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ABSTRACT
Three advanced filter algorithms based on the Kalman filter are reviewed and pre-
sented in a unified notation. They are the well known Ensemble Kalman filter (EnKF),
the Singular Evolutive Extended Kalman (SEEK) filter, and the less common Singu-
lar Evolutive Interpolated Kalman (SEIK) filter. For comparison, the mathematical
formulations of the filters are reviewed in relation to the extended Kalman filter as
error subspace Kalman filters. The algorithms are presented in their original form and
possible variations are discussed. The comparison of the algorithms shows their the-
oretical capabilities for efficient data assimilation with large-scale nonlinear systems.
In particular, problems of the analysis equations are apparent in the original EnKF
algorithm due to the Monte Carlo sampling of ensembles. Theoretically, the SEIK
filter appears to be a numerically very efficient algorithm with high potential for use
with nonlinear models. The superiority of the SEIK filter is demonstrated on the basis
of identical twin experiments using a shallow water model with nonlinear evolution.
Identical initial conditions for all three filters allow for a consistent comparison of the
data assimilation results. These show how choices of particular state ensembles and
assimilation schemes lead to significant variations of the filter performance. This is
related to different qualities of the predicted error subspaces as is demonstrated in a
examination of the predicted state covariance matrices.

1 Introduction

In recent years there has been an extensive develop-
ment of data assimilation algorithms based on the Kalman
filter (KF) (Kalman and Bucy, 1961) in the atmospheric
and oceanic context. These filter algorithms are of special
interest due to their simplicity of implementation, e.g., no
adjoint operators are required, and their potential for effi-
cient use on parallel computers with large-scale geophysical
models, see e.g. Keppenne and Rienecker (2002).

The classical KF and the extended Kalman filter
(EKF), see (Jazwinski, 1970), share the problems that for
large-scale models the requirements of storage and compu-
tation time are prohibitive due to the explicit treatment of
the state error covariance matrix. Furthermore, the EKF
shows deficiencies with the nonlinearities appearing, e.g.,
in oceanographic systems (Evensen, 1992). To handle these
problems there have been different working directions over
the last years. One approach is based on a low-rank approx-
imation of the state covariance matrix of the EKF to reduce
the computational costs. Using finite difference approxima-
tions for the tangent linear model, these algorithms also
show better abilities to handle nonlinearity as compared to
the EKF. Examples of low-rank filters are the Reduced Rank
Square-Root (RRSQRT) algorithm (Verlaan and Heemink,
1995) and the similar Singular Evolutive Extended Kalman
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(SEEK) filter (Pham et al., 1998a). An alternative direction
is the use of an ensemble of model states to represent the
error statistics given in the EKF by the state estimate and
covariance matrix. The most widely used algorithm of this
kind is the Ensemble Kalman filter (EnKF) (Evensen, 1994;
Burgers et al., 1998) which applies a Monte Carlo method
to forecast the error statistics. Several variants of the EnKF
have been proposed (Anderson, 2001; Bishop et al., 2001;
Whitaker and Hamill, 2002) which can be interpreted as en-
semble square-root Kalman filters (Tippett et al., 2003). For
an improved treatment of nonlinear error evolution, the Sin-
gular Evolutive Interpolated Kalman (SEIK) filter (Pham
et al., 1998b) was introduced as a variant of the SEEK filter.
It combines the low-rank approximation with an ensemble
representation of the covariance matrix. This idea has also
been followed in the concept of Error Subspace Statistical
Estimation (Lermusiaux and Robinson, 1999).

Since all these recent filter developments approximate
the covariance matrix by a matrix of low rank, their analysis
step, the part in which observations are assimilated, oper-
ates in a low-dimensional subspace of the true error space.
Despite different forecast schemes the analysis scheme of all
filters is provided by some variant of the analysis equations
of the EKF. Hence, we refer to these filters as Error Sub-
space Kalman Filter (ESKF) algorithms.

The major part of the computation time in data as-
similation with filter algorithms is spent in the prediction
of error statistics. Thus, it is of particular interest to find
filter algorithms which provide a sufficiently good filter
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performance in terms of the state and error estimates for
minimal computation time, i.e. with as few model integra-
tions as possible. Since the prediction of the error statistics
within these filters is performed by some evolution of an
ensemble of model states the required ensemble size should
be as small as possible. For the EnKF as a Monte Carlo
method it has been found that ensembles of order 100 mem-
bers are required (Evensen and van Leeuwen, 1996; Natvik
and Evensen, 2003). There have been attempts to allow
for smaller ensembles by applying a smoothing operator to
the sampled covariance matrix (Houtekamer and Mitchell,
2001) but these likely introduce spurious modes and imbal-
ance (Mitchell et al., 2002). Compared to the EnKF much
smaller ranks of the approximated state covariance matrix
have been reported for the SEEK filter (like a rank of 7 by
Brusdal et al. (2003)) as have been for the SEIK filter (e.g. a
rank of 30 by Hoteit et al. (2002)). These numbers are, how-
ever, hardly comparable as they all refer to different models
and physical situations. For comparability, the algorithms
would have to be applied to the same model configuration
using the same initial state estimate and covariance matrix.
In a study which applied the EnKF and RRSQRT filters
to a 2D advection diffusion equation (Heemink et al., 2001)
the RRSQRT filter yielded comparable estimation errors to
the EnKF for about half the number of model evaluations.
A comparison between the SEEK algorithms and the EnKF
with an OGCM (Brusdal et al., 2003) also used fewer model
evaluations for the SEEK filter than for the EnKF to obtain
qualitatively comparable results. However, this result is dif-
ficult to interpret since both filters where applied to slightly
different model configurations and used different initial con-
ditions for the filters. Brusdal et al. (2003) have also pointed
out the strong similarity of the EnKF and SEEK algorithms.
However, the algorithm denoted therein as the SEEK filter
deviates from the way it was originally introduced. It corre-
sponds to the SEEK filter using a finite difference approxi-
mation for the forecast and is not formulated with the focus
on the analyzed quantities used in the original SEEK filter.

The discussion about error subspace Kalman filtering
is complicated by the application of different filters to dif-
ferent problems. Furthermore, different stabilization tech-
niques, e.g. covariance filtering (Hamill et al., 2001) or co-
variance inflation, are commonly introduced. While these
techniques stabilize the filter performance they make a rig-
orous comparison and understanding difficult. Here we com-
pare for the first time three algorithms in their original form
in the internationally accepted mathematical notation (Ide
et al., 1997). For the comparison we chose the SEEK filter,
representing the class of low-rank filters, and the EnKF,
which is widely used and represents the pure form of an en-
semble filter method. Under consideration is also the SEIK
filter which combines the strengths of both methods. Other
algorithms like the RRSQRT (Verlaan and Heemink, 1995),
ESSE (Lermusiaux and Robinson, 1999), or the ensemble
square-root filters, see (Tippett et al., 2003), can be easily
related to these algorithms. It is not our intention to discuss
the various stabilization techniques which may improve filter
performance in special cases but amount to the individual
tuning of each algorithm. Here we wish to focus on the sim-
ilarities and differences in the filter strategies.

To assess the behavior of different filter algorithms when
applied to a nonlinear test model in an oceanographic con-

text identical twin experiments are performed. The exper-
iments utilize shallow water equations with strongly non-
linear evolution. Synthetic observations of the sea surface
height are assimilated. Using identical conditions for the
algorithms permits a direct and consistent comparison of
the filter performances for various ensemble sizes. The ex-
periments are evaluated by studying the root mean square
(RMS) estimation error for a variety of different ensemble
sizes. In addition, an examination of the quality of the sam-
pled state covariance matrices shows how the different repre-
sentations of the covariance matrix and the different analysis
schemes of the filter algorithms yield varying filter perfor-
mances.

2 Filter mathematics

A good approach to the filter algorithms is given by
the probabilistic view similar to Cohn (1997). Here we fo-
cus on nonlinear large-scale systems. For ease of compari-
son, the notations follow the unified notation proposed by
Ide et al. (1997). First, statistical estimation is shortly pre-
sented and the EKF, which is the common basis of the fol-
lowing algorithms, is reviewed. Subsequently, the error sub-
space Kalman filters are discussed.

2.1 Statistical estimation

The data assimilation problem amounts to finding an
optimal estimate of the system state for a certain time in-
terval, given a dynamical model and observations at some
discrete times. We will focus on filtering, that is, the system
state at time tk is estimated on the basis of observations
available up to this time.

We consider a physical system which is represented in
discretized form by its true state xt of dimension n. Since
the model only approximates the true physics of the system,
xt is a random vector whose time propagation is given by
the stochastic-dynamic time discretized model equation

xt
i = Mi,i−1[x

t
i−1] + ηi . (1)

Here Mi,i−1 is a, possibly nonlinear, operator describing the
state propagation between the two consecutive time steps
i− 1 and i. The vector ηi is the model error, which is as-
sumed to be a stochastic perturbation with zero mean and
covariance matrix Qi.

At discrete times {tk}, typically each ∆k time steps,
observations are available as a vector yo

k of dimension mk.
The true state xt

k at time tk is assumed to be related to the
observation vector by the forward measurement operator Hk

as

yo
k = Hk[xt

k] + εk . (2)

Here Hk[xt
k] describes what observations would be measured

given the state xt
k. The vector εk is the observation error.

It consists of the measurement error due to imperfect mea-
surements and the representation error caused, e.g., by the
discretization of the dynamics. εk is a random vector which
is assumed to be of zero mean and covariance matrix Rk

and uncorrelated with the model error ηk.
The state sequence {xt

i}, prescribed by Eq. (1), is a
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stochastic process which is fully described by its probabil-
ity density function (PDF) p(xt

i). Accordingly, the filtering
problem is solved by the conditional PDF p(xt

k|Yo
k) of the

true state given the observations Yo
k = {yo

0, . . . ,y
o
k} up to

time tk. In practice it is not feasible to compute this den-
sity explicitly for large-scale models. Therefore, one typically
relies on the calculation of some statistical moments of the
PDF like the mean and the covariance matrix. In the context
of Kalman filters, usually the conditional mean < xt

k|Yo
k >

is computed, the expectation value of p(xt
k|Yo

k), which is
also the minimum variance estimate, see Jazwinski (1970).

In the following we will concentrate on sequential fil-
ter algorithms. That is, the algorithms consist of two steps:
In the forecast step the PDF p(xt

k−∆k|Yo
k−∆k) is evolved

up to the time tk when observations are available, yielding
p(xt

k|Yo
k−∆k). Then, in the analysis step, the PDF p(xt

k|Yo
k)

is computed from the forecasted density and the observation
vector y0

k. Subsequently, the cycle of forecasts and analyses
is repeated. To initialize the filter sequence an initial PDF
p(xt

0|Yo
0) is required. This PDF is in practice unknown and

an estimate p(x0) is used for the initialization.

2.2 The Extended Kalman Filter

For linear dynamic and measurement models, the KF is
the minimum variance and maximum likelihood estimator
if the initial PDF p(xt

0) and the model error and observa-
tion error processes are Gaussian. The EKF, see Jazwin-
ski (1970), is a first-order extension of the KF to nonlinear
models as given by equations (1) and (2). It is obtained by
linearizing the dynamic and measurement operators around
the most recent state estimate. To clarify the statistical as-
sumptions underlying the EKF we review it in the context
of statistical estimation. In addition, we discuss the approxi-
mations which are required for the derivation of the EKF. A
detailed derivation of the KF in the context of statistical es-
timation is presented by Cohn (1997) and several approaches
toward the EKF are discussed in Jazwinski (1970, chap. 7).

In the dynamic model (1) and the observation model
(2) we assume that the stochastic processes ηk and εk are
temporal white Gaussian processes with zero mean and co-
variance matrices Qk and Rk, respectively. Further, we as-
sume p(xt

k) to be Gaussian with covariance matrix Pk and
all three processes to be mutually uncorrelated. Denoting
the expectation operator by < >, the assumptions are sum-
marized as

ηi ∝ N (0,Qi) ; < ηiη
T
j >= Qiδij (3)

εk ∝ N (0,Rk) ; < εkεT
l >= Rkδkl (4)

xt
i ∝ N (x̄t

i,Pi) ; (5)

< ηkεT
k >= 0 ; < ηi(x

t
i)

T >= 0 ; < εk(xt
k)T >= 0 .(6)

Here N (a,B) denotes the normal distribution with mean a
and covariance matrix B. It is δkl = 1 for k = l and δkl = 0
for k 6= l. Under assumptions (3) - (5) the corresponding
PDFs are fully described by their two lowest statistical mo-
ments: the mean and the covariance matrix. Applying this
property, the EKF formulates the filter problem in terms of
the conditional means and covariance matrices of the fore-
casted and analyzed state PDFs.

The forecast equations of the EKF require only a
part of assumptions (3) to (6). Suppose the conditional

PDF p(xt
k−∆k|Yo

k−∆k) at time tk−∆k is given in terms
of the conditional mean xa

k−∆k :=< xt
k−∆k|Yo

k−∆k >,
denoted analysis state, and the analysis covariance matrix
Pa

k−∆k :=< (xt
k−∆k − xa

k−∆k)(xt
k−∆k − xa

k−∆k)T |Yo
k−∆k >.

In the forecast step, the EKF evolves the PDF forward up
to time tk by computing the mean and covariance matrix of
p(xt

k|Yo
k−∆k). The forecast equations are based on a Taylor

expansion to Eq. (1) at the last state estimate xa
i−1:

xt
i = Mi,i−1[x

a
i−1] + Mi,i−1z

a
i−1 + ηi +O(z2) (7)

where za
i−1 := xt

i−1 − xa
i−1 and Mi,i−1 is the linearization

of the operator Mi,i−1 around the estimate xa
i−1. The fore-

cast state of the EKF is obtained as the conditional mean
xf

k =< xt
k|Yo

k−∆k > while neglecting in Eq. (7) terms of
higher than linear order in za. Under the assumption that
the model error has zero mean it is

xf
i = Mi,i−1[x

a
i−1] . (8)

This equation is iterated until time tk to obtain xf
k . The cor-

responding forecast covariance matrix follows to first order
in za from equations (7), (8) as

Pf
k := < (xt

k − xf
k)(xt

k − xf
k)T |Yo

k−∆k >

= Mk,k−∆kP
a
k−∆kM

T
k,k−∆k + Qk (9)

where the assumption (6) that xt
k and ηk are uncorrelated

is used. The forecast step of the EKF is described by equa-
tions (8) and (9). The statistical assumptions required for
the derivation of these equations are only that xt

k and ηk

are uncorrelated processes, and that the model error is un-
biased. The PDFs are not required to be Gaussian.

The analysis step of the EKF computes the mean and
covariance matrix of p(xt

k|Yo
k) given the PDF p(xt

k|Yo
k−∆k)

and an observation vector yo
k which is available at time Tk.

Under the assumption that εk is white in time, the solution
is given by Bayes’ theorem as

p(xt
k|Yo

k) =
p(yo

k|xt
k)p(xt

k|Yo
k−∆k)

p(yo
k|Yo

k−∆k)
. (10)

This relation only implies the whiteness of εk. However, the
full set of assumptions (3) to (6) is required to compute
the analysis in terms of the mean and covariance matrix of
p(xt

k|Yo
k). The EKF analysis equations are based on a Taylor

expansion to the observation model (2) at the forecast state
xf

k . Neglecting in the expansion terms of higher than linear

order in zf
k = xt

k − xf
k the analysis state xa

k and analysis
covariance matrix Pa

k are obtained as

xa
k = xf

k + Kk(yo
k −Hk[xf

k ]) , (11)

Pa
k = (I−KkHk)Pf

k(I−KkHk)T + KkRkK
T
k (12)

= (I−KkHk)Pf
k (13)

where Hk denotes the linearization of the measurement op-
erator Hk around xf

k . Kk is denoted Kalman gain. It is de-
fined by

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)−1 = Pa

kH
T
k R−1

k (14)

where the latter equality requires that Rk is invertible.
Equations (11) to (14) complete the EKF.

To apply the EKF we need to initialize the filter se-
quence. For this, we have to supply an initial state estimate
xa

0 and a corresponding covariance matrix Pa
0 which repre-

sent the initial PDF p(xt
0).
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Remark 1: The forecast of the EKF is due to linearization.
The state forecast is only valid up to linear order in z
while the covariance forecast is valid up to second order
(z2 ∝ Pa). The covariance matrix is forecasted by the
linearized model. For nonlinear dynamics this neglect of
higher order terms can lead to instabilities of the filter
algorithm (Evensen, 1992).
Remark 2: The covariance matrix P is symmetric positive
semi-definite. In a numerical implementation of the KF
this property is not guaranteed to be conserved, if Eq. (13)
is used to update P since the operations on this matrix
are not symmetric. In contrast, Eq. (12) preserves the
symmetry.
Remark 3: For linear models the KF yields the optimal
minimum variance estimate if the covariance matrices Q
and R as well as the initial state estimate (xa

0 ,Pa
0) are cor-

rectly prescribed. Then the estimate is also the maximum
likelihood estimate for the PDF p(xt

k|Yo
k), see (Jazwinski,

1970, chap. 5.3). For nonlinear systems, the EKF can
only yield an approximation of the optimal estimate. For
large scale systems, like in oceanography where the state
dimension can be of order 106, there are generally only
estimates of the matrices P, Q, and R available. Also xa

0 is
in general only an estimate of the initial system state. Due
to this, the practical filter estimate is sub-optimal.
Remark 4: For large scale systems the largest computa-
tional cost resides in the forecast of the state covariance
matrix by Eq. (9). This requires 2n applications of the
(linearized) model operator. For large scale systems the
corresponding computational cost is not feasible. In addi-
tion, the storage of the covariance matrix is required which
contains n2 elements. This is also not feasible for large-scale
models and current size of computer memory.

2.3 Error subspace Kalman filters

The large computational cost of the EKF shows that a
direct application of this algorithm to realistic models with
large state dimension is not feasible. This problem has led to
the development of a number of approximating algorithms
from which three variants are examined here.

This work focuses on three algorithms, the EnKF
(Evensen, 1994; Burgers et al., 1998), the SEEK filter (Pham
et al., 1998a), and the SEIK filter (Pham et al., 1998b). As
far as possible the filters are presented here in the unified
notation (Ide et al., 1997) following the way they have orig-
inally been introduced by the respective authors. The rela-
tion of the filters to the EKF as well as possible variations
and particular features of them are discussed.

All three algorithms use a low-rank representation of
the covariance matrix either by a random ensemble or by
an explicit low-rank approximation of the matrix. Thus, the
filter analyses operate only in a low-dimensional subspace,
denoted the error subspace, which approximates the full er-
ror space. As the three algorithms use the analysis equations
of the EKF adapted to the particular method we refer to the
algorithms as Error Subspace Kalman Filters (ESKF). This
corresponds to the concept of error subspace statistical es-
timation (Lermusiaux and Robinson, 1999).

2.3.1 The Singular Evolutive Extended Kalman filter The
SEEK filter (Pham et al., 1998a) is a so called reduced rank
filter. It is based on the EKF with an approximation of the
covariance matrix Pa

0 by a singular matrix and its treatment
in decomposed form.

From the viewpoint of statistics the rank reduction is
motivated by the fact that the PDF p(xt

0) is not isotropic
in state space. If the PDF is Gaussian it can be described
by a probability ellipsoid, whose center is given by the mean
xa

0 and the shape is described by Pa
0 . The principal axes

of the ellipsoid are found by an eigenvalue decomposition
of Pa

0 : Pv(l) = λ(l)v(l), l = 1, . . . , n, where v(l) is the l’th
eigenvector and λ(l) the corresponding eigenvalue. Hence,

the principal vectors are {ṽ(l) = λ
1/2

(l) v(l)}. Approximating

Pa
0 by the r (r ¿ n) largest eigenmodes takes into account

only the most significant principal axes of the probability
ellipsoid. Mathematically, this provides the best rank-r ap-
proximation of Pa

0 , see Golub and van Loan (1989). The
retained principal directions define a tangent space at the
state space point xa

0 . This error subspace approximates the
full error space given by the full covariance matrix. The error
subspace is evolved up to the next analysis time of the filter
by forecasting the basis vectors {v(l)}. In the analysis step
the filter operates only in the most significant directions of
uncertainty given by the error subspace.

The SEEK filter is described by the following equations:
Initialization:
The initial PDF p(xt

0) is provided by the initial state esti-
mate xa

0 and a rank-r approximation (r ¿ n) of the covari-
ance matrix Pa

0 given in decomposed form

xa
0 =< xt

0 >; P̂a
0 := V0U0V

T
0 ≈ Pa

0 . (15)

Here the diagonal matrix U0 holds the r largest eigenval-
ues. Matrix V0 is of dimension n × r and contains in its
columns the corresponding eigenmodes of P̂a

0 , where we de-
note with the hat-symbol (̂ ) quantities that are particular
for the SEEK filter.
A popular choice for V0 is the matrix of empirical orthogo-
nal functions (EOFs) of a sequence of model states sampled
from a model integration over some period. However, this is
not necessary when better estimates of P0

a exist.
Forecast:
The forecast equations of the SEEK filters are derived from
the EKF by treating the covariance matrix in decomposed
form as provided by the initialization.

xf
i = Mi,i−1[x

a
i−1] (16)

Vk = Mk,k−∆kVk−∆k (17)

Analysis:
The analysis equations are a re-formulation of the EKF anal-
ysis equations for a covariance matrix given in decomposed
form. To maintain the rank r of P̂a

0 the model error covari-
ance matrix Qk is projected onto the error subspace by

Q̂k := (VT
k Vk)−1VT

k QkVk(VT
k Vk)−1 . (18)

With this, the analysis equations of the SEEK filter are for
an invertible matrix Rk

U−1
k = (Uk−∆k + Q̂k)−1 + (HkVk)T R−1

k HkVk , (19)

xa
k = xf

k + K̂k(yo
k −Hk[xf

k ]) , (20)

K̂k = VkUkV
T
k HT

k Rk
−1 . (21)
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The analysis covariance matrix is implicitly given by
P̂a

k := VkUkV
T
k .

Re-initialization:
The mode matrix Vk can be directly used to evaluate the
next forecast step. However, to avoid that the modes {v(i)}
become large and more and more aligned, a re-orthonormali-
zation of these vectors is useful. This can be performed by
computing the eigenvalue decomposition of the r× r-matrix

Bk := AT
k VT

k VkAk (22)

where Ak is obtained from a Cholesky decomposition
AkA

T
k = Uk. The eigenvalues of Bk are the same as the

non-zero eigenvalues of P̂a
k. Let Bk = CkDkC

T
k be the

eigenvalue decomposition of Bk where Ck contains in its
columns the eigenvectors and the diagonal matrix Dk the
corresponding eigenvalues. Then the re-orthonormalized er-
ror subspace basis V̂ and corresponding eigenvalue matrix
Û are given by

V̂k = VkAkCkD
−1/2
k ; Ûk = Dk . (23)

Remark 5: The algorithm is designed to treat the covari-
ance matrix in the decomposed form P̂ = VUVT . Using a
truncated eigenvalue decomposition of a prescribed matrix
Pa

0 yields mathematically the best approximation of this
matrix. Pa

0 can also be given in implicit form, e.g., as the
perturbation matrix of a state trajectory. In this case the
rank reduction and decomposition of Pa

0 can be computed
by a singular value decomposition of the perturbation ma-
trix without explicitly computing the matrix Pa

0 . However,
we like to stress once more that the matrix V0 need not be
derived from an EOF analysis.
Remark 6: The covariance forecast is computed by fore-
casting the r modes of P̂. With typically r < 100 this brings
the forecast step toward acceptable computation times.
Remark 7: The SEEK filter is a re-formulation of the EKF.
It focuses on the analyzed state estimate and covariance ma-
trix. The SEEK filter, however, inherits the stability prob-
lem of the EKF by considering only the two lowest statistical
moments of the PDF. If r is too small, this problem is even
amplified, as P̂a systematically underestimates the variance
prescribed by the full covariance matrix Pa.
Remark 8: In practice it can be difficult to specify the lin-
earized dynamic model operator Mi,i−1. Alternatively, one
can apply a finite difference approximation. That is, the fore-
cast of column α of Va

i−1, denoted by Va
i−1,α, is given by:

Mi,i−1V
a
i−1,α ≈

Mi,i−1[x
a
i−1 + εVa

i−1,α]−Mi,i−1[x
a
i−1]

ε
(24)

For a finite difference approximation the coefficient ε needs
to be a small positive number (ε ¿ 1). Some authors (Voor-
rips et al., 1999; Heemink et al., 2001) report the use of ε ≈ 1.
This can bring the algorithm beyond a purely tangent-linear
forecast, but it is no more defined as a finite difference ap-
proximation and would require an ensemble interpretation.
Sometimes the use of the gradient approximation (24) is de-
noted as the interpolated variant of the SEEK filter (i.e. as
SEIK). However, this should not be confused with the SEIK
algorithm by Pham et al. (1998b) which involves many more
steps (see below).
Remark 9: The increment for the analysis update of the
state estimate in equation (20) is computed as a weighted
average of the mode vectors in Vk which belong to the error

subspace. This becomes visible when the definition of the
Kalman gain (Eq. 21) is inserted into Eq. (20):

xa
k = xf

k + Vk

[
UkV

T
k HT

k Rk
−1

(
yo

k −Hk[xf
k ]

)]
(25)

The term in brackets represents a vector of weights for com-
bining the modes V.
Remark 10: Equation (19) for the matrix Uk can be mod-
ified by multiplying with a so called forgetting factor ρ,
(0 < ρ 6 1) (Pham et al., 1998a):

U−1
k = (ρ−1Uk−∆k + Q̂k)−1 + (HkVk)T R−1

k HkVk (26)

The forgetting factor can be used as a tuning parameter of
the analysis step to downweight the state forecast relative
to the observations. This can increase the filter stability as
the systematic underestimation of the variance is reduced.
Remark 11: In equation (17) the modes V of P̂ are
evolved with initially unit norm. However, it is also possible
to use modes scaled by the square root of the corresponding
eigenvalue and matrix U being the identity matrix. Then
the re-diagonalization should be performed after each
analysis step, replacing equations (23) by V̂k = VkCk

and Ûk = Ir×r. This scaled algorithm is equivalent to the
RRSQRT algorithm by Verlaan and Heemink (1995).

2.3.2 The Ensemble Kalman filter The EnKF (Evensen,
1994; Burgers et al., 1998) has been introduced as a Monte
Carlo method to sample and forecast the PDF. The initial
density p(xt

0) is sampled by a finite random ensemble of
state realizations. Each ensemble state is forecasted with
the stochastic model (1) and updated in the analysis step.

From the statistic viewpoint the EnKF solves, for suf-
ficiently large ensembles, the Fokker-Planck-Kolmogorov
equation for the evolution of the PDF p(xt) by a Monte
Carlo method. In contrast to the SEEK algorithm, where
the rank reduction directly uses the assumption that the
PDF is Gaussian and thus can be described by a probability
ellipsoid, the EnKF samples the PDF by a random ensemble
of N model states {xa(α)

0 , α = 1, . . . , N}. Denoting by dN
the number of ensemble states lying within some volume el-
ement in state space, the PDF p(xt) is approximated by the
ensemble member density dN/N in state space. This sam-
pling of p(xt

0) converges rather slow (proportional to N−1/2),
but it is valid for any kind of PDF, not just Gaussian ones.
Forecasting each x

a(α)
0 with the stochastic-dynamic model

(1) evolves the sampled PDF with the nonlinear model up
to the next analysis time. In the analysis step, the EKF anal-
ysis, which implies that the PDFs are Gaussian, is applied
to each of the ensemble states. The covariance matrix P is
approximated for the analysis by the ensemble covariance
matrix P̃. Since the rank of P̃ is at most N − 1, the EnKF
also operates in an error subspace which is determined by
the random sampling. To ensure that the ensemble analysis
represents the combination of two PDFs, a random ensem-
ble of observations is required in the analysis step (Burgers
et al., 1998). Each ensemble state is then updated using a
vector from this observation ensemble. This implicitly up-
dates the state covariance matrix.

The EnKF algorithm according to (Evensen, 1994) is
described by the following equations:
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Initialization:
The initial PDF p(xt

0) is sampled by a random ensemble

{xa(l)
0 , l = 1, . . . , N} (27)

of N state realizations: The statistics of this ensemble ap-
proximate the initial state estimate and the corresponding
covariance matrix, thus for N →∞:

xa
0 =

1

N

N∑
l=1

x
a(l)
0 →< xt

0 > , (28)

P̃a
0 :=

1

N − 1

N∑
l=1

(
x

a(l)
0 − xa

0

)(
x

a(l)
0 − xa

0

)T

→ Pa
0 (29)

where the tilde is used to characterize quantities which are
particular for the EnKF algorithm.
Forecast:
Each ensemble member is evolved up to time tk with the
nonlinear stochastic-dynamic model (1) as

x
a(l)
i = Mi,i−1[x

a(l)
i−1] + η

(l)
i (30)

where each ensemble state is subject to individual noise η
(l)
i .

Analysis:
For the analysis a random ensemble of observation vectors
{yo(l)

k , l = 1, . . . , N} is generated. The ensemble statistics
approximate the observation error covariance matrix Rk.
Each ensemble member is updated analogously to the EKF
analysis by

x
a(l)
k = x

f(l)
k + K̃k

(
y

o(l)
k −Hk[x

f(l)
k ]

)
, (31)

K̃k = P̃f
kH

T
k

(
HkP̃

f
kH

T
k + Rk

)−1

, (32)

P̃f
k =

1

N − 1

N∑
l=1

(
x

f(l)
k − xf

k

)(
x

f(l)
k − xf

k

)T

. (33)

The analysis state and covariance matrix are then defined
by the ensemble mean and covariance matrix as

xa
k :=

1

N

N∑
l=1

x
a(l)
k , (34)

P̃a
k :=

1

N − 1

N∑
l=1

(
x

a(l)
k − xa

k

)(
x

a(l)
k − xa

k

)T

(35)

which complete the analysis equations of the EnKF.
An efficient implementation of this analysis is formu-

lated in terms of ’representers’ (Bennett, 1992; Evensen and
van Leeuwen, 1996). This formulation also allows to handle
the situation when HkP̃

f
kHk

T is singular, which will occur
if mk > N . The state analysis Eq. (31) is rewritten as

x
a(l)
k = x

f(l)
k + P̃f

kH
T
k b

(l)
k . (36)

The columns of the matrix P̃f
kH

T
k are called representers and

constitute influence vectors for each of the measurements.
Amplitudes for the influence vectors are given by the vectors
{b(l)

k } which are obtained as the solution of

(HkP̃
f
kHk

T + Rk)b
(l)
k = y

o(l)
k −Hk[x

f(l)
k ] . (37)

In addition, explicit computation of P̃f
k by Eq. (33), is

not needed. It suffices to compute (see, e.g., Houtekamer and
Mitchell (1998)):

P̃f
kH

T
k =

1

N − 1

N∑
l=1

(x
f(l)
k − xf

k)[Hk(x
f(l)
k − xf

k)]T , (38)

HkP̃
f
kH

T
k =

1

N − 1

N∑
l=1

Hk(x
f(l)
k −xf

k)[Hk(x
f(l)
k −xf

k)]T (39)

The EnKF comprises some particular features due to
the use of a Monte Carlo method in all steps of the filter:
Remark 12: Using a Monte-Carlo sampling of the initial
PDF also non-Gaussian densities can be represented. As
the sampling convergences slowly with N−1/2 rather large
ensembles (N > 100) are required (Evensen, 1994; Evensen
and van Leeuwen, 1996) to avoid too big sampling errors.
Remark 13: The forecast step evolves all N ensemble
states with the nonlinear model. This also allows for non-
Gaussian densities. Algorithmically the ensemble evolution
has the benefit that a linearized model operator is not
required.
Remark 14: The analysis step is derived from the EKF.
Thus, it assumes Gaussian PDFs and only accounts for the
two lowest statistical moments of the PDF. Using the mean
of the forecast ensemble as state forecast estimate leads
for sufficiently large ensembles to a more accurate estimate
than in the EKF. From the Taylor expansion, Eq. (7), it
is obvious that this takes into account higher order terms
than the EKF does. In contrast to the EKF and SEEK
filters P is only updated implicitly by the analysis of the
ensemble states.
Remark 15: The generation of an observation ensemble is
required to ensure consistent statistics of the updated state
ensemble (Burgers et al., 1998; Houtekamer and Mitchell,
1998). With the observation ensemble the covariance
matrix Rk in Eq. (12) is represented as R̃k. This, however,
introduces additional sampling errors to the ensemble which
are largest when the ensemble is small compared to the
rank of Rk, e.g. if Rk is diagonal. Furthermore, it is likely
that the state and observation ensembles have spurious
correlations. This introduces an additional error term in
Eq. (12), see (Whitaker and Hamill, 2002)
Remark 16: While for sufficiently large ensembles the
EnKF can be considered as solving the Fokker-Planck-
Kolmogorov equation by a Monte Carlo method this is not
valid for very small ensembles. In this case, the EnKF needs
to be regarded as an error-subspace method.
Remark 17: Combining equations (31), (32), and (38)
it becomes obvious that the analysis increments for the
ensemble states are computed as weighted means of the

error-subspace vectors {xf(l)
k − xf

k}. Alternatively the
analysis can also be interpreted as a weakly nonlinear
combination of the ensemble states (Evensen, 2003). The
latter interpretation, however, hides the error-subspace
character of the algorithm.
Remark 18: If the number of observations is larger than
the ensemble size, it will be costly to compute the matrix
P̃f

kH
T
k explicitly according to Eq. (38). In this case it is

more efficient to change the order of matrix computations
such that P̃f

kH
T
k is not computed explicitly.

Remark 19: In equations (32) and (37) it is possible to
use, instead of the prescribed matrix Rk, the matrix R̃k as
sampled by the observation ensemble {yo(l)

k }. This allows
for a computationally very efficient analysis scheme as
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proposed by Evensen (2003). However, due to the sampling
problems of Rk this can lead to a further degradation of
the filter quality.

2.3.3 The Singular Evolutive Interpolated Kalman Filter
The SEIK filter (Pham et al., 1998b) has been derived as a
variant of the SEEK algorithm using interpolation instead
of linearization for the forecast step. Alternatively, the SEIK
filter can be interpreted as an ensemble Kalman filter using
a preconditioned ensemble and a computationally very effi-
cient analysis formulation. The SEIK algorithm should not
be mixed up with other interpolated variants of the SEEK
filter, like Verron et al. (1999), which typically correspond
to the SEEK filter with finite difference approximation (Eq.
24).

Statistically the initialization of the SEIK filter is anal-
ogous to that of the SEEK algorithm: The PDF p(xt

0) is
again represented by the principal axes of Pa

0 and approxi-
mated by the r largest eigenmodes. However, the SEIK algo-
rithm does not evolve the eigenmodes directly but generates
a stochastic ensemble of r + 1 state realizations. This en-
semble exactly represents the mean and covariance matrix
of the approximated PDF. The PDF is forecasted by evolv-
ing each of the ensemble members with the nonlinear model
as in the EnKF. The evolved error subspace is determined by
computing the state forecast estimate and covariance matrix
from the ensemble. The analysis is performed analogously to
the SEEK filter followed by a re-initialization.

The SEIK filter is described by the following equations:
Initialization:
The initial PDF p(xt

0) is provided by Eq. (15) as the initial
state estimate xa

0 and a rank-r approximation of Pa
0 given

in decomposed form. From this information an ensemble

{xa(l)
0 , l = 1, . . . , r + 1} (40)

of r + 1 state realizations is generated which fulfills

xa
0 ≡ xa

0 , (41)

P̌a
0 :=

1

r + 1

r+1∑
l=1

(x
a(l)
0 − xa

0)(x
a(l)
0 − xa

0)T ≡ P̂a
0 (42)

where the check-symbol (̌ ) is used to characterize quantities
particular to the SEIK filter.

To ensure that equations (41) and (42) hold, the ensem-
ble is generated in a procedure called minimum second-order
exact sampling, see e.g. Pham (2001) For this, let C0 con-
tain in its diagonal the square roots of the eigenvalues of
P̂a

0 , such that U0 = CT
0 C0. Then P̌a

0 is written as

P̌a
0 = V0C

T
0 ΩT

0 Ω0C0V
T
0 , (43)

where Ω0 is a (r +1)× r random matrix whose columns are
orthonormal and orthogonal to the vector (1, . . . , 1)T which
can be obtained by Householder reflections, see e.g. Hoteit
et al. (2002). The state realizations of the ensemble are then
given by

xa(l)
0 = xa

0 +
√

r + 1 V0C
T
0 ΩT

0,l , (44)

where ΩT
0,l denotes the l-th column of ΩT

0 .
The formulation of the SEIK filter is based on an effi-

cient description of P̌a
0 in terms of the ensemble states. De-

noting Xa
0 = [x

a(1)
0 , . . . ,x

a(r+1)
0 ] the matrix whose columns

are the ensemble state vectors it is

P̌a
0 =

1

r + 1
Xa

0T(TT T)−1TT (Xa
0)T . (45)

Here T is a (r + 1) × r matrix with zero column sums. A
possible choice for T is

T =

(
Ir×r

01×r

)
− 1

r + 1

(
1(r+1)×r

)
. (46)

Here 0 is the matrix holding only zeros and 1 the matrix
with only unit entries. Matrix T fulfills the purpose of im-
plicitly subtracting the ensemble mean when computing P̌a

0 .
Eq. (45) can be written in a form analogous to the covariance
matrix in (15) as

P̌a
0 = L0GLT

0 (47)

with

L0 := Xa
0T ; G :=

1

r + 1

(
TT T

)−1
. (48)

Forecast:
Each ensemble member is evolved up to time tk with the
nonlinear dynamic model equation

x
f(l)
i = Mi,i−1[x

a(l)
i−1] . (49)

Analysis:
The analysis equations are analogous to the SEEK filter,
but here the state forecast estimate is given by the ensemble

mean xf
k . To maintain the rank r of P̌k the matrix Qk is

projected onto the error subspace, analogously to the SEEK
filter, by

Q̌k := (LT
k Lk)−1LT

k GLk(LT
k Lk)−1 . (50)

Then, the analysis equations are

U−1
k = [G + Q̌k]−1 + (HkLk)T R−1

k HkLk , (51)

xa
k = xf

k + Ǩk(yo
k −Hk

[
xf

k

]
) , (52)

Ǩk = LkUkL
T
k HT

k Rk
−1 . (53)

The analysis covariance matrix is implicitly given by P̌a
k :=

LkUkL
T
k .

Re-initialization:
To proceed with the filter sequence the ensemble has to be
transformed to represent the analysis state and covariance
matrix at time tk. The procedure is analogous to the initial
ensemble generation but here a Cholesky decomposition is
applied to obtain U−1

k = CkC
T
k . Then P̌a

k can be written in
analogy to (43) as

P̌a
k = Lk(C−1

k )T ΩT
k ΩkC

−1
k LT

k , (54)

where Ωk has the same properties of orthonormality and or-
thogonality to (1, ..., 1)T as in the initialization. Accordingly
the ensemble members are given by

x
a(l)
k = xa

k +
√

r + 1 Lk(C−1
k )T ΩT

k,l . (55)

The SEIK algorithm shares features of both the SEEK
filter and the EnKF:
Remark 20: Operating with an ensemble method in an
error subspace given by the most significant directions of
uncertainty the SEIK filter is similar to the concept of
Error Subspace Statistical Estimation (Lermusiaux and

7



Robinson, 1999). The analysis is also similar to variants of
the EnKF denoted Ensemble Square Root Kalman filters
(Tippett et al., 2003) which do not use an ensemble of
observations, but perform a transformation of the ensemble
after updating the ensemble mean (Anderson, 2001; Bishop
et al., 2001; Whitaker and Hamill, 2002; Ott et al., 2004).
The difference between these filters and the SEIK filter lies
in the fact that they compute the analysis update in the
observation space rather than the error subspace.
Remark 21: Using second order exact sampling of the
low-rank approximated covariance matrix leads to smaller
sampling errors of the ensemble covariance matrix compared
to the Monte Carlo sampling in the EnKF.
Remark 22: The ensemble members are evolved with
the nonlinear model. Thus, as algorithmic benefit, the
linearized model operator is not required.
Remark 23: Eq. (49) does not include model errors.
However, it is possible to extend the equation to treat
model errors as a stochastic forcing like in the EnKF (Eq.
30).
Remark 24: The forecast state estimate is computed as
the mean of the ensemble forecast. Analogous to the EnKF
this leads to a forecast accounting for higher order terms in
the Taylor expansion Eq. (7).
Remark 25: As for the SEEK filter, the increment for the
analysis update of the state estimate (Eq. (52) is computed
as a weighted average of the error-subspace vectors in
Lk. In addition, this is also true for the increments of the
ensemble states (Eq. 55).
Remark 26: Since the structure of T is known, the SEIK
filter can be implemented without explicitly computing
matrix Lk according to Eq. (48) but with T as an operator.
Remark 27: The analysis and re-initialization steps of
the SEIK filter can be re-formulated to obtain an ensemble
analysis analogous to that of the EnKF. For this, each
ensemble member is updated according to Eq. (31) with a
Kalman gain given by Eq. (53) and an observation from a
generated ensemble of observations. No re-initialization of
the ensemble is required. This algorithm will be less costly
than the analysis of the EnKF. However, this variant of the
SEIK filter will show the problem of sampling errors which
is also inherent to the EnKF (see remark 15).

3 Comparison of the EnKF, SEEK and SEIK
algorithms

For the application of filter algorithms to geophysical
modeling problems we are concerned with the search for
filter algorithms for large-scale nonlinear systems. The al-
gorithmic formulations of all three filters look quite sim-
ilar which is due to their relation to the EKF. However,
the small algorithmic differences can be expected to lead to
significantly different filter performances in particular with
nonlinear models. Brusdal et al. (2003) compared the EnKF
and SEEK filters, but focused rather on the similarity of
the algorithms. We will compare the filters here with a fo-
cus on their differences and discuss consequences for their
application to large-scale nonlinear systems.

3.1 Representation of initial error subspaces

The initialization of the algorithms implies their differ-
ent representation of the error subspace approximating the
PDF p(xt

0). The Monte Carlo sampling used in the EnKF
represents p(xt

0) by a random ensemble of model state re-
alizations. This approach allows to sample arbitrary PDFs
but converges rather slow since the relative importances of
the error space directions are not taken into account. The
SEEK and SEIK algorithms represent the error subspace by
the r major principal axes of the error ellipsoid described
by the covariance matrix Pa

0 . This implies that the PDF is
Gaussian or at least well described by Pa

0 . The SEEK filter
treats the covariance matrix directly in it’s decomposed form
given by eigenvectors and a matrix of eigenvalues. The SEIK
filter uses a stochastic ensemble of minimum size, generated
by minimum second-order exact sampling, whose ensemble
statistics exactly represent the approximated Pa

0 . For SEEK
and SEIK filters the convergence of the approximation with
increasing r depends on the eigenvalue spectrum of Pa

0 . Typ-
ically, the sampling error in the SEEK and SEIK filters will
be much smaller than in the EnKF.

Despite their different representations of the error sub-
space, all three filters can be initialized from the same PDF
or covariance matrix. For a consistent comparison of the fil-
ter performance of different algorithms it is even necessary to
use the same initial conditions. Furthermore, the EnKF and
SEIK algorithms are in fact independent from the method
the state ensembles are generated. Thus, the initialization
methods of Monte Carlo sampling and second-order exact
sampling can be interchanged between the EnKF and the
SEIK filter.

3.2 Prediction of error subspaces

The forecast step of the filter algorithms computes a
prediction of the state estimate xf

k and the error subspace
at the next observation time tk. The SEEK filter evolves
the state estimate xa

k−∆k with the nonlinear model to pre-

dict xf
k . This only approximates the mean of the evolved

PDF. To evolve the basis of the error subspace, the eigen-
modes of Pa

k−∆k are integrated with the linearized model or
a finite difference approximation of it. In contrast, the EnKF
and SEIK algorithms rely on nonlinear ensemble forecasting.
This accounts for higher order terms in the Taylor expan-
sion, Eq. (7).

Due to the different forecast schemes, the EnKF and
SEIK algorithms have the potential to provide much more
realistic predictions of the error subspace with nonlinear
models than the SEEK filter. Also it can be dangerous to
directly evolve the modes of Pa

k−∆k, since this does not rep-
resent nonlinear interactions between different modes and
the increasingly finer scales of higher modes can lead to fore-
casts which do not provide meaningful directions of the error
subspace.

3.3 Treatment of model errors

The SEEK and SEIK filters consider model errors by
adding the model error covariance matrix Q to the fore-
casted state covariance matrix. This is analogous to the
EKF, with the difference that the SEEK/SEIK algorithms
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neglect parts of the Q which are orthogonal to the error
subspace to conserve the dimension of the error subspace.
Alternatively, a simplified treatment is possible by apply-
ing the forgetting factor. This increases the variance in all
directions of the error subspace by the same factor.

The EnKF applies a stochastic forcing during the en-
semble forecast to account for model errors. It is also possible
to use a forgetting factor with the EnKF (See, e.g. Hamill
et al. (2001), where it is denoted as ’covariance inflation’).
Since the SEIK filter also uses an ensemble forecast it is
possible to apply stochastic forcing in this algorithm, too.

In the context of a nonlinear system, the addition of Q
at observation times is only an approximation since over fi-
nite time the additive stochastic forcing in Eq. (1) will result
in non-additive effects. Thus, applying stochastic forcing to
the ensemble evolution will, in general, yield a more realistic
representation of model errors than the addition of a matrix
Q. However, this requires the model errors to be known or,
at least, to be well estimated. When the model errors are
only poorly known, the forgetting factor provides a simple
and numerically very efficient way to account for them and
to stabilize the filtering process.

3.4 The analysis step

The analysis step of all three algorithms is based on the
EKF analysis. Hence, only the first two statistical moments
of the predicted PDF, the mean and covariance matrix, are
taken into account. This implies that the analysis step will
provide only reasonable and approximately variance min-
imizing results if non-Gaussian parts of the PDFs of the
state and the observations have negligible influence for the
analysis update. For nonlinear models this can occur, e.g., if
the analyzed covariance is small, see van Leeuwen (2001). If
this is not fulfilled, the forecast density for nonlinear systems
will contain non-Gaussian parts which limit the applicability
of the analysis equations. However, Brusdal et al. (2003) ar-
gued that in large-scale oceanographic applications the state
density will usually be close to Gaussian if a sufficient num-
ber of observations with Gaussian errors is assimilated. This
will at least be fulfilled, if no strong nonlinearity is present.

The analysis of the SEEK filter is just a re-formulation
of the EKF update equations for a mode-decomposed co-
variance matrix P̂a. The state estimate, given by the central
forecast, is updated using a Kalman gain computed from P̂a

which itself is obtained by updating only the matrix U of
size r × r. The analysis of the EnKF and SEIK algorithms
use the ensemble mean as forecast state estimate xf and a
covariance matrix (P̃k, P̌k) computed from the ensemble
statistics. While the SEIK filter updates the single xf

k and
the matrix U, the EnKF updates each ensemble member us-
ing for each update an observation vector from an ensemble
of observations which needs to be generated. P̃f

k is updated
implicitly by this ensemble analysis.

The requirement for an observation ensemble points to
the drawback of the EnKF that for finite ensembles the ob-
servation ensemble will introduce additional sampling errors
in the analyzed state ensemble, see Whitaker and Hamill
(2002). This is particularly pronounced if the rank of Rk is
larger than the ensemble size which occurs if the dimension
of the observation vector is large compared to the ensemble
size and if Rk is diagonal.

For linear dynamic and measurement operators the pre-
dicted error subspace in the SEEK and SEIK algorithms will
be identical if the same rank r is used and model errors are
treated in the same way. Since also the analysis steps are
equivalent, both filters will yield identical results for linear
dynamics. The filter results of the EnKF will differ from
that of the SEEK/SEIK filters even for linear dynamics and
N = r +1. This is due to the introduction of sampling noise
by the Monte Carlo ensembles.

3.5 Re-Initialization

Since the EnKF updates the whole ensemble of model
states in the analysis step, the algorithm can proceed di-
rectly to the next ensemble forecast without the need of a
re-initialization algorithm. In contrast to this, in the SEIK
filter a new state ensemble representing P̌a

k and xa
k has to

be generated, which can be done by a transformation of the
forecast ensemble. In the SEEK filter the forecasted modes
of the covariance matrix can be used directly in the next
forecast step. In general, these are no more the basis vectors
of the error subspace, since they are not orthonormal. A
re-orthonormalization of the modes is recommendable and
can be performed occasionally to stabilize the mode fore-
cast. The choice whether an algorithm with or without re-
initialization is used has no particular implications for the
performance of the filter algorithm.

4 Computational cost

In most realistic filtering applications the major amount
of computing time is spent for the model evolution. This
time is proportional to the size of the ensemble to be evolved.
It is equal for all three algorithms if r + 1 = N where r is
the rank of the approximated covariance matrix in the SEEK
and SEIK filters and N is the ensemble size in the EnKF. For
efficient data assimilation it is thus of highest interest to find
that algorithm which yields the best filtering performance,
in terms of estimation error reduction, with the smallest
ensemble size. The forecast step consists of N independent
model evaluations. This is also true for the SEEK filter if
a finite difference approximation of the linearized model is
used. Thus, the forecast step of the filters can easily be par-
allelized for all three filters. The computation time spent
in the analysis and re-initialization steps can also be non-
negligible, especially if observations are frequently available.
The three filter algorithms can show significant differences
in these steps. Below we assume n À m > N as will occur
typically with large scale models. Also m can be significantly
larger than N , e.g., if data from satellite altimetry is used.
Under this assumption operations on arrays involving the
dimension n are most expensive followed by operations on
arrays involving the dimension m. Table 1 shows the scal-
ing of the computational cost for the three filter algorithms.
Since the interest is only in the scaling, the numbers neglect
the difference between r and N . N is used if some opera-
tion is proportional to the ensemble size or the rank of the
covariance matrix.

Without the explicit treatment of the model error co-
variance matrix Q, the SEEK filter is the least costly algo-
rithm. All operations which depend on the state dimension
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Table 1. Computational complexity of the filter algorithms. The
scaling numbers only show the dependence on the three dimen-
sions. The first column shows the number of the corresponding
equation. The difference between the ensemble size N and the
rank r is neglected. Thus, the complexity is given in terms of N
also for the SEEK filter. h denotes the cost of the observation
operator.

equation O(operations)

SEEK analysis

19 m2N + mN2 + m + N · h
20/21 nN + n + mN + m + h + N3 + N2

18 n2N + nN2 + N3

SEEK re-initialization

22 nN2 + N3

23 nN2 + nN + N3 + N2

SEIK analysis

51 m2N + mN2 + mN + N2 + N · h
52/53 nN + n + mN + m + h + N3 + N2 + N

50 n2N + nN2 + N3

SEIK re-initialization

55 nN2 + nN + N3 + N2 + N

EnKF analysis

39 m2N + mN + N · h
37 m3 + m2N + mN
36 nN2 + nN + mN2

n scale linear with n. The matrix of weights for the state
update is computed in the error subspace. Thus, the com-
plexity of the related operations depends on O(N). Most
costly will be here the inversion of U−1 which scales with
O(N3). The product R−1HV, which is required to update
U−1 according to Eq. (19), is the only operation which can
scale nonlinearly in m. In the worst case the cost will scale
with O(m2N) which will only occur if the matrix R is non-
diagonal, that is if different measurements are correlated. If
the measurements are independent, R is diagonal. Hence,
the product will scale with O(mN). Since the product can
be implemented with R−1 as an operator, it can always be
computed in an optimal way depending on the structure of
R−1. The re-initialization of the SEEK filter requires ex-
tensive operations on the matrix V which holds the modes
of the covariance matrix. The cost of the computation of
the product VT V in Eq. (22) and the initialization of the
new orthonormal modes in Eq. (23) scales proportional to
O(nN2). Since it is only occasionally required to compute
the re-initialization, this operation will not affect the overall
numerical efficiency of the SEEK filter.

The computational cost of the analysis step of the SEIK
filter is very similar to that of the SEEK algorithm. The
computation of the ensemble mean state in Eq. (52) will
produce an overhead in comparison to the SEEK algorithm.
Its cost scales with O(nN +n). Other additional operations
in comparison to the SEEK filter are applications of the ma-
trix T. Since the multiplication with T can be implemented
as operators, these products require 2mN +m+2N floating

point operations. Finally, the initialization of matrix G (Eq.
48) is required. This will require N2 operations, since it can
be performed directly without computing the product TT T.
The re-initialization step of the SEIK filter (Eq. 55) is signif-
icantly less costly compared to that of the SEEK algorithm,
since no diagonalization of P̌a is performed. The weight ma-
trix for the ensemble transformation is computed entirely in
the error subspace. Most costly will be Cholesky decom-
position of U−1 and the inversion of C. The cost of these
operations scales with O(N3) and can have a significant cost
for rather large ensembles. The cost of the initialization of
the matrix Ω can be neglected. For each re-initialization,
the same matrix Ω can be used in Eq. (55). Thus, Ω can be
stored. Operations on matrices involving the dimension n
occur finally in the computation of the new ensemble states.
The cost of these operations scale linearly with O(n).

The computational cost of the SEEK and SEIK algo-
rithms will increase strongly if the model error covariance
matrix Q is taken into account. This is due to the amount
of operations required for the projection of Q onto the er-
ror subspace (equations 18 and 50). If Q has full rank this
projection requires O(n2N + nN2 + N3) operations. Due to
the part scaling with O(n2N), it is unpractical to apply this
projection. The computational cost is significantly smaller
if Q has a low rank of k ¿ n and is stored in square root
form Q = AAT with A being some n by k matrix. In this
case, the projection requires O(nN2 +nkN +N2k+N3) op-
erations. Hence, the cost of the projection is comparable to
the cost of the re-initialization steps of the SEEK and SEIK
filters if k ≈ N . If the model errors are only poorly known it
would probably be too costly to apply this projection. Alter-
natively, the forgetting factor could be used which requires
N2 operations. In the SEIK filter it is also possible to apply
model errors as a stochastic forcing during the forecast step.
If this forcing is applied at every time step to each element
of all ensemble states, its cost scales with O(nN) for each
time step.

The EnKF appears appealing as it does not require an
explicit re-initialization of the ensemble since the ensem-
ble states are updated during the analysis step of the filter.
The cost of the ensemble update according to Eq. (36) scales
with O(nN2+nN +mN2). Hence, the cost of this operation
is larger than the re-initializations in the SEEK and SEIK
filters. In fact, the computation of new modes or ensem-
ble states amounts for all three filters to the calculation of
weighted averages of the prior ensembles or modes. Since the
EnKF uses the representer formulation which operates in the
observation space rather than the error subspace, it requires
more operations than the SEIK and SEIK filters if m > N .
In addition, all other operations in the analysis algorithm are
dependent on m. The cost of the solver step for the represen-
ter amplitudes in Eq. (37) scales with O(m3 +m2N). Thus,
this operation will be very costly if large observational data
sets are assimilated. Costly will be also the computation of
the matrix HP̃fHT which scales with O(m2N). Another
costly operation can be the generation of an ensemble of ob-
servations. This can be implemented using a transformation
of independent random numbers (see, e.g. Fukumori (2002)).
The transformation requires the eigenvalue decomposition
of the matrix R which scales with O(m3). The cost of the
subsequent initialization of the ensemble vectors is propor-
tional to O(m2N). Hence, the generation of the observation
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ensemble is of comparable complexity to the solver step for
the representer amplitudes. Computationally it is most effi-
cient to perform the ensemble update in matrix form. That
is, the residuals {d(l) = y

o(l)
k −Hk[x

f(l)
k ]} are stored in the

columns of a matrix D, then all amplitudes {b(l)} are com-
puted at once according to Eq. (37). Finally all ensemble
states are updated at once according to Eq. (36). This pro-
cedure requires more computer memory, but it can be better
optimized by compilers than a serial version where for each
single residual the amplitudes and finally a single updated
ensemble state is computed. Overall, the EnKF analysis re-
quires more operations than the SEEK and SEIK filters if
the observation dimension m is lager than the ensemble size
N . This is caused by the representer formulation used in the
EnKF. Due to this, the EnKF operates on the observation
space rather than the error subspace which is directly taken
into account by the SEEK and SEIK filters.

To optimize the performance of the EnKF and its abil-
ity to handle very large observational data sets, Houtekamer
and Mitchell (2001) discussed the use of an iterated analy-
sis update. In this case, the observations are subdivided into
batches of independent observations. Each iteration uses one
batch of observations to update the ensemble states. This re-
duces the effective dimension of the observation vector. It is
also common practice to follow this approach and perform
a set of local analyses, see e.g. Evensen (2003). Since the
EnKF contains several operations which scale withO(m3) or
O(m2), this technique diminishes the computational cost of
the algorithm. In addition, the memory requirements are re-
duced. The iterative analysis update can also be applied with
the SEEK and SEIK filters. As has been discussed above,
only the cost of the product R−1HV can scale with O(m2)
if R−1 is not diagonal while all other operations in the anal-
ysis step of the SEEK and SEIK filters scale at most linearly
with m. Hence, no particular gain in the computational cost
can be expected for SEEK and SEIK when using batches
of observations. The memory requirements are, however, re-
duced also for these filters.

Recently, Evensen (2003) proposed an efficient analysis
scheme for the EnKF which is based on a factorization of the
term in parentheses in the Kalman gain equation (32). This
relies on an ensemble representation of the observation error
covariance matrix R and requires that the state and obser-
vation ensembles are independent. As has been discussed in
the remarks on the EnKF, this scheme can lead to a further
degradation of the filter quality. In this scheme the compu-
tational cost is reduced to be linear in m. An exception from
this is the generation of the observation ensemble which re-
mains unchanged. Thus, apart from the generation of the
observation ensemble, the computational cost of the newly
proposed EnKF analysis scheme will be similar to that of
the SEEK and SEIK filters.

5 Setup of assimilation experiments

To assess the filter behavior of the different filter al-
gorithms identical twin experiments with a simple model
are performed. Nonlinear shallow water equations are used
which are discretized in potential enstrophy conserving form
(Sadourny, 1975). We extended these to include the Coriolis
force. It is assumed that the model is exact, thus no model

0 200 400 600 800
0

100

200

300

400

500

600

700

800

900

(a) initial state

x (km)

y 
(k

m
)

0 200 400 600 800
0

100

200

300

400

500

600

700

800

900

(b) mean over 8000 time steps

x (km)

y 
(k

m
)

Figure 1. Surface elevation and velocity field (subsampled for
displaying) for (a) initial state used for generating the “true”
model trajectory and the synthetic observations and (b) mean
state over 8000 time steps (8 · 105s) using each 10th step. The
contour interval is 1 meter. The thick line denotes the mean sea
level, dashed lines negative deviations.

error is simulated. This choice is motivated by the fact that it
is not possible to apply model error in exactly the same way
in all three filters. However, while relevant for the practical
application of the filters, the model error is not important
for an intercomparison of the algorithms, since it is consis-
tently missing in all three filters applied here. The model
domain is chosen as a box measuring 950 km per side with a
flat bottom at 1000 meters depth on a f-plane with a Corio-
lis parameter of 10−4 s−1. Periodic boundary conditions are
applied in zonal and meridional directions. The experiments
were performed with 30× 30 grid points and a time step of
100 s using a leap frog scheme with a Robert-Asselin filter.
The model state vector x consists of the surface elevation
h and the horizontal velocity components u and v at the
grid points. The state dimension amounts to n = 2700. This
number is sufficiently large to obtain meaningful filter re-
sults also for the low-rank algorithms but it is still small
enough to allow for a direct study of the filter-represented
covariance matrices.

For the twin experiments the ’true’ state trajectory of
the system is generated by a model integration initialized
with the state shown in Fig. 1(a). It is in geostrophic bal-
ance and has a shape that ensures nonlinear evolution with
the shallow water equations. Synthetic observations of the
surface elevation at each grid point are generated by adding
normally distributed random numbers of constant variance
of 10−4 m2 to the true surface elevation. Using only the
surface elevation as observations the dimension of the ob-
servation vector is m = 900. The synthetic observations are
quite accurate. However, this is useful since the dependence
of filter performance on ensemble size can be better assessed
for large ensembles with accurate observations.

Two types of experiments are performed: For the first
one, referred to as experiment ’A’, the initialization of the
model state estimate xa

0 and the corresponding covariance
matrix Pa

0 is performed for all three filter algorithms by ap-
plying the EOF procedure described by Pham et al. (1998a)
which uses a sequence of model states. The initial state es-
timate xa

0 , shown in Fig. 1(b), is chosen as the mean state
of the true model simulation over 8000 time steps using the
state vector at each 10th time step. The covariance matrix
Pa

0 is computed as the variation of the true model trajectory
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Figure 2. Eigenvalues for the covariance matrices for experi-
ments of type A and B up to eigenvalue index 500. While in type
A the spectrum is highly red and 10 modes already explain 99%
of the variance in the more realistic setting B 371 modes are re-
quired to explain 90% of the variance.

about this mean. This matrix does not reflect the estimated
error of the initial state but the estimated mean tempo-
ral variability of the model state. The procedure, however,
yields a consistent and simple way to obtain variance esti-
mates together with estimates of the covariances.

This mean and covariance matrix serve as a baseline.
However, it soon turned out that all algorithms can improve
this ”state of large ignorance”. A much more enlightening
setting would be to use a model state and covariance matrix
that are already quite accurate and difficult to improve. To
this end the initialization of the second type of experiments,
referred to as experiment ’B’, is conducted with the esti-
mated state and covariance matrix after the second analysis
update from an assimilation experiment of type A with the
EnKF using a very large ensemble of N = 5000 members.
This is a very accurate state estimate whose RMS devia-
tion from the true state is two orders smaller than the ini-
tial estimate of type A. The structure of this state is thus
very similar that of the true initial state displayed in Fig.
1(a). In addition, the covariance matrix of type B is an esti-
mated error covariance matrix of the state estimate. It has a
strongly different structure compared to the covariance ma-
trix of type A. This is obvious from the eigenvalue spectrum,
displayed in Fig. 2. For type A the covariance matrix has a
very large condition number and the ten largest eigenmodes
already explain 99% of the variance. In contrast to this, 371
eigenmodes are required to explain 90% of the variance for
type B.

To initialize the SEEK and SEIK filters decomposed
low-rank approximations P̂a

0 = V0U0V
T
0 of the covariance

matrix Pa
0 are required. These are computed by incomplete

eigenvalue decompositions of Pa
0 retaining only the r largest

eigenmodes. The N ensemble states required for the EnKF
algorithm have been generated from the state estimate xa

0

and the covariance matrix Pa
0 by a transformation of in-

dependent random numbers. For this, the eigenvalue de-
composition of Pa

0 is computed, yielding Pa
0 = VUVT .

The eigenvectors are scaled by the square root of the corre-
sponding eigenvalue as L = VU1/2. For each ensemble state
{xa(l)

0 , l = 1, . . . , N} each scaled eigenvector L(i) is multi-

plied by a random number b
(l)
i from a normal distribution of

zero mean and unit variance and added to the state estimate
xa

0 :

x
a(l)
0 = xa

0 +

q∑
i=1

b
(l)
i L(i); l = 1, . . . , N (56)

Since the prescribed covariance matrix has in type A a max-
imum rank of 799, we use here only q = 799 eigenmodes for
the ensemble generation.

The assimilation experiments are performed over an in-
terval of 8000 time steps for type A and 7600 time steps
for type B with an analysis step each 200 time steps. For a
particular ensemble size N filter configurations are used in
which the rank in the SEEK and SEIK filters is r = N − 1.
In this case the number of model evaluations is equal for all
three algorithms and the filter performances can be directly
related to computing time. Below the expression ’ensemble
size’ is used to denote the number of different model states
to be evolved.

The filter algorithms are applied in their “pure” form
as discussed in section 2. In particular, no techniques to
stabilize the filters, e.g. by localization of the analysis (see,
e.g., Houtekamer and Mitchell (2001)), or by forgetting fac-
tors (see, e.g., Pham (2001); Whitaker and Hamill (2002))
are used. While these techniques are expected to prevent the
filters from filter divergence, they would amount to the indi-
vidual tuning of each filter for maximum filter performance.
As a consequence, the basic abilities of the filters and the de-
pendence of the filter performance on the sampling quality of
the covariance matrices, to be discussed below, would be less
visible. Accordingly, we apply the filter algorithms without
these techniques bearing in mind that there are techniques
which are able to improve the filter performance for all three
algorithms.

6 Comparison of filter performances

To evaluate the filter performance of the three algo-
rithms the estimation error, given by the RMS deviation
of the assimilated state from the true state and denoted as
E1, is considered separately for the three state fields h, u,
and v. For the EnKF the leftmost panels of Fig. 3 show
estimation errors for experiments of type A with the three
ensemble sizes r =30, 100, and 500. In addition, E1 for an
experiment without assimilation is displayed which shows
only small variations over time.

The temporal
development of E1 with assimilation is characterized

by a large reduction at the first analysis step. This is due
to an initially large error in the state estimate in connection
with quite accurate observations. Subsequent analysis steps
have significantly smaller influence. The filter performs bet-
ter with increasing ensemble size where E1 is strongly di-
minished. For small ensembles, like N = 30, E1 increases
with assimilation time, showing that the filter is unstable.
As is visible in Fig. 3, the state estimate of the assimila-
tion after 8000 time steps with 40 analysis cycles is even
worse than without assimilation. For larger ensembles the
assimilated state remains close to the true state. Since only
observations of the height field h are assimilated, the ve-
locity components are merely updated via cross covariances
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Figure 3. RMS Estimation errors for experiments of type A with poor initial guess. Shown is the time development of the error of
the assimilated state for three ensemble sizes (N=30 (solid line), 100 (dashed), 500 (dash-dotted)) and for a model simulation without
assimilation (dotted line). Each column shows the results for one particular filter algorithm. The three rows show the different model
fields. For the EnKF and SEIK algorithms divergence can be avoided by large enough ensemble size.

between the height field and the velocity components. The
representation of these covariances is generally worse than
that of the height field variances and covariances as will be
discussed in the following section. Due to this, the values of
E1 for the velocity components u, v are larger than for the
height field.

The centered and rightmost panels of Fig. 3 show that
for the SEEK and SEIK filters the general behavior of E1

as a function of assimilation time is analogous to that of
the EnKF. In order to compare the performance of all three
filter algorithms in a compact way we define the normalized
time integrated state estimation error by

E2 :=
1

3

∑
f=h,u,v

(
40∑

k=kmin

Eassim
1 (f, tk)

Efree
1 (f, tk)

)
(57)

where Eassim
1 (f, tk) denotes the value of E1 at time tk for

the state field f ∈ {h,u,v} from an assimilation experiment
and Efree

1 (f, tk) the corresponding value from an experiment
without assimilation. Dependent on the type of experiment
it is kmin = 1 for type A and kmin = 3 for type B. This
excludes for type A the initial state estimate since it would
dominate the value of E2 due to the large error decrease at
the first analysis step. E2 provides a RMS measure of the

decrease in estimation error due to data assimilation which
respects a possible different scaling of the state fields.

In Fig. 4 E2 for the three filter algorithms is shown as
a function of ensemble size N for experiments of type A.
For the EnKF and SEIK algorithms mean results and stan-
dard deviations over 20 experiments using different random
numbers in the initialization step are shown. There are sig-
nificant variations of the filter performance depending on
the used set of random numbers since the computer gener-
ated random numbers in fact do not represent the prescribed
statistics exactly and do determine in which directions of
the state space the ensemble vectors point. For small N the
latter will likely lead to different qualities of the forecast en-
semble. The SEEK filter is deterministic in its initialization,
hence only the result of a single simulation per ensemble size
is shown. As the observations are also generated using com-
puter generated random numbers, they will also determine
the filter performance. This is of no concern here, since the
observation error is quite small here and all three algorithms
use the same observations.

Overall, E2 converges in the same manner for the EnKF
and SEIK filters. A different convergence for the SEIK fil-
ter which should be expected due to the second order exact
sampling is not visible. This is caused by the eigenvalue
spectrum of the covariance matrix Pa

0 which shows that the
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Figure 4. Normalized time integrated estimation errors for the
three filter algorithms as a function of the ensemble size N (N =
r + 1 for SEEK and SEIK) for experiments of type A with poor
initial guess. Error bars describe the spread due to the use of
random numbers.

number of significant eigenvalues is extremely small. For
the EnKF and the SEIK filter the convergence in the in-
terval 100 < N < 500 can be approximated by E2 ∝ N−x

with x ≈ 1.2 for the EnKF and x ≈ 1.0 for the SEIK filter.
In general, the mean E2 values for the EnKF are, depend-
ing on the ensemble size, between 1.5 and 1.85 times larger
than those for the SEIK filter. In order to achieve the same
filter performance, the ensemble for the EnKF needs to be
between about 1.5 and 1.8 times larger than for the SEIK
filter. These numbers are of course specific for the configura-
tion of these experiments. However, variations of the assim-
ilation interval and strong increase of the observation errors
preserved the relative performances of the algorithms. The
behavior for the SEEK filter deviates significantly from that
of the EnKF and SEIK algorithms. For N < 70 the SEEK
filter shows the best filter performance of the three algo-
rithms. But, with further increasing N , E2 stagnates at a
rather large value.

For experiments of type B the estimation errors E1 over
time are displayed in Fig. 6. The initial state approximates
the true state quite well, but over time the RMS deviation
for the evolution without assimilation increases by about
two orders of magnitude. Thus, the conditions for this ex-
periment are quite different from those of type A in which
the initial state estimate was strongly deviating from the
true state and remained over simulation time at an almost
constant RMS deviation from the true state. In experiments
of type B, the assimilation of height field observations keeps
the estimates of all state fields much nearer to the true state
compared to the simulation without assimilation. Similar to
type A, the estimation error of the velocity components is
higher than for the sea level.

Comparing the filter behaviors in experiments of type
B with those of type A, it is obvious that the filter results
depend on the initialization. This is due to the fact that in
the experiments no model error is present which could ex-
tend the initial error subspace in a stochastic way. Thus, the
initially chosen error subspace determines the error statis-
tics at later times and different error subspaces will result
in different filter results. While it is known for the KF with
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Figure 5. Normalized time integrated estimation errors for the
three filter algorithms as a function of the ensemble size N for
experiments of type B with excellent initial guess. The lines of
the SEEK and SEIK filters lie on top of each other. Error bars
describe the spread due to the use of random numbers.

a linear autonomous model operator that the estimated er-
ror statistics become independent from the initialization af-
ter a sufficient period, this can not necessarily expected for
error-subspace algorithms. Even, when model error is sim-
ulated, the length of the initial period will depend on the
relative size of the model error to the error estimates in the
error subspace. Accordingly, a good initialization method
like that applied in the SEIK filter can be beneficial if the
error estimates are not dominated by the model error.

E2 as a function of ensemble size is displayed in Fig. 5
for the experiments of type B. Here mean results and stan-
dard deviations over 20 experiments with different random
numbers in the initialization are only shown for the EnKF.
The dependence of the SEIK filter on the random numbers
used in the initialization is negligible for this type of experi-
ment (not shown). The performance of the SEEK and SEIK
filters is almost indistinguishable, with a relative difference
of the values of E2 below 6·10−3. The values of E2 are smaller
for type B than for type A which is due to the normaliza-
tion by Efree

1 when computing E2. As in type A the value
of E2 converges similarly for the EnKF and SEIK filters.
But for small ensembles (N 6 75) the SEIK filter converges
faster than the EnKF. Again, the dependence of E2 on N
can be approximated in the interval 100 < N < 500 to be
E2 ∝ N−x. We find x ≈ 0.42 for the EnKF and x ≈ 0.44 for
the SEIK filter. Thus, the convergence rate with ensemble
size is much smaller for type B than for type A. It requires
more effort to improve a good solution than a poor solution
estimate. To obtain the same filter performance, the ensem-
ble in the EnKF would need to be between about 1.6 and 2.2
times larger than for the SEEK and SEIK filters. This re-
sult corresponds to that reported by Heemink et al. (2001).
There the RRSQRT filter, which is similar to the SEEK al-
gorithm, yielded comparable estimation errors to the EnKF
for about half the number of model evaluations.

It is possible to interchange the methods of Monte
Carlo sampling and second order exact sampling between
the EnKF and SEIK algorithms as was discussed in section
2. Dependent on the ensemble size, this yields in the ex-
periments of both types for the EnKF a 5-10% better filter
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Figure 6. RMS Estimation errors for experiments of type B with excellent initial guess. Shown is the time development of the error of
the assimilated state for three ensemble sizes (N=30 (solid line), 100 (dashed), 500 (dash-dotted)) and for a model simulation without
assimilation (dotted line). Each column shows the results for one particular filter algorithm. The three rows show the different model
fields. As in case A, filter performance and divergence is a function of ensemble size.

performance while the performance of the SEIK filter de-
grades by about the same amount. After interchanging the
initializations, the SEIK filter still performs better than the
EnKF. This is caused by the introduction of noise into the
ensemble by the observation ensemble required in the anal-
ysis scheme of the EnKF as will be discussed below.

7 Quality of error statistics

To gain insight into the reasons for the different filter
performances of the three algorithms we extend the analy-
sis of the model state estimate after assimilation. We fur-
ther examine the sampling quality of the represented state
covariance matrices in the sequel. At first some additional
analysis quantities are defined. Based on these quantities
it is then discussed how the different variants of forecast-
ing and different choices of ensembles can lead to estimates
of the covariance matrix, and hence the error subspace, of
strongly different quality.

7.1 Definition of analysis quantities

To define analysis quantities to assess the sampling
quality let us reconsider the filter algorithms. The SEEK

filter evolves the state estimate with the nonlinear dynamic
model and the eigenmodes of the low-rank approximated
state covariance matrix with the linearized dynamic model
or a finite difference approximation of it. The EnKF and
SEIK algorithms both evolve an ensemble of model states
with the nonlinear dynamic model. The capability of the
forecast phase to provide a realistic representation of the er-
ror subspace is reflected by the sampling quality of the state
covariance matrix P.

To discuss the analysis step we consider the covariance
matrix to consist of sub-matrices as:

P =

(
Phh Phu Phv

Puh Puu Puv

Pvh Pvu Pvv

)
(58)

Here the sub-matrices {Pij = PT
ji} are m × m matrices

(m = n/3) with Phh, Puu, and Pvv respectively containing
the covariances of the height field and the two velocity com-
ponents. The off-diagonal sub-matrices {Pij , i 6= j} con-
tain the cross covariances between different state fields. The
measurement operator projects a state vector onto its height
field part, thus H = (Im×m,0m×2m) where I is the identity
matrix and 0 the matrix containing only zeros. In the ex-
periments all observations were assumed to be uncorrelated
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with variances of constant value σ2
h. Thus the observation

error covariance matrix is R = σ2
hIm×m .

With this specifications the analysis equation for the
state in the SEEK (Eq. 20) and SEIK (Eq. 52) filters sim-
plifies to

xa = xf + σ−2
h

(
Pa

hh

Pa
uh

Pa
vh

)
d (59)

with observation-state residual, also called innovation, d =
yo − hf where hf is the estimated forecast height field. For
the EnKF the analysis equation for the ensemble states (Eq.
31) is also valid for the ensemble mean (Evensen, 1994). Here
it simplifies to

xa = xf +


 Pf

hh

Pf
uh

Pf
vh


[

Pf
hh + σ2

hI
]−1

d =: xf + Ad . (60)

According to equations (59) and (60) only the covariances
Phh in the height field and the cross covariances Puh and
Pvh between height field and the velocity components par-
ticipate in the analysis update of the state estimate. The
other sub-matrices are updated as well during the analysis
update of the covariance matrix and all parts of P determine
the forecast quality.

To compare the three filter algorithms despite their
different analysis equations we define update matrices B.
For the SEEK and SEIK filters we define the elements
{B(i,j), 1 6 i 6 n, 1 6 j 6 m} by

Ba
(i,j) := σ−2

h Pa
(i,j)d(j) . (61)

For the EnKF the definition is analogously

Bf
(i,j) := A(i,j)d(j) . (62)

Here d(j) denotes the element j of the vector d. The update
matrices Ba, Bf correspond to the matrix-vector products
in equations (59) and (60) without performing the summa-
tion. For the SEEK and SEIK filters this amounts to a scal-
ing of the covariances by the inverse variance σ−2

h and the
elements of the residual vector. Thus, the update matrices
take into account not only the different sampling qualities of
the state covariance matrix but also the different residuals
d. Accordingly, an estimate of the analysis quality for the
single state fields will be provided by the sampling quality
of the sub-matrices Bhh, Buh, and Bvh.

To quantify the sampling quality we compare the com-
puted update matrices with that of an assimilation with the
EnKF with an ensemble size N = 5000, referred to as the
’ideal’ update matrix Bideal. For the comparison we compute
correlation coefficients ρB between the sampled and ideal
update sub-matrices and regression coefficients βB from the
ideal to the sampled update sub-matrices. Over time, the
state estimates of the different filter algorithms deviate in-
creasingly. For this reason, we focus on the very first analysis
step.

7.2 The influence of ensemble size in type A

In table 2 experiments of type A are examined for as-
similation with an ensemble size N = 30. Displayed are the
correlation and regression coefficients ρB, βB for the height

Table 2. Examination of the first analysis for experiments of type
A with N = 30. Shown are relative estimation errors E3 and the
correlation ρB and regression βB coefficients between the ideal
and sampled update sub-matrices for the height field h and the
zonal velocity u. In addition, the correlation ρσ and regression
βσ coefficients of the variance part for the height field are shown.

field E3 ρB βB ρσ βσ

EnKF 0.168 0.305 0.091 0.961 0.071
SEEK h 0.089 0.325 0.107 0.959 0.086
SEIK 0.135 0.320 0.107 0.959 0.084

EnKF 0.309 0.126 0.015
SEEK u 0.179 0.188 0.035
SEIK 0.273 0.130 0.017

Table 3. Examination of the first analysis for experiments of type
A with N = 200. Shown are the same quantities as in table 2.

field E3 ρB βB ρσ βσ

EnKF 0.015 0.756 0.570 0.996 0.477
SEEK h 0.035 0.554 0.277 0.988 0.227
SEIK 0.012 0.756 0.598 0.995 0.503

EnKF 0.103 0.502 0.315
SEEK u 0.191 0.324 0.121
SEIK 0.081 0.496 0.332

field h and the zonal velocity component u. The coefficients
for the meridional velocity component v are similar to those
for u and thus not shown. In addition, the relative estima-
tion error

E3(f) =
Eassim

1 (f, t1)

Efree
1 (f, t1)

(63)

after the first analysis is shown for the fields f ∈ (h,u). For
comparison, the values of E3 for the ideal experiment are
much smaller with E3(h) = 0.005 and E3(u) = 0.04. Thus,
the filter performance will increase strongly with growing
ensemble size and the improvement will be larger for the
height field than for the velocity components. The order of
the values of E3 for the three filters is the same as that
of the time integrated E2 values which are shown in Fig. 4
for N = 30. The SEEK filter has the smallest value of E3,
followed by the SEIK filter and then the EnKF. The ratio
of the time integrated E2 for the EnKF to that of the SEIK
filter is 1.59. It is larger than the corresponding ratio of E3

values of 1.24 after the first analysis update. This is caused
by the use of an observation ensemble in the analysis of the
EnKF which destabilizes the assimilation process as will be
examined in more detail below.

The correlation and regression coefficients ρB, βB re-
flect the different filter performances of the first analysis
update. Overall, it is visible that there is a significant corre-
lation between the sampled and the ideal sub-matrices. The
small regression coefficients show in addition that the ampli-
tudes are strongly underestimated. The amount of underes-
timation decreases when observations with larger error are
assimilated (not shown). The underestimation is even more
pronounced when one considers only the correlation and re-
gression coefficients for the variance part, i.e. the diagonal,
of the height field update sub-matrix. These coefficients are
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also shown in table 2, denoted ρσ and βσ. The correlation
coefficients ρσ are for N = 30 already very near to unity but
the regression coefficients βσ show a very strong underesti-
mation of the variance. In the experiments, the structure of
the update sub-matrix Bhh corresponding to a single grid
point, as well as the covariance sub-matrix Phh, consists of
noise of rather low amplitude and a significantly larger peak
with a radius of about two grid points around the location
of the specified grid point. Accordingly, the variance will
dominate the analysis while most of the noise will average
out when computing the product Phhd. The smaller values
of ρB and βB for h for the EnKF point to the fact that
here the analysis is less accurate than for the SEEK and
SEIK filters. This is confirmed by the value of E3 which is
larger for the EnKF than for the two other filters. For the
difference between the SEEK and SEIK filters this is less
obvious. The smaller regression coefficients βB and βσ for
the EnKF include also the ’inbreeding effect’ which results
from the update of the state ensemble using a gain com-
puted from the same ensemble (Houtekamer and Mitchell,
1998; van Leeuwen, 1999; Houtekamer and Mitchell, 1999).

The sampling quality of B is generally worse for the
velocity components than for the height field. This is due
to the fact that only h is observed. Hence u, v are updated
via the covariance sub-matrices Puh and Pvh which have a
structure showing multiple extrema and are more difficult to
sample than the variance-dominated Phh (not shown). For
N = 30 the values of ρB and βB are nearest to unity in the
case of the SEEK filter. This is consistent with the filter’s
small value of E3. In experiments of type A the SEEK filter
is able to sample the sub-matrices Puh and Pvh for small
ensembles significantly better than the SEIK and EnKF al-
gorithms.

For N = 200 the sampling quality of the update matri-
ces is examined in table 3. The estimation errors E3 after
the first analysis are much smaller in comparison to N = 30.
This decrease is smaller for the velocity components than
for the height field due to the worse sampling of cross cor-
relations between h and the velocity components u, v. The
increased regression coefficients βB show that the under-
estimation of the correlations has diminished. In addition,
according to the increased correlation coefficients ρB and
ρσ, covariances as well as variances are sampled much more
realistic. The values of the coefficients for the SEIK and
EnKF algorithms are now more similar but the SEIK filter
still shows the better sampling quality. The estimation error
measure E3 for N = 200 is larger for the SEEK filter than
for the SEIK and EnKF algorithms. This is consistent with
the values of ρB and βB which are smaller for the SEEK
filter than for the two other filters. This inferior sampling
quality of the SEEK filter is caused by the direct forecast of
the eigenmodes of the state covariance matrix P. The modes
with larger index represent gravity waves which do not pro-
vide useful information to the error subspace causing the
filter performance to stagnate. For the estimated velocity
components the experiments show that this can even lead
to a small decrease in filter performance for increasing N .

7.3 Sampling differences between EnKF and SEIK

The different sampling qualities of the EnKF and the
SEIK filter are due to the distinct variants to generate the

Table 4. Comparison of the sampling quality of the update sub-
matrices for the EnKF with N = 30 for experiments of type A.
Shown are correlation (ρB) and regression (βB) coefficients for
sampled update sub-matrices computed from the forecast covari-
ance matrix (Bf , Eq. 62) and from the analysis covariance matrix
(Ba, Eq. 61). In addition, the correlation and regression coeffi-
cients (ρσ , βσ) for the variance part of the height field update
sub-matrix are shown.

B field ρB βB ρσ βσ

Bf , Eq. (62) h 0.305 0.091 0.961 0.071
Ba, Eq. (61) h 0.207 0.093 0.937 0.072

Bf , Eq. (62) u 0.126 0.015
Ba, Eq. (61) u 0.082 0.014

state ensembles in both algorithms. Interchanging the ini-
tialization methods between the algorithms results at the
first analysis step in an exchange of the values of E3, ρB,
and βB. Neglecting model errors, both filters are equiva-
lent at the first analysis step with respect to the update of
the state estimate when using the same ensemble since the
predicted error subspaces are identical. Such an equivalence
does not exist for the update of P due to the implicit up-
date of this matrix in the EnKF algorithm. In the EnKF the
update of P is given implicitly by

P̃a = (I−KH)P̃f (I−KH)T + KR̃KT (64)

+O(< δxf (δyo)T >).

Here R̃ is the observation error covariance matrix as sampled
by the ensemble of observation vectors. P̃f , P̃a are respec-
tively the covariance matrices of the forecast and analysis
state ensembles. The last term O(< δxf (δyo)T >) denotes
the spurious covariances between the state and observation
ensembles. In the SEEK and SEIK filters this last term is
zero and R̃ is replaced by the prescribed matrix R. Fur-
ther, P̃ denotes the rank-r approximated state covariance
matrix. Hence, Eq. (64) reduces to the KF update equation
(Eq. 12) for a covariance matrix P̃ in the case of the SEEK
and SEIK filters. For the EnKF the sampled matrix R̃ and
the correlations between the state and observation ensem-
bles insert noise into the analysis ensemble which represents
the state covariance matrix. Whitaker and Hamill (2002)
discussed this effect in a simple one-dimensional system. In
order to quantify the introduction of noise the two defini-
tions (61) and (62) of B can be examined. Without sampling
errors, both definitions are equally valid. Thus for the SEEK
and SEIK filters the update matrices computed from either
equation are identical. For the EnKF the resulting update
matrices are different.

In table 4 the coefficients ρB and βB for update ma-
trices computed with equations (61) or (62) are compared
for the EnKF algorithm with N = 30 for type A. The val-
ues of ρB computed from the forecast covariances according
to Eq. (62) are about 1.5 times larger compared to those
computed with Eq. (61) from the analysis covariances. De-
spite this, the regression coefficients βB remain almost un-
changed. Also the coefficients ρσ and βσ show an analogous
but much smaller ratio. The introduction of noise to the
ensemble states at each analysis step leads to more unsta-
ble forecasts in the EnKF in comparison to the SEIK filter.
Over the course of the assimilation process the estimation
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Table 5. Examination of the first analysis for experiments of type
B with N = 30. Shown are the same quantities as in table 2.

field E3 ρB βB ρσ βσ

EnKF 0.446 0.408 0.206 0.973 0.150
SEEK h 0.431 0.425 0.171 0.944 0.119
SEIK 0.431 0.425 0.171 0.944 0.119

EnKF 1.045 0.175 0.090
SEEK u 1.135 0.366 0.213
SEIK 1.137 0.367 0.213

Table 6. Examination of the first analysis for experiments of type
B with N = 200. Shown are the same quantities as in table 2.

field E3 ρB βB ρσ βσ

EnKF 0.273 0.802 0.703 0.996 0.630
SEEK h 0.269 0.847 0.651 0.991 0.533
SEIK 0.269 0.847 0.650 0.991 0.532

EnKF 0.981 0.519 0.559
SEEK u 0.872 0.766 0.729
SEIK 0.875 0.766 0.728

error E1 deviates increasingly for the two filters. This leads
to the values of E2 shown in Fig. 4 in which the performance
difference between the EnKF and SEIK algorithms is larger
than just for the first analysis.

7.4 Experiments with idealized setup (type B)

The sampling quality of the update matrices for exper-
iments of type B for ensembles of size N = 30 and N = 200
are shown in tables 5 and 6 respectively. For the SEEK and
SEIK filters the values of E3, ρB, and βB are identical for
h and almost identical for u and v for both ensemble sizes.
Thus, the SEEK filter shows no problem with the forecast
of the modes in this type of experiment. This can be related
to the different structure of the covariance matrix which
leads to mode forecasts which provide realistic directions of
the error subspace even for high eigenvalue indices. For h
the EnKF shows a slightly larger estimation error E3 than
the SEIK filter. This corresponds to the smaller values of
ρB which show that the update matrices are less realisti-
cally sampled for the EnKF compared to the SEIK filter.
The EnKF, however, underestimates the amplitude of the
covariances to a smaller degree than the SEIK filter does.
The variance part of the update matrices is represented bet-
ter by the EnKF than by the SEIK filter as is visible from
both the values of ρσ and βσ. The smaller regression coeffi-
cients in the case of the SEIK filter result from the low-rank
approximation of the matrix P which systematically under-
estimates the overall variance. Due to the structure of P
in the experiments of type B, as discussed in section 5, the
discarded variance is non-negligible here even for N = 200.

Compared to the experiments of type A, the estimates
of the velocity components are much worse here. For N = 30
the values of E3 even increase showing that the sampled
cross-covariances are not realistic. For N = 200 a small de-
crease of the estimation error is visible which is stronger for
the SEIK filter compared to the EnKF. Since the ideal values
are E3(h) = 0.2 and E3(u) = 0.75 there will be no strong

decrease in E3 any more for larger ensembles. However, over
the whole assimilation period the performance of all three
filters is better than at the first analysis step. While the non-
assimilated state diverges from the true state, the data as-
similation keeps the estimation error almost constant. This
leads to the small values of the time integrated estimation
error E2 displayed in Fig. 5.

8 Summary and conclusions

Three different error subspace Kalman filter algorithms,
the EnKF, SEEK, and SEIK algorithms, have been com-
pared. With regard to their theoretical formulation, the al-
gorithms are reviewed in the context of statistical estima-
tion. The algorithms are presented for the first time in uni-
fied notation. The theoretical benefits of these algorithms
over the EKF have been discussed. The comparison of the
three filter algorithms with focus on their capabilities in data
assimilation with large-scale nonlinear models showed that
the EnKF and the SEIK filters are comparable as ensemble
methods but use different ensembles initializations. In addi-
tion, the analysis scheme in EnKF is computationally more
costly and introduces noise into the ensemble which is caused
by the requirement of an ensemble of observation vectors. A
main difference between the SEIK filter and the EnKF lies
in the efficiency of the representation of the covariance ma-
trix P. In general the EnKF will require a larger ensemble
size N for the same performance as the SEIK filter as is il-
lustrated in detail utilizing identical twin experiments. The
SEEK filter is initialized similarly to the SEIK algorithm
and also their analysis steps are analogous. However, due
to the direct forecast of the covariance modes the predicted
error subspace within the SEEK algorithm can be strongly
distinct from those predicted by the SEIK filter.

All three filters are relatively easy to implement. The
EnKF has the plainest structure but also the SEIK filter,
using the most advanced mathematics of the filters studied
here, can be implemented within a few hundred lines of code.

In addition to the theoretical study, the behavior of the
three filter algorithms, was assessed on the basis of identical
twin experiments. The experiments utilized a shallow water
model with nonlinear evolution and assimilated synthetic
observations of the surface elevation. Two types of exper-
iments were performed which differed in the initialization
of the state estimate and covariance matrix. For identical
initial conditions the filter algorithms showed quite differ-
ent abilities to reduce the estimation error. In addition, the
dependence on the ensemble size differed. Under some cir-
cumstances, the SEEK filter shows a behavior distinct from
the two other algorithms caused by the direct evolution of
modes of the state covariance matrix. For the experiments
of type A, in which the covariance matrix is dominated by
a small number of large scale modes, the performance of
the SEEK filter differed strongly from that of the EnKF
and SEIK algorithms. For experiments of type B, in which
the covariance matrix is variance dominated, the SEEK and
SEIK filters perform almost identical. The superior perfor-
mance of the SEEK filter for smallest ensemble sizes in ex-
periments of type A appears to be a consequence of the
highly red EOF spectrum used, but shows that a mode-
based filter algorithm can under some circumstances yield
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a better filter performance than the ensemble based filters.
The SEEK filter has the computationally cheapest analysis
scheme of the three filters examined here. It is well suited
to filter rather coarse structures in which nonlinearity is not
pronounced. The EnKF and SEIK algorithms show similar
convergence with increasing ensemble size. The SEIK filter
exhibits superior performance compared to the EnKF due to
the initialization by minimum second order exact sampling.
This leads to a better ensemble representation of the covari-
ance matrix, in particular for small ensembles. Additionally,
the SEIK filter does not suffer from noise introduced into
the state ensemble by an observation ensemble as required
by the original EnKF.

Statistical analyses of the quality of the sampled state
covariance matrices showed how the represented covariance
matrices differ for the examined algorithms. The structure of
the variances is in all cases quite well represented, but their
amplitude is underestimated. Dependent on the structure
of the covariance matrix, the low-rank initialization used in
the SEEK and SEIK filters tends to underestimate the vari-
ances even more than the Monte-Carlo initialization used
in the EnKF. The full covariance sub-matrices for the single
state fields are less well sampled by all three filters compared
to the variances. The representation of the covariances for
the height field is significantly better due to the variance
dominated structure than the cross correlations between the
height field and the velocity components. Here a better sam-
pling quality can be achieved, at least for the SEIK filter and
the EnKF, by increasing the ensemble size.

Overall, the numerical experiments confirmed the the-
oretical findings. In particular, it is apparent that the SEIK
filter is an ensemble algorithm comparable to the EnKF with
the benefit of a very efficient scheme for analysis and resam-
pling. Furthermore, initialization methods like the second
order exact sampling are recommendable due to the better
representation of the state covariance matrix, in particular
for small ensembles. As the EnKF and SEIK algorithms,
the SEEK filter is able to provide good state estimates. The
SEEK filter is, however, sensitive to the mode vectors it
needs to evolve.

The experiments performed here are of course highly
idealized. For example, an inclusion of model error would be
desirable. But, for the EnKF and SEIK algorithms, it can
be expected that this will not lead to significant changes in
the relative filter performances, since both algorithms can
treat the model error in the same way.
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