolution over North America (with versions
at 50 and at 25 km grid resolution) to address the shortcom-
ings of coarse resolution.

In Sect. 4, we consider the application over Canada of
CanSIPS (Merryfield et al., 2013a), the operational predic-
tion system of the Canadian Meteorological Centre (CMC)
for climate variability on seasonal to interannual (several-
month to multiple-year) timescales. Like CanESM2, Can-
SIPS is also a multi-component interactive system. How-
ever, unlike CanESM2, when operating as a prediction sys-
tem CanSIPS starts from an initial state that approximates the
real-world state at a given initial time. CanSIPS includes (1) a
data assimilation system that estimates realistic initial states
of the atmosphere, ocean, land, and sea ice to start the fore-
casts; (2) two separate coupled climate models (the earlier-
generation Canadian Coupled Model 3, CanCM3; and the
later-generation Canadian Coupled Model, CanCM4) that
advance the simulated system from this initial condition (us-
ing an ensemble size of 10 for each model); and (3) diagnos-
tic systems to analyze the output and generate useful fore-
casts for operational use within ECCC’s Meteorological Ser-
vice of Canada (e.g. Fig. 14 below and the probabilistic sea-
sonal forecast at https://weather.gc.ca/saisons/prob_e.html).
Evaluations of CanSIPS need to consider all three parts of
the seasonal prediction system. CanCM4 has the same atmo-
sphere, ocean, land, and sea ice components as CanESM2,
but does not include CanESM2’s carbon-cycle components.
CanCM3 has the previous-generation atmosphere and ocean
components relative to CanCM4 and CanESM2, but the
same land-surface and sea ice components as CanCM4 and
CanESM2 (Merryfield et al., 2013a).

Merryfield et al. (2013a) summarize the performance of
CanCM3 and CanCM4 when the models are run indepen-
dently of assimilated data. CanCM4 reduces the global mean

absolute error of ocean surface temperatures compared to
CanCM3, indicating an overall improvement in the coupled
ocean–atmosphere state that results from improved physical
parameterizations and finer resolution. Relative to CanCM3
and observations, CanCM4 tends to warm more rapidly un-
der the effects of anthropogenic radiative forcing over the
1970–2009 period. In CanCM3, the simulation is character-
ized by excessive pan-Arctic sea ice cover in summer and
winter and a small rate of sea ice loss compared to observa-
tions. In CanCM4, while there is still excessive sea ice cover
in winter, there is too little sea ice in summer (see Sect. 3
below). The rate of sea ice loss in CanCM4 is more in line
with recent observations than that in CanCM3 (Stroeve et al.,
2012); however, caution is required to interpret recent sea ice
loss rates in light of the large amount of multidecadal vari-
ability expected in these trends (e.g. Notz, 2012; Swart et
al., 2015). Because CMIP5 simulations were carried out with
CanESM2 but not CanCM4, the simulations required to do a
clean comparison of CanCM4 and CanESM2, and thus gauge
the impact of carbon-cycle processes on simulation quality,
are not available.

When run as a prediction system, CanSIPS, combining
CanCM3 and CanCM4, is able to show multi-month skill in
seasonal forecasts of detrended sea ice area anomalies, com-
parable to that obtained in other modelling systems (Merry-
field et al., 2013b), and generally enhanced skill relative to
a statistical persistence forecast (Sigmond et al., 2013). The
assessed skill depends on the verification dataset (Sigmond
et al., 2013), especially for total (non-detrended) anomalies.
Such issues will be revisited in this study.

Our assessment of CanSIPS and CanESM2 is enhanced
by two recent research products arising from CanSISE: the
Blended-5 snow water equivalent (SWE) dataset of Mudryk
et al. (2015) and the CanESM2-LE (large ensemble) of simu-
lations from CanESM2. The Blended-5 dataset addresses the
need for a SWE verification dataset and, potentially, for ini-
tialization of snow-related parameters in CanSIPS and other
prediction systems. Blended-5 builds on long-term work of
ECCC (e.g. Brown et al., 2010; Derksen and Brown, 2012;
Brown and Derksen, 2013) and consists of an ensemble of
gridded SWE datasets over 1981–2010 from a variety of
sources including remote sensing, land-surface assimilation
systems, and reanalysis-driven snow models. The papers of
Mudryk et al. (2015, 2017) detail the components, quality
assessment, and characteristics of the Blended-5 dataset.

The use of large initial-condition ensembles has afforded
a renewed assessment of the impacts of natural climate vari-
ability on recent and projected climatic variability and trends
(e.g. Deser et al., 2012; Kay et al., 2015). The CanSISE
team designed the CanESM2-LE (e.g. Sigmond and Fyfe,
2016), which consists of four sets of 50 simulations each
of CanESM2 that examine the impact of natural and anthro-
pogenic forcings over the period 1950–2100 in the presence
of internal climate variability. For each of the five realiza-
tions run by CCCma for CMIP5, a new set of 10 simulations
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Figure 1. Comparison of simulated Canadian climate in CanESM2 with observations and other climate models for 1981–2005. The left
column shows observed January–March (JFM) mean land-surface temperature (a, left panel, HadCRUT4), precipitation (b, left panel, CRU
TS3.21), and snow water equivalent (c, left panel, Blended-5 data). The central column shows the same fields as simulated by the ensemble
mean of the CanESM2 large ensemble. Observations and the CanESM2 output have been mapped to a common grid that represents the model
grid spacing. The right column plots are Taylor (2001) diagrams showing the correlation (related to the polar angle) and standard deviation
relative to observations (distance from origin) of the patterns of these variables in observations (black dot), CanESM2 (green dot), and other
CMIP5 climate models (brown circles). Models that are closer to the black dot representing the observations have smaller errors (standard
error represented by dotted semicircles at intervals of 0.5). In the SWE Taylor diagram (c, right panel), the filled light brown dots compare
the individual Blended-5 datasets to the Blended-5 mean.

is generated by slightly perturbing the atmospheric state at
the beginning of 1950, with 10 different perturbations. These
50 realizations are then integrated forward until 2005 with
CMIP5 historical forcings (Taylor et al., 2012); from 2006 to
2100, the RCP8.5 CMIP5 scenario is used. The first ensem-
ble set, which applies all available external forcings, will be
the one used here. Additional sets of attribution integrations
not analyzed here include just historic natural external forc-
ings (solar and volcanic), just historic anthropogenic aerosol
forcings, and just stratospheric ozone forcing. Each realiza-
tion in each set is identical apart from its initial conditions.
Thus, the ensemble mean of a given 50-member set is char-
acterized by about a factor of 7 less internal variability than a
single realization, and therefore provides a relatively robust
estimate of that set’s externally forced signal. The distinc-
tively forced ensembles permit attribution of observed cli-
mate signals to different external forcings. The CanESM2-
LE has been used in several current and ongoing studies (Sig-
mond and Fyfe, 2016; McKusker et al., 2016; Gagné et al.,
2017a; Fyfe et al., 2017; Mudryk et al., 2017; Kirchmeier-

Young et al., 2016). We also use similar initial-condition en-
sembles of the National Center for Atmospheric Research
Community Earth System Model 1 (NCAR CESM1; Kay
et al., 2015) and the NCAR Community Climate System
Model 4 (CCSM4; Mudryk et al., 2013). Other observational
sources and modelling results used in this study will be de-
scribed in the text and figure captions. In what follows, our
primary focus is on Canada and the pan-Arctic, placed in the
context of northern hemispheric climate.

Besides CanESM2, the other CMIP5 models referenced
below are the same as those in Mudryk et al. (2018) (see
Table 2 of the paper).
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Figure 2. As in Fig. 1, for April–June (AMJ).

3 CanESM2 climatology and trends

3.1 Observed and simulated terrestrial
snow climatology

We first evaluate the climatological characteristics of
CanESM2’s land-surface temperature, precipitation, and
SWE for the Canadian land mass. In winter and spring, the
distribution of land-surface temperature over Canada is well
reproduced in CanESM2, although a warm bias is evident in
both seasons (left and central panels of the top rows of Figs. 1
and 2). The Taylor (2001) diagram for land-surface temper-
ature (right panels of Figs. 1a and 2a) shows that CanESM2
compares well to other CMIP5 models (as stated in Sect. 2,
the same models and realizations are used in Mudryk et al.,
2018) in capturing the spatial pattern and correlation with
observations, although the spatial gradients are somewhat
stronger than observed for winter (as shown by the distance
of the CanESM2 point from the origin in the Taylor dia-
gram), associated with a stronger south-to-north tempera-
ture gradient than observed. In JFM precipitation (panel a
of Figs. 1 and 2), the general pattern and spatial gradient
strength are captured in the model, but there is excessive
wintertime precipitation over most of Canada, including the
Western Cordillera, sub-Arctic and Arctic, in both seasons.
This excessive precipitation contributes towards a bias of ex-
cessive SWE over much of western Canada and the Canadian

sub-Arctic that is particularly pronounced in spring (panel b
of Figs. 1 and 2). CanESM2 SWE has greater spatial vari-
ance than the Blended-5 SWE ensemble mean and most of
the individual component datasets of the Blended-5 (panel c
of Figs. 1 and 2). Generally speaking, the Taylor diagrams in
Figs. 1 and 2 suggest that CanESM2 is well within the state
of the art of current models for the climate parameters related
to seasonal snow cover.

Observed SWE climatology, variability, and trends are
relatively non-robust compared to variables such as land-
surface temperature (Mudryk et al., 2015, 2017) and for
this reason we assess some aspects of the spread across the
Blended-5 SWE datasets. Individual observational datasets
contributing to Blended-5 also show stronger spatial gradi-
ents than the Blended-5 mean (circles filled with light brown
in the Taylor diagram in Figs. 1c and 2c). This is in part ex-
pected because the observational mean will cancel random
errors. However, this also suggests that there is consider-
able uncertainty in the spatial variance, and so it is diffi-
cult to assess how realistically spatial variance is captured
in CanESM2 and the other CMIP5 models. This observa-
tional uncertainty is also evident in the seasonal cycle of total
snow mass aggregated for Canada and the Northern Hemi-
sphere, as well as geographic subregions (Fig. 3a–h, grey
shading). For example, for the Northern Hemisphere (panel
a), the range in Blended-5 estimates of peak snow mass in
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Figure 3. First row: seasonal cycle of Northern Hemisphere 1981–2005 snow mass (in 1015 kg) for regions defined in Mudryk et al. (2015):
midlatitudes, i.e. northern hemispheric non-alpine land regions south of 60◦ N; Arctic, i.e. non-alpine land regions north of 60◦ N; and alpine.
Grey shading represents the range of Blended-5 datasets, the black curve represents the Blended-5 mean, the light teal points (in panel a)
mark the ensemble mean of CanESM2 using its land mask, and the dark teal points mark CanESM2 adjusted to represent the same land
fractions as the observational mask from the Blended-5 dataset. The CMIP multi-model mean, adjusted to the observational mask, is show
with red x symbols. The legend in panel (b) applies to the figure as a whole. Panels e–h as in panels a–d, but for Canadian land mass only.
Panels (i–l) and (m–p) are similar to (a–d) and (e–h), but for snow cover extent in 106 km2. The estimate of observed snow cover extent is
derived from the Blended-5 SWE dataset using the approach of Mudryk et al. (2017) and is based on a 4 mm SWE threshold for the presence
of snow cover; the simulated snow cover extent is based on snow cover fraction directly produced by the models.

The Cryosphere, 12, 1137–1156, 2018 www.the-cryosphere.net/12/1137/2018/



P. J. Kushner et al.: Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes 1143

Figure 4. Horizontal bars and boxes show the median and interquar-
tile range of northern hemispheric snow cover extent trends calcu-
lated over 1981–2005 period for January–March (a) and April–June
(b). Black boxes are used for trends calculated from models (large
initial-condition ensembles of NCAR CCSM4, NCAR CESM1, and
CanESM2 as labelled), and red boxes are used for trends derived
from the Blended-5 SWE dataset (Mudryk et al., 2017). For the
models, the boxes indicate the interquartile range (IQR) of trends
captured in individual realizations of the ensembles. For the ob-
servations, the boxes indicate the IQR of observed trend estimates.
Unlike the observational uncertainty, the uncertainty represented for
the models is the impact of internal variability on estimated trends.
In addition, the IQR of the observations is obtained from only five
datasets, which represents a less robust estimate of uncertainty than
that from the 30–50 simulated realizations in the large ensembles.
Spread from these distinctive sources of uncertainty is indicated
schematically by the extent of the vertical grey lines.

February is over 50 % of the average and is driven mainly
by uncertainty in Arctic (panel c) and alpine regions (panel
d). The individual datasets in the Blended-5 product are not
shown in Fig. 3, but their characteristics are discussed in
Mudryk et al. (2015). The NASA Global Land Data Assimi-
lation System (GLDAS) provides an estimate well below the
multi-dataset mean, the MERRA reanalysis dataset typically
provides a central estimate, and the maximum estimate varies
with region among the remaining three datasets.

After accounting for the considerable observational uncer-
tainty in total snow mass, it is nevertheless possible to as-
sess the realism of CanESM2’s simulation. The CanESM2
snow mass for the Northern Hemisphere is plotted as orig-
inally available on the model’s land grid (light teal points,
shown only in Fig. 3a) and as adjusted to reflect the obser-
vational mask which is on a finer scale (dark teal points).
The adjustment is downward because some of the model’s
snow mass is located in grid cells that, in reality, are only par-
tially covered by land. The positive bias of CanESM2 rela-
tive to the observational mean (Figs. 1 and 2) is evident in the
seasonal cycle in snow mass over Canada (Fig. 3e–h), espe-
cially in spring in midlatitudes, and reflects a broader north-
ern hemispheric positive bias (Fig. 3a–d). Sospedra-Alfonso
et al. (2016a) also find that CanCM4 model that contribute to

CanSIPS features a positive springtime SWE bias. For com-
parison, the CMIP5 multi-model mean over Canada (red x
symbols in Fig. 3e–h) does not feature as pronounced a bias.
The CMIP5 model range (not shown) spans from the lowest
observational estimate to above CanESM2, but CanESM2 is
on the high end, especially during spring in the midlatitudes.
Our assessment is that, especially in midlatitudes, CanESM2
simulates excessive springtime snow associated with exces-
sive wintertime precipitation building up throughout winter
and into spring (middle rows of Figs. 1 and 2).

The seasonal cycle of snow cover extent (SCE) is shown in
Fig. 3i–l for North America and Fig. 3m–p for Canada. Here,
observed SCE is derived from the Blended-5 dataset by con-
verting SWE to SCE using a threshold of 4 mm; this thresh-
old was tested in Mudryk et al. (2017). For the observational
products in the Blended-5 dataset, the relative uncertainty
in SCE is generally less than for snow mass. For example,
the observational range in peak northern hemispheric SCE
in January is about 15 % and is dominated by uncertainty
in midlatitude and Arctic regions. A modest positive spring-
time excess of SCE is evident for CanESM2 for Canada and
the Northern Hemisphere. On the whole, observed SCE is
better constrained than observed snow mass, and simulated
SCE is generally more realistic than simulated snow mass
for CanESM2, as well as for the average over the CMIP5
models.

3.2 Observed and simulated trends in terrestrial snow

A standard target for snow process analysis in climate models
is trends of SCE, which are strongly temperature controlled
(e.g. Brutel-Vuilmet et al., 2013; Mudryk et al., 2017). As-
sessing the ability of models to capture these trends needs
to account for natural variability, forced variability, observa-
tional uncertainty, and inter-model differences. We show in
Fig. 4a and b the trends in SCE derived from the Blended-
5 dataset for the Northern Hemisphere in January–March
and April–June. In both seasons, there is a spread of ob-
served seasonal snow cover reduction estimates from 0.0 to
−0.5 million km2 per decade in winter (based on a simple
interquartile range for this small number of observational
datasets) and from −0.1 to −0.6 million km2 in spring. The
red horizontal line in the box plot represents the median
over the Blended-5 datasets. Over the 25-year observational
period, the trends correspond to an approximate snow loss
that is at most 4 % of JFM SCE and in the range of 5–
40 % of AMJ SCE. The range of trends from the CanESM2-
LE, NCAR CESM1, and NCAR CCSM4 suggests that inter-
nal variability alone provides an uncertainty range of about
0.5 million km2 per decade. Assuming internal variability is
realistic in the models, this is the limit of precision we can ex-
pect in assessing recent trends. CanESM2 consistently pro-
duces greater snow loss than NCAR CCSM4 and CESM1,
especially in AMJ. We conclude that all the models dis-
played fall within wintertime snow retreat estimates, that
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Figure 5. Panel (a) shows the observed 1981–2005 trend over Canada in JFM land-surface temperature, precipitation, and SWE, with the
spatial mean of the trend removed, based on the same observational datasets represented in Figs. 1 and 2. Panel (d) shows the Taylor
diagram of individual realizations of CanESM2 (teal) and CMIP5 (brown). The Taylor diagram for SWE also includes individual Blended-5
observations (light brown). Panels (b) and (c) show the land-surface temperature, precipitation, and SWE trends for the best match and worst
match realizations as defined in the text. The best and worst match realizations are shown as filled circles in the Taylor diagrams. Note that
the realizations represented are the same in this figure and in Fig. 6.

NCAR CCSM4 and CESM1 overlap with estimates of ob-
served snow retreat in spring, but that CanESM2 exhibits
more spring snow retreat than our best estimate of the ob-
servations. This excessive snow retreat is associated in part
with excessive global warming in the model mentioned in
Sect. 2 (Mudryk et al., 2017).

A more challenging target for the purpose of simulation
and attribution of climate change on a regional scale is the
spatial pattern of observed climate fluctuations in recent
decades. Acknowledging the overall biases noted above, we
concentrate our analysis on the response patterns with spa-
tial means removed. We first show the wintertime 1981–2005

land-surface temperature trend pattern with the spatial mean
removed in the left panel of Fig. 5a. This represents a pre-
dominantly positive meridional gradient of land-surface tem-
perature change from southern to northern Canada, reflect-
ing wintertime Arctic amplification of warming. The same
field in individual realizations of CESM1 and CanESM2 has
a spatial correlation in the range of −0.6 to +0.6 (Taylor di-
agram in the left panel of Fig. 5c), suggesting that these pat-
terns are affected by significant internal variability (Deser et
al., 2012). There are more realizations with positive than neg-
ative spatial correlation in winter land-surface temperature
trend patterns, which is consistent with the anticipated ef-
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Figure 6. A similar analysis to Fig. 5 but for AMJ. Panels (a) and (d) represent AMJ trends, and (b) and (c) represent the same best match
and worst match realizations from Fig. 5, but with AMJ trends displayed.

fect of anthropogenic forcing. Wintertime land-surface tem-
perature trends systematically show greater spatial variance
than the estimated warming pattern from the single observa-
tional land-surface temperature dataset employed here. This
could be related to stronger (more negative) meridional gra-
dients in land-surface temperature and its trends in the mod-
els compared to the observational dataset. Springtime land-
surface temperature trend patterns (left panel of Fig. 6a) fea-
ture anomalously negative changes in the Canadian prairie
regions and positive changes around the coastal regions. It is
harder to find realizations in the spring that correspond to the
observed pattern (left Taylor diagram in Fig. 6d), and spatial
variance of the land-surface temperature trends appears to be
biased high as in winter. For precipitation, there is little ev-
idence of consistent pattern matching between the observa-
tions and individual realizations, for winter or spring (middle

column of panels a and d of Figs. 5 and 6). For SWE spatial
patterns (right column of panels a and d of Figs. 5 and 6),
the structural details of the trend maps are also not readily
found in the models compared to the mean of the Blended-5
SWE. Compared to the ensemble mean of the Blended-5 ob-
servations, the simulations show greater spatial variance in
SWE trends, but this is partially due to smoothing of spatial
structure in observational errors, as is shown by the scatter
of SWE trends by individual contributors to the Blended-5
dataset (light brown circles in Taylor diagrams).

It is possible to find individual realizations in the
CanESM2-LE that match either fairly well or fairly poorly
with observed trends. In panel b of Figs. 5 and 6, we show
for the two seasons of JFM and AMJ, respectively, the land-
surface temperature, precipitation, and SWE trends for the
best all-round match realization, which is a single real-
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Figure 7. Column (a) shows the multimodel mean of CMIP5 trends
over the 1981–2005 historical period for JFM land-surface tempera-
ture, precipitation, and SWE. Column (b) shows the corresponding
multi-realization mean for the CanESM2 large ensemble. Unlike
Figs. 5 and 6, the spatial mean of the trend has not been removed.

ization with the greatest average pattern correlation across
the three fields (land-surface temperature, precipitation, and
SWE) and the two seasons of JFM and AMJ. The spatial pat-
tern correlation coefficient of each field with its observational
counterpart is labelled. Plotted in Figs. 5c and 6c is the worst
all-round match realization, which is the single realization
with the least (most negative) pattern correlation. The best
match realization exhibits tradeoffs across fields, for exam-
ple in the ability to represent the structured pattern of spring-
time precipitation change (r = 0.38 for the middle panel of
Fig. 6b) versus wintertime land-surface temperature change
(r = 0.01 for the left panel of Fig. 5b). The worst match case
exhibits a similar range of correlations, on the negative side,
and generally looks quite different from the best match case.
This preliminary analysis of intra-ensemble variability sug-
gests limits on how much regional-scale information about
changes for snow cover and related climate variables can be
extracted from ESMs. The key point is that caution is needed
in judging a model on its ability to reproduce spatial patterns
of trends in SWE and related climate parameters, even on
these multidecadal timescales.

The spatial pattern of CanESM2 land-surface tempera-
ture and precipitation trends is generally representative of

that found in individual realizations of the CMIP5 datasets,
in the sense that the individual realizations of CanESM2
and other CMIP5 models have positive pattern correlations
with the CMIP5 multi-model mean (Taylor diagrams not
shown). Consistently, the CMIP5 multimodel mean of the
land-surface temperature and precipitation trends are gener-
ally similar to the CanESM2 ensemble mean (winter example
shown in the top two rows of Fig. 7; note that in Fig. 7 the
spatial mean of the patterns is not removed in order to allow
comparison of the overall responses in CanESM2 to CMIP5).
However, for SWE, we find CanESM2’s pattern is typically
opposite that of individual realizations from other models
in CMIP5 (not shown) as is also evident in the ensemble
mean (bottom row of Fig. 7). In particular, CanESM2 shows
a strong positive trend in the Western Cordillera and a weaker
positive trend in Southern Ontario and eastern Canada in both
winter (Fig. 7) and spring (not shown), whereas a reduction
of SWE is found in these regions and seasons in CMIP5.

3.3 Canadian Arctic sea ice in CanESM2

Turning to sea ice, we recall that it is well established that
summertime Arctic sea ice area or extent is biased low in
CanESM2 (Stroeve et al., 2012; Merryfield et al., 2013a; Lal-
iberté et al., 2016). We thus focus a limited amount of addi-
tional analysis on sea ice in the Canadian sector. The estab-
lished low bias is borne out in the Canadian Arctic sector
(Fig. 8a–b), where CanESM2 has less than half of the ob-
served sea ice coverage in the Beaufort Sea–Arctic Ocean
sector. Further limiting the utility of regional sea ice analy-
sis with this model is the moderate spatial resolution of the
model and its associated land–sea distribution, particularly in
the Canadian Arctic Archipelago (Fig. 8a–b). The summer-
time sea ice extent is among the lowest of all CMIP5 models
in the Canadian Arctic as a whole. In Canadian Arctic re-
gions, summertime sea ice extent is biased low in the Beau-
fort Sea and is practically zero in Hudson Bay and Baffin Bay
(Fig. 9, left column). This bias contributes to the outcome
that the sea ice reaches nominally ice-free summertime con-
ditions at times comparable to present-day in CanESM2. The
bias is evident throughout the seasonal cycle in most regions
(Fig. 9, right column), with the exception of Baffin Bay, al-
though not as extreme relative to other models in other sea-
sons as it is in summer. In this respect, the quality of simula-
tion in CanESM2 is not as good as that of other ESMs such
as NCAR CESM1 (Fig. 8c), which provide a better baseline
for regional sea ice studies in terms of both climatology and
land–sea distribution.

Process investigations of sea ice by CanSISE include a
focus on the relationship between sea ice drift and Arctic
winds, since realistic sea ice dynamics are crucial for ac-
curate representation of sea ice (Notz, 2012). International
Arctic Buoy (IABP) Programme measurements (Tschudi et
al., 2016) show that sea ice drift speed peaks in September,
when sea ice is thinnest (Fig. 10b), and not at the time of
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Figure 8. (a) Fraction of years (1979–2014) with September sea
ice cover (sea ice concentration > 0.15) for the NSIDC passive mi-
crowave product on an EASE 25 km grid. (b) as in (a) but for the
CanESM2 model, remapped using a nearest-neighbour remapping.
(c) as in (b) but for the CESM1-CAM5 model. The grey shading
indicates the land–sea mask for each dataset. The NCAR CESM1
CICE grid provide a rough indication of how geographical features
of the Canadian Arctic, such as the Canadian Arctic Archipelago,
might be resolved in future configurations of CanESM2. Also evi-
dent is the low September sea ice extent bias in CanESM2.

peak wind speed in December. However, in CanESM2, the
peak sea ice drift speed occurs in November and is more in
phase with the seasonal cycle of near-surface wind speed.
Other models in the CMIP5 archive that have more modern
sea ice components are able to reproduce more closely the
observed seasonal cycle of sea ice drift speed (Neil F. Tan-
don, personal communication, 2018). These results provide
strong motivation to transition to a modelling system with
improved sea ice and related processes in the Arctic.

4 Snow- and sea-ice-related forecast performance
and development of CanSIPS

Operational seasonal forecasts based on coupled global
ocean–atmosphere models have been produced for about
two decades internationally (Stockdale et al., 1998) and in
Canada (by CanSIPS) since 2011. Over this period the main
emphasis has been on predicting seasonal meteorological
variables describing near-surface temperature, atmospheric
circulation, and precipitation, as well as sea-surface tempera-
tures, since these are a major driver of seasonal climate vari-
ations. Potential has also existed for such systems to usefully
predict additional variables, including snow and sea ice, par-
ticularly as the sophistication of the models and the methods
used to initialize them have increased. With respect to the
cryosphere, however, such capabilities have received little at-
tention until relatively recently compared to other areas of
focus in seasonal prediction (e.g. Blanchard-Wrigglesworth
et al., 2011; Sigmond et al., 2013; Guémas et al., 2016).

4.1 Characteristics of CanSIPS related to
seasonal forecasts of terrestrial snow

Research carried out under CanSISE examined the ability
of CanSIPS both to realistically initialize SWE and to pre-
dict future SWE variations (Sospedra-Alfonso et al., 2016a,
b). This was the first study of snow in an operational sea-
sonal forecast system. Regarding seasonal prediction of snow
by CanSIPS, anomaly correlation skill for wintertime SWE
is high at short lead times and remains statistically signif-
icant (greater than 0.3) at lead times of at least 6 months
for certain regions (Fig. 11), which suggests potential for
practical utilization of such forecasts. Two primary sources
of potential predictability (PP, defined as the ratio of “sig-
nal” variance describing interannual variability of ensemble
means to total variance consisting of the sum of “signal”
and “noise” components) and skill in CanSIPS forecasts of
SWE have been identified (Sospedra-Alfonso et al., 2016a,
b). The first, which is most important at short lead times,
is the demonstrated ability of CanSIPS to provide realistic
initial values for SWE, combined with the natural tendency
for SWE anomalies to persist throughout the snow season in
regions where winter land-surface temperatures remain be-
low freezing, so that the snowpack accumulates until the on-
set of spring melt. The second main source of PP and skill,
which becomes increasingly prevalent at longer lead times,
is the ability of CanSIPS to predict future climatic conditions
such as land-surface temperature and precipitation anomalies
which influence snow accumulation and melt. A large part of
this type of predictability and skill arises from ENSO, which
strongly influences winter climate in North America and is
skillfully forecast by CanSIPS up to a year in advance.

The value of skillful seasonal forecasting of snow in turn
depends on process representation and initialization at the
land surface. For example, Ambadan et al. (2015) have inves-
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Figure 9. (a) September sea ice extent (sea ice concentration larger than 0.15) for the Canadian Arctic (defined by the Canadian Ice Service
Data Archive (CISDA) domain). The CanESM2 model (green), CISDA (yellow), National Snow and Ice Data Center (NSIDC, red), and
the multi-model mean (blue) are shown with their 1979–2013 trends. Individual models are shown in light grey. (b) The Canadian Arctic
seasonal cycle for 1979–2013. Box plots were added to describe the inter-model spread (whiskers are 5th and 9th percentiles). Panels (c–d),
(e–f), and (g–h) are the same as panels (a) and (b) but for the Beaufort Sea, Baffin Bay, and Hudson Bay, respectively. In panels (e) and (g),
the CanESM2 curve is close to zero. Sea ice amounts are scaled to account for the fraction of ocean present in the CanESM2 land–sea mask
(Laliberté et al., 2016).
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Figure 10. (a) Seasonal cycle of Arctic average sea ice drift speed
(solid, in units of km day−1) and near-surface wind speed (dashed,
in units of m s−1) from a historical run of CanESM2 averaged over
1979–2005. The spatial domain used for the calculation is the region
north of 68◦ N for longitudes east of 103◦ E and west of 124◦W and
north of 79◦ N at all other longitudes, excluding grid points within
150 km of a coastline. This focuses on regions of year-round drift-
ing ice and excludes landfast ice. (b) as in (a) but using non-gridded
drift speed measurements from the International Arctic Buoy Pro-
gramme (solid; Tschudi et al., 2016) and near-surface wind data
from ERA-Interim (dashed; Dee et al., 2011).

tigated the impact of initialization of SWE, soil liquid water,
and soil frozen water on PP of springtime surface air temper-
ature in the CanSIPS system (Fig. 12). Realistic initialization
of these variables enhances PP by as much as 30 % in terms
of variance explained within the PP framework. This shows
that it is important to regard snow initialization in the broader
setting of land-surface initialization and that there is evi-
dence for quantitative improvement in regional predictabil-
ity as more observational information on the state of the land
surface is brought into the prediction system. Current opera-
tional practice in CanSIPS uses observed atmospheric forc-
ing to bring the land surface (including soil moisture and
snow cover) into a realistic state. Although this procedure
performs reasonably well for snow (within observational un-
certainty), potential remains for improving the initialization
and forecasting of snow and other land variables by assimi-
lating observation-based land data directly in real time.

Blending different sources of data from highly uncertain
observations has led to improved characterization of the fore-
cast skill of the CanSIPS system. Figure 13 shows the degree
of agreement between SWE forecasts from CanSIPS and sev-
eral SWE products over Canada (similar results are found for
other regions). The degree of agreement is measured as the
anomaly correlation coefficient for a 1-month forecast (with
lead 0 from initialization). The five datasets are the Blended-
5 dataset (blue) and four individual datasets including two
components of the Blended-5 dataset. Even though all obser-
vational datasets are being compared to the same forecast, it
is the Blended-5 dataset, capturing the mean of several obser-
vational datasets, that agrees best with the forecast. It is clear
that improving verification datasets through blending, which
can be reasonably expected to lead to cancellation of inde-
pendent errors in observational estimates, impacts assessed
agreement with the forecast. To reiterate, in this case, im-
proved calculated skill is derived from an apparent improve-
ment in the quality of the verification data and not an im-
provement of the forecast (Sospedra-Alfonso et al., 2016b).
Whether or not such improved consistency might be found
for the prediction of other quantities, the broader point is that
there is a need to ensure that verification data are continu-
ally updated in order to fairly compare predictions to the best
available data (Massonet et al., 2016).

Recent research in snow analysis and observational
datasets is expected to support operational improvements in
CanSIPS and hence in ECCC’s operational prediction capac-
ity. For example, CanSISE work has led to new efforts to
develop an operational real-time snow amount forecast for
the coming months, which could be used in several impacted
sectors such as outdoor recreation, water resource planning,
and agriculture (Fig. 14, snow amount forecast shown as
above and below normal SWE amounts). In this success-
ful proof of concept, we note satisfactory general agreement
with the MERRA analysis, which is independent of Can-
SIPS and is itself subject to some uncertainty. This indicates
promise for this new forecast product, while highlighting is-
sues of observational uncertainty addressed in part by our
recent research.

4.2 Sea ice forecasting with CanSIPS

Much as for snow, the ability of global climate model-based
seasonal forecasting systems to predict sea ice has also re-
ceived little attention until recently, although such assess-
ments have now been carried out for several systems (Gué-
mas et al., 2016). In the area of sea ice prediction, CanSIPS
hindcasts, despite some of the simulation deficiencies de-
scribed above, have demonstrated skill in seasonal predic-
tions of sea ice (e.g. Sigmond et al., 2013; Merryfield et al.,
2013b). While these prior studies have focused on forecast
skill of area-integrated quantities such as sea ice area, recent
work (Sigmond et al., 2016) has also shown significant fore-
cast skill of more user-relevant sea ice metrics such as the
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Figure 11. Anomaly correlation coefficient (ACC) skill for February–April (FMA) SWE of 1981–2010 CanSIPS hindcasts initialized at the
start of February and the preceding January, November, and August (lead times of 0, 1, 3, and 6 months, respectively). The Blended-5 dataset
of Mudryk et al. (2015) is used for observational verification. The contour interval is 0.1, and the overbars denote spatial averages of ACC
over areas of North America having seasonal snow cover.
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Figure 12. Impact on the square of the anomaly correlation coefficient of initialization of (a) SWE, (b) frozen soil water, and (c) liquid soil
water on springtime forecasts of land-surface temperature at 45-day lead. Red colours indicate increase and blue colours decrease of the
potential predictability (an idealized model based estimate of potential forecast skill). Based on Ambadan et al. (2015).
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Figure 13. Anomaly correlation coefficient (ACC) averaged over
Canada for first-month CanSIPS forecasts of SWE, verified against
several observation-based datasets including Blended-5 (blue),
MERRA (green), MERRA-2 (grey), ERA-Interim Land (red), and
ERA-Interim (magenta); the MERRA and ERA-Interim Land are
components of Blended-5. Blended-5 shows the best agreement
with the forecast, suggesting a strong influence of observational
dataset on evaluation of forecast performance.

first calendar date that sea ice melts (retreat date; Fig. 15a–
c) or freezes up (advance date; Fig. 15d–f). Advance dates
are skillfully predicted at lead times of 5 months on aver-
age (3.3 months for detrended anomalies) and retreat dates
at lead times of 3 months (2.2 months for detrended anoma-
lies). For retreat dates, the main source of forecast skill is
persistence, while advance date predictions benefit from pre-
dictable ocean temperatures.

Sea ice predictability is also assisted by persistence of
sea ice thickness (e.g. Chevallier and Salas-Mélia, 2014),
but CanSIPS does not take advantage of this in that it cur-
rently employs an initialization method that uses only cli-
matological sea ice thickness (SIT) information. Since real-
time SIT observations are limited, Dirkson et al. (2015, 2017)
have developed several statistical models of varying com-
plexity for initializing SIT in operational predictions. These
are based on predictors available in real time together with
historical SIT values represented by the pan-Arctic Ice and
Ocean Modelling System, or PIOMAS (Zhang and Rothrock,
2003), which is frequently used as a reference dataset for
SIT due to the sparseness of historical SIT observations. The
first such model (known as “SMv1”), described in Dirkson
et al. (2015), uses a statistical approach to find an optimal
combination of sea ice concentration and sea level pressure
information to provide useful sea ice thickness information.
While this model reduces temporal- and spatial-mean abso-
lute errors in the SIT initial conditions by 48 % relative to
the original CanSIPS initialization (when validated against
PIOMAS SIT values) and shows consistent skill estimat-

ing ice volume in all months, much of this improvement
in skill emerges from a more accurate representation of lo-
cal negative trends in SIT. Two additional statistical mod-
els, “SMv2” and “SMv3”, that improve on SMv1 with re-
spect to interannual variations in SIT anomalies are described
in Dirkson et al. (2017), and seasonal sea ice volume from
SMv3 is compared to that from CanSIPS initial conditions
in Fig. 16. Seasonal forecasting experiments using these SIT
initial conditions demonstrate general improvement forecast-
ing both pan-Arctic sea ice extent and local sea ice concen-
tration compared to the current operational system, with most
significant improvements afforded by initializing with either
SMv2 or SMv3 (Dirkson et al., 2017).

5 Conclusions

We have assessed characteristics of snow, sea ice, and related
climate parameters in Environment and Climate Change
Canada’s (ECCC) Earth system model (ESM) CanESM2 and
seasonal to interannual climate-prediction system CanSIPS,
with a focus on the Canadian sector of the Northern Hemi-
sphere. This assessment is intended to provide a baseline for
future versions of the models with respect to these impor-
tant societally relevant climate parameters. It has highlighted
the application of the Blended-5 multi-source SWE (Mudryk
et al., 2015) and the CanESM2-LE of climate simulations.
In addition, it has highlighted new developments in sea ice,
snow, and related climate parameter prediction on seasonal
timescales. We summarize our key findings:

– The CanESM2 simulation of climate parameters over
the Canadian land mass closely tied to snow – land-
surface temperature and precipitation on land in cold re-
gions – lies well within the range of currently available
international models. There is considerable disagree-
ment among observational datasets on the amount and
geographical structure of SWE in the satellite era. The
CanESM2 simulation of SWE performs as well as avail-
able international models in this area. Even accounting
for this observational uncertainty, however, there is a
bias towards excessive seasonal snow cover and unre-
alistic spatial distribution of SWE in the spring over the
Canadian land mass and over the Northern Hemisphere
as a whole. Excessive precipitation over the Canadian
land mass contributes to this bias.

– Accounting for observational uncertainty, CanESM2
simulates a greater retreat of springtime snow over the
satellite era than most of the available observations as-
sessed here and other models that include large initial-
condition ensembles. The spatial pattern of the observed
temperature, precipitation, and SWE trends is strongly
influenced by internal variability. This makes it diffi-
cult to assess the model-simulated patterns of change
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Figure 14. Real-time CanSIPS forecast of standardized anomalies of monthly-mean SWE for January 2016 (a), initialized at the end of the
preceding month, compared to the MERRA analysis for the same period (b). The contour interval is 0.25, and anomalies are relative to a
1981–2010 base period.

Figure 15. Maximum lead time at which CanSIPS skillfully predicts retreat and advance dates (defined as the calendar date at which sea ice
concentration first drops below or exceeds 50 %) for total anomalies (first column), detrended anomalies (second column), and a detrended
persistence forecast based on persisting the observed initial sea ice concentration anomaly. The numbers in the top right corner of each panel
indicate the Arctic average maximum lead time (in months). From Sigmond et al. (2016).

in the variables we have examined. Nevertheless, West-
ern Cordillera trends in SWE in CanESM2 represent a
recent increase that is opposite to those found in typical
CMIP5 models.

– Previously identified biases towards low Arctic sea ice
extent are also reflected in regional biases: in Hudson’s

Bay and the Canadian Beaufort Sea sector, the sea ice
extent is biased low and this undermines projections
of when regional sectors of the Arctic will be ice-free.
In the current system, there are tradeoffs related to the
resolution of geographical features in the CanESM and
CanSIPS systems that impact both the snow and sea ice
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Figure 16. Time series of seasonally averaged sea ice volume over the period 1981–2012, in units of 103 km3 for the PIOMAS sea ice
thickness analysis (which assimilates observations) (black), the SMv3 statistical model of Dirkson et al. (2017) (red), and CanSIPS initial
conditions (cyan). The CanSIPS system as originally configured incorporates no information about recent sea ice thinning and thus misses
the recent downward trends of sea ice volume.

simulations. This provides an urgent area of improve-
ment for future model development.

– Recent work suggests promising potential for seasonal
forecasting of snow, sea ice and related climate param-
eters using CanSIPS. For example, accurate initializa-
tion of frozen and liquid soil water, in addition to im-
proved SWE representation, might lead to significantly
improved seasonal temperature forecasts. Furthermore,
the Blended-5 example shows that accounting for obser-
vational uncertainty can lead to better understanding of
forecast quality. This result suggests initialization could
also be improved in this manner. This and related work
has stimulated the development of ECCC’s first experi-
mental seasonal snow amount forecast product.

– Despite biases in the sea ice simulation, it is possi-
ble to develop potentially useful new seasonal fore-
cast products for sea ice advance and retreat. In addi-
tion, implementing sea ice thickness initialization using
indirect statistical predictors of thickness can improve
sea ice forecasts compared to the current methodology.
Motivated by the promising research results, improved
sea ice thickness initialization (as initially explored by
Lindsay et al., 2012, and Day et al., 2014) is being con-
sidered for implementation in the CanSIPS system.

Further improvements in the CanSIPS and CanESM cli-
mate prediction and projection capacity for snow, sea ice,

and related climate variables also hinge on assessing model
process representation in more depth. For example, criti-
cal to capture accurately is the snow albedo feedback pro-
cess, which governs the seasonality of snow cover and land-
surface temperature and hydroclimatic responses to climate
change (Qu and Hall, 2007, 2014; Hall et al., 2008; Thack-
eray et al., 2015; Thackeray and Fletcher, 2016). Thackeray
et al. (2015) show that CanESM2 places among the best
CMIP5 models for all regions in terms of the overall simula-
tion of snow cover fraction and snow-covered surface albedo.
Further progress in this kind of process representation will
be achieved in part through internationally coordinated in-
tercomparison efforts associated with CMIP6, including the
Land Surface, Snow and Soil Moisture Model Intercompar-
ison Program (LS3MIP; van den Hurk et al., 2016) and the
Earth System Model Snow Intercomparison Project (ESM-
SnowMIP). Besides ongoing work on sea ice mechanics and
its relationship, through wind driving, to sea ice drift, Can-
SISE research is also currently characterizing snow cover on
sea ice in models and observations, which also serves as a
potential source of model error in the timing and amplitude
of sea ice growth and melt.

CanSISE demonstrates the utility of entraining a network
of researchers bridging observational and modelling com-
munities to focus on a related set of processes in evalua-
tion of Earth system models and climate-prediction systems.
The results suggest that there can be several benefits to up-
dated multi-source observational datasets for climate pre-
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diction, monitoring, and assessment. Our focus in this pa-
per has been on recently produced multi-source snow ob-
servational datasets, but our results suggest that there are
benefits of multi-source temperature, precipitation, and sea
ice datasets that follow a similar approach (Massonet et
al., 2016). We have articulated the tradeoffs involved in
constraints on CanESM2’s resolution in light of limitations
of available advanced computing resources. Running the
model at 2◦ latitude–longitude permits the creation of the
CanESM2-LE set, but can entail under-resolution of key fea-
tures of interest in applications, such as the Canadian Arc-
tic Archipelago’s channels and islands. We suggest that sim-
ilar large ensembles be considered based on future model
versions, accounting for these tradeoffs, and being comple-
mented by ECCC regional climate model simulations (e.g.
Scinocca et al., 2016).
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