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Abstract18

Exploiting the complementary character of CryoSat-2 and Soil Moisture and Ocean Salin-19

ity (SMOS) satellite sea ice thickness products, daily Arctic sea ice thickness estimates20

from October 2010 to December 2016 are generated by an Arctic regional ice-ocean model21

with satellite thickness assimilated. The assimilation is performed by a Local Error Sub-22

space Transform Kalman filter (LESTKF) coded in the Parallel Data Assimilation Frame-23

work (PDAF). The new estimates can be generally thought of as combined model and24

satellite thickness (CMST). It combines the skill of satellite thickness assimilation in the25

freezing season and with the skill of model dynamics in the melting season, thus further26

fills the gaps in thickness data during the melting season when neither CryoSat-2 nor27

SMOS sea ice thickness is available. Comparisons with in-situ observations from the Beau-28

fort Gyre Exploration Project (BGEP), Ice Mass Balance (IMB) Buoys and the NASA29

Operation IceBridge demonstrate that CMST reproduces most of the observed tempo-30

ral and spatial variations. Results also show that CMST is comparable to the Pan-Arctic31

Ice Ocean Modeling and Assimilation System (PIOMAS) product, and appears to cor-32

rect some thickness biases where PIOMAS overestimates in thin ice areas and underes-33

timates in thick ice areas. Due to imperfect parameterizations in the sea ice model and34

satellite thickness retrievals, CMST does not reproduce the heavily deformed and ridged35

sea ice along the northern coast of the Canadian Arctic Archipelago (CAA) and Green-36

land. With the new Arctic sea ice thickness estimates sea ice volume changes in recent37

years can be further assessed.38

1 Introduction39

Arctic sea ice extent as an indicator of climate change has been monitored by satel-40

lites for decades. On the one hand, the linkages between the Arctic ice extent and mid-41

latitude climate have been documented several times (Francis et al., 2009; Kumar et al.,42

2010; Liu et al., 2012; Overland & Wang, 2010; Serreze et al., 2007). On the other hand,43

sea ice thickness may be a more important observable than extent or concentration be-44

cause it is more directly related to sea ice volume. It is, however, more difficult to ob-45

serve from space. The sparsity of thickness data results in an incomplete closure of the46

surface energy and freshwater budgets in the Arctic Ocean (Haine et al., 2015). There47

are ongoing efforts to construct consistent time series of Arctic sea ice thickness from satel-48

lite remote sensing data. Freeboard measurements by satellite altimeters on the Ice, Cloud,49
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and land Elevation Satellite (ICESat) and CryoSat-2 can be used to obtain sea ice thick-50

ness estimates assuming hydrostatic equilibrium (Kwok et al., 2009; Laxon et al., 2013).51

Thin ice thickness can be retrieved by exploiting the brightness temperature observa-52

tions at the L-band frequency of 1.4 GHz from the Soil Moisture Ocean Salinity (SMOS)53

satellite (Tian-Kunze et al., 2014). To bridge the gap between ICESat and ICESat-2 (sched-54

uled for launch in 2018), the NASA IceBridge airborne campaigns are conducted every55

year in spring from 2009 providing valuable information of ice and snow thickness in dif-56

ferent regions of the Western Arctic (Kurtz et al., 2013). This airborne data record can57

also be used for validation of satellite-derived sea ice thickness.58

Often, retrieval algorithms result in large uncertainties in derived satellite data prod-59

ucts. There are different assumptions for snow loading and empirical parameters as well60

as intrinsic limitations of different satellite sensors (radar/laser altimetry, radiometry)61

so that there can be large differences between different products (Wang et al., 2016). The62

uncertainties of different products also differ depending on the used methods and the prop-63

erties of the sensed ice cover. In spite of these uncertainties, satellite data products re-64

solve ice thickness changes on basin and regional scales. In addition, uncertainties can65

be reduced by combining different ice thickness data products. For example, the com-66

plementary character of the uncertainties in CryoSat-2 and SMOS ice thickness prod-67

ucts makes it possible to combine the data with an optimal interpolation scheme into68

a merged product CS2SMOS with better spatial and temporal coverage than the indi-69

vidual data sets (Ricker et al., 2017). With this combination the overall uncertainties70

in Arctic sea ice thickness can be reduced by implementing the individual advantages71

of each product. The CS2SMOS dataset covers the entire Arctic and provides ice thick-72

ness and the related uncertainties during the freezing season. The drawbacks of the CS2SMOS73

dataset are that the data is not available during the melt season in spring and summer74

and that the optimal interpolation method is purely statistical and does not contain any75

information from physical processes (Mu et al., 2018).76

For a continuous long-term ice thickness record, numerical model estimates can be77

used to fill the gaps in the satellite products, especially during summer. The Pan-Arctic78

Ice-Ocean Modeling and Assimilation System (PIOMAS) provides sea ice thickness and79

volume records that have been evaluated and tuned with submarine data and ICESat80

derived ice thickness (Zhang & Rothrock, 2003; Schweiger et al., 2011). PIOMAS data81

have become a reference dataset especially for thickness time series in the Arctic, but82
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the data appear to overestimate thin ice thickness in the Beaufort Sea and underesti-83

mate thick ice around the Canadian Arctic Archipelago (CAA) area compared to Ice-84

Bridge thickness(Wang et al., 2016). Assimilating sea ice thickness data from satellite-85

based remote sensing is expected to reduce these sea ice thickness biases in the model.86

For example, Lisæter et al. (2007) showed in idealized experiments with synthetic CryoSat87

data that sea ice and ocean state variables improve with sea ice thickness data assim-88

ilation. A series of studies also showed that the assimilation of SMOS ice thickness sig-89

nificantly improves the first-year ice estimates (Yang et al., 2014, 2016b; Xie et al., 2016).90

Assimilating CryoSat-2 ice thickness data in addition to SMOS ice thickness into an ice-91

ocean model in the cold season lead to a reliable pan-Arctic sea ice thickness estimate92

that is consistent with in-situ observations (Mu et al., 2018) .93

Both SMOS and CryoSat-2 thickness retrieval algorithms fail in the presence of wa-94

ter on the ice, for example in melt ponds, so that these data are restricted to the cold95

season. To include the melting season, we extend the study of Mu et al. (2018) to cover96

the entire CryoSat-2 period from October 2010 to December 2016. The weekly averaged97

CryoSat-2 ice thickness is assimilated into the model in addition to the daily Special Sen-98

sor Microwave Imager Sounder (SSMIS) sea ice concentration and SMOS sea ice thick-99

ness data. The sea ice thickness assimilated in the freezing season is expected to pro-100

vide a good initial state for sea ice thickness in the melt season when thickness data are101

not available (Day et al., 2014). The assimilated sea ice concentration in summer has102

some potential to correct potential sea ice thickness biases by means of their covariance103

(Yang et al., 2015a, 2015b, 2016a). Therefore, the new dataset is expected to cover the104

entire Arctic without the temporal gaps in CS2SMOS and with satellite sea ice thick-105

ness information that is not included in PIOMAS.106

The paper is organized as follows: In section 2, we describe the satellite-based sea107

ice thickness observations, model and in-situ measurements that are used for assimila-108

tion and evaluation. In section 3, we detail the method to establish our model thickness109

estimates. The evaluation metrics and comparisons between different products and in-110

situ observations are presented in section 4. The results are discussed in section 5 and111

conclusions are drawn in section 6.112
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2 Sea Ice Thickness Data113

2.1 Soil Moisture Ocean Salinity (SMOS) Thickness Data114

The SMOS satellite was launched by the European Space Agency (ESA) in 2009115

and provides brightness temperature. A thermodynamic sea ice model and a single-layer116

emissivity model are used to retrieve ice thickness from the brightness temperature (Tian-117

Kunze et al., 2014). A daily ice thickness product with a spatial resolution of 12.5 km118

on the National Snow and Ice Data Center (NSIDC) polar-stereographic grid projection119

is available at the Integrated Climate Data Center (ICDC) at the University of Ham-120

burg (http://icdc.cen.uni-hamburg.de/). Because of the specific assumptions of the121

retrieval algorithm, data with an uncertainty > 1 m or with a ratio between retrieved122

and maximum retrievable sea ice thickness near 100% are flagged and not used. In prac-123

tice, this means that only the SMOS data with thickness < 1 m are used for assimila-124

tion.125

In this study, the SMOS v3.1 ice thickness data are used covering the period 2010-126

2016. The daily product also contains uncertainty estimates. These are used as assumed127

observation errors during the data assimilation. Data and uncertainties are linearly in-128

terpolated onto the model grid.129

2.2 CryoSat-2 Thickness Data130

CryoSat-2, also launched by the ESA in 2010, is dedicated to retrieve thickness of131

perennial sea ice (Wingham et al., 2006). The thickness data are derived from sea ice132

freeboard data, which are obtained from radar altimeter range measurements. Assum-133

ing hydrostatic equilibrium and employing a pragmatic approach on snow loading (Laxon134

et al., 2013), freeboard can be converted into sea ice thickness. The relative uncertain-135

ties are smaller for thick ice than for thin ice because of the relatively larger freeboard136

of thick ice (Ricker et al., 2014).137

Weekly CryoSat-2 ice thickness data from the Alfred Wegener Institute (AWI), Helmholtz138

Centre for Polar and Marine Research are available for the period 2010–2016 (Ricker et139

al., 2014, http://data.meereisportal.de). This dataset is available on the EASE-Grid140

2.0 (Brodzik et al., 2012) with a grid resolution of 25 km. It is then interpolated to our141

model grid. The uncertainties provided with the data are also used as the assumed ob-142
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servation errors during data assimilation. However, due to the 30 day sub-cycle of CryoSat-143

2, weekly means of ice thickness have significant data gaps where orbit coverage is in-144

complete.145

2.3 CS2SMOS146

The complementarity of the data coverage as well as the sea ice thickness uncer-147

tainties between CryoSat-2 and SMOS inspired a statistically merged product (CS2SMOS)148

(Ricker et al., 2017, http://data.meereisportal.de). The weekly CS2SMOS sea ice149

thickness data cover the entire Arctic including the North Pole and are projected onto150

the 25 km EASE-Grid 2.0. Compared to airborne thickness data, CS2SMOS represents151

an improvement over CryoSat-2 thickness in the thin ice regimes. CS2SMOS thicknesses152

also have a low bias in the mixed first-year and multi-year ice regimes. The uncertain-153

ties provided in the dataset can be used to approximate the data error statistics. In this154

study, the CS2SMOS v1.3 ice thickness product is used for comparison. The data are155

interpolated bi-linearly onto the model grid.156

2.4 Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)157

The PIOMAS (Zhang & Rothrock, 2003) consists of the Parallel Ocean Program158

(POP) and a 12-category thickness and enthalpy distribution sea ice model. The sys-159

tem is forced by 10 m surface winds, 2 m surface air temperature, cloud cover, downwelling160

longwave radiation, specific humidity, precipitation, evaporation and sea level pressure161

from an NCEP/NCAR reanalysis. Sea ice concentration from the NSIDC near-real time162

product and sea surface temperature (SST) from the NCEP/NCAR Reanalysis are in-163

troduced into the system by nudging and optimal interpolation (Zhang & Rothrock, 2003;164

Schweiger et al., 2011). Daily sea ice thickness estimates are provided from 1978 to present165

on the PIOMAS grid (http://psc.apl.uw.edu/data/). In this study, the PIOMAS v2.1166

ice thickness data set is used for comparison.167

2.5 Beaufort Gyre Exploration Project (BGEP)168

Starting in 2003, the Beaufort Gyre Exploration Project based at the Woods Hole169

Oceanographic Institution (BGEP, http://www.whoi.edu/beaufortgyre) deploys upward-170

looking sonar (ULS) moorings every year at three locations BGEP A, BGEP B and BGEP D171
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(Figure 4). The ULS can measure the ice draft with an error of about 0.1 m (Melling et172

al., 1995). Drafts are converted to thickness by multiplying with a factor of 1.1 that is173

calculated as the ratio of the mean seawater and sea ice densities (Nguyen et al., 2011).174

Note that this draft-thickness conversion is very simple. The uncertainties caused by the175

absence of sufficient information about different ice types, ice densities, and snow load-176

ing are ignored in the study. In contrast to the IceBridge thickness data (section 2.7),177

the BGEP long-term ice thickness observations provide a year-round reference for the178

comparisons between different ice thickness products.179

2.6 Ice Mass Balance (IMB) Buoys180

IMB buoys have been deployed for more than two decades and provide a compre-181

hensive Lagrangian dataset on sea ice evolution along their drift trajectories (Perovich182

et al., 2009, http://imb-crrel-dartmouth.org). The acoustic sounder above ice and183

the underwater sonar altimeter below ice autonomously measure the ice growth and ab-184

lation. The uncertainty of sea ice thickness measured by each acoustic sounder is within185

5 mm (Richter-Menge et al., 2006). These long-term (some buoys collected data for nearly186

two years) and consistent observations of sea ice thickness support the evaluation of dif-187

ferent sea ice thickness products.188

The deployment positions of IMB buoys are considered strategically for some key189

locations or in collocation with other instruments. Note that, generally, IMB buoys tend190

to be deployed on thick and level ice floes to achieve the longest possible time series. As191

a consequence, comparing the Lagrangian observed thickness and the Eulerian model es-192

timates is not entirely consistent and can be ambiguous.193

2.7 Operation IceBridge194

NASA's Operation IceBridge (https://www.nasa.gov/mission pages/icebridge/)195

conducts airborne surveys on polar ice in the Arctic and Antarctic. On these flights, a196

Snow Radar and the Airborne Topographic Mapper (ATM) onboard the aircraft mon-197

itors snow and ice thickness (Kurtz et al., 2013) of ice sheets, ice shelves and sea ice to198

bridge the gap between ICESat and ICESat-2 since 2009.199

We use IceBridge sea ice thickness data from 2011 to 2013 obtained from IceBridge200

L4 Sea Ice Freeboard, Snow Depth, and Thickness (IDCSI4) data set, Version 1 (Kurtz201
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et al., 2015, http://nsidc.org/data/idcsi4). An experimental Quicklook product of202

IceBridge thickness from 2012 to 2016 are not used because of the potentially larger un-203

certainties. The sea ice thickness data and their uncertainties in IDCSI4 are estimated204

over a 40 m length scale. The IceBridge campaigns for the Arctic conducted during March205

and April provide valuable estimates of approximate maximum ice thickness of the year.206

3 The Model Sea Ice Thickness Estimates207

3.1 The Arctic Regional Sea Ice-Ocean Model208

We use a regional, pan-Arctic sea ice-ocean model (Losch et al., 2010; Nguyen et209

al., 2011; Yang et al., 2014; Mu et al., 2017) based on the Massachusetts Institute of Tech-210

nology general circulation model (MITgcm, Marshall et al., 1997). The sea ice dynam-211

ics use a viscous plastics rheology (Hibler III, 1979; Zhang & Hibler, 1997). The sea ice212

thermodynamics use a one-layer, zero heat capacity formulation (Semtner Jr, 1976; Parkin-213

son & Washington, 1979). The sea ice package in the MITgcm also provides an ice thick-214

ness distribution (ITD) model (Ungermann et al., 2017). We do not use the ITD model215

because the redistribution of the ice thickness in different categories under sea ice thick-216

ness assimilation is not straightforward. Snow thickness is a prognostic variable follow-217

ing Zhang et al. (1998). The model sea ice thickness estimates are grid-cell averaged ice218

thickness. This quantity is also called effective ice thickness (Schweiger et al., 2011). Both219

the ocean and sea ice model are discretized on an Arakawa C grid with a grid spacing220

of 18 km. In the vertical direction, there are 50 unevenly spaced layers in the ocean model221

to resolve the halocline in the Arctic Ocean. The bathymetry is derived from the Na-222

tional Centers for Environmental Information (formerly the National Geophysical Data223

Center (NGDC)) 2-minute gridded elevations/bathymetry for the world (ETOPO2, Smith224

& Sandwell, 1997). A global model (Menemenlis et al., 2008) provides monthly oceanic225

boundary conditions for the regional model. Model parameters for sea ice and ocean were226

optimized by Nguyen et al. (2011) using a Green function method and further tuned in227

this study. The albedos for sea ice are set to 0.75 and 0.56 for dry or wet conditions, and228

those for snow are set to 0.84 and 0.70. Additional important parameters are the lead229

closing parameter Ho = 0.6074 and the sea ice strength parameter P ∗ = 2.264×104 Nm−2.230

The ocean model uses free-slip lateral boundary conditions, while for the sea ice model231

no-slip lateral conditions are applied. For more details of the model configuration the232

reader is referred to Losch et al. (2010) and Nguyen et al. (2011).233
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3.2 Atmospheric Forcing234

Following Yang et al. (2015a) and Mu et al. (2018), the atmospheric ensemble fore-235

casts of the United Kingdom Met Office (UKMO) Ensemble Prediction System (EPS)236

(Bowler et al., 2008) available in the TIGGE archive (http://tigge.ecmwf.int) are237

used to drive the ice-ocean model. There are 23 ensemble members during 1 January 2010238

to 15 July 2014, and 11 ensemble members during 6 November 2014 to 31 December 2016,239

because the ensemble of UKMO EPS changed from MOGREPS-15 version 14 (UM ver-240

sion 8.3) to MOGREPS-G version 15 (UM version 8.5) with a reduced number of ensem-241

ble members but with higher horizontal resolution (from N216 to N400). Unfortunately,242

there is no UKMO EPS ensemble during this transition from 16 July 2014 to 5 Novem-243

ber 2014. The UKMO EPS uses an Ensemble Transform Kalman Filter (ETKF) and the244

scheme of Shutts (2005) to take into account the initial uncertainties and the effect of245

model uncertainties (Bowler et al., 2008). The ensemble forecasts have been shown to246

effectively represent the atmospheric uncertainties of the forecasting system (Yang et al.,247

2015a; Mu et al., 2018).248

The following 6-hourly variables in each forecast were used to generate the fields249

to force the ice-ocean model: 2 m dew point temperature, 2 m temperature, 10 m surface250

winds, surface pressure, total cloud cover and total precipitation. There is no precipi-251

tation output at 0000 UTC, and an additional redistribution of the accumulated precip-252

itation is needed to obtain the 6-hourly mean precipitation required by the model. Other253

necessary fields, which are not available in the TIGGE archive, are computed by formu-254

las using existing data. The specific humidity is calculated from dew point temperature255

and surface pressure following Hess (1959). The downward shortwave radiation is cal-256

culated from dew point temperature, cloud and astronomical parameters according to257

Parkinson & Washington (1979). The downward longwave radiation is calculated based258

on 2 m temperature and cloud clover (Parkinson & Washington, 1979).259

3.3 Satellite Data Assimilation260

The Parallel Data Assimilation Framework (PDAF, Nerger & Hiller, 2013, http://261

pdaf.awi.de) is used for assimilating thickness and concentration data. For the sea ice262

thickness, the daily SMOS ice thickness data thinner than 1.0 m and the weekly mean263
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CryoSat-2 ice thickness data are assimilated simultaneously into the model as described264

in Mu et al. (2018).265

The sea ice concentration data for data assimilation were processed at IFREMER266

and are provided by ICDC (http://icdc.cen.uni-hamburg.de/). The ARTIST Sea267

Ice (ASI) algorithm is applied to brightness temperatures measured with the 85 GHz SSM/I268

and/or SSM/IS channels (Kaleschke et al., 2001; Spreen et al., 2008). The 85 GHz chan-269

nel is subject to the weather conditions. To reduce this influence, a 5-day median filter270

is applied to the data before publishing (Kern et al., 2010). The spatial resolution of the271

sea ice concentration data is 12.5 km × 12.5 km in a polar stereographic projection. Fol-272

lowing Yang et al. (2016a, 2016b), a uniform constant value of 0.25 fractional sea ice area273

is assumed as observational uncertainties accounting for measurement and representa-274

tion errors (Janjić et al., 2017) in the study.275

A model ensemble (section 3.1) is driven by the atmospheric ensemble data sets276

derived from the UKMO ensemble forecasts to generate perturbed model states every277

day. The uncertainties in the model caused by parameters and imperfect physical pro-278

cesses are not considered explicitly (Shlyaeva et al., 2016). A variant of the ensemble Kalman279

filter, the local version of Error Subspace Transform Kalman Filter (LESTKF), is ap-280

plied in the study. The LESTKF provides consistent projections between the ensemble281

space and the error subspace (Nerger et al., 2012), and outperforms the Local Singular282

Evolutive Interpolated Kalman filter (LSEIK) that was used in Mu et al. (2018). The283

sea ice concentration and the sea ice thickness form the state vector. In each analysis284

step, the LESTKF corrects the forecast state vector of each model in the ensemble tak-285

ing into account the model uncertainties, which are calculated from the ensemble of model286

states, and the uncertainties of sea ice concentration and thickness. During this process,287

only satellite observations within a radius of 126 km around each model grid point are288

considered. This localization radius has been found optimal in Yang et al. (2014) and289

was also used in Mu et al. (2018). For the analysis step, the observations are weighted290

with distance from the grid point by a quasi-Gaussian weight function (Gaspari & Cohn,291

1999). After the analysis step, the ensemble mean sea ice thickness can be thought of292

as combined dynamic model and satellite thickness (CMST) estimates. The reader is re-293

ferred to Mu et al. (2018) for more details of the data assimilation procedure.294
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During the period without UKMO ensemble forcing data, the model is forced by295

the UKMO unperturbed forcing. Ensemble inflation, which is not necessary with the en-296

semble forcing, is achieved in the LESTKF with a forgetting factor of 0.97 (Yang et al.,297

2015a).298

4 Results299

We use the root-mean-square deviation (RMSD), the bias and the correlation co-300

efficient as the evaluation metrics for comparing ice thickness data. The RMSD between301

two vectors X and Y is calculated as RMSD =
√
E[(X − Y )2], the bias (B) is calcu-302

lated as B = E[X−Y ], and the correlation coefficient (C) of two vectors is calculated303

as C = E[(X − EX)(Y − EY )]/(σxσy), where E is the expectation operator, σx and304

σy are the standard deviations of the vectors X and Y , respectively. The centered RMSD305

used for Taylor diagrams is CRMSD =
√
E[((X − EX)− (Y − EY ))2]. The standard306

deviations and the CRMSDs are then normalized by dividing with the standard devi-307

ations of the references, so that (CRMSD/σref)
2 = (σ/σref)

2 +1−2 Cσ/σref is always308

satisfied in the Taylor diagrams and all statistics for different references can be shown309

in the same plot. All statistics are calculated over the overlapped temporal and spatial310

coverage for different datasets.311

Sea ice thickness estimates of each product in section 2 are restricted to the CryoSat-312

2 years 2010 to 2016 for all comparisons. For the comparisons with BGEP ice thickness,313

SMOS, CryoSat-2, CS2SMOS, PIOMAS, and CMST data are interpolated onto the lo-314

cations of the three BGEP moorings. For the comparisons with IMB buoy thickness, the315

above datasets are interpolated onto the daily IMB buoy trajectories. IceBridge thick-316

ness and uncertainties are binned and averaged within each grid cell of our model be-317

fore comparing.318

4.1 Spatial Distribution of Ice Thickness319

Arctic sea ice volume usually reaches its maximum in April in PIOMAS. Evalu-320

ating the spatial distributions of sea ice thickness during this maximum gives valuable321

insights into the resolved spatial variability of any sea ice product. The SMOS data, how-322

ever, and consequently the CS2SMOS product do not cover the entire April, so that we323

use March sea ice thickness in each dataset for comparison instead.324
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Figure 1. Comparison of sea ice thickness in March averaged from 2011 to 2016 between

CMST, CS2SMOS, and PIOMAS. (a) CMST sea ice thickness (m) and (b) difference (m) be-

tween CMST and CS2SMOS, and (c) difference (m) between CMST and PIOMAS.

325

326

327

The March CMST averaged over the years 2011 to 2016 has a thickness below 1.5 m328

along the northern coast of the American Continent and over the Barents Sea, the Kara329

Sea, the Laptev Sea and the Baffin Bay (Figure 1a). The central Arctic is covered by330

thicker ice around 2.0 m with multi-year thick ice above 3.0 m north of the CAA. The331

RMSD of mean March sea ice thickness between CMST and CS2SMOS is 0.16 m (Fig-332

ure 1b). CMST estimates thicker ice (deviations above 0.25 m) in the shallow Siberian333

Seas, north of the CAA and east of Greenland where the uncertainties of CS2SMOS are334

large (Ricker et al., 2017, their Figure 9). The detailed comparisons to in-situ observa-335

tions of sea ice thickness north of the CAA and east of Greenland will be shown in sec-336

tion 4.2.3.337

March CMST is generally thinner than PIOMAS thicknesses except along the east-338

coast of Greenland, north of Ellesmere Island, and parts of the transpolar drift close to339

Fram Strait (Figure 1c). Differences reach easily 0.5 m in the marginal ice area and in340

the shelf seas. The RMSD between CMST and PIOMAS is 0.41 m. Compared to ICE-341

Sat ice thickness and in-situ ice thickness measurements, PIOMAS tends to overestimate342

the thin ice and underestimate the thick ice (Schweiger et al., 2011). Our results sug-343

gest that our data assimilated model corrects some of these biases present in PIOMAS.344

The sea ice thickness frequency distributions of the CMST, CS2SMOS, and PIOMAS348

(Figure 2) support this impression. The thickness frequency distributions of CMST and349

CS2SMOS are very similar except for the thinnest category and the 1.0 - 1.5 m bin. Con-350

sequently the mean thickness of ice north of 65◦N is almost exactly the same with 1.74 m351
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(and equivalently volume of 13.7 × 103 km3) for CMST and CS2SMOS. The similarity352

of these two estimates is not very surprising, because they both use the same SMOS and353

CryoSat-2 data. In PIOMAS, the mean thickness is 1.97 m and the ice volume is 15.48×354

103 km3. The larger mean thickness is consistent with Figure 1c and also apparent in the355

ice thickness frequency distribution with more ice in thicker categories and less ice in thin-356

ner categories (Figure 2).

Figure 2. Histograms of sea ice thickness frequency distributions in March averaged from

2011 to 2016 for CMST (black), CS2SMOS (orange) and PIOMAS (red). The statistics are

calculated over the overlapping area of the three datasets.

345

346

347

357

Climate models tend to underestimate extreme events (Flato et al., 2013), so that361

simulating the record minimum of Arctic sea ice extent in September 2012 represents a362

powerful benchmark test for any sea ice ocean model. The sea ice thickness fields in Septem-363

ber 2012 (Figure 3) of CMST and PIOMAS have similar patterns, but for CMST the364

ice is generally thicker in the central Arctic and along the north coasts of Greenland and365

the CAA. Some of these systematic differences, for example in the central Arctic, can366

already be found in March (not shown, but Figure 1c shows the six-year average). The367

mean thickness, taking into account only ice thicker than 0.05 m, is 1.28 m for CMST and368

0.77 m for PIOMAS. The gradients of sea ice thickness in the marginal ice area (Figure 3)369

are larger in CMST than in PIOMAS, that is, the thicker ice extends further into the370
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Figure 3. Sea ice thickness (m) in September 2012 for (a) CMST and (b) PIOMAS. Note

that the black contoured line indicates sea ice concentration of 15% retrieved from AMSR-E

using the Bootstrap algorithm by University of Bremen.

358

359

360

marginal ice zone. PIOMAS has a lower ice extent than the observations (Figure 3), al-371

though sea ice concentration data are also used to constrain the model. There are no in-372

dependent thickness observations to decide which of these two thickness fields are more373

realistic, but the similar differences between ICESat and PIOMAS from October to Novem-374

ber in the period 2003 to 2007 (Schweiger et al., 2011, their Figure 6) suggest that there375

is not enough ice in the PIOMAS solution. It is plausible that the thicker ice in March376

in CMST (Figure 1a), which is mainly due to the assimilation of CryoSat-2 data, pre-377

conditions the system to lead to thicker and hence more realistic ice in September.378

4.2 Comparison with In-situ Observations379

4.2.1 Comparison to BGEP ULS Data380

The annual cycle and the inter-annual variability of ice thickness are reproduced381

both in CMST and PIOMAS at all three mooring locations BGEP A, BGEP B and BGEP D382

(Figure 4). As PIOMAS, the CMST estimate also reproduces the rapid decline of ice thick-383

ness during melt seasons, when no satellite thickness data are available. All data that384

went into CS2SMOS are also assimilated into CMST, so it is not surprising that CMST385

is closer to CS2SMOS than PIOMAS. When the satellite data do not agree with the in-386

situ ULS-data (e.g., in winter of 2012/2013 at BGEP A, BGEP B, and BGEP D or in387
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winter of 2013/2014 at BGEP A), the CMST does neither and the PIOMAS thickness388

is closer to the in-situ data. At other times (e.g., most of the record in the freezing sea-389

son) the satellite thickness corrects CMST and leads to a better fit to the in-situ data390

than those of PIOMAS thickness estimates. PIOMAS tends to have a positive bias rel-391

ative to satellite thickness during ice growing periods. This is consistent with the find-392

ing that the initial growth rates in numerical models are generally too large compared393

to observations possibly because they are too sensitive to the demarcation thickness pa-394

rameter H0 (Johnson et al., 2012). The assimilation of ice thickness reduces the lower395

ice growth rate in CMST estimates. However, the satellite thickness assimilated in late396

April (e.g., in 2015 and 2016 at BGEP B) also introduces biases, which leads the model397

to be not able to reach its annual thickness maximum.398

CMST captures the high fluctuation of sea ice thickness at BGEP A in 2014 (specif-411

ically the period marked in green in Figure 4) although with higher values compared to412

observations, while at BGEP D, CMST reproduces too thick ice. This different behav-413

ior is because sea ice concentration and thickness are not correlated very well in nature414

over the melting hiatus periods. The assimilation will occasionally generate abnormal415

values of thickness in the marginal ice zones due to abrupt ice concentration increase trig-416

gered by wind convergence. In the absence of thickness data, ice thickness is still cor-417

rected by ice concentration data by means of the error-covariance between thickness and418

concentration. This covariance is approximated in LESTKF so that the CMST thick-419

ness during summer cannot be as reliable as in winter and biases can also develop. When420

thickness data become available again, these biases are quickly corrected. This is very421

obvious in the thickness time series in October, 2013 at BGEP D. In 2014, ensemble forc-422

ing was not available from June to October. Interestingly, large summer biases develop423

that are probably caused by the suboptimal “ersatz” procedure of applying a forgetting424

factor (Yang et al., 2015a).425

The fit of CMST, PIOMAS, and CS2SMOS to the BGEP ULS-data is summarized426

in Figure 5. At all three locations (BGEP A, BGEP B, BGEP D), PIOMAS thickness427

correlates slightly better with the in-situ observations than CMST and CS2SMOS (Fig-428

ures 5a and 5b). CMST correlates better with observations than CS2SMOS (Figure 5b).429

No product can reproduce the daily variability of the observed thickness shown in Fig-430

ure 4, but the standard deviations of the PIOMAS estimates are closer to the observa-431

tions (1.0 m) at all three locations.432
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Figure 4. Time series of sea ice thickness (m) for BGEP ULS data (blue), SMOS (magenta),

CS2SMOS (orange dot), PIOMAS (red), CryoSat-2 (green square), and CMST (black) at BGEP

moorings BGEP A, BGEP B and BGEP D. The short period without ensemble forcing for

CMST is marked in green on the time axis. Locations of ULS moorings BGEP A (75◦N, 150◦W),

BGEP B (78◦N, 150◦W) and BGEP D (74◦N, 140◦W) are represented by dot (•), square (�)

and triangle (N), respectively.
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Figure 5. Normalized Taylor diagram (a, b) and RMSD versus bias (c, d) for CMST (+),

PIOMAS (◦) and CS2SMOS (×) with respect to BGEP observations at BGEP A (red), BGEP B

(magenta) and BGEP D (black). (a, c) are computed over the period when BGEP ULS-data

are avaiable and (b, d) are computed for the CS2SMOS period (i.e. without melting season).

In Taylor diagrams the normalized standard deviation is on the radial axis and the correlation

coefficient is on the angular axis. The observations are indicated by red dots.
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The CMST biases relative to the ULS-data are smaller than for PIOMAS (Figures 5c433

and 5d). The positive biases of PIOMAS suggest that PIOMAS overestimates the thick-434

ness especially in the freezing season. The RMSD of PIOMAS thickness is a little smaller435

than for CMST at BGEP D, when the summer season is included (Figure 5c), but much436

larger at BGEP B (Figures 5c, 5d, and 4b). The biases of CMST and CS2SMOS are sim-437

ilar, but note that here CMST has a lower RMSD than CS2SMOS. Comparison between438

Figures 5c and 5d also suggests that larger deviations with respect to observations for439

CMST are mostly in the melting season, which can also be found directly in Figure 4.440

4.2.2 Comparison to IMB Buoy Data441

Lagrangian buoy data are very useful for studying local growth and melt processes442

together with 1-D column models of ice thermodynamics (e.g., Cheng et al., 2014). It443

is less straightforward to compare the grid averaged results of a Eulerian ice-ocean model444

to Lagrangian point observations. This is particularly true for sea ice thickness that is445

always subject to large scale dynamic deformation processes and/or local ridging. That446

the complex mixture of leads, first-year ice and multi-year ice often occur over distances447

of only tens of meters makes the situation even worse (Perovich & Richtermenge, 2006).448

Therefore we do not expect a very good agreement between gridded sea ice thickness vari-449

ability and IMB buoys data along each trajectory.450

Still, IMB buoy data provide information about temporal and spatial variability451

of sea ice thickness that can be used to evaluate model results given the appropriate met-452

ric. For our comparisons, we selected 32 IMB buoys with sufficiently long observation453

records during the period from October 2010 to December 2016. To improve the agree-454

ment between IMB buoy data and gridded products, the thickness biases can be adjusted455

in the buoy data to focus on the subsequent thickness evolutions (Lei et al., 2014). The456

underlying assumption is that the ice surface and oceanic heat flux are the same for the457

IMB buoy data and the gridded (model) data. This assumption works best when ther-458

modynamic processes dominate and snow does not confound the heat balance. During459

initial inspection, we also found systematic differences between IMB buoy data, CMST460

and PIOMAS along the buoy trajectories. Figure 6 shows four selected cases that illus-461

trate the systematic biases. These differences can be reduced by removing the mean thick-462

ness of each data set (not shown, but Figures 6a and d are obvious examples). There-463

fore, we compute the CRMSD, which removes the mean of time series, and the standard464
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deviations of the time series, which measure the variability of sea ice thickness, as eval-465

uation metrics. The metrics are summarized in Taylor diagrams (Figure 7).466

In general, CMST standard deviations are closer to observations than PIOMAS stan-472

dard deviations; the CRMSDs are also smaller for CMST, but PIOMAS correlates bet-473

ter with IMB buoy data (Figures 7a and 7c). The mean normalized standard deviation474

of CMST is 1.63, while that of PIOMAS is 2.00; the mean normalized CRMSD for CMST475

is 3.37 and that for PIOMAS is 3.63. The correlations for CMST and PIOMAS are 0.66476

and 0.76, respectively. Some of these statistical differences between CMST and PIOMAS477

are expected, because the sea ice thickness assimilation adds information that should im-478

prove realism of the model on average, but at the same time can also introduce abrupt479

jumps when new data become available. Assimilating data that are not consistent with480

the model can hence lead to lower correlations. The better standard deviations of CMST481

suggest that CMST reproduces the thickness variability of IMB buoy data better than482

PIOMAS on longer time scales.483

We now discuss four representative time series (Figure 6). Along the trajectories488

of buoys 2011J (Figure 6a, 8 months, August 2011 to May 2012) and 2013G (Figure 6d,489

7 months, September 2013 to May 2014), CMST is mostly constrained by CryoSat-2 thick-490

ness data and hence close to CS2SMOS, but the IMB buoy data, as in many other cases491

not shown, implies much thicker ice. In these cases, we assume that the IMB buoy lo-492

cation on the floe does not necessarily represent a large spatial average and the mean493

cannot be compared to the gridded model data. Instead the buoy provides useful infor-494

mation on sea ice thickness evolution. The CRMSD of CMST with respect to 2011J is495

0.13 m, while that of PIOMAS is 0.36 m. The PIOMAS thickness is larger than the es-496

timates by CMST and satellite data and overestimates the trend in the buoy data. At497

buoy 2013G, CMST, PIOMAS and CS2SMOS are very similar. Still, the CRMSD of CMST498

with respect to 2013G is 0.11 m and that of PIOMAS is 0.25 m implying a slightly bet-499

ter thickness variability in CMST.500

In some cases, the data assimilation rejects satellite thickness data that are incon-501

sistent with the model dynamics. At buoy 2011K (Figure 6b, 7 months, August 2011 to502

April 2012), this happens between February 1st 2012 and April 1st 2012, when CrySat-503

2 thickness data tends to be too large. As a consequence, the CMST thickness, some-504

what fortuitously, agrees better with the IMB buoy data than CS2SMOS and PIOMAS,505
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Figure 6. Sea ice thickness (m) time series: IMB buoy data (blue), SMOS (magenta),

CryoSat-2 (green squares), CS2SMOS (orange dots), CMST (black), and PIOMAS (red) on

each IMB buoys trajectory shown in the top left corner. The deployment location of the IMB is

indicated by a red dot on the trajectory. The statistics for IMB buoy data, CMST, and PIOMAS

are also shown in each plot. The date format is mm/dd/yyyy.
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Figure 7. Taylor diagrams of (a) CMST and (c) PIOMAS with respect to all available IMB

buoy data from October 2010 to December 2016. The green dotted lines indicate the normalized

CRMSD. The trajectories of all the IMB buoys are shown in (b). The reference observations are

indicated by “obs” in red.
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both of which also overestimate the thickness. In contrast, ice thickness in CMST is first506

too low and then becomes too large in September 2011, which we attribute to the as-507

similation of ice concentration with inaccurate covariances between thickness and con-508

centration. Buoy 2013F (Figure 6c, 22 months, August 2013 to June 2015) recorded thick-509

ness for nearly two years. Both CMST and PIOMAS show plausible seasonal thickness510

variability, but PIOMAS tends to overestimate thickness after the summer of 2014 and511

the CMST thickness drops sharply in spring 2015 probably due to the impact of assim-512

ilating SMOS thickness data which also drops very quickly. The CRMSDs of CMST and513

PIOMAS are similar with values of 0.27 m and 0.24 m.514

Another example of a strong jump in thickness in CMST can be found in 2011J515

in mid-October (Figure 6a). Here, the jump is associated with the availability of thick-516

ness data. During summer, the model without thickness assimilation (because there are517

no data available in summer) develops a bias and is inconsistent with the thickness data518

in October. Data assimilation quickly corrects this bias leading to the observed jump519

in the time series. This phenomenon can only be avoided by a data assimilation scheme520

that also takes into account future observations, for example a Kalman smoother (Evensen521

& Van Leeuwen, 2000), or full 4D-VAR state estimation as in ECCO (Forget et al., 2015).522

4.2.3 Comparison to Operation IceBridge Data523

The Operation IceBridge campaigns that are always conducted in March and April524

allow a meaningful comparison also to CS2SMOS. 31 airborne campaigns in 2011, 2012,525

and 2013 are selected for the comparison. Individual campaigns are short (order of hours),526

so that the variability along flight tracks represents spatial, but not temporal variabil-527

ity. In order to gain insight into spatial variations of different thickness products, the528

sections (e.g., Figure 8) are defined along the IceBridge trajectories without further tak-529

ing into account the real flight routes in this study.530

The general performance of the CMST, PIOMAS, CS2SMOS thickness datasets544

with respect to IceBridge thickness is summarized in Taylor plots (Figure 9). Accord-545

ing to these metrics no dataset stands out clearly. CMST has the best average normal-546

ized standard deviation with 0.52 compared to PIOMAS (0.41) and CS2SMOS (0.48),547

but in all datasets the variability is smaller than in the observations. The mean normal-548

ized CRMSDs of 1.13 (CMST), 1.12 (PIOMAS), and 1.17 (CS2SMOA) are very simi-549
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Figure 8. Sea ice thickness along Operation IceBridge trajectories. The trajectory of each

campaign is shown on the map to the left of each plot, and colors indicate the distance from the

starting point. The sea ice thickness of IceBridge (blue), SMOS (magenta), CryoSat-2 (green

square), CS2SMOS (orange dot), PIOMAS (red) and CMST (black) in the right hand side plots

are plotted against track distance. The shaded areas represent the uncertainties of IceBridge

thickness as provided in the dataset. The statistics of IceBridge, PIOMAS, CMST and CS2SMOS

sea ice thickness along the trajectories are also shown in each plot. Note that these statistics are

computed over the overlapping periods of the four datasets.
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Figure 9. Taylor diagrams of (a) CMST, (b) PIOMAS and (c) CS2SMOS with respect to

all IceBridge operations available in 2011, 2012 and 2013. The trajectories of all operations are

shown in (d). The green dotted lines indicate the normalized CRMSD. The reference observa-

tions are represented by “obs” in red. Note that the Taylor diagram of CS2SMOS is calculated

over area where CS2SMOS thickness is available.
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lar, with CMST and PIOMAS outperforming CS2SMOS slightly. In contrast to com-550

parisons with BGEP ULS and IMB buoy data, where PIOMAS correlated best with ob-551

servations, the CMST estimates have the best mean correlation of 0.40 with IceBridge552

measurements; the correlation coefficient is 0.35 for PIOMAS and 0.32 for CS2SMOS.553

In summary, the CMST agrees slightly better with the IceBridge thickness data than PI-554

OMAS and CS2SMOS.555

Of the 31 IceBridge campaigns in the study period, we discuss six representative556

examples (one in 2011, three in 2012, and two in 2013) in greater detail (Figure 8). Some557

of these selected sections (20110328, 20120314 and 20130424, Figures 8a, 8b and 8f)558

are repeat sections and others are focused on specific areas (20120322, 20120410 and 20130322,559

Figures 8c, 8d and 8e). Together, the selected sections illustrate all aspects of the per-560

formances of the different products.561

Section 20130424 (Figure 8f) and the first 1000 km of 20120314 (Figure 8b) serve562

as examples of good agreement of CMST, PIOMAS, and CS2SMOS with IceBridge thick-563

ness estimates with maximum deviations of 0.25 m. Based on satellite data, CMST and564

CS2SMOS reproduce the transition from multi-year ice to first-year ice accurately along565

section 20120314 (Figure 8b). The same is true for the repeated section 20130321 one566

year later (not shown). In contrast, PIOMAS tends to overestimate the sea ice thick-567

ness in the thin ice area north of Alaska. In the following year, a similar PIOMAS bias568

is also found for section 20130322 in the Beaufort Sea (Figure 8e) (see also Schweiger et569

al., 2011; Johnson et al., 2012; Wang et al., 2016).570

Some of the extreme thicknesses in the Nares Strait (Figure 8a), the Lincoln Sea571

(Figure 8f), and north of the CAA (Figure 8c) are not accurately represented in neither572

CMST, PIOMAS, or CS2SMOS. In these multi-year ice regions, the ice is heavily de-573

formed and ridged, so that satellite observations are difficult: thin ice < 1 m, formed in574

leads opened by strong wind events, can be observed with SMOS and heavily ridged, thick575

multi-year ice with CryoSat-2 (Haas et al., 2006), so that conflicting thickness estimates576

in close proximity are possible. In combination, these data can lead to lower thicknesses577

as in CS2SMOS, or to some extent in CMST. In the Nares Strait (beginning of section578

20110328 in Figure 8a), CMST clearly follows the SMOS thickness data, which is thin-579

ner by 3 m and more than the IceBridge estimate, because there is no CryoSat-2 data580

available to measure thick ice. Further, the resolution of the model (18 km) is not suf-581
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ficient to resolve narrow straits accurately (we use 2 to 3 grid points across the Nares582

Strait), so that the model likely has a bias in this area anyway.583

Guided by CryoSat-2 data, the thickness along the east coast of Greenland is best584

represented in CMST (Figure 8d). Both PIOMAS and CS2SMOS (probably due to the585

influence of SMOS data) strongly underestimate the thickness in this dynamical outflow586

region. The CMST is also too thin most of the time, but captures some of the variabil-587

ity and extreme thicknesses along the track. The PIOMAS thickness (like the SMOS thick-588

ness) is flat along this section and very thin.589

5 Discussions590

As shown above, our model ice thickness estimates are comparable to PIOMAS and591

fill the summer gaps of CS2SMOS. At the BGEP mooring, our CMST estimates agree592

better with CS2SMOS than the PIOMAS thickness, because the same thickness data was593

used in both estimates. Both ULS-data derived thickness and satellite derived thickness594

contain errors, but the satellite thickness assimilation further improves the model mean595

estimates at the cost of reduced variability and correlations. The better standard devi-596

ations and CRMSDs with respect to the IMB trajectories indicate that the CMST thick-597

ness agrees better with IMB data than the other datasets. All datasets can reproduce598

many aspects of the IceBridge thickness tracks, but none of the datasets represents ridged599

ice accurately. PIOMAS tends to overestimate the thickness in thin ice regions and ap-600

pears to underestimate the spatial variability. In some places, where CS2SMOS does not601

compare well with IceBridge data because of conflicts between SMOS and CryoSat-2 data,602

the additional physics of the numerical model in CMST appears to reconcile these con-603

flicts. The added value of thickness assimilation gives CMST an advantage over the model604

solution PIOMAS.605

The model we used is forced by atmospheric ensemble forcing by which the uncer-606

tainties of air-sea or air-ice flux exchanges are explicitly estimated by the ocean ensem-607

ble. During the data assimilation, the ensemble spread will persist without the require-608

ment of further applying the artificial inflation. Uncertainties of the CMST estimates609

can also be generated from the ensemble spread as a by-product.610

The main limitation of the CMST estimates is that it relies heavily on the qual-611

ity of satellite data products and the parameterizations of physical processes in the model.612
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The retrieval of CryoSat-2 thickness is based on the hydrostatic equilibrium assumption.613

Whether this is still appropriate in the ridged ice area along northern coast of CAA or614

in the fast ice area such as the Siberian Seas is still not clear. The validation of the snow615

thickness climatology used for CryoSat-2 thickness retrieval in recent years also needs616

further investigation. Satellite thickness data conflicts would lead to larger uncertain-617

ties in our final product. Examples of these conflicts can be found along the northern618

coast of Greenland where open water forms, east of Greenland where there are ice floes619

and in the Baffin Bay where snow climatology is not applicable for thickness retrieval.620

In addition, the assimilation of sea ice concentration in the early freezing period621

in late summer will occasionally lead to unrealistically thick ice in marginal ice zones in622

the CMST estimates. This cannot be circumvented in the current implementation. A623

possible remedy may be applying a threshold to the thickness correction, but exploring624

the details of such an algorithm requires a dedicated investigation beyond the scope of625

our work.626

In the Siberian Seas, the satellite thickness assimilation improves the ice thickness627

estimates of CMST over those of PIOMAS. Simulating the Siberian Seas with sea ice628

models without data assimilation requires the parameterization of land fast ice processes629

or modifications on ice ridging dynamics. In an evaluation of ice thickness by six mod-630

els including the MITgcm in a very similar configuration, the models generally tend to631

overestimate the thickness in the regions of flat immobile landfast ice especially in the632

Siberian Seas (Johnson et al., 2012). These systematic errors are expected to persist be-633

cause landfast ice is neither parameterized nor resolved in the model(s) (Lemieux et al.,634

2016). The CMST estimate appears to reject the satellite thickness in the Siberian Seas635

because of the large data uncertainties, but the model dynamics produce too thick sea636

ice. This bias may be alleviated by tuning or improving the ice strength and ridging pa-637

rameterization. In our setup, ridging is parameterized by restricting sea ice fractional638

area to values ≤ 1 (Schulkes, 1995). Model parameters such as albedo, compressive strength,639

demarcation thickness H0 for lead closing, etc. will also play a big part in simulating thick-640

ness variations and spatial distributions, particularly when satellite thickness is unavail-641

able in melt seasons. These parameters are currently not well constraint. Therefore, un-642

certainties of the CMST estimates also result from potentially incomplete parameteri-643

zations of physical processes in the model. The effects of parameter choices are ignored644

in this study.645
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The comparison of model and data products also provides some insight into the646

uncertainties in different ice thickness measurements. The deviations between the satel-647

lite thickness and ULS in late April (Figure 4) imply that more cross validations are nec-648

essary to improve thickness retrievals. Comparing IMBs (or Lagragian data in general)649

to large-scale models is delicate and requires a careful evaluation of the data on Eule-650

rian grids. Still, a distributed network of IMBs may provide an opportunity to assess the651

performances of different data products. The near-future Multidisciplinary drifting Ob-652

servatory for the Study of Arctic Climate (MOSAiC; http://www.mosaicobservatory653

.org/) is expected to conduct such observations. Uncertainties of IceBridge thickness654

stem from uncertainties in snow detection and spatially and temporally varying ice and655

snow densities (Kurtz et al., 2013). The IceBridge footprint is only 40 m. In this way thick-656

ness data statistics are biased in the along track direction and cannot take into account657

the cross track variability. In contrast, the smallest model element is a grid cell with cell658

width ˜18 km.659

6 Conclusions660

Daily entire Arctic sea ice thickness estimates are obtained from combining remotely661

sensed sea thickness and concentration data with a sea ice-ocean model. These thick-662

ness estimates are available at all times for the entire CryoSat2-period 2010–2016 clos-663

ing the satellite thickness observation gap in summer with the help of model dynamics664

and concentration data assimilation. The additional thickness data in combination with665

a sophisticated data assimilation scheme helps to reduce biases that are still present in666

current sea ice thickness products. The generated CMST estimates that take advantage667

of satellite thickness observations and physics of the sea ice-ocean model can be viewed668

as an optimal compromise between CS2SMOS and PIOMAS insofar as it combines the669

strengths of both products (thickness observations and model dynamics).670

Our main findings are that the CMST is relatively close to the CS2SMOS data, which671

is not surprising as both use the same thickness data. The thickness data help to reduce672

some biases present in other models, but in general the comparison with in-situ thick-673

ness data turns out to be similar to that of PIOMAS thickness to in-situ data. Because674

we use a model, the thickness estimates can be extended into the summer season, where675

adequate initial conditions together with appropriate surface forcing help to simulate re-676

alistic summer sea ice thicknesses.677
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The new Arctic sea ice thickness estimate CMST provides an opportunity to study678

the ice volume changes in recent years. The difference maps between CMST and PIOMAS679

suggest areas where more in-situ sea ice thickness measurements would help reconcile680

the models with data. Moreover, we expect that this dataset will serve as a good refer-681

ence for parameterizations for sea ice models.682
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