Der Einfluß von Preßeisrücken auf die bodennahe Luftschicht

T. Garbrecht, C. Lüpkes, C. Wamser

Alfred-Wegener-Institut für Polar- und Meeresforschung
27568 Bremerhaven, Deutschland

1. Das Experiment
Während der Expedition ARK XII im Spätsommer 1996 in den Arktischen Ozean wurde mit Hilfe der Turbulenzmeßanlage (TMS) des FS POLARSTERN die Wirkung eines etwa 4.5 m hohen Preßeisrückens auf die bodennahe Grenzschicht der Atmosphäre vermessen. Der mehrere 100 m lange (und damit nahezu zweidimensionale) Rücken bildete die leiseitige Begrenzung einer Eisscholle, an die sich eine größere Wasserfläche (Polynya) anschloß. Der bodennahe Wind war nahezu senkrecht zur Rückenachse und vom Eis zum Wasser gerichtet (siehe Abb. 1).

Abbildung 1: Skizze des Experimentes.

Die TMS besteht aus 5 Ultraschallanemometern (USAT-3) und 5 PT-100 der Firma METEK, die jeweils in Höhen zwischen 3.8 und 20 m am Bugkran der Polarstern angebracht waren, so daß auf einer Strecke von 400 m im Lee des Rückens die mittleren und turbulenten Größen des Windvektors und der Lufttemperatur gemessen werden konnten. Eine Messung über dem Eis seitlich des Rückens repräsentiert die ungestörte Anströmung der Luft. Diese Werte werden als Referenz betrachtet. Die gesamte Meßzeit von 2 Stunden wurde in 6 Teilintervalle von jeweils 15 Minuten mit unterschiedlichen Abständen zum Preßeisrücken unterteilt, die Daten einer Bandpaßfilterung von 0.01 bis 2 Hz unterzogen, um die Überlagerung großskaliger Effekte sowie vereinzelt auftretender Schwingungen des Mastes zu eliminieren. Die Messung erfolgte bei neutraler Schichtung sowie unter nahezu stationären Bedingungen.

2. Ergebnisse
a. Das mittlere Windfeld
Das mittlere Windfeld (Abb. 2) weist oberhalb des Rückenkamms eine Beschleunigung um etwa 25 Prozent gegenüber den Werten der ungestörten Anströmung auf.


Dieses 'speed-up' erreicht sein Maximum in der Meßhöhe von 13 Metern. Im Lee des Rückens werden - bedingt durch den
Abschattungseffekt - zunächst geringere Windgeschwindigkeiten als in vergleichbaren Höhen der Anströmung gemessen. Erst in einer Entfernung von etwa 400 Metern erreicht die Windgeschwindigkeit wieder die Werte der Anströmung.


b. Das turbulente Windfeld

3. Interpretation


4. Literatur
Arya S.P.S., Shipman M.S., 1981:
*An experimental investigation of flow and diffusion in the disturbed boundary layer over a ridge: 1) mean flow and turbulence structure.*
Atmospheric Environment 15, 1185 - 1194

Hanssen-Bauer I., Gjessing Y.T., 1988:
*Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait.*
Telus 40 A, 151 - 161

Nägeli W., 1946:
*Weitere Untersuchungen über die Windverhältnisse im Bereich von Windschutzstreifen.*
Mitteilungen d. Schweizerischen Anstalt für das forstliche Versuchswesen 24, 659 - 737