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Abstract

We describe a three-dimensional (3D) finite-element ocean model designed for investigating the large-

scale ocean circulation on time scales from years to decades. The model solves the primitive equations in the

dynamical part and the advection–diffusion equations for temperature and salinity in the thermodynamical

part. The time-stepping is implicit. The 3D mesh is composed of tetrahedra and has a variable resolution. It

is based on an unstructured 2D surface mesh and is stratified in the vertical direction. The model uses linear
functions for horizontal velocity and tracers on tetrahedra, and for surface elevation on surface triangles.

The vertical velocity field is elementwise constant. An important ingredient of the model is the Galerkin

least-squares stabilization used to minimize effects of unresolved boundary layers and make the matrices to

be inverted in time-stepping better conditioned. The model performance was tested in a 16-year simulation

of the North Atlantic using a mesh covering the area between 7� and 80� N and providing variable hori-

zontal resolution from 0.3� to 1.5�.
� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The idea of using unstructured grids for modelling ocean dynamics sounds very attractive given
high complexity of the ocean geometry. Fine topographic features like narrow straits, steep
continental slopes, islands, etc. are of crucial importance and may control the circulation on large
spatial scales while they can hardly be resolved with an affordable homogeneous spatial resolu-
tion. The finite-element method (FEM) offers a traceable tool to tackle this problem.
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Most extensively, the FEM is used in modelling barotropic tides and wind-driven ocean cir-
culation (Walters and Werner, 1989; Le Provost and Vincent, 1991; Wunsch et al., 1997; Myers
and Weaver, 1995), and some tests proved that results obtained with the FEM were favorable in
comparison to those obtained with more traditional finite-difference methods (FDMs) (see Dumas
et al., 1982). Attractiveness of the FEM for modelling ocean dynamics was demonstrated more at
the dawn of the age of ocean circulation modelling by Fix (1975). Such nice properties of the FEM
as conservation of energy that is common for all variational methods of solving differential
equations, natural treatment of boundary conditions, and flexibility of triangulation were com-
plemented with availability of supercomputers. The high ratio of inter-element to intra-element
calculations makes the FEM well suited to parallel computing. Having these in mind Le Provost
(1986) suggested this approach as an interesting alternative to the FDM commonly used in ocean
modelling.

However, not much changed since that time. Few applications of the FEM to steady-state
ocean inverse problems (Brasseur, 1991; Schlichtholz and Houssais, 1999; Dobrindt and Schr€ooter,
2002a,b; Nechaev et al., 2003) appeared. Some existing two-dimensional (2D) FE shallow water
tide models have been generalized by accounting for the dependence on the vertical coordinates
with the FDM (Westerink et al., 1992; Lynch and Naimie, 1993) and by including heat and salt
advection (Lynch et al., 1996). But they are exclusively used in modelling the coastal dynamics for
relatively short time periods (up to few months). A model developed by Iakovlev (1996) relies on
three-dimensional (3D) FEs but essentially uses a structured horizontal mesh that allows one to
retain conservation properties of the FEM and to avoid algorithmic complexity encountered while
using unstructured meshes. However, this approach does not employ the whole potential of the
FEM such as capability to follow nicely complex boundaries and to provide finer resolution in
frontal zones and regions of special interest.

Despite remarkable achievements gained with the FEM in simulating coastal and tidal dy-
namics, ocean general circulation models (OGCMs) used in climatic studies still almost exclu-
sively rely on the FDM. The only exception is the spectral element ocean model (SEOM)
(Iskandarani et al., 1995). In a recent review of the OGCMs, Griffies et al. (2001) pointed out that
in addition to algorithmic complexity there are two general problems one would encounter in
using unstructured grids. First, it is difficult to represent the geostrophic balance on the un-
structured grid. Second, any change in grid spacing gives rise to unphysical wave scattering that is
not dangerous for steady state engineering problems or for ocean circulation problems at rela-
tively short integration time (as is the case for tide and coastal models) but might become of
crucial importance for modelling large-scale ocean circulation.

With this regard, it is worth emphasizing the basic distinction between the FDM and FEM.
Namely, using the former one redefines the differential model operator while the latter allows to
preserve the operator by changing the space where the solution is searched for. With special care
in choosing the functional spaces for unknown model variables it is possible to resolve the first
problem (Le Roux et al., 1998). The second problem can be mainly addressed to OGCMs em-
ploying curvilinear coordinates (POM, HOPE, etc.) rather than to the FEM. The FEM is con-
servative and preserves almost all properties of the original differential operator to be inverted. Of
sure, with the spatial resolution varying very sharply or with elements having bad discretization
properties (for example, triangles containing small angles) the set of algebraic equations to be
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solved becomes extremely ill-conditioned. However it is not a problem of the FEM itself and it
should be solved at the step of the mesh generation.

Here, we present the first 3D FE primitive equations ocean circulation model based on an
unstructured horizontal mesh. It is developed for studies of the large scale ocean circulation at
time scales from months to decades. Unlike the SEOM where a relatively new approach of
spectral elements (Patera, 1984) is utilized we use a more traditional formulation of the FEM. The
basic difference between them is as follows. With the FEM, one uses low order polynomials as
basis functions defined on a relatively high number of basic elements. It is opposed to the spectral
element method where the polynomials are of much higher order while the partitioning of the
computational domain is much coarser.

The basic elements in our model are tetrahedra. The mesh is stratified in the vertical and is
unstructured in the horizontal directions. This choice allows the coast lines and the bottom to-
pography to be followed very precisely and notably simplifies the vertical integration for com-
puting the hydrostatic pressure. Horizontal velocity, temperature and salinity are chosen to
belong to the space of linear functions defined on tetrahedra. The sea surface height belongs to the
space of linear functions on surface triangles, and vertical velocity is elementwise constant.

The model has grown from the diagnostic FE model by Nechaev et al. (2003) and borrows its
choice for functional spaces to represent the model fields. It differs, however, in many other
important respects. First, it is designed for time-stepping mode, although it allows for stationary
inversion as an option. Second, it uses Galerkin least-squares (GLS) stabilization (Hughes et al.,
1989) modified for transient problems which ensures stable performance with time steps up to 12
h. Finally, it pays special attention to the accuracy of volume conservation.

Unlike the FD method exclusively used in ocean modelling for more than three decades,
the history of FE applications is much more shorter and numerical problems one encounters
when using the FEM are much less studied. The FEM was initially designed and is mainly
applied to steady-state elliptic boundary-value problems. The primitive equations commonly
used to describe the large-scale ocean circulation contain elliptic-type problems, but also re-
quire to solve the first-order continuity and hydrostatic equations. Treating them with 3D
FEs on large unstructured meshes is not straightforward and we discuss several feasible ap-
proaches. Although some of them proved impractical, we believe that our experience might be
useful for future development in the FE ocean modelling. Another problem comes from the
fact that given low order polynomials on elements one cannot use biharmonic viscosity and
diffusion to stabilize the momentum and tracer equations, as is becoming common with current
eddy-permitting or eddy-resolving FD models. A set of residual-free stabilization techniques
is known for FEM (see, e.g., Hughes et al., 1989; Hughes, 1995; Franca and Russo, 1996;
Codina and Soto, 1997), which stabilize the equations without introducing excessive dissipation.
The implementation of stabilization in primitive equations is also discussed in some detail be-
low.

Sections 2 and 3 describe the model equations and discretization respectively, and Section 4
introduces stabilization. We also address the volume conservation there. The results of 16-year
simulation of circulation in the Northern Atlantic are presented in Section 5. Section 6 concludes,
and Appendices A and B contain analysis of dispersion properties of stabilized FE advection–
diffusion equation and details of barotropic–baroclinic splitting.
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2. Model equations

The governing equations of the model describe the thermo-hydrodynamics of a thin stratified
layer of sea water on spherical rotating Earth under hydrostatic, Boussinesq and traditional
approximation for the Coriolis terms. To avoid simultaneous treatment of non-linear dynamics
and thermodynamics of the ocean we split the system of governing equations into two sub-
problems and solve them separately.

The dynamical part of the model solves the momentum evolution equation under the integral
continuity constraint:

otuþ f ðk� uÞ þ grf �r � Alru� ozAv ozu ¼ � 1

q0

rp þ Fu; ð1Þ

otf þr �
Z z¼f

z¼�H
udz ¼ 0; ð2Þ

ozp ¼ �gq; ð3Þ

where ðu;wÞ 	 ðu; v;wÞ is the velocity vector in the spherical coordinate system ðk; h; zÞ, q0, q are
the mean sea water density and the deviations from that mean respectively, f is the sea surface
elevation, p is the baroclinic pressure anomaly computed from the level z ¼ 0, f ¼ f ðhÞ is the
Coriolis parameter, Al, Av are the lateral and vertical momentum diffusion coefficients, k is the
vertical unit vector, and g is the gravitational acceleration. The term Fu ¼ ðurþ wozÞu represents
non-linear advection in the momentum equation. The term with time derivative in (2) is omitted in
the rigid-lid approximation which filters out fast gravity waves. In this approximation the vertical
velocity would satisfy zero boundary condition at z ¼ 0. Although the rigid-lid approximation is
the main option in the model, we will describe both the free-surface and rigid-lid versions. The
upper limit of integration in (2) is set to 0, which is good approximation everywhere except for
coastal regions.

The dynamical part of the model considers the density variation q to be known. Eqs. (1)–(3) are
solved in a region X limited by four physically different types of boundaries oX ¼

S4

i¼1 Ci, where
C1 : fz ¼ 0g stands for the ocean surface, C2 : fz ¼ �Hðk; hÞg is the bottom of the ocean, C3

represents the lateral vertical rigid walls of the domain and C4 denotes the lateral vertical open
boundaries. The set of boundary conditions used with the dynamical part of the model includes the
condition of the momentum flux continuity on the ocean surface, the bottom-drag condition on the
bottom, no-slip boundary conditions on the vertical walls and the open-boundary condition:

Av ozu ¼ s; p ¼ 0 on C1; ð4Þ
Av ozuþ Alðr � HrÞu ¼ Cgujuj on C2; ð5Þ
u ¼ 0 on C3; u ¼ vOB; on C4; ð6Þ

where s is the vector of tangent wind stresses, the friction coefficient Cg ¼ 0:0025, and vOB is a
given velocity field at the open boundary.

In the thermodynamical part of the model we consequently solve the continuity equation for the
vertical velocity w, tracer evolution equations for the potential temperature T and the salinity S of
sea water, and compute density via the equation of state:

4 S. Danilov et al. / Ocean Modelling xxx (2003) xxx–xxx

ARTICLE IN PRESS



ozw ¼ �r � u; ð7Þ
otCm þr � ðuCmÞ þ ozðwCmÞ � r � Km

l rCm � ozKm
v ozC

m ¼ 0; ð8Þ
q � .ðT ; S; pÞ ¼ 0: ð9Þ

Here C1 	 T , C2 	 S, Km
l , K

m
v are the lateral and vertical diffusion coefficients for the mth

tracer.
The vertical velocity is integrated from the ocean surface with the kinematic boundary con-

dition:

w ¼ otf on C1

or

w ¼ 0 on C1 ð10Þ

in the rigid-lid mode. It also obeys the second boundary condition at the bottom:

w ¼ �rH � u on C2 ð11Þ

implicit in (2). Tracer evolution equations (8) satisfy the following boundary conditions on the
surface and solid boundaries:

Km
v ozCm ¼ �qm or Cm ¼ Cm

0 on C1; ð12Þ
ðrCm; ozCmÞ � n3 ¼ 0 on C2 [ C3; ð13Þ

where qm and Cm
0 are the surface fluxes and surface values of the mth tracer, n3 is the 3D unit

vector normal to the respective surface.
The boundary conditions at open boundaries are extensively discussed in the literature (see,

e.g., the recent paper by Marchesiello et al. (2001)). No choice of open boundary conditions is
mathematically consistent, and one is usually guided by the principle that the numerical solution
be stable and realistic with respect to observational data. For the purpose of testing the model we
set vOB ¼ 0 in (6) and use

ðrCm; ozCmÞ � n3 ¼ 0 on C4 ð14Þ

for tracers, realizing that the solution may depart from the desired one in some vicinity of the
open boundaries. There are no principal difficulties in equipping the model with more ‘‘realistic’’
treatment of open boundary conditions.

3. Space and time discretization

3.1. Spatial discretization

A necessary prerequisite of any FE model is the choice of spatial discretization and definition of
discrete functional spaces. We use tetrahedral elements obtained by constructing the surface tri-
angular mesh, cutting the vertical prisms built on surface triangles by a set of horizontal (in upper
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layers) and terrain-following (in deep layers) surfaces, and then cutting the elementary prisms into
tetrahedra. This provides high flexibility for representation of irregular topography and local
mesh refinement.

In choosing functional spaces we were guided by two principles. First, a major feature of the
ocean dynamics is the dominance of the geostrophic balance in the ocean interior. Not every
choice of velocity–pressure pairs of FE functional spaces is suitable for reproducing this balance.
The problem was thoroughly examined by Le Roux et al. (1998) who concluded that the space of
piecewise linear basis functions X for velocity and pressure is one of the most convenient from this
point of view. Second, the piecewise linear basis functions require only nodal values of respective
fields and thus provide compact storage for the fields and, more importantly, the matrices as-
sociated with equations. The latter factor becomes very restrictive as the size of the problem
grows. Given all that, we choose linear basis functions for the horizontal velocity, sea surface
height, hydrostatic pressure and tracers. The vertical velocity will be addressed separately.

However, these basis functions are not twice differentiable and we need to reformulate the
problem (1)–(6) and (7)–(14) in the weak sense. Multiplying (1) and (2) respectively by an arbi-
trary vector field ~uu and a scalar function ~ff that does not depend on z, by making use of Green�s
formula and boundary conditions (4)–(6) we arrive at the equalitiesZ

X
½ðotuþ f ½k� u� þ grfÞ � ~uuþ Av ozu � oz~uuþ Alru � r~uu�dX

¼
Z

C1

s � ~uudC1 �
Z

C2

Cgjuju � ~uudC2 �
Z

X
½ðu � r þ wozÞu� � ~uudX �

Z
X

1

q0

~uu � rpdX; ð15Þ
Z

C1

otf ~ffdC1 �
Z

X
u � r~ffdX ¼ �

Z
C4

vOB � n3~ffdC4 ð16Þ

to be fulfilled by the solution to the original problem (1)–(6) if ~uu ¼ 0 on C3 [ C4 where Dirichlet
boundary conditions for the velocity field u are imposed. The last term in (16) is equal to zero if
the open boundary is replaced by a rigid wall, and the first term should be omitted in the rigid lid
approximation. After partitioning of the model domain onto tetrahedrons, we express model
variables u and f as linear combinations of 3D and 2D piecewise linear basis functions Xk and Sk
corresponding to the partitioning,

u ¼
XN3D

k¼1

ukXk; f ¼
XN2D

k¼1

fkSk: ð17Þ

The kth basis function is equal to 1 at the kth node and linearly vanishes to 0 within tetrahedrons
(triangles) containing this node. Replacing the test functions ~uu and ~ff in (15) and (16) with Xi and
Si, we obtain the so-called Galerkin equations for uk and fk which represent nodal values of the
velocities and sea surface height. Here N3D and N2D are the total amounts of 3D and 2D (surface)
mesh nodes, respectively.

Before proceeding to the tracer equations, we will discuss discretization of the hydrostatic
equation (3) and the vertical velocity (continuity) equation (7). Both require solving the first-order
differential equation with respect to the vertical coordinate z. Unlike the FDM, this step is not
trivial in the FEM, as the FEM always couples a given node with its neighbours thus leading to a
matrix problem involving all nodes. Since the FEM in the space of linear functions is analogous to
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approximating the derivatives with central differences, it couples together either the odd or even
vertical levels while these two chains are linked only due to the boundary condition at the surface.
As such, the corresponding stiffness matrix is generally ill-conditioned and leads to solutions with
spurious level-to-level oscillations. To avoid them, the following strategy was adopted for the
pressure p.

After computing T and S, we compute nodal values of q via the equation of state. Then we
recover the nodal values of pressure from the hydrostatic equation considered in the FD sense.
After obtaining nodal values pk, the pressure is treated analogously to (17) as

p ¼
XN3D

k¼1

pkXk ð18Þ

to compute the last term on the RHS of (15) in the FEM sense. Another scheme was also tested.
Namely, we interpolated q linearly between the nodes and solved the second-order equation for p:

o2zzp ¼ �gozq; ð19Þ
with the FEM in the space of piecewise linear functions (solving includes rewriting (19) in the
weak sense, integrating by parts and obtaining a linear system of equations on pk). In addition to
the boundary condition at the surface p ¼ 0 it needs the second boundary condition either at the
surface or at the bottom. It could be taken from the hydrostatic equation. Our experience with
this scheme of calculating p shows that due to finite accuracy of solution for pk the pressure
gradient is too noisy to be used as forcing in the momentum equation. So, the current default
option consists in discretizing the hydrostatic equation by the FDM.

A procedure of this kind cannot be implemented for computing w for two reasons. First, a
scheme of computing w must be consistent with (16) in order to fulfill boundary conditions (10)
and (11). Second, the 2D divergence of the piecewise linear horizontal velocity u is not defined at
nodes but at elements and thus we can treat the continuity equation (7) only in the weak sense. To
go around solving the first-order problem for w, we introduce the vertical velocity potential U so
that w ¼ ozU. If U 2 X , then (7) can be reformulated with use of (10) and (11) asZ

X
ozUoz ~UUdX ¼ �

Z
X
u � r~UUdX þ

Z
C4

vOB � n3 ~UUdC4; ð20Þ

which should be held for any ~UU 2 X . After computing U we obtain w as an elementwise constant
function. With this scheme of treating the continuity equation we cannot guarantee the volume
conservation within each tetrahedron. However, the volume is conserved locally within a cluster
of elements surrounding each node (weighted with the test-function defined at this node), and
globally. To see the latter take ~UU ¼ const, which would imply volume integration of the original
continuity equation. Realizing that the surface integral is zero as there is no net volume flux
through the open boundaries, we conclude that all terms in (20) become zero, or that the total
volume is conserved.

Since both boundary conditions in this scheme are of the Neumann type, the RHS of (20) must
satisfy the solvability condition: it must be zero for test functions that do not depend on the
vertical coordinate, ~UU ¼ ~UUðk; hÞ. The latter is guaranteed up to numerical errors as the horizontal
velocity field satisfies (16).
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It is worth noting that another scheme for computing w is implemented in other FE models.
It was found that integrating the continuity equation over z to calculate w resulted in accumu-
lation of errors, for the reasons explained above. To prevent this undesired feature, Lynch and
Naimie (1993) suggested to solve the second-order equation obtained by differentiating (7) with
respect to zZ

X
ozwoz ~UUdX ¼ �

Z
X
ðr � uÞoz ~UUdX; ð21Þ

with two Dirichlet boundary conditions (10) and (11). The fundamental difference between (20)
and (21) is that the latter equation must be satisfied not for all test functions ~UU but only for those
vanishing at C1 and C2. Consequently, the global volume conservation is broken. Muccino et al.
(1997) proposed to treat the continuity equation and boundary conditions (10) and (11) in the
least-square sense and concluded that this approach outperformed that of Lynch and Naimie
(1993). Though the least-square scheme has shown to provide less deterioration in volume con-
servation, the problem is still present. That was the reason why we did not proceed in either way.

The weak formulation for the tracer transport equations is grossly similar to that for the
momentum equation. The advection of tracer fields (represented by linear combinations of
piecewise linear basis functions) is computed using piecewise linear horizontal velocities and
elementwise constant vertical velocities. We write down the weak formulation for the temperature
equation only:Z

X
ðotT eTT þ ðu � r þ wozÞT eTT þ KlrT � reTT þ Kv ozT ozeTT ÞdX ¼ �

Z
C1

qeTT dC1; ð22Þ

where q is the diffusive flux of tracer at the surface (negative flux would imply heating). The weak
formulation for salinity or any other tracer would look similar to that for the temperature.

In the ocean FD modelling community much attention is paid to the choice of the advection
scheme (see, e.g., Gerdes et al., 1991; Webb et al., 1998; Hecht et al., 2000). Many of current
implementations use upwind-type corrections to the standard central differences which otherwise
are too dispersive on small scales and result in oscillations in tracer fields if the diffusion is not
sufficiently strong. The higher-order advection schemes exhibit reduced dispersion and bihar-
monic-type numerical diffusion. In this respect we would like to reiterate that the FE operator is
exact, and it is the space of functions and partition onto elements which influence the solution. In
Appendix A we present analysis of dispersion properties of FE disretized advection–diffusion
equation and show them to be superior over central differences (FD) given one-dimensional (1D)
problem and equidistant grid.

3.2. Time stepping

Several general remarks concerning time-stepping for FE discretized equations are worth
noting. Due to a non-diagonal shape of the mass matrix formed by L2 products of the basis
functions, time stepping involves numerical matrix inversion. No solver can do it precisely, so
differentiation of time-evolving FE fields is unsafe. The numerical noise due to finite accuracy of
the solver may accumulate in time if differential operators are computed at the preceding time
step. Therefore, the (most dangerous) second-order operators in (15) and (22) (viscosity and
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diffusion respectively) should be treated implicitly (or at least, semi-implicitly). They lead to
symmetrical contributions to the stiffness matrices and as such do not make the inversion more
difficult.

The treatment of other terms could vary depending on tasks and numerical efficiency. Since we
are interested in long integration periods, we treat all terms in the LHS of (15) and (16) implicitly,
as it permits using large time steps. Implicitness implies that the systems of equations (15) and
(16) are solved simultaneously for the vector ðuk; fkÞ. We use the energy norm kðu; fÞk ¼R
u � udX þ g

R
f2 dC1 obtained by adding (16) multiplied with the acceleration due to gravity g, to

(15). This ensures that the potential energy due to the sea surface elevation would be properly
accounted in the energy balance. To see that, take ~uu ¼ u and ~ff ¼ f.

The pressure gradient term on the RHS of (15) is computed explicitly, because otherwise we
have to solve the momentum, continuity and nonlinear tracer equations simultaneously, which is
too costly. There are two options for computing the momentum advection term. It can be explicit
or linearized (with only u � r þ woz estimated at the preceding time step) and treated implicitly.
The second option is safer and more accurate, but requires reassembling the stiffness matrix at
every time step. We use the first option, as the momentum advection term is much smaller than
rp which is considered explicitly. Although the RHS of (15) contains first-order derivatives, we
have not noticed any related instability. To summarize, we integrate Eqs. (15) and (16) with the
backward Euler scheme with explicit treatment of the momentum advection and hydrostatic
pressure terms which are computed at the preceding time step.

The vector ðuk; fkÞ has dimension of 2N3D þ N2D, and inverting the stiffness matrix corre-
sponding to the combined problem (15) and (16) creates the main numerical load. The stiff-
ness matrix has strong antisymmetric part, so availability of efficient solvers could become
a critical issue. Traditionally, FDMs split the problem into the barotropic and baroclinic parts,
and solve separately for barotropic transports and baroclinic velocities. In that case the most
difficult elliptic-type problem of computing the transports becomes 2D and could be solved easier.
Given tetrahedral FEs, however, the vertically integrated horizontal velocity (transport) does
not belong to the functional space of linear functions on surface triangles, as u does. This ren-
ders introducing transports not so straightforward as in the FDM. While this approach is in
principle feasible with the FEM, its practical realization encounters problems, as explained in
Appendix B.

The advection term is mainly balanced with the time derivative term in the tracer equations. So
we treat it implicitly there to ensure stability in long runs, and integrate these equations in time
with the backward Euler scheme. Although implicit advection requires reassembling the stiffness
matrix at each time step, it does not create much computational burden because the time step of
dynamical equations typically takes more CPU time (see the details of implementation in Section
5). The same stiffness matrix is used for time stepping temperature and salinity, or any other tracer
included in the model. Thus increasing the number of tracers would reduce the relative cost of the
assembly procedure.

The discretization of the primitive equations described above allows for integration of the
model with reasonable values of the viscosity and time steps of up to few hours for the horizontal
resolution of several tens km. However, due to accumulation of the small-scale numerical noise,
the model trajectory degrades after a couple of years of integration (or the model should be made
too dissipative from the very beginning).
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The same behaviour of the SEOM is reported in Levin et al. (1997) unless a special filtering
procedure was applied. The problem of damping the numerical noise and still having a low vis-
cosity to simulate turbulent ocean flows is a crucial issue for OGCMs. In addition to using im-
proved advection schemes, the vast majority of the OGCMs employs the biharmonic horizontal
friction operator instead of the traditional Laplacian friction because of scale-selective properties
of the former. However, implementation of the hyperviscosity in the FEM is problematic since it
requires using basis functions which would be not only continuous across the element borders but
also continuously differentiable. For a tetrahedral mesh, the minimal set of such basis functions
are polynomials of the fifth order which are far too expensive to be used for meshes having Oð106Þ
elements. We utilize here another approach described in Section 4.

4. Stabilization

The FEM using linear basis functions due to its central difference property is well suited only
for solving elliptic problems (dominated by the diffusion). In the ocean, the evolution of the
temperature and salinity is mainly governed by the advection that is dominating over the diffu-
sion. This causes numerical problems.

Let us consider for simplicity a stationary advection–diffusion equation

u � rT � kDT ¼ F ; ðx; yÞ 2 X; ð23Þ

k
oT
on

¼ q; ðx; yÞ 2 oX; ð24Þ

in a 2D domain X with the boundary oX. Here F is a source term and k is a diffusion coefficient, q
is the temperature flux taken with opposite sign, and the derivative in (24) is taken in the direction
of the outer normal. For a given velocity field u such that r � u ¼ 0 and u � n ¼ 0 at oX,Z

X
T ðu � rT ÞdX ¼ 0; ð25Þ

and thus the stability of the Galerkin method applied to solving (23) relies entirely on kkðrT Þk2
that can be small for very small k. The stiffness matrix that corresponds to the problem (23) and
(24) is essentially non-symmetric and difficult to invert, while the solution to the problem could
exhibit spurious oscillations.

Problems of the same origin arising in modelling advection-dominated flows, i.e. when the
mesh-Peclet number Pe ¼ jujh=k, where h is the grid step, is large, are well known in the FD
literature. Pacanowski and Griffies (2000) mentioned that if Pe > 2, MOM will not necessarily
blow-up but the solution will slowly degrade with time stepping. A way around this problem is to
add some artificial diffusivity to ensure Pe < 2 (Bryan et al., 1975) that makes the solution too
dissipative. Otherwise, it will exhibit spurious oscillations of the wavelength proportional to the
grid size (as in standard central differences). The other (already mentioned) way to tackle this
problem is using more sophisticated advection schemes (Webb et al., 1998; Hecht et al., 2000) that
exploit higher-order spatial approximations.

The problem attracted much attention over the last two decades in the FE literature and several
recipes how to make the problem better posed and avoid adding much diffusivity were put for-
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ward. A substantial progress in this direction was achieved after recognition that the original
problem may be transformed to a new one with much better properties in such a way that the
solution to the former will also be the solution to the latter. Seemingly, the most general among
these so-called residual free methods is the GLS (Hughes et al., 1989) utilized in the model de-
scribed here.

4.1. Stabilization for the thermodynamical part

The idea behind the GLS stabilization is simple: one modifies the original differential equations
in such a way that the solution would satisfy both the original and the modified equations while
the discretization of the latter would produce a matrix whose inversion would require less iter-
ations of an iterative solver. If we consider (23), the diffusion term for small k is important only in
the narrow boundary layer of the width of Oðk=jujÞ and is effectively dropped in the discretized
equations when h � k=juj. Eq. (23) almost corresponds to the first-order differential advection
operator that does not need boundary conditions along the whole boundary oX. Hence, the
problem becomes nearly overdetermined. What is needed to restore the well-posedness of the
problem is to increase the order of the dominant differential operator.

For any sufficiently smooth eTT , the solution T to the problem (23) and (24) satisfies the fol-
lowing integral equalityZ

X
½eTT ðu � rT Þ þ kreTT � rT �dX ¼

Z
X

eTT F dX þ
Z
oX
qeTT djoXj; ð26Þ

that is a starting point in deriving Galerkin equations. We may modify (26) and write down an
equivalent equalityZ

X
½eTT ðu � rÞT þ kreTT � rT �dX þ

Z
X1

etðu � r � kDÞeTT ðu � rT � kDT � F ÞdX

¼
Z

X

eTT F dX þ
Z
oX
qeTT djoXj: ð27Þ

Here X1 � X is an arbitrary subdomain where T and eTT are twice differentiable, and et is an ar-
bitrary integrable function. The second integrand in the LHS of (27) is referred to as the stabi-
lization term. The variational principles are completely equivalent. Therefore, instead of using
(26) for deriving the set of discrete Galerkin equations, we can employ (27) that leads to the GLS
stabilization.

If we consider the space of piecewise linear functions Xk for T and eTT , then X1 cannot be ex-
tended to the whole domain X but only to the sum of elements interiors [El. Within element
interiors, functions T and eTT are analytical functions and DT ¼ DeTT ¼ 0. Then, the stabilized weak
formulation of the problem (23) and (24) can be written asZ

X
½eTT ðu � rT Þ þ kreTT � rT �dX þ

Z
[El

etðu � reTT Þðu � rT � F ÞdX

¼
Z

X

eTT F dX þ
Z
oX
qeTT djoXj: ð28Þ
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The proper choice of the stabilization parameter et in the stationary case has been thoroughly
discussed in the FE literature. The general recipe is to take et ¼ Oðh=jujÞ for Pe � 1 and
et ¼ Oðh2=kÞ for small Peclet numbers (Hughes et al., 1989).

Extension of the GLS to the original problem of non-stationary tracer evolution is straight-
forward:Z

X
½eTT ðot þ u � r þ wozÞT þ AlreTT � rT þ Av ozeTT ozT �dX þ

Z
[El

etðu � r þ wozÞeTT ðotT
þ u � rT þ wozT � F ÞdX ¼

Z
X

eTT F dX þ
Z
oX
qeTT djoXj; ð29Þ

that should be satisfied for any piecewise linear function eTT . Here q stands for surface and open
boundary diffusive fluxes of T . The tracer stabilization parameter et is computed for each element
with horizontal and vertical dimensions h and Dz respectively, from

et ¼ ½1=Dt þ 4Al=h2 þ 2Av=Dz2 þ juj=hþ jwj=Dz��1
: ð30Þ

Here Dt is the time step for the tracer problem. The expression (30) is interpolation between limits
of large and small Peclet numbers. The contribution from Dt in non-stationary case follows from
an approach to stabilized equations proposed in Ilinka et al. (2000) (see also Appendix A for
further discussion).

Several comments could be made with respect to the stabilization algorithm of the advection–
diffusion problem. First, there is similarity with upwind scheme, yet it is superficial. The stabili-
zation does not introduce the upwind diffusion, as the upwind term is approximately balanced
with other terms almost everywhere excluding regions of very high temperature gradient. We
analyze the dispersion properties of the stabilized advection–diffusion equation in Appendix A
and show that the stabilization introduces negligible dissipation at large scales and strongly damps
the smallest resolved scales, as expected. It also reduces dispersion if the stabilization parameter is
appropriately chosen. Second, the same stabilization could be derived using bubble functions and
minimizing the residual on elements (residual-free bubbles method, see Brezzi et al., 1996). This
approach was used in Nechaev et al. (2003). Third, to some extent, it can be viewed as param-
eterization of unresolved (by basis functions) subgrid scales (for detail, see Hughes, 1995).

4.2. Stabilization for the dynamical part

Large-scale ocean dynamics is nearly in geostrophic balance. Consequently, one encounters the
same numerical problem as that described above for the advection–diffusion equation if the
horizontal resolution is too coarse to resolve the viscous boundary layer, i.e. if the local Ekman
number Ek ¼ ð2Al=f Þ1=2=h is small. Indeed, if we multiply the steady-state version of (1) by u, take
into account (2) and boundary conditions and consider a flat bottom case with s ¼ 0 and Cg ¼ 0
for simplicity, then we arrive at

Avkozuk2 þ Alkruk2 ¼ �q�1
0

Z
X
rp � udX; ð31Þ

and again notice that the stability of the problem completely relies on the small values of viscosity
coefficients Al, Av, as the RHS of (31) is not sign definite.
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In addition, there is one more difficulty that is specific to the FE discretization of the Navier–
Stokes and primitive equations. It is well known that FE spaces Vh and Qh for the velocity and the
pressure, respectively, cannot be chosen arbitrary if the standard Galerkin method is applied to
modelling incompressible flows. They have to meet the so-called Babu�sska–Brezzi–Ladyzhenskaya
condition (BBL) (Babu�sska, 1973; Brezzi, 1974; Ladyzhenskaya and Solonnikov, 1976). Piecewise
linear basis functions for the velocity and pressure do not meet this requirement. Violating the
BBL condition results in spurious null-space surface-elevation solutions.

Both numerical problems can be resolved with the GLS (Codina and Soto, 1997). Introducing
L ¼ otuþ fk� uþ grf, L1 ¼ rAlruþ ozAv ozu and denoting by R the terms on the RHS of (1)
we write the stabilized equations asZ

X
ðL � ~uuþ Alru � r~uuþ Av ozu � oz~uuÞdX þ

Z
X1

edf ðLþ L1Þ � ðk� ~uuÞdX1

¼
Z

X
R � ~uudX þ

Z
X1

edfR � ðk� ~uuÞdX þ
Z

C1

s � ~uudC1 �
Z

C2

Cgjuju � ~uudC2;Z
C1

otf ~ffdC1 �
Z

X
r~ff � udX þ

Z
X1

edr~ff � ðLþ L1 � RÞdX1 þ
Z

C4

~ffvOB � ndC4 ¼ 0:

Here ed is the stabilization parameter. The stabilization terms in both equations contain contri-
butions from viscous terms L1 which are zeros on linear functions inside the elements. In the
standard approach (applied when the problem is posed with the Dirichlet boundary conditions),
one extends integration only to the element interiors thus omitting L1 in the stabilization. In our
case the problem is set with the two Neumann boundary conditions at C1 and C2 that correspond
to essential forcing and (less essential) dissipation shaping the entire flow. To properly take them
into account we should make one step back and consider the two equations above as formulation
of a weak problem with yet unspecified (but sufficiently smooth) fields, test functions and ed. We
then integrate by part contributions from dissipative terms in stabilization and return to linear
functions, extending X1 to the sum of element interiors and considering ed to be elementwise
constant. (Note that the Neumann boundary conditions in tracer equations do not require special
attention in the rigid lid case because boundaries are impermeable.)

The stabilized equations expressing the momentum and mass conservation take the formZ
X
ðotuþ fk� uþ grfÞ � ð~uuþ edfk� ~uuÞdX þ

Z
X
ðAv ozu � oz þ Alru � rÞð~uuþ edfk� ~uuÞdX

¼ �q�1
0

Z
X
rp � ð1þ edfk�Þ~uudX þ

Z
C1

s � ð1þ edfk�Þ~uudC1 �
Z

C2

Cgjuju � ð1þ edfk�Þ

� ~uudC2 �
Z

X
ð1þ edfk�Þ~uu � ðu � r þ wozÞudX; ð32ÞZ

C1

otf ~ffdC1 �
Z

X
u � r~ffdX þ

Z
X

edr~ff � ðotuþ f ½k� u� þ grf þ q�1
0 rp þ ðu � r þ wozÞuÞdX

�
Z

C1

eds � r~ffdC1 þ
Z

C2

edCgjujr~ff � udC2 þ
Z

C4

vOB � ndC4 ¼ 0: ð33Þ
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The stabilization parameter for the dynamical problem ed is computed from

ed ¼ ½jf j þ ðDtÞ�1 þ 10Al=h2��1
; ð34Þ

where Dt is the time step of the dynamical problem. Expression (34) is interpolation between two
limiting cases of small and large Ekman numbers. In the first case, for the steady-state problem
Codina and Soto (1997) recommend ed ¼ jf j�1

. Accounting for non-stationarity can be done
following the approach of Ilinka et al. (2000). The third term in (34) corresponds to the as-
ymptotics of ed in the diffusive limit (Ek � 1) derived in Nechaev et al. (2003). Codina and Soto
(1997) recommend the factor of 12 (instead of 10) in this term based on their numerical experi-
ments.

For Dt and h used in the model and for typical values of horizontal diffusivity ed � jf j�1
. Thus,

the difference between the original (15) and stabilized (32) momentum equations is that the latter
is a linear combination of the former and its rotation and the stabilization of the momentum
equations is an algebraic operation on the original Galerkin equations. If we consider a block of
the stiffness matrix corresponding to the velocity–velocity part of the momentum equations, the
stabilization can be illustrated schematically as that instead of inverting the matrix

Dþ T �f
f Dþ T

� �
;

where D, T and f denote blocks that correspond to discretization of the viscosity, time derivative
and Coriolis parts respectively, we provide the solver with the matrix

Dþ T þ f Dþ T � f
f � D� T Dþ T þ f

� �
that is much better from the computational point of view when dissipation is small and the time
step is large. Indeed, its symmetric and antisymmetric parts are of comparable magnitude, which
provides faster convergence of iterative solvers.

This is in contrast with the stabilized continuity equation (33) that contains an additional term.
This term would coincide with the divergence of the z-integral of the residual in the momentum
equation if the viscous terms were included into stabilization in (33). Then it would be equal to
zero. However, working in the space of piecewise linear basis functions we are unable to compute
them and consequently have to admit an error of the order OðEkÞ in the continuity equation.
Hence, the flow field resulting from solving (32) and (33) possesses a non-trivial 2D divergence
and thus is not volume conserving. This issue is addressed below. Noteworthy, the same stabi-
lization of the continuity equation without introducing the stabilization term in the momentum
equation is considered in Hanert et al. (2003).

4.3. Velocity correction for recovering the volume conservation

A common viewpoint (see, for example, Ilinka et al., 2000) on the problem of breaking the
volume conservation by stabilization of the dynamical equations in the FEM is as the following.
Expressing the unknown model variables as a linear combination of a finite set of basis functions
one is able to compute only a part of the total fields. Stabilization parameterizes the contribu-
tion from the unresolved (by the basis functions) part. It is the total field that must satisfy the
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governing equations while the solution obtained by solving the stabilized equations represents
only a part of the total field and does not have to fit the continuity equation exactly.

In ocean circulation modelling, we are interested not only (and primarily not) in the velocity
field but in the transport of ocean tracers that cannot be computed from the 3D velocities ob-
tained from (32) and (33). Indeed, if we tried to compute w from (7), it would be impossible to
meet both boundary conditions at the bottom and at the surface. In other words, the RHS of (7)
would not meet the solvability condition. Hence, advecting the tracers we would produce un-
controlled surface and/or bottom fluxes which could degrade the solution in a long term run.
Thus, we need to trim the horizontal velocity field so that it would satisfy the continuity constraint
(would have zero 2D divergence).

However, (33) does not suggest introducing a 3D field of correcting horizontal velocity, as it
operates with vertically integrated quantities. In fact, an attempt to compute it would lead to
extremely noisy field that cannot be used.

A scheme similar to that proposed by Deleersnijder (2001) was adopted. After solving the
stabilized equations, the 2D potential / is computed by solving

D/ ¼ r �
Z
udz; on/ ¼ 0: ð35Þ

This equation is treated in the weak sense in the space of piecewise linear basis functions / ¼P
pkSk Once / has been computed, the bias r/ is extracted from the horizontal velocity field

u! u� H�1r/: ð36Þ
Here H is the local depth.

As we have already mentioned the local residual in the original continuity equation (2) is of the
order OðEkÞ and thus this potential part of the flow should be small for the oceanic currents.
Indeed, as computations revealed, the correction H�1r/ is a tiny fraction of the total velocities u
and introduces a very small imbalance in the momentum conservation while allowing the mass
conservation to be recovered. The correction is especially small in the exterior of boundary tet-
rahedra and typically is of the order 10�6 m/s. The corrected velocity field is further used for
computing w and advecting the tracer fields and momentum.

4.4. Tracer conservation properties of the model

The way in which the 3D continuity equation (20) is solved for the vertical velocity w ensures,
as we have already mentioned, that volume is conserved locally when summed over the cluster of
tetrahedra spanned by a test function, and globally. It also plays the crucial role in providing the
conservation properties of the tracer equations. Indeed, the total tracer contained in the volume
should be conserved provided total flux of the tracer through the boundaries is zero and sources
are absent. The stabilized FEM tracer equation (29) satisfies this constraint. Indeed, if we takeeTT ¼ const in (29), which is equivalent to the volume integration, the advection terms of the tracer
equation reduce toZ

X
ðu � r þ wozÞT dX ¼ 0:
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The latter is ensured by (20) for any elementwise linear field T (the surface integral in (20) gives
zero total transport because of volume conservation). Then it follows from (22) that

ot

Z
X
T dX ¼ 0:

We would like to emphasize that stabilization does not affect the global tracer conservation
property, as the stabilization terms in (29) contain only derivatives of eTT and vanish for eTT ¼
constant.

In FD modelling the advection equation is usually written in the flux form to ensure the global
tracer conservation. With the FEM, the global conservation is the consequence of the weak
(Galerkin) formulation and the scheme of computing the vertical velocity.

For the same reason as the tracer advection term, the momentum advection term in the mo-
mentum equation goes to zero after having being integrated over the volume. This is once again a
desirable property, as this term should only redistribute the momentum and cannot create or
destroy it.

5. Finite-element model of North Atlantic (FENA)

The model performance was tested using the North Atlantic setup. The computational mesh
covers the region from 7� to 80� N. It is based on a surface triangular mesh consisting of 6480
surface nodes, and a combination of z and r-levels in the vertical direction. Each surface triangle
defines a vertical prism which is subdivided by level surfaces into elementary prisms. The latter are
split into tetrahedra. The surface mesh defines horizontal resolution, which varies from 0.3� to
1.5�, with mean of approximately 0.8�. Using the combination of z and r levels (with total of 16
levels) allows us to get rid of vertical walls in the volume of water and simultaneously reduce the
total number of 3D nodes compared to purely r-level setup. The total number of 3D nodes is
86 701, and they form 449 674 tetrahedra. Figs. 1 and 2 present views of 2D and 3D discretizations

Fig. 1. 2D mesh of FENA model.
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used in the model. They clearly demonstrate the main advantage of FE––their ability to provide
local mesh refinement only in the locations where it is indeed necessary.

The model was forced at the surface by the monthly mean climatological wind stress (Trenberth
et al., 1989). The surface temperature and salinity were restored to the Levitus monthly data with
the relaxation time of 15 days. The model was run for 16 years with time step of Dt ¼ 12 h for the
dynamical part and a reduced time step Dt=n for the tracer part. Here n is the number of steps for
tracers within one time step of dynamical part. The tracer stiffness matrix is reassembled each time
after the dynamical part is stepped forward, and kept constant during n tracer steps. Typically
n ¼ 4, but increasing it would not affect the CPU time significantly (see below).

Numerical implementation of solver uses parallel threshold-based ILU factorization (Karypis
and Kumar, 1997) and GMRES or BICGSTAB algorithms. The memory required by the solver
and pre-conditioner and the efficiency of the solver depend on how many fill-in elements are
allowed for the factorization. Increasing the number of fill-in elements reduces the number of
iterations needed to provide the convergence of the solver, but requires additional storage and
increases the number of numerical operations during an iteration. The ‘‘optimal’’ fill-in number is
mainly sensitive to the band width of the sparse matrix to be inverted. With increasing the band

Fig. 2. View on 3D FE mesh of FENA model.
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width it also increases if the acceptable number of iterations is bounded. A helpful approach is
renumbering the nodes to reduce the bandwidth of the stiffness matrix, so that the ILU-factor-
ization would need less fill-in elements and/or require less iterations to converge (Dobrindt and
Frickenhaus, 2000). As we saw, too large difference between numbers of neighbouring nodes
could locally degrade or even totally destroy the solution with time stepping. The reordering can
be made with the Metis package (Karypis and Kumar, 1998) which also provides a tool for
partitioning the mesh needed for implementation of parallel solvers. For the current version of the
model the fill-in numbers from 100 to 200 provide convergence of the dynamical part typically
within 10 iterations. Tracer advection–diffusion problem converges within 3–4 iterations with fill-
in between 35 and 50.

Within a time step Dt, the solution of dynamic problem takes about 25%, and another 25% are
required to assemble and factorize the stiffness matrix for the tracer problems. It is worth to notice
that assembling the stiffness matrix and the RHSs is a highly parallelizable procedure. Given
partitioning of the mesh, each processor deals with its own part of the matrix and the RHS and
they communicate only at the factorization/solution step. Since the assembly of the stiffness
matrix and its factorization are costly tasks, they are performed for the stiffness matrix of the
tracer part once per the time step of the dynamical part. Assembling RHSs of the tracer (tem-
perature and salinity) equations and solving them n ¼ 4 times requires less time than the assembly
and factorization of the stiffness matrix, so the parameter n is not highly critical.

The stiffness matrix of the dynamical problem is not varying with time if viscosity is kept fixed.
In such a case it is assembled and factorized only once. The stiffness matrices for the vertical
velocity and correcting potential are also assembled and factorized only once.

The current version of FENA is supplied with a Smagorinsky-type viscosity in the momentum
equation. The horizontal viscosity is prescribed the Smagorinsky-type value at those elements
where the latter is in excess of Al ¼ 200 m2/s. The vertical viscosity is fixed at Av ¼ 0:002 m2/s,
while diffusivities in tracer equations take values of Kl ¼ 200 m2/s and Kv ¼ 0:0002 m2/s. Nu-
merical implementation of time-varying horizontal viscosity requires updating the stiffness matrix
at each time step. To spare time, we skip the refactorization step, as the main part of the stiffness
matrix (responsible for the geostrophic balance) remains intact. Although updating the stiffness
matrix requires considerable time within a time step, it allows simulations with the horizontal
viscosity coefficient as low as Al ¼ 200 m2/s almost everywhere except for close proximity of
coastal zones and strong currents. It should be recalled that the stabilization of momentum
equation cannot regularize the velocity field in the regions where the spatial resolution is not
sufficient, as it is largely an algebraic operation (see Section 4). Thus augmented (Smagorinsky)
explicit viscosity is needed there. The stabilization of tracer equations solves problems of that
kind, and does not require increased diffusivity in such regions.

In a current implementation, a model year requires 8 h of CPU time on four processors of SGI
ORIGIN-2000.

Fig. 3 shows a snapshot of temperature and velocity field in the region of the Gulf Stream at the
end of the integration time. Noteworthy is the wavy structure of the current and its separation off
the coast at approximately 40�N. Although there is a tendency to eddying in the velocity field, it is
only marginally present, as the spatial resolution is still insufficient on the offshore side of the Gulf
Stream. The same type of behaviour could be seen in the snapshot of the sea surface height
presented in Fig. 4. Given mean spatial resolution of 0.8� this behaviour is indeed encouraging.
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No relevant treatment was given to the open boundaries in the current version of the model, as
only its performance was tested. The open boundaries were treated as closed. This entails unre-
alistic details in the circulation in regions neighboring the open boundaries. However, as we have
already mentioned, there is no mathematically consistent way to treat them, and perhaps the best

Fig. 3. Velocity and temperature (gray scale color) fields after 16 years of integration of FENA model at the location of

Gulf Stream (at the depth of 100 m). The maximum velocity amplitude is 0.7 m/s.

Fig. 4. The sea surface height at the end of the run (drawn via interpolation to a regular grid).
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recipe is to have them as far as possible from the region of interest. No special care was given to
reproducing particular details of bottom topography, which is responsible for some errors in the
circulation in the Caribbean basin. Despite all that, such global characteristics of the model as its
overturning stream function (Fig. 5) and meridional heat transport (Fig. 6) compare well with the
other estimates obtained with models of comparable resolution (see Chassignet et al., 2000;
Haidvogel et al., 2000). The maximum of the overturning stream function is about 20 Sv, and
typical amplitudes of the meridional heat flux are of the order of 0.8 PW.

6. Conclusions

The FE model intended for simulating OGC is described. The model is further development of
the diagnostic FE model by Nechaev et al. (2003), and differs from it in several important aspects
such as time-stepping, GLS stabilization, divergence correction, time-dependent (Smagorinsky-
type) viscosity, and others. The model performance is stable and the model skill was tested in the
16-year run in the North Atlantic setup. The suite of tests of model performance and accuracy in
elementary setups (such as, for example, the Munk problem, the elementary overflow problem in
the DOME experiment geometry) will be presented in a separate paper.

Using FE with 3D tetrahedral partitioning and linear functions for the sea surface height and
horizontal velocity suggests a different (compared to FD) way of thinking of OCM, and the
standard recipe such as splitting the velocity field into barotropic and baroclinic parts, could not
be used directly, because the fields of velocity and vertically integrated velocity (transport) belong

Fig. 5. The meridional overturning stream function produced by FENA model (obtained by interpolating the velocity

on a regular grid, computing velocity curl and solving the Poisson equation for the overturning stream function).
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to different spaces (of linear and cubic functions respectively). One can still solve the vertically
integrated equations for transports and the sea surface height f, and use this information as
described in Appendix B. While formally attractive, splitting is difficult to implement, as it re-
quires explicit correction of dissipation terms in equations for vertically integrated fields, which
turns to be too noisy for unstructured meshes. Further work in this direction is needed.

There are other directions for future work as well, and the most promising one is adaptation of
the model to the global ocean with refinement of the grid in regions of interest. Augmenting the
model with a set of tracer equations could be of interest for applications in biology. Their inte-
gration would be efficient as it would use the stiffness matrix already assembled and factorized to
integrate the equations for temperature and salinity.
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Fig. 6. Meridional heat transport corresponding to the overturning circulation in the previous figure. Computed via

interpolation of velocity and temperature on the regular grid.
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Appendix A. Dispersion properties of the stabilized advection–diffusion equation

It is instructive to analyze the dispersion relations of stabilized FE advection–diffusion equation
and compare it with other schemes of FD origin. As is common with such type of analyses, we
consider the 1D advection–diffusion equation with a constant advecting velocity u. In the FE
setup, we first write it in a weak formulationZ

ðotT eTT þ uoxT eTT þ K oxT oxeTT þ etuotT ox eTT þ etu2 oxT oxeTT Þdx ¼ 0;

assuming that et is constant, and choose T and eTT belonging to the space of linear (on elements)
functions. Given a uniform 1D grid with element size h ¼ 1 the FE discretized equation reduces to
the following equation on nodal values of the tracer field T :

otðTn�1 þ 4Tn þ Tnþ1Þ=6þ etuotðTn�1 � Tnþ1Þ=2þ uðTnþ1 � Tn�1Þ=2
þ ðK þ etu2Þð2Tn � Tnþ1 � Tn�1Þ ¼ 0:

Seeking the solutions to this equation in the form of waves e�ixtþikx we obtain the dispersion re-
lation

xh=u ¼ 6 sin kh
4þ 2 cos kh� 6i�eet sin kh

� 6ið�eet þ Pe�1Þ 2� 2 cos kh
4þ 2 cos kh� 6i�eet sin kh

;

where �eet ¼ etu=h is non-dimensional stabilization coefficient, and Pe ¼ uh=K is the element Peclet
number.

The dispersion relation is compared to the dispersion relations of central differences and the
QUICK schemes (see Webb et al., 1998) in Fig. 7. The labeled curves in Fig. 7 refer to the fol-

Fig. 7. Dispersion curves for several advection schemes: (a) central differences, (b) QUICK, (c) FE without stabili-

zation, (d, e) FE with �eet ¼ 0:3 and 0.5; Pe�1 ¼ 0 in (a)–(e). The straight line (f) in the left panel corresponds to the exact

dispersion relation x ¼ uk. The thin curve in the right panel presents dissipation for the FE case with Pe ¼ 10 and no

stabilization. The inset zooms into the region of small decrements.
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lowing cases: central differences (a), QUICK (b), FE without stabilization (c), FE with �eet ¼ 0:3 (d)
and 0.5 (e); Pe�1 is set to 0. The straight line (f) corresponds to the exact dispersion relation
x ¼ uk. Unlabelled (thin) curve in the right panel of Fig. 7 presents dissipation for the FE case
without stabilization, with Pe ¼ 10. The inset in the right panel visualizes the region of small
decrements.

Even in the absence of stabilization, the FE advection scheme (c) exhibits notably less dis-
persion than central differences (a) and QUICK (b). Adding ‘‘optimal’’ stabilization (d) further
improves the behaviour of ReðxÞ. Increasing the stabilization parameter to 0.5 (e) still results in a
scheme with good dispersive properties. Further increase is not recommended as it reduces the
interval of wave numbers where real part of x is close to uk.

The right panel shows imaginary part of frequency. Cases (d) and (e) have smaller dissipation
than QUICK at kh < p=2, however they dissipate small scales (kh > 2p=3) more efficiently. Al-
though standard diffusion with Pe ¼ 10 (the thin line in the right panel) introduces stronger
dissipation at large scales than the stabilization in cases (d) and (e), achieving the dissipation
comparable with that of (d) and (e) at small scales would require Pe of several units and make
scales around kh ¼ p=2 too dissipative. On the other hand, if the stabilization and physical dif-
fusion are both included, and the Peclet number is sufficiently high, the physical diffusion would
only be seen at large scales, while small scales would mainly feel the numerical dissipation.

To conclude the analysis we note that the difference between the stabilization considered and
the upwind stabilization is in the imaginary term in the denominator of the equation for x. At
small kh, it leads to a positive contribution into ImðxÞ from the first term on the RHS of the x-
equation which approximately compensates the upwind contribution coming from the second
term on the RHS. The compensation does not occur at small scales, and they are damped with the
upwind diffusion.

Returning to the choice of the stabilization parameter et suggested in Section 4 we could
mention that in most cases it is determined by the time step Dt, as accuracy consideration require
it to be smaller than h=juj. Thus we always have �eet < 0:5. However stabilization could only be
efficient at small scales if �eet exceeds Pe�1, and some adjustment of et might be necessary if it turns
to be too small due to the time step used.

Appendix B. Barotropic–baroclinic splitting

Splitting of the problem (15) and (16) into barotropic and baroclinic parts requires special
approach in the case of 3D FE discretization employed here. Since the vertically integrated
momentum equation should be consistent with (15), it could only be obtained by choosing a
special subspace of the test functions ~uuðk; h; zÞ ¼ ~uuðk; hÞ. Consider, for example, the Coriolis term
in the momentum equation (15). It becomesZ

X
fk� u~uuðk; hÞdX ¼

Z
C1

fk�
Z
udz

� �
~uuðk; hÞdC1 ¼

Z
C1

fk�U~uuðk; hÞdC1;

with U ¼
R
udz the horizontal transport. Here C1 stands for the ocean surface. Clearly U does not

belong to the space of linear functions on surface triangles if u is linear on tetrahedra. For that
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reason, the ‘‘strong-sense’’ definition U ¼
R
udz is not allowed and we have to adopt the ‘‘weak-

sense’’ definitionZ
C1

U~uuðk; hÞdC1 ¼
Z

X
u~uuðk; hÞdX;

equivalent to 2N2D equations to determine nodal values of transport U by known 3D nodal values
of u.

The time derivative could be treated in the same way, while viscous terms are written asR
C1
AlrUr~uudC1 on the LHS, with the difference between the actual vertically integrated dissi-

pation and the latter term D ¼
R

C1
ðAlð

R
rudz�rUÞr~uuÞdC1, accounted for in the RHS. With

such definitions and rearrangements, the 2D equations that follow could be solved for Uk, fk at
each time step. The transport obtained cannot be used directly, and we could either substitute f
and solve for u at 3D nodes, or find baroclinic velocities ubc at 3D nodes and solve for a
2D barotropic correction field ubtðk; hÞ the system of equations

R
Xðubc þ ubtÞ~uuðk; hÞdX ¼R

C1
U~uuðk; hÞdC1. Whatever the approach used, the problem arises with the term D introduced

above. It turns to be too noisy, and degrades the quality of the solution. This is the main reason
explaining why we currently solve the combined system of equations (15) and (16) for the full
horizontal velocity u and sea surface height f. Further work is needed to implement splitting.
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