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Abstract Southern Ocean (SO) nutrient export via mode and intermediate waters is known to affect
global biological production. The accompanying effects on the CO2 flux outside the SO are less certain. We
performed idealized model simulations to separate the transient effects of SO carbon pumps on nutrients,
primary production, and CO2 flux outside the SO. The SO biological carbon pump leads to dissolved
inorganic carbon and nutrient reduction at the surface and in the exported water masses, and to a dissolved
inorganic carbon increase at depth through the sinking of organic matter. When primary production is
suppressed in the SO, only 30% of SO export, 43% of SO net primary production, and 50% of biologically
driven SO CO2 flux are compensated outside the SO on a 200-year time scale. In contrast, when the
abiotically driven CO2 flux is suppressed, 90% of CO2 outgassing in the SO is compensated by air-sea
CO2 exchange outside the SO. The longer sequestration time scale of the biological carbon pump can
be explained by incomplete compensation of primary production. This is a result of almost complete
compensation of diatom productivity and no compensation of nanophytoplankton productivity due
to feedbacks in phytoplankton community composition. The longer sequestration time scale is further
sustained by the sinking and remineralization of particles in the deep ocean that are not in contact with
the atmosphere over the 200-year time scale considered. As SO biologically driven CO2 flux is only partly
compensated outside the SO, potential future changes in SO productivity may have an important impact on
the global carbon cycle.

1. Introduction

The Southern Ocean (SO) south of 40∘S covers 21% of the ocean surface area, but it is responsible for 40% of
anthropogenic carbon (Cant) uptake by the global ocean (Khatiwala et al., 2009). The Cant uptake occurs mostly
south of 40∘S, where upwelling brings deep water, uncontaminated with Cant , to the surface (Frölicher et al.,
2015; Mikaloff Fletcher et al., 2006; Morrison et al., 2015). In contrast, the peak in the Cant inventory reaches as
far north as 20∘S (Frölicher et al., 2015; Ito et al., 2010; Khatiwala et al., 2009). Northward Ekman transport of
surface water, partially offset by eddies (Ito et al., 2010), carries the Cant away from the uptake region (Frölicher
et al., 2015; Mikaloff Fletcher et al., 2006). Formation and subduction of Subantarctic Mode Water (SAMW)
and Antarctic Intermediate Water (AAIW; Sallée et al., 2012) transport Cant into the ocean interior and contain
more than half of the Cant stored south of 30∘S (Langlais et al., 2017).

The SO has changed from a preindustrial source of CO2 to the atmosphere (Hoppema, 2004; Mikaloff Fletcher
et al., 2007) to a contemporary CO2 sink (Gruber et al., 2009; Takahashi et al., 2009). The air-sea CO2 exchange
is a balance between physical and biological processes and its seasonal cycle is characterized by a dominance
of CO2 uptake through the biological carbon pump in summer and a dominance of CO2 outgassing through
upwelling of carbon-rich deep water in winter (e.g., Lenton et al., 2013; Takahashi et al., 2009). The transition
from a net CO2 source to a net CO2 sink can be explained by the increase in the CO2 gradient between ocean
and atmosphere (through increasing atmospheric CO2 concentration), that is, by a stronger physical carbon
pump (more uptake or less outgassing). The physical carbon pump will continue to strengthen in the future as
long as emissions rise but are modulated by variability in atmospheric forcing on decadal time scales (DeVries
et al., 2017; Le Quéré et al., 2007; Wetzel et al., 2005). The direction of change is less clear for the biological
carbon pump (Bopp et al., 2013; Laufkötter et al., 2015, 2016). Global warming will generally lead to stronger
stratification in the upper ocean and less nutrient input from the deep ocean resulting in a decrease of primary
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production. In the SO, however, the projected increase in westerly winds might lead to deeper mixed lay-
ers regionally and an increase in primary and export production (Hauck et al., 2015; Leung et al., 2015).
In the long-term, stronger productivity in the SO might result in nutrient trapping and a decline in global
productivity (Moore et al., 2018).

The upper and lower cells of the overturning circulation determine the overturning and north/south
exchange in the SO. Both cells are fed by the inflow of North Atlantic Deep Water/Circumpolar Deep Water at
mid depth that upwells at the Antarctic Divergence south of the Polar Front. A part of that water (the “upper
cell”) is then transported northward through surface Ekman transport and subducts as AAIW and SAMW.
Another part of the upwelled water (the “lower cell”) is transported southward and is exported to depth and
out of the SO through Antarctic Bottom Water (AABW) formation. The subduction pathway (upper cell) plays
a larger role for nutrient resupply than the AABW pathway (lower cell). This separation has been called the
“biogeochemical divide” (Marinov et al., 2006; Primeau et al., 2013).

Along with anthropogenic carbon, the SO exports unutilized macronutrients to the ocean interior via two
pathways, namely, subduction of AAIW/SAMW at its northern boundary and AABW formation at the Antarctic
shelves. The nutrient export via subduction received a lot of attention, partly motivated to determine the
potential for iron fertilization but also due to its potentially important role for lower atmospheric CO2 during
the Last Glacial Maximum (e.g., Petit et al., 1999) and as part of global assessments of nutrient streams (Holzer
& Primeau, 2013; Marinov et al., 2006; Palter et al., 2010; Pasquier & Holzer, 2016; Primeau et al., 2013; Sarmiento
& Orr, 1991; Sarmiento et al., 2004; Williams et al., 2006).

Using different realizations of ocean circulation and tracer tagging, Palter et al. (2010) suggested that between
33% and 75% of low-latitude productivity is sustained by nutrient export from SAMW, building on the previous
work of Sarmiento et al. (2004). Holzer and Primeau (2013) in contrast using a data-assimilation approach,
suggested that only 27% of the production in the midlatitude and subpolar North Atlantic would be fuelled
by nutrients last utilized in the SO with even lower numbers elsewhere (Holzer & Primeau, 2013). They showed
increasing nutrient utilization in the SO resulted in a larger fraction of nutrients last utilized in the SO (up to
45%) but decreased the overall productivity (Holzer & Primeau, 2013). Primeau et al. (2013) further explored
this response by both increasing and decreasing nutrient utilization in the SO and found a nonlinear response
of productivity outside the SO to perturbations within the SO. This illustrates the state dependence of this
response and the nonlinear nature of the link between the SO and the low latitudes.

The efficiencies of the physical and biological carbon pumps in the SO control the dissolved inorganic car-
bon (DIC) concentration in the mode and intermediate water masses and therefore set the baseline for CO2

exchange in the low latitudes. Further transformation of the DIC concentration in the SAMW/AAIW will occur,
for example, via remineralization during the water mass transport to upwelling regions. The role of the SO on
nutrient cycling outside the SO received a lot of attention (Holzer & Primeau, 2013; Palter et al., 2010; Primeau
et al., 2013; Sarmiento et al., 2004). However, the impact of SO carbon cycle processes on the global air-sea
CO2 exchange has not been extensively studied. Marinov et al. (2006) investigated the effect of SO nutrient
depletion on atmospheric CO2, that is, to a perturbation from the equilibrium state of Sarmiento et al. (2004)
and found that the AABW pathway is more important for sequestering carbon away from the atmosphere.

While all the above previously mentioned studies analyzed the equilibrium transport or the equilibrium
response to a perturbation, none of these looked at the transient response to a perturbation. Recently, large
interannual variability in high-latitude Southern Hemisphere surface climate (Jones, Gille, et al., 2016) and a
large decadal variability of the SO carbon sink (Landschützer et al., 2015; Le Quéré et al., 2007) have been
reported. Furthermore, nutrient concentrations show signals of variability or change in multiple regional stud-
ies from surface to depth (Ayers & Strutton, 2013; Hoppema et al., 2015; Iida et al., 2013; Panassa et al., 2018;
Pardo et al., 2017). Given that mode and intermediate water masses reach the subtropical thermocline on
a time scale of a few decades (Jones, Meijers, et al., 2016; Rodgers et al., 2003), it is very likely that these
changes may reappear in the low latitudes on a time scale relevant to human anthropogenic CO2 emissions
and emission reduction endeavors (Palter et al., 2010; Pasquier & Holzer, 2016).

In this study, we aim to characterize the time scales of biologically and physically driven air-sea CO2 flux in
the SO, and explore its connection to the air-sea CO2 exchange and primary and export production outside
of the SO. To this end we perform idealized model simulations with an ocean biogeochemical model, which
is described in section 2. We perform perturbations that inhibit the biologically and physically driven air-sea
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CO2 exchange in the SO while keeping circulation constant, so that we are able to quantify (i) the sensitivities
of large-scale biogeochemistry and carbon cycling to biological productivity and gas exchange over the SO
and (ii) the service that the SO provides to us through its active physical and biological carbon pumps. This is
the first study that (1) analyzes the transient response to a SO perturbation, that (2) considers perturbations
of the gas-exchange in addition to the nutrient utilization, and that (3) applies a primary production module
to these questions which is more complex than just translating surface macronutrient utilization to export
production.

2. Model and Model Experiments
2.1. MITgcm-REcoM2
The Massachusetts Institute of Technology general circulation model (MITgcm, MITgcm Group, 2017) is cou-
pled to the biogeochemistry and ecosystem model Regulated Ecosystem Model with two phytoplankton
classes (REcoM2, Hauck et al., 2013, 2016). The model is configured globally without the Arctic Ocean on a 2∘

longitude × 0.38–2∘ latitude grid with the higher resolution around the equator and in the SO. The grid has
30 vertical layers with their thickness increasing from 10 m at the surface to 500 m in the deep ocean. REcoM2
simulates 21 tracers, including DIC and alkalinity for the carbonate system, the macronutrients dissolved
inorganic nitrogen (DIN) and silicic acid and the trace metal iron. REcoM2 has two phytoplankton classes,
nanophytoplankton (with implicit representation of calcifiers), and diatoms. The intracellular stoichiome-
try of C:N:Si:Chl pools for diatoms and C:N:CaCO3:Chl pools for nanophytoplankton is allowed to respond
dynamically to environmental conditions (Geider et al., 1998). The intracellular iron pool is a function of the
intracellular nitrogen concentration (fixed Fe:N) as iron is physiologically linked to enzyme formation, espe-
cially to the photosynthetic electron transport chain (Behrenfeld & Milligan, 2013; Raven, 1988). Dead organic
matter is transferred to one detritus class by aggregation and grazing by one zooplankton class. The sinking
and advection of detritus is represented explicitly. Detritus sinks with a sinking velocity that increases with
depth (Kriest & Oschlies, 2008, from 20 m/day at the surface to 170 m/day at 5,300 m depth). This setup is
identical to Hauck et al. (2016) except for two parameter settings, namely, iron solubility from dust input is
now set to 1% and nanophytoplankton chlorophyll degradation rate is set to 0.1 d−1.

2.2. Model Forcing and Spin-Up
The model was forced by the atmospheric forcing fields from the 6-hourly Japanese 55-year Reanalysis
(JRA-55, Kobayashi et al., 2015). We spun up the model by repeating the JRA-cycle for 1958–2015 (58 years)
twice. The third JRA cycle was run until the year 2005, so that the total spin-up was 164 years. The model DIC
field was initiated with preindustrial DIC from GLODAP (Key et al., 2004), and the model was forced with rising
atmospheric CO2. In terms of atmospheric CO2 concentration, we treated these 164 years of spin-up as follow-
ing the historical atmospheric CO2 concentration from 1842 to 2005 provided by the Global Carbon Budget
(Le Quéré et al., 2018). This data set averaged the atmospheric CO2 concentration from the Mauna Loa and
South Pole stations from 1958 onward (Dlugokencky & Tans, 2016; Keeling et al., 1976) and used a cubic spline
fit to ice core data before 1958 (Joos & Spahni, 2008).

2.3. Model Experiments
In order to track the northward propagation of carbon and nutrient signals caused by the physically and bio-
logically driven carbon pumps in the SO, we performed six idealized model simulations for 200 years with
constant atmospheric forcing fields. We focused on the 200-year time scale as more than 70% of the perturbed
SAMW/AAIW nutrient signal will have reached the tropics and be upwelled within 200 years (Rodgers et al.,
2003) and because this is the relevant time scale to the transient response. The first set of model experiments
(CTRL, NOBIO, and NOBIOGASEX, see Table 1) were started after the year 2005 by keeping atmospheric forc-
ing fields and CO2 concentration constant at their 2005 states (atmospheric CO2 concentration of 378 ppm)
for the following 200 years.

The first simulation is the control simulation (CTRL), which is the standard setup of the model. In the second
simulation (NOBIO) we switched off primary production south of 40∘S. In the third simulation (NOBIOGASEX),
we switched off primary production and gas-exchange south of 40∘S. The differences in CO2 air-sea exchange,
nutrients, DIC, and primary and export production between the CTRL and the NOBIO simulations (contribbio =
CTRL − NOBIO) are caused by the biological carbon pump in the SO. The air-sea CO2 exchange that still
occurs in the NOBIO simulation is fully driven by abiotic processes, for example, upwelling of carbon-rich
deep water or temperature effects on CO2 solubility. This air-sea CO2 exchange was suppressed in the NOBIO-
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Table 1
Model Experiments

Simulation Perturbation Length Forcing Atm CO2

CTRL none 200 years 2005 378 ppm

NOBIO No NPP south of 40∘S 200 years 2005 378 ppm

NOBIOGASEX No NPP + no gas-exchange south of 40∘S 200 years 2005 378 ppm

CTRL-diseq none 200 years 2005 increasing with 1.98 ppm/year

NOBIO-diseq No NPP south of 40∘S 200 years 2005 increasing with 1.98 ppm/year

NOBIOGASEX-diseq No NPP + no gas-exchange south of 40∘S 200 years 2005 increasing with 1.98 ppm/year

Note. See text for detailed description.

GASEX simulation. Therefore, we consider the differences between the NOBIO and NOBIOGASEX simulations
(contribphys = NOBIO − NOBIOGASEX) to be caused by the physically driven CO2 uptake in the SO.

In a second set of experiments (“-diseq” in Table 1), we tested the effect of atmospheric CO2 forcing by increas-
ing atmospheric CO2 with the average rate of increase between 2000 and 2010 (1.98 ppm/year, 773 ppm at
the end of the experiment). We chose this atmospheric CO2 forcing to mimic the current atmospheric CO2

increase rather than a faster increase in the future.

We focus on the first set of experiments with constant atmospheric CO2 throughout this study. The effect of
increasing atmospheric CO2 will be discussed in sections 4.3.1 and 4.4.

3. Unperturbed Model State

The model was evaluated in previous publications (Hauck et al., 2013, 2016). In the year 2005, just before the
start of the perturbation experiments, the global ocean CO2 uptake amounts to 2.0 PgC year−1, which is in the
center of the range of modelled values for 2005 (Le Quéré et al., 2018). The SO south of 40∘S contributes 1.0
PgC year−1 to the total ocean carbon sink, which is at the higher end of the observational range (Landschützer
et al., 2015; Lenton et al., 2013). The model reasonably simulates the seasonal cycle of CO2 uptake in the SO
(Hauck & Völker, 2015). Global net primary production (NPP) amounts to 36 PgC year−1 in model year 2005
with a contribution of 6.8 PgC year−1 from the SO. This leads to an export production of 9.4 PgC year−1 globally
and of 2.9 PgC year−1 in the SO. We estimate the SAMW/AAIW export out of the SO by calculating the transport
across 31∘S in the neutral density range 26.8–27.3 (Downes et al., 2017). The resulting SAMW/AAIW transport
of 8 Sv is consistent with the 8 Sv estimated across 30∘S by Talley (2013).

4. Results and Discussion

Switching off primary production in the SO leads to a nutrient and carbon anomaly that is transported
northward. This signal (contribbio) allows us to quantify the effect that biological processes in the SO, when
active, have on the global nutrient distribution (section 4.2) as well as on the DIC distribution and air-sea CO2

exchange (4.3). All air-sea CO2 exchange in NOBIO is driven by abiotic (“physical”) processes, for example, cir-
culation or temperature effects on air-sea CO2 exchange. The difference between NOBIO and the simulation
NOBIOGASEX, where all gas-exchange is inhibited, therefore allows us to quantify the effect that physically
driven air-sea CO2 exchange in the SO has on the global DIC distribution and air-sea CO2 exchange outside of
the SO (contribphys).

4.1. Time Scale of Re-Emergence
The perturbation signal from the SO emerges after 15 years in the equatorial Atlantic (5∘S to 5∘N) and after
approximately 50 years in the equatorial Pacific as illustrated by the time-series of export production (Figure 1).
This is broadly consistent with the estimate of a minimum travel time of 28 years and a median travel time of
92 years for SAMW from its formation region to the Equatorial Undercurrent in the Pacific (Rodgers et al., 2003).
The major reason for the difference between the Lagrangian study of Rodgers et al. (2003) and the present
Eulerian study is the neglect of eddy diffusivity in the Lagrangian study. Shah et al. (2017) showed the impor-
tance of including stochastic terms in Lagrangian models to account for transport by eddies. Our time scales
are also somewhat shorter because our experiment includes perturbed carbon and nutrient concentrations
in the surface transport and not only mode and intermediate water masses. In contrast, Rodgers et al. (2003)
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Figure 1. Time series of carbon export (PgC year−1) across 100 m depth in two latitudinal bands (±5∘) around the
equator, for (a) the Atlantic and (b) the Pacific. Also shown are the differences (ΔEXPORTCbio) between the CTRL and the
NOBIO simulation (CTRL − NOBIO) in the (c) equatorial Atlantic and (d) equatorial Pacific.

released passive particles in a Lagrangian trajectory analysis and applied also a stricter definition of the
equatorial upwelling region only in the Pacific. The estimated time of re-emergence is also in line with the
estimate that 50% of each mode water tracer reaches the subtropical thermocline in 50 years (Jones, Meijers,
et al., 2016).

4.2. The Fate of Nutrients Exported Out of the SO
In the following, we discuss the contribution of active SO biology on nutrient distribution and NPP that we
define as contribbio = CTRL − NOBIO. On the time scale of 200 years considered here, active biological pro-
cesses in the SO lead to a gradient in nutrient distribution by reducing macronutrient and micronutrient
concentration in the surface of the SO and in the exported intermediate water masses (Figure 2). The signal
of reduced DIN concentration reaches down to approximately 1,500 m and up to 20∘N in the Pacific Ocean,
whereas the signal spreads down to below 4,000 m and reaches the northern limit of our model setup at
80∘N in the Atlantic Ocean (Figures 2a and 2b). A stronger DIN response to active SO biology occurs in the
Atlantic than in the Pacific. This was anticipated in response to the stronger overturning in the Atlantic and
is consistent with previous studies (Holzer & Primeau, 2013; Primeau et al., 2013; Sarmiento et al., 2004). The
weak signal in the Pacific is also supported by De Lavergne et al. (2017) who described a shadow zone of the
overturning in the depth range of 1 to 2.5 km in the Pacific and Indian Oceans where there is no AABW return
flow. In the Atlantic, the northern surface source of deep water disrupt the middepth zone (De Lavergne et
al., 2017), which is consistent with the negative DIN anomaly in the deep North Atlantic.

The sinking of particles and remineralization with active SO biological pump increases the DIN concentrations
in the subsurface of the SO, which might be amplified by nutrient trapping. This signal is transported out of
the SO via the AABW pathway to the Atlantic and Pacific Ocean basins. Outside of the SO, active SO biology
produces a positive DIN signal below approximately 4,000 m in the Atlantic and below approximately 3,000
m in the Pacific Ocean in our model. Consistent with Holzer and Primeau (2013) and Primeau et al. (2013), we
do not only perturb the SAMW/AAIW source region but the SO surface south of 40∘S. Consequently, higher
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Figure 2. Effect of active primary production (CTRL − NOBIO) in the Southern Ocean on zonal mean nutrient
distributions in the (a, c, and e) Atlantic and (b, d, and f ) Pacific Ocean. Shown are zonal means averaged over the last 5
years of the 200-year perturbation simulations of (a–b) dissolved inorganic nitrogen, (c–d) dissolved silicic acid, and
(e–f ) dissolved iron. Note different scales for different nutrients.

nutrient concentrations will also follow other than just the SAMW/AAIW pathways (surface transport, lower
cell, and southward return flow; see also Holzer & Primeau, 2013).

The maximum positive anomaly of silicic acid lies below 4,000 m (Figures 2c and 2d), which is considerably
deeper than the maximum positive anomaly of DIN which is located at about 500 m within the SO (Atlantic
and Pacific sectors). This mirrors the fact that the opal dissolution rate is slower than the degradation rate of
particulate organic nitrogen to dissolved organic nitrogen and the remineralization rate of dissolved organic
nitrogen to DIN. Active SO biology has a similar impact on dissolved iron, with the maximum of the positive
signal at about 500 m in the Atlantic and the Pacific (Figures 2e and 2f). In the Pacific, a secondary maximum
is found close to the seafloor. Maybe counterintuitively, activating the biological carbon pump in the SO is
responsible for a positive anomaly of iron in the surface of the Atlantic Ocean. We explain this by the strong
iron input by dust in the Atlantic (Mahowald et al., 2005) and the resulting nitrate limitation. The utilization
of DIN in the SO, even if not complete, reduces the amount of DIN available in the surface Atlantic leaving
more iron unutilized. Our model includes DIN as the only macronutrient and does not consider nitrogen fix-
ation. In the real world, nitrogen fixation would compensate the external supply of DIN. We hypothesize that
phosphate limitation might then lead to the same effect on iron, but this would have to be tested in a model
carrying phosphate.

The NPP in the SO amounts to 7.0 PgC year−1 in the control simulation (Figure 3a). Switching off this primary
production leads to an augmentation of NPP north of 40∘S by 3.0 PgC year−1 at the end of the 200-year simu-
lation (Figure 3b). This is an increase of 10% relative to the unperturbed NPP of 29.8 PgC year−1 in the control
simulation. By turning off active biology in the SO, the decrease in NPP within the SO (7.0 PgC year−1) is only
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Figure 3. Time series of (a and b) vertically integrated net primary production, (c and d) export production across 100 m,
(e and f) nanophytplankton NPP, (g and h) diatom NPP in the (left) Southern Ocean and (right) north of 40∘S. Note the
different scales within and out of the Southern Ocean and that the scale for export differs from NPP scales north of 40∘S.

offset by 3.0 PgC year−1 outside the SO (43%). Hence, only 43% of the SO NPP would be compensated outside
of the SO on a 200-year time scale. Export production at 100 m (EP) displays a similar response (Figures 3c
and 3d). The SO export production with active biology is 3.0 PgC year−1. By switching off SO NPP, export
north of 40∘S increases by 1.2 PgC year−1 after 200 years (17% increase). Only 39% of suppressed SO export is
compensated outside the SO.

Diatoms and nanophytoplankton contribute differently to the 43% compensation of NPP outside the SO
(Figures 3e–3h). Diatom NPP is nearly completely compensated outside the SO. Switching off 4.5 PgC year−1
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Figure 4. Effect of active primary production (CTRL-NOBIO) in the Southern Ocean on vertically integrated net primary
production (NPP) outside the Southern Ocean. Shown are (a) total NPP, (b) nanophytoplankton NPP, (c) diatom NPP
averaged over the last 5 years of the 200-year perturbation simulations. All units are mmol C m−2 d−1.

diatom NPP in the SO in CTRL is compensated by 3.9 PgC year−1 diatom NPP increase in NOBIO outside the SO
(Figures 3e and 3f). This corresponds to a 32% increase of diatom NPP outside the SO and a 87% compensation
of SO diatom NPP. In contrast, switching off active biology in the SO leads to a reduction of nanophytoplankton
NPP both inside and outside of the SO (Figures 3g and 3h). The suppression of 2.5 PgC year−1 nanophyto-
plankton NPP in the SO is associated with a further 1.0 PgC year−1 reduction north of 40∘S in NOBIO relative to
CTRL. This translates to a 6% decrease of nanophytoplankton NPP outside the SO and a reinforcement rather
than a compensation of SO nanophytoplankton NPP.

The spatial patterns of active SO biology effects (contribbio) on total, diatom and nanophytoplankton NPP are
shown in Figure 4. Total NPP outside the SO is negatively affected by active SO biology with the strongest
signal in the Atlantic and an exception in the subtropical gyre in the South Atlantic (Figure 4a). The stronger
Atlantic response might be a time scale dependent feature but may reflect stronger connectivity between
SO mode and intermediate waters with the North Atlantic than with the North Pacific (Holzer & Primeau,
2013; Primeau et al., 2013; Sarmiento et al., 2004). Diatom productivity outside the SO is almost everywhere
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negatively affected by active SO biology with the strongest effects at the boundary to the SO, in the subpolar
North Atlantic and equatorial Atlantic (Figure 4c). Nanophytoplankton shows a pattern of being positively
affected where diatom NPP is negatively affected and being negatively affected where there is no effect on
diatom NPP (Figure 4b). In summary, nanophytoplankton NPP is positively affected by active SO biology as
also shown above with the decrease of nanophytoplankton NPP in NOBIO (Figures 3g and 3h).

We explain these effects of active SO biology on diatom and nanophytoplankton NPP outside the SO as fol-
lows. Biological production in the SO binds silicic acid that is not available for diatom productivity outside
of the SO. As a result, active SO biology in the SO has a negative impact on diatom productivity and a pos-
itive effect on nanophytoplankton productivity outside the SO (Figure 4). Switching off biology in the SO
leads to an increase in diatom productivity outside the SO due to increased silicic acid availability, which can
then outcompete nanophytoplankton in many regions. The export of nutrients out of the SO therefore affects
not only the total amount of NPP outside the SO but also the phytoplankton community composition. This
mechanism was described as “silica leakage,” and it was hypothesized to contribute to an atmospheric CO2

drawdown during glacial times by weakening the carbonate pump outside the SO (Brzezinski et al., 2002;
Matsumoto et al., 2002).

The mean 17% increase of EP north of 40∘S without active SO biology is in the same range as the unper-
turbed (ca. 5–25% SO-sustained export production outside the SO) and the perturbed estimate (ca. 10–45%)
by Holzer and Primeau (2013) in their data-assimilated phosphorous cycle model. Global export production
is controlled mainly by the nutrient transport by the upper cell (Marinov et al., 2006); as the upper cell will
be close to equilibrium after 200 years, we expect this result not to differ qualitatively from an equilibrium
response. The increase of production in the rest of the world in response to a SO production shutdown can
be explained by a higher fraction of unutilized nutrients and might be reinforced by relieving nutrient trap-
ping (Primeau et al., 2013), that is, by reduced sinking of particles to southward flowing waters at middepth
that short circuit the surface northward flow. However, both our and the estimates of Holzer and Primeau
(2013) and Primeau et al. (2013) seem to be at odds with the statement that SO nutrient supply accounts for
75% of biological production north of 30∘S by Sarmiento et al. (2004). These differences reflect differences
in the mean ocean state and the nature of the simulations, specifically we perform the experiment with the
reverse sign as compared to Sarmiento et al. (2004). Primeau et al. (2013) and Holzer and Primeau (2013) illus-
trated that the system’s response in and outside of the SO to a nutrient perturbation is state dependent and
not linear and a larger effect is expected from forcing the model to complete nutrient utilization than to zero
nutrient utilization, even if the magnitudes of SO surface nutrient change is similar (Sarmiento: 100% change;
our experiment: DIN 75%, silicic acid 255%, and iron 340%).

4.3. The Fate of Carbon Taken up in the SO
As in section 4.2, we refer to the contribution of SO biological production, when active, as contribbio = CTRL−
NOBIO and to the contribution of the physical carbon pump as contribphys = NOBIO − NOBIOGASEX.
4.3.1. Air-Sea CO2 Flux
The global CO2 uptake in the CTRL simulation declines over the 200-year simulation, because in our simulation
we keep the atmospheric CO2 concentration constant (Figure 5). In CTRL, the CO2 flux amounts to −0.52 PgC
year−1 in the SO at the end of the 200-year simulation (Figure 5a). The air-sea CO2 exchange in the SO can be
separated into contribbio and contribphys. Active SO biology leads to CO2 uptake (contribbio =−1.14 PgC year−1,
Figure 5c), whereas abiotic processes lead to CO2 outgassing (contribphys = +0.62 PgC year−1, Figure 5e).

There is a mean outgassing flux by 0.2 PgC year−1 at the end of the 200-year simulation outside the SO
(Figure 5b). Active SO biology leads to a tendency to outgas of 0.57 PgC year−1 (contribbio, Figure 5d). How-
ever, the SO physical carbon pump leads to a tendency for CO2 uptake of nearly the same amount outside
the SO (−0.55 PgC year−1, Figure 5f ). In total, the SO carbon pumps trigger a net outgassing of only 0.02 PgC
year−1 outside the SO (Figure 5h). These large and opposing tendencies of CO2 flux outside the SO by SO
physics and biology suggest that stronger changes in one of the SO carbon pumps, without a change in the
other, can trigger a strong response in the global air-sea CO2 exchange. For example, the strong variability in
the SO physical carbon pump (here more outgassing, DeVries et al., 2017; Le Quéré et al., 2007; Wetzel et al.,
2005) with an incomplete compensation through the biological carbon pump (DeVries et al., 2017; Dufour et
al., 2013; Hauck et al., 2013) might trigger a response of larger CO2 uptake in areas remote from the SO. Simi-
larly, a long-term increase in SO productivity (Moore et al., 2018) without equivalent changes in the physical
pump would lead to less CO2 uptake/more outgassing outside the SO.
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Figure 5. Unperturbed air-sea CO2 exchange (CTRL, a and b) and anomalies thereof due to perturbations (c–h) in the
(left) Southern Ocean and (right) north of 40∘S. Lines show standard simulations with constant atmospheric CO2,
dashed lines show disequilibrium simulations with increasing atmospheric CO2 concentration. Shown are (c–d)
SO-biology contribution to air-sea CO2 exchange (CTRL-NOBIO), (e–f ) SO-physics contribution to air-sea CO2 exchange
(NOBIO-NOBIOGASEX), (g–h) sum of SO-biology and SO-physics contribution to air-sea CO2 exchange. Positive CO2 flux
indicates (tendency to) outgassing, negative CO2 flux indicates (tendency to) CO2 uptake.

In the set of simulations with increasing atmospheric CO2 concentration, there is by design a larger flux of
CO2 into the ocean within and outside of the SO (Figure 5, dashed lines). There is hardly any difference in
the effect of active SO biology on global CO2 uptake (Figures 5c and 5d). At the beginning of the simulation,
abiotic processes in the SO lead to CO2 outgassing and a negative DIC anomaly in the exported AAIW/SAMW.
During the simulation, the sign of the contribphys changes and after 50 years abiotic processes start leading to
CO2 uptake in the SO. This is merely caused by the increasing atmospheric CO2 concentration. The negative
DIC anomaly in the AAIW/SAMW persists for longer, particularly in the Pacific (Figure S1 in the supporting
information). At the end of the 200-year experiment, abiotic processes in the SO lead to an uptake of CO2
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Figure 6. Surface DIC (a and c) and CO2 flux (b and d) anomalies caused by Southern Ocean processes, (a and b)
biological carbon pump (CTRL − NOBIO) and (c and d) physical carbon pump (NOBIO − NOBIOGASEX). Shown are the
averages over the last 5 years of the 200-year perturbation simulations. Positive CO2 flux anomalies indicate (tendency
to) outgassing, negative CO2 flux anomalies indicate (tendency to) CO2 uptake.

(contribphys = −0.55 PgC year−1) in the SO. At the same time, the lagged negative DIC anomaly signal resulting
from abiotically driven SO CO2 outgassing in the beginning of the simulation, still leads to CO2 uptake outside
of the SO (contribphys = −0.18 PgC year−1). In total, the biological and physical carbon pumps in the SO lead
to outgassing of 0.47 PgC year−1 in the disequilibrium simulation. Note that this number is a snapshot and is
further away from equilibrium than in the simulation with constant atmospheric CO2 due to the change of
sign of abiotically driven air-sea CO2 exchange in the SO. The derived role of the SO physical carbon pump for
the global carbon cycle depends critically on the choice of prescribed atmospheric CO2 concentration and
the timing of reversal of air-sea CO2 flux in the SO which shapes the history of DIC in the AAIW/SAMW.

4.3.2. Patterns of Surface Changes
The active SO “physical” carbon pump leads to negative surface DIC anomalies outside the SO, which are
strongest in the Atlantic Ocean (Figure 6c). It further leads to negative CO2 flux anomalies (more uptake) in the
North Atlantic, in the equatorial Atlantic and in the Atlantic Eastern Boundary Upwelling Systems (Figure 6d),
apart from negative anomalies directly adjacent to our arbitrary boundary at 40∘S. The latter is an artefact of
waters crossing the boundary at 40∘S, north of which gas exchange is allowed.

In contrast, active “biological processes” lead to a positive surface DIC and CO2 flux anomaly (more outgassing
or less uptake by the ocean) in the central and subtropical North Atlantic and at the boundary to the SO
(Figures 6a and 6b). Notable exceptions are the southern Atlantic subtropical gyre and the North Atlantic sub-
polar gyre with negative surface DIC and CO2 flux anomalies (Figures 6a and 6b). We consider two possible
explanations for the positive DIC anomalies. Either upwelling of remineralized carbon leads to the increase in
surface DIC concentration or the export of nutrient-depleted surface water reduces NPP and thereby causes
positive DIC anomalies. We reject the first hypothesis (upwelling of remineralized carbon) as this DIC signal
would have to be apparent in the subsurface DIC anomalies, which it is not (Figure 7). The second hypothesis
(reduced NPP) is supported by our analysis of NPP which shows negative anomalies related to biological pro-
duction in the SO. The “negative” surface DIC and CO2 flux anomalies (more CO2 uptake) in the north Atlantic
subpolar gyre can only be explained by upwelling of DIC-depleted water. NPP anomalies go in the opposite
direction (less NPP) and cannot contribute to enhanced North Atlantic CO2 uptake caused by the active bio-
logical carbon pump in the SO. The negative DIC anomaly reaching up to the surface is also evident from
Figure 7. The active SO biological carbon pump leads to a positive anomaly in nanophytoplankton productiv-
ity (Figure 4) and calcification (not shown) in the subpolar North Atlantic. The latter leads to a slight reduction
of alkalinity (by less than 3 mmol/m3) at the end of the simulation, which would rather lead to more outgassing
than to stronger uptake and can therefore not explain the CO2 flux anomaly in the subpolar North Atlantic.
The negative surface DIC and CO2 flux anomalies in the south Atlantic seem to be sustained by a combina-
tion of upwelling of low-DIC anomalies in the Benguela upwelling system (Figures 7 and 6) and a positive NPP
anomaly caused by nanophytoplankton in the western south Atlantic (Figures 4).
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Figure 7. Contribution of Southern Ocean (a–b) biological carbon pump (CTRL − NOBIO) and (c–d) physical carbon
pump (NOBIO − NOBIOGASEX) to zonal mean DIC distribution in the (a and c) Atlantic and (b and d) Pacific. Shown are
the averages over the last 5 years of the 200-year perturbation simulations. Note the different scales for biological and
physical contributions.

4.3.3. DIC Inventory
An active SO biological carbon pump transports carbon into the deep ocean. The biologically driven inventory
of DIC in the SO has increased by 125 PgC after 200 years of experiment in the full water column south of 40∘S
and by 42 PgC below 3,000 m (Figures 7a and 7b). The physical carbon pump, in contrast, leads to a reduction
of the DIC inventory by 26 PgC in the full water column of the SO and by 3 PgC below 3,000 m due to strong
outgassing in the south at constant atmospheric CO2 concentration of 378 ppm (Figures 7c and 7d). This
outgassing is related to the upwelling of carbon-rich deep water in the SO, which brings water to the surface,
which has a higher pCO2 than the atmosphere. In accord with the solubility pump, this leads to outgassing of
CO2 to the atmosphere without biology drawing down this carbon in summer. In the experimental setup with
increasing atmospheric CO2 concentration, the SO physical carbon pump turns from outgassing to uptake
when the atmospheric pCO2 becomes larger than the pCO2 in SO upwelled water. In this simulation which is
characterized by abiotically driven outgassing in the beginning and abiotically driven uptake after about 50
years, the DIC inventories in the SO at the end of the experiment amount to 122 PgC (biologically driven, SO),
41 PgC (biologically driven, SO below 3,000 m), 52 PgC (abiotically driven, SO), and 16 PgC (abiotically driven,
SO below 3,000 m).

4.4. Implications for Carbon Uptake, Transport and Storage
We defined a term compensation factor FC of air-sea CO2 exchange through the SO biological carbon pump as

FC bio =
−contribbio, north of 40∘S

contribbio, south of 40∘S
(1)

and similarly a term for the compensation of air-sea CO2 exchange through the SO physical carbon pump as

FC phys =
−contribphys, north of 40∘S

contribphys, south of 40∘S
(2)

that is, FC is 0 if all air-sea CO2 flux through either of the pumps in the SO does not lead to a change of CO2

flux outside of the SO, and it is one if all of the CO2 flux is compensated by a flux of the same magnitude but
opposite sign north of 40∘S. The same metric can be applied for NPP and a negative FC can occur if a change
in the SO triggers a change outside the SO of the same sign (as for nanophytoplankton NPP).

A larger proportion of the physical signal re-emerges earlier as compared to the biological signal (“nutrient
trapping,” here “carbon trapping”). As a result, 90% of the instantaneous air-sea CO2 flux that occurs through
the physical pump in the SO is balanced elsewhere after 200 years (Figure 8a). The biological carbon pump
sequesters carbon for longer as only 50% of the instantaneous air-sea CO2 flux in the SO is compensated
elsewhere at the end of the experiment (Figure 8a). This number is very close to the 43% compensation of
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Figure 8. Compensation factor FC for Southern Ocean (a) CO2 flux, (b) total net primary production, (c)
nanophytoplankton net primary production, and (d) diatom net primary production outside of the Southern Ocean. The
compensation factor (see text) is defined to be one if a change (green: contribbio = CTRL − NOBIO, or blue:
contribphys = NOBIO − NOBIOGASEX) in the Southern Ocean is completely balanced by a change of reverse sign outside
the Southern Ocean. The compensation factor is defined to be zero if there is no change outside of the Southern Ocean
associated with a change in the Southern Ocean. The compensation factor is negative if a change in the Southern
Ocean leads to a change of the same sign outside the Southern Ocean. After 200 years, 50% of biologically driven
air-sea exchange (uptake) and 90% of physically driven air-sea exchange (outgassing) in the Southern Ocean are
balanced by air-sea exchange with reverse sign north of 40∘S.

NPP (Figure 8b). The latter is the result of the 90% compensation of diatom production and the negative
compensation factor of nanophytoplankton production (Figures 8c and 8d). We therefore consider that two
factors contribute to the longer carbon sequestration time for biologically driven carbon uptake (Figure 9).

First, the incomplete compensation of biologically driven CO2 flux in the upper cell is driven by the incomplete
compensation of NPP, which is caused by feedbacks in phytoplankton community composition. Second, the
carbon anomalies caused by an active biological carbon pump are twofold: a negative DIC anomaly spreads
from the surface via the upper cell, whereas a positive anomaly spreads via the lower cell. The physically
induced carbon anomalies occur mostly in the upper cell in our experiments (Figure 7). The sinking and rem-
ineralization of organic material lead to the gradient of negative DIC anomalies in the upper cell and positive
DIC anomalies in the lower cell. On the time scales considered here, this sustains the incomplete compensa-
tion of biologically driven air-sea CO2 flux and therefore the longer sequestration time scales for the biological
carbon pump. In summary (Figure 9), active SO biology leads to CO2 flux into the ocean in the SO, to DIC
increase at depth and DIC and nutrient reduction in the exported upper cell water. The effect of reduced NPP
outside the SO dominates over the effect of reduced DIC and leads to positive air-sea CO2 flux anomalies (more
outgassing or less uptake). An exception to that is the subpolar North Atlantic where the effect of reduced
DIC dominates. Outgassing in the SO leads to reduced DIC content in the exported upper cell water, which
can then take up carbon outside the SO.

While the physical carbon pump to date leads to outgassing in the SO, this implies that 90% of the CO2

released to the atmosphere would be back in the ocean somewhere else after 200 years. The biological car-
bon pump in the SO leads to CO2 uptake and 50% of that CO2 is still in the ocean after 200 years. While
potential future changes in the SO physical carbon pump will be compensated within 200 years, potential
future changes in the SO biological carbon pump (e.g., Moore et al., 2018) might lead to significant global car-
bon feedbacks. This is supported by the conclusion of DeVries et al. (2012) that the SO might dominate the
response of the biological carbon pump to potential future export changes using a different methodological
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Figure 9. Sketch to illustrate the effects of (a) active Southern Ocean biology and (b) active Southern Ocean abiotic CO2
flux at constant atmospheric CO2 on net primary production and CO2 flux outside of the Southern Ocean. (a) Active
Southern Ocean biology leads to (1) CO2 flux into the ocean in the SO, to (2) DIC increase at depth, and to (3) DIC and
nutrient (nuts) reduction in the exported upper cell water. The effect of reduced NPP outside the SO dominates over the
effect of reduced DIC and leads to (4) positive air-sea CO2 flux anomalies (more outgassing or less uptake). An exception
to that is the subpolar North Atlantic where the effect of reduced DIC dominates. (b) (5) Outgassing in the Southern
Ocean leads to (6) reduced DIC content in the exported upper cell water, which can then (7) take up carbon outside
the SO.

approach. We acknowledge that ocean circulation and biogeochemical feedbacks will further modify the car-
bon and nutrient distribution on the time scale of ocean circulation by a long-term redistribution of carbon
and nutrients.

Physical pathways for carbon transfer to the deep ocean play an important role for carbon sequestration and
are two orders of magnitude larger than other (biological) carbon fluxes in the mean state (Levy et al., 2013)
and in their response to a perturbation of circulation (Hauck et al., 2013). We argue, however, based on our
experiments, that a larger proportion of the carbon taken up via the biological pump re-emerges later than the
carbon taken up via the physical carbon pump (Figure 8). The amount of carbon that is exported as detritus to
below the mixed layer escapes the AAIW and SAMW route to the low latitudes’ mixed layer. Even if this amount
is smaller than the physically transported carbon, it reaches water masses that will not be reventilated as
quickly as AAIW/SAMW and therefore contributes significantly to carbon sequestration. The physical transport
of carbon is crucial and is also part of the biological carbon pump per se by transporting biological signals
(e.g., upwelling of deep water which is rich in DIC due to remineralization of organic matter).

The “SO biogeochemical divide” identifies the AAIW/SAMW flow as the fast pathway determining nutrient
availability in low latitudes and the AABW export as the slow pathway that is important for separating carbon
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from the atmosphere on time scales of centuries (Marinov et al., 2006). The equatorward flux of SAMW and
AAIW amounts to 8 Sv (Talley, 2013), whereas AABW contributes 29 Sv to the total flow toward the equator
at 30∘S (Talley, 2013). Our 200-year time scale does not capture the re-emergence of AABW to the global sur-
face mixed layer. It is, however, clear that AABW transports a positive anomaly of biologically driven DIC (and
nutrients) in contrast to the negative DIC anomaly in AAIW and SAMW (Figure 7). This decoupling facilitates
the high efficiency of biologically driven carbon sequestration on the time scale considered here (Figure 8).

It is well established that upwelling of carbon-rich deep water in the SO in winter leads to oversaturation of
surface pCO2 (Bakker et al., 2016; Lenton et al., 2013; Mongwe et al., 2016; Takahashi et al., 2014) and to out-
gassing of CO2 to the atmosphere. Our results are in accord with this process. However, the magnitude of the
physical carbon flux out of the ocean might be overestimated by keeping the atmospheric CO2 concentration
constant and thereby allowing the ocean to reach quasi-equilibrium with the atmosphere. In the real world,
atmospheric CO2 concentration is not steady, but constantly increasing (Le Quéré et al., 2018) resulting in an
increasing ocean-atmosphere CO2 gradient that works toward less outgassing/more CO2 uptake by the ocean.
A second experimental setup with increasing atmospheric CO2 concentration, however, illustrated that this
complicates the interpretation as the SO turns from abiotically driven outgassing to abiotically driven uptake
as the atmospheric CO2 becomes larger than the deep water pCO2. Furthermore, a water parcel transported
out of the SO and being upwelled in low latitudes is in contact with a different atmospheric CO2 concentration
than at the time of subduction. Nevertheless, this second experiment demonstrates how strongly the effect
of SO air-sea CO2 exchange on lower latitudes depends on the atmospheric CO2 disequilibrium in the SO (see
also DeVries & Primeau, 2009) and on the history thereof in the AAIW/SAMW.

Our results are based on one marine biogeochemical model and will be model dependent, as biological model
uncertainty is generally high (Laufkötter et al., 2015, 2016). For primary productivity, the compensation value
is sensitive to the biological formulation because changes in biological functioning can impact the cycling of
nutrients in the upper ocean independent of the nutrient supply. For example, more nutrient recycling in the
upper ocean outside of the SO could occur to increase the compensation value. The model does not consider
ballasting and applies one sinking velocity (increasing with depth) to the one detritus class. The simulated
shift between nanophytoplankton and diatoms outside the SO might trigger changes in export and transfer
efficiencies which are not considered. Nevertheless, we consider the results for export production and CO2

flux to be more robust than surface primary productivity, as a key part of the simulated response is the redis-
tribution of nutrients and carbon in the ocean by biological processes. It is well established that the SO is a
high-nutrient-low-chloropohyll region (e.g., de Baar et al., 1990; Smetacek et al., 2012) that leaks macronutri-
ents to lower latitude regions. Similarly, the trapping of nutrients in the SO with active biology is a feature of
the SO circulation and the remineralization of sinking organic matter (Holzer & Primeau, 2013; Holzer et al.,
2014). This mechanism provides a positive feedback on SO export production by increasing the nutrient con-
centrations of the upwelled water and effectively trapping nutrients in the SO (Holzer et al., 2014). When SO
biology is turned off, the nutrients move out of the SO, but there is much less nutrient trapping outside the
SO linking export production with resupply, which reduces the compensation. Our control simulation results
in reasonable surface distributions and vertical gradients of nutrients and carbon as shown in previous eval-
uations of the same model (Hauck et al., 2013, 2016), confirming that we capture the important mechanisms
for SO biogeochemistry such as nutrient trapping. Furthermore, the anomalies of nutrient distributions are
supported by recent interpretation of the ocean overturning and radiocarbon data (De Lavergne et al., 2017).

5. Concluding Remarks

With this set of idealized simulations, we aimed to provide a framework that can be used to relate changes
in the SO carbon pumps to large-scale changes in biogeochemistry and carbon cycle. The biological carbon
pump in the SO is more efficient in storing carbon in the ocean interior than the physical carbon pump. Both
carbon pumps in the SO have large impacts on remote carbon fluxes, but with reverse sign. A perturbation of
one without the other may alter global carbon fluxes considerably. While abiotically driven CO2 uptake might
be balanced within 200 years, potential future changes in the biological carbon pump will impact the global
carbon cycle for much longer. Ongoing circulation changes and increasing atmospheric CO2 concentration
may further modify the described connection between the SO and the global nutrient and carbon cycles.
SO air-sea CO2 exchange driven by abiotic processes is to 90% compensated outside of the SO. An active SO
biological carbon pump leads to export production and air-to-sea CO2 flux in the SO of which only 50% are
compensated outside of the SO. This suggests that it is the noncompensated fraction of net primary/export
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production that largely sets this CO2 response outside of the SO. While diatom production is to 90% compen-
sated outside the SO, nanophytoplankton production is not compensated and this shift is responsible for the
incomplete compensation of SO production and air-sea CO2 exchange.
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