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A B S T R A C T

Copepods are important grazers on toxic phytoplankton and serve as vectors for algal toxins up the marine food
web. Success of phytoplankton depends among other factors on protection against grazers like copepods, and
same way copepod survival and population resilience relies on their ability to escape predators. Little is,
however, known about the effect of toxins on the escape response of copepods. In this study we experimentally
tested the hypothesis that the neurotoxin domoic acid (DA) produced by the diatom Pseudo-nitzschia affects
escape responses of planktonic copepods. We found that the arctic copepods Calanus hyperboreus and C. glacialis
reduced their escape response after feeding on a DA-producing diatom. The two species were not affected the
same way; C. hyperboreus was affected after shorter exposure and less intake of DA. The negative effect on escape
response was not related to the amount of DA accumulated in the copepods. Our results suggest that further
research on the effects of DA on copepod behavior and DA toxicity mechanisms is required to evaluate the anti-
grazing function of DA.

Predation is a major cause of copepod mortality, and processes that
negatively affect the sensory system of copepods or their mobility may
affect predation (Kerfoot, 1978; Hirst and Kiørboe, 2002; Almeda et al.,
2017; van Someren Gréve et al., 2017). Copepods detect predators by
sensing hydromechanical disturbances (Kerfoot, 1978; Haury et al.,
1980; Kiørboe and Visser, 1999) and their escape response is a forceful
jump away from that stimulus (Ohman, 1988; Fields and Yen, 1997;
Wohlrab et al., 2010; Bradley et al., 2013). Hence a successful escape
response in copepods requires both detecting the disturbance in the
water and the muscle power to perform a jump.

Diatoms of the genera Nitzschia and Pseudo-nitzschia produce a
neurotoxin, domoic acid (DA), which can be transferred via copepods to
higher food web levels (Leandro et al., 2010a; Tammilehto et al., 2012;
D’Agostino et al., 2017) and intoxicate organisms such as seabirds,
whales and seals (Fritz et al., 1992; Leandro et al., 2010b; Jensen et al.,
2015). Domoic acid can also cause amnesic shellfish poisoning in hu-
mans (Quilliam and Wright, 1989; Landsberg, 2002). Presently, two
species of Pseudo-nitzschia, P. seriata and P. obtusa, are known to induce
DA production in the presence of copepods (Harðardóttir et al., 2015;
Tammilehto et al., 2015). Pseudo-nitzschia seriata is known to elevate
DA production as a respond to predator cues from various copepods

species with high DA levels in correlation to high concentration of
predator exoduses (Lundholm et al., 2018). Suggesting that DA pro-
duction is a chemical defense mechanism against predation. Copepods,
one of main grazers of diatoms in marine ecosystems, seem to be re-
sistant to DA, making the role of the grazer-induced DA speculative.
Copepod species of Calanus and Acartia are known to feed on toxic
Pseudo-nitzschia without any grazing deterrence and they do not select
alternative non-toxic prey when given a choice (Windust, 1992; Tester
and Douchette, 2001; Maneiro et al., 2005; Leandro et al., 2010a). A
single report exists of a changed temporal feeding pattern in Calanus
spp. after consumption of DA (Tammilehto et al., 2012). Egg production
and hatching is not reduced in Calanus spp. by feeding on toxic Pseudo-
nitzschia (Miesner et al., 2016). Only one report of increased mortality,
due to DA has been published until now, for ecologically relevant DA
levels (Lundholm et al., 2018).

Domoic acid is an excitatory amino acid and an analogue to gluta-
mate (Wright et al., 1989). Crustaceans use glutamate as a neuro-
transmitter in both the peripheral and central nervous system (Eckert
and Randall, 1983). We hypothesize that DA may interfere with neu-
rotransmission regulation and consequently affect escape responses in
copepods. In this study we tested if the escape response is reduced in

https://doi.org/10.1016/j.hal.2018.08.009

⁎ Corresponding author.
E-mail address: Sara.Hardardottir@snm.ku.dk (S. Harðardóttir).

Harmful Algae 79 (2018) 50–52

Available online 21 September 2018
1568-9883/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15689883
https://www.elsevier.com/locate/hal
https://doi.org/10.1016/j.hal.2018.08.009
https://doi.org/10.1016/j.hal.2018.08.009
mailto:Sara.Hardardottir@snm.ku.dk
https://doi.org/10.1016/j.hal.2018.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hal.2018.08.009&domain=pdf


copepods after feeding on toxic Pseudo-nitzschia. Prior to incubations,
the animals were starved for> 24 h. The incubations were carried out
in the dark at ∼4 C°. Two arctic Calanus copepod species C. hyperboreus
and C. glacialis, were exposed to diets of either the toxic Pseudo-nitzschia
seriata or a non-toxic Thalassiosira gravida for 12 and 72 h in 5 L buckets,
one bucket per treatment, with saturating food conditions of> 400 μg
C L−1, (Hansen et al., 1996). Food concentration was above saturation
levels for both diets at the end of the experiment (Table 1). The two
diatoms differ in size, shape and carbon content but both diatom species
are in the size range that both Calanus species are known to feed on.

A siphon experiment was conducted to trigger escape jumps. From
the incubation buckets, single copepods were carefully placed in a petri
dish filled with filtered sea water. A pasteur pipette was used to create a
hydromechanical signal by placing the tip in the liquid and using the
suction to create a this signal, similar to theory in Titelman, (2001) and
Kiørboe and Visser (1999), and the set up in Wohlrab et al., (2010).
When a copepod showed at least one escape response, by jumping when
perceiving the stimuli, it was classified as “unaffected” by DA. Only
when copepods did not respond after three stimuli, they were classified
as “affected” copepods. Each assay was tested on 100 copepods for each
treatment variable; diet, exposure time and copepod species. The data
were statistically analyzed by applying a generalized linear model (glm)
(McCullagh,1984) to interpret the proportion of success with numerical
vector values (0 or 1). This was done with the statistical package MASS
(Venables and Ripley, 2002) using the programme R (R Core Team,
2018) and SigmaPlot (2018).

Domoic acid content in the affected and unaffected copepods was
measured in triplicates of five copepods to assess if accumulation of DA
explain the changes in escape responses (for method details see suppl.
Material).

The species C. hyperboreus was affected after incubation with DA-
producing Pseudo-nitzschia; the escape responses were reduced from 66
and 60% in the control treatments to 40 and 37% after 12 h and 72 h of
incubation, respectively (Fig. 1, top). In contrast, the escape response of
C. glacialis was not affected after 12 h, but after 72 h a reduction in the
escape response became evident, from 67% in the control to 25% in the
treatment (Fig. 1, bottom). Both diet and exposure time significantly
affected escape responses of the copepods (gls, P < 0.0001 for both
variables), and the response of the two species was significantly dif-
ferent (gls, P<0.05), with a more pronounced response in C. glacialis
after 72 h. Domoic acid content in the copepods differed between

affected or unaffected but the differences were not significantly dif-
ferent (One-Way ANOVA, P > 0.05) (Table 1). Of the two species
studied, C. glacialis accumulated more DA mg C−1 than C. hyperboreus
after both 12 and 72 h of incubation (t-test, P<0.05) (Table 1). The
negative effect of DA was only observed after 72 h in C. glacialis.

Our results suggest that escape responses of both copepod species
are affected by ingestion of DA-producing diatoms,however not in the
same way. The copepod C. hyperboreus is affected both sooner and after
having accumulated less DA than C. glacialis indicating that C. hy-
perboreus is more vulnerable to the toxin. The feeding strategy of the
two species is the same; selective suspension feeders that graze on
phytoplankton and heterotrophic protists (Mullin, 1963). The two co-
pepods are different in size (carbon body weight 0.11mg C for C. gla-
cialis and 1.31mg C for C. hyperboreus Swalethorp et al., 2011), have
different life strategies (Madsen et al., 2001; Swalethorp et al., 2011),
and hence behavior and escape capabilities vary between species which
can affect the risk of predation (Almeda et al., 2017). The threshold for
an escape response is variable beetween different species of copepods,
and between different stages and sex within a single species (Fields &
Yen, 1997; Buskey et al., 2002). There was not a difference between the
Calanus species in the control, suggesting they have similar initial re-
sponse to the stimuli. The amount of accumulated toxins is variable
between the time of exposure and affected or unaffected, but this dif-
ference is not significant for either species. We used five animals in each
replicate but the standard variation is high (Table 1) indicating a large
individual variation and may explain the lack of statistical difference.

The results of this study thus indicate a sub-lethal affect. The re-
duced escape response observed here might be caused by DA interfering
with neurotransmission regulation in the copepods as hypothesized
above. A parallel mechanism has previously been suggested for sax-
itoxin production in the dinoflagellate Alexandrium (Wohlrab et al.,
2010). The reduction in escape response of copepods will increase co-
pepod mortality by predation and thereby reduce grazing pressure on
the toxic diatoms and consequently promote the transfer of DA to
higher trophic levels of the food web. In conclusion, the results suggest
that DA has a role in the defense mechanism to reduce grazing on toxic
diatoms.
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Table 1
Average concentration of toxic and nontoxic diet, saturation level for copepods is 400 μg C L−1. Domoic acid (DA) levels of Pseudo-nitzschia, and accumulated DA in
the copepod tissue after either 12 or 72 h incubation, in either copepod affected by ingested DA or unaffected, each replicate (n=3) contained 5 animals. Values are
given as mean and standard deviation.

Copepod Treatment
Time

Start diet concentration:
(μg C L−1)

End diet concentration:
(μg C L−1)

Start DA content of Pseudo-
nitzschia
(pg DA cell−1)

End DA content of Pseudo-
nitzschia
(pg DA cell−1)

Accumulated DA in copepods unaffected
/ affected
(ng DA mgC−1)

Calanus hyperboreus
Treatment with toxic Pseudo-nitzschia

12 h: 1628 ± 602 696 ± 445 16.3 ± 5.5 20.9 ± 5.9 120.7 ± 47.5 /
62.5 ± 16.5

72 h: 3661 ± 108 1034 ± 151 6.6 ± 0.4 14.4 ± 2.3 103.1 ± 87.8 /
45.5 ± 22.2

Control with non-toxic Thalassiosira
12 h: 2875 ± 460 1981 ± 238
72 h 3300 ± 841 2620 ± 445

Calanus glacialis
Treatment with toxic Pseudo-nitzschia

12 h: 1628 ± 602 762 ± 130 16.3 ± 5.5 18.1 ± 3.4 1047.5 ± 351 /
676.4 ± 182.4

72 h: 3661 ± 108 1083 ± 180 6.6 ± 0.4 10.5 ± 1.6 514.6 ± 192.6 /
353.7 ± 102.5

Control with non-toxic Thalassiosira
12 h: 2875 ± 460 2620 ± 445
72 h: 3300 ± 841 1300 ± 929
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