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PREFACE 

This publication is a major revision of USGS Bulletin 1532, which is titled Map 
Projections Used by the U.S. Geological Survey. Although several portions are 
essentially unchanged except for corrections and clarification, there is consider
able revision in the early general discussion, and the scope of the book, originally 
limited to map projections used by the U.S. Geological Survey, now extends to 
include several other popular or useful projections. These and dozens of other 
projections are described with less detail in the forthcoming USGS publication An 
Album of Map Projections. 

As before, this study of map projections is intended to be useful to both the 
reader interested in the philosophy or history of the projections and the reader 
desiring the mathematics. Under each of the projections described, the nonmathe
matical phases are presented first, without interruption by formulas. They are 
followed by the formulas and tables, which the first type of reader may skip 
entirely to pass to the nonmathematical discussion of the next projection. Even 
with the mathematics, there are almost no derivations and very little calculus. 
The emphasis is on describing the characteristics of the projection and how it is 
used. 

This professional paper, like Bulletin 1532, is also designed so that the user can 
turn directly to the desired projection, without reading any other section, in 
order to study the projection under consideration. However, the list of symbols 
may be needed in any case, and the random-access feature will be enhanced by a 
general understanding of the concepts of projections and distortion. As a result of 
this intent, there is some repetition which will be apparent when the book is read 
sequentially. 

For the more complicated projections, equations are given in the order of 
usage. Otherwise, major equations are given first, followed by subordinate 
equations. When an equation has been given previously, it is repeated with the 
original equation number, to avoid the need to leaf back and forth. Numerical 
examples, however, are placed in appendix A. It was felt that placing these with 
the formulas would only add to the difficulty of reading through the mathematical 
sections. 

The equations are frequently taken from other credited or standard sources, 
but a number of equations have been derived or rearranged for this publication by 
the author. Further attention has been given to computer efficiency, for example 
by encouraging the use of nested power series in place of multiple-angle series. 

I acknowledged several reviewers of the original manuscript in Bulletin 1532. 
These were Alden P. Colvocoresses, William J. Jones, Clark H. Cramer, Marlys 
K. Brownlee, Tau Rho Alpha, Raymond M. Batson, William H. Chapman, Atef A. 
Elassal, Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and 
John F. Waananen, all then of the USGS, Joel L. Morrison, then of the Uni
versity of Wisconsin/Madison, and the late Allen J. Pope of the National Ocean 
Survey. I remain indebted to them, especially to Dr. Colvocoresses of the USGS, 
who is the one person most responsible for giving me the opportunity to assemble 
this work for publication. In addition, Jackie T. Durham and Robert B. McEwen 
of the USGS have been very helpful with the current volume, and several 
reviewers, especially Clifford J. Mugnier, a consulting cartographer, have pro
vided valuable critiques which have influenced my revisions. Other users in and 
out of the USGS have also offered useful comments. For the plotting of all 
computer-prepared maps, the personnel of the USGS Eastern Mapping Center 
have been most cooperative. 

John P. Snyder 
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SYMBOLS 

If a symbol is not listed here, it is used only briefly and identified near the formulas in which it 
is given. 

Az azimuth, as an angle measured clockwise from the north. 
a = equatorial radius or semimajor axis of the ellipsoid of reference. 
b polar radius or semiminor axis of the ellipsoid of reference. 

a(l -f) = a(l - e2)"'. 

c great circle distance, as an arc of a circle. 
e = eccentricity of the ellipsoid. 

(1 - b2 /a2 )'12. 

f = flattening of the ellipsoid. 
h = relative scale factor along a meridian of longitude. (For general perspective projections, h 

is height above surface of ellipsoid.) 
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SYMBOLS 

k relative scale factor along a parallel of latitude. 
n cone constant on conic projections, or the ratio of the angle between meridians to the true 

angle, called l in some other references. 
R radius of the sphere, either actual or that corresponding to scale of the map. 
S surface area. 
x = rectangular coordinate: distance to the right of the vertical line (Y axis) passing through 

the origin or center of a projection (if negative, it is distance to the left). In practice, a 
"false" x or "false easting'' is frequently added to all values of x to eliminate negative 
numbers. (Note: Many British texts use X andY axes interchanged, not rotated, from this 
convention.) 

y rectangular coordinate: distance above the horizontal line (X axis) passing through the 
origin or center of a projection (if negative, it is distance below). In practice, a "false" y or 
"false northing" is frequently added to all values of y to eliminate negative numbers. 

z = angular distance from North Pole of latitude<!>, or (90° - <)>), or colatitude. 
z1 angular distance from North Pole of latitude <)> 1 , or (900 - <!> 1). 

z2 angular distance from North Pole of latitude <!>2 , or (90° - <)>2). 

ln natural logarithm, or logarithm to base e, where e = 2. 71828. 
a angle measured counterclockwise from the central meridian, rotating about the center of 

the latitude circles on a conic or polar azimuthal projection, or beginning due south, rotating 
about the center of projection of an oblique or equatorial azimuthal projection. 

9' angle of intersection between meridian and parallel. 
A longitude east of Greenwich (for longitude west of Greenwich, use a minus sign). 

Ao longitude east of Greenwich of the central meridian of the map, or of the origin of the 
rectangular coordinates (for west longitude, use a minus sign). If <!> 1 is a pole, Ao is the 
longitude of the meridian extending down on the map from the North Pole or up from the 
South Pole. 

A' transformed longitude measured east along transformed equator from the north crossing 
of the Earth's Equator, when graticule is rotated on the Earth. 

p radius of latitude circle on conic or polar azimuthal projection, or radius from center on 
any azimuthal projection. 

<!> north geodetic or geographic latitude (if latitude is south, apply a minus sign). 
<!>o middle latitude, or latitude chosen as the origin of rectangular coordinates for a projection. 
<!>' transformed latitude relative to the new poles and equator when the graticule is rotated on 

the globe. 
<!>1 , <!>2 standard parallels of latitude for projections with two standard parallels. These are true 

to scale and free of angular distortion. 
<!>1 (without <!>2) = single standard parallel on cylindrical or conic projections; latitude of central point 

on azimuthal projections. 
w = maximum angular deformation at a given point on a projection. 

1. All angles are assumed to be in radians, unless the degree symbol ( o ) is used. 
2. Unless there is a note to the contrary, and if the expression for which the arctan is sought has a numerator over a denominator, the 

formulas in which arctan is required (usually to obtain a longitude) are so arrangP.d that the i''ortran ATAN2 function should be 
used. :for hand calculators and computers with the arctan function but not ATAN2, the following conditions must be added to the 
limitations listed with the formulas: 

For arctan (AlB), the arctan is normally given as an angle between -90° and + 90°, or between- Trl2and + 11'12. If B is negative, add 
± 1800 or ± ,. to the initial arctan, where the ± takes the sign of A, or if A is zero, the ± arbitrarily takes a + sign. If B is zero, the 
arctan is ± 90" or ± ,./2, taking the sign of A. Conditions not resolved by the ATAN2 function, but requiring adjustment for almost 
any program, are as follows: 
(1) [fA and Bare both zero, the arctan is indetenninate, but may normally be given an arbitrary value ofO or of A0 , depending on the 

projection, and 
(2) If A orB is infinite, the arctan is~ 90° (or :±: n/2) or 0, respectively, the sign depending on other conditions. In any case, the final 

longitude should be adjusted, if necessary, sothatitis an angle between- 180"(or- 1T)and + 180"(or + n). This is done by adding or 
subtracting multiples of 360o (or 21r) as required. 

8 
3. Where division is involved, most equations are given in the fonn A = BIG rather than A = C. This facilitates typesetting, and it also 

is a convenient form for eonversion to Fortran programming. 

American Geographical Society 
Geodetic Reference System 
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Space Oblique Mercator 
State Plane Coordinate System 
Universal Polar Stereographic 

ix 

Hotine (form of ellipsoidal) Oblique Mercator 
International Map Committee 
International Map of the World 
International Union of Geodesy and Geophysics 
National Aeronautics and Space Administration 
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UPS 
USC&GS 
USGS 
UTM 
WGS 

United States Coast and Geodetic Survey 
United States Geological Survey 
Universal Transverse Mercator 
World Geodetic System 

Some acronyms are not listed, since the full name is used through this bulletin. 





MAP PROJECTIONS
A WORKING MANUAL 

By JOHN P. SNYDER 

ABSTRACT 

After decades of using only one map projection, the Polyconic, for its mapping program, the U.S. 
Geological Survey (USGS) now uses several of the more common projections for its published maps. 
For larger scale maps, including topographic quadrangles and the State Base Map Series, conformal 
projections such as the Transverse Mercator and the Lambert Conformal Conic are used. Equal-area 
and equidistant projections appear in the National Atlas. Other projections, such as the Miller 
Cylindrical and the Vander Grinten, are chosen occasionally for convenience, sometimes making use 
of existing base maps prepared by others. Some projections treat the Earth only as a sphere, others as 
either ellipsoid or sphere. 

The USGS has also conceived and designed several new projections, including the Space Oblique 
Mercator, the first map projection designed to permit mapping of the Earth continuously from a 
satellite with low distortion. The mapping of extraterrestrial bodies has resulted in the use of stand
ard projections in completely new settings. Several other projections which have not been used by 
the USGS are frequently of interest to the cartographic public. 

With increased computerization, it is important to realize that rectangular coordinates for all these 
projections may be mathematically calculated with formulas which would have seemed too compli
cated in the past, but which now may be programmed routinely, especially if aided by numerical 
examples. A discussion of appearance, usage, and history is given together with both forward and 
inverse equations for each projection involved. 

INTRODUCTION 

The subject of map projections, either generally or specifically, has been dis
cussed in thousands of papers and books dating at least from the time of the Greek 
astronomer Claudius Ptolemy (about A.D. 150), and projections are known to 
have been in use some three centuries earlier. Most ofthe widely used projections 
date from the 16th to 19th centuries, but scores of variations have been developed 
during the 20th century. In recent years, there have been several new publica
tions of widely varying depth and quality devoted exclusively to the subject. In 
1979, the USGS published Maps for America, a book-length description of its 
maps (Thompson, 1979). The USGS has also published bulletins describing from 
one to three projections (Birdseye, 1929; Newton, 1985). 

In spite of all this literature, there was no definitive single publication on map 
projections used by the USGS, the agency responsible for administering the 
National Mapping Program, until the first edition of Bulletin 1532 (Snyder, 1982a). 
The USGS had relied on map projection treatises published by the former Coast 
and Geodetic Survey (now the National Ocean Service). These publications did 
not include sufficient detail for all the major projections now used by the USGS 
and others. A widely used and outstanding treatise of the Coast and Geodetic 
Survey (Deetz and Adams, 1934), last revised in 1945, only touches upon the 
Transverse Mercator, now a commonly used projection for preparing maps. Other 
projections such as the Bipolar Oblique Conic Conformal, the Miller Cylindrical, 
and the Van der Grinten, were just being developed, or, if older, were seldom 
used in 1945. Deetz and Adams predated the extensive use of the computer and 



2 MAP PROJECTIONS-A WORKING MANUAL 

pocket calculator, and, instead, offered extensive tables for plotting projections 
with specific parameters. 

Another classic treatise from the Coast and Geodetic Survey was written by 
Thomas (1952) and is exclusively devoted to the five major conformal projections. 
It emphasizes derivations with a summary of formulas and of the history of these 
projections, and is directed toward the skilled technical user. Omitted are tables, 
graticules, or numerical examples. 

In USGS Bulletin 1532 the author undertook to describe each projection which 
has been used by the USGS sufficiently to permit the skilled, mathematically 
oriented cartographer to use the projection in detail. The descriptions were also 
arranged so as to enable a lay person interested in the subject to learn as much as 
desired about the principles of these projections without being overwhelmed by 
mathematical detail. Deetz and Adams' (1934) work set an excellent example in 
this combined approach. 

While Bulletin 1532 was deliberately limited to map projections used by the 
USGS, the interest in the bulletin has led to expansion in the form of this profes
sional paper, which includes several other map projections frequently seen in 
atlases and geography texts. Many tables of rectangular or polar coordinates 
have been included for conceptual purposes. For values between points, formulas 
should be used, rather than interpolation. Other tables list definitive parameters 
for use in formulas. A glossary as such is omitted, since such definitions tend to be 
oversimplified by nature. The reader is referred to the index instead to find a 
more complete description of a given term. 

The USGS, soon after its official inception in 1879, apparently chose the Poly
conic projection for its mapping program. This projection is simple to construct 
and had been promoted by the Survey of the Coast, as it was then called, since 
Ferdinand Rudolph Hassler's leadership of the early 1800's. The first published 
USGS topographic "quadrangles," or maps bounded by two meridians and two 
parallels, did not carry a projection name, but identification as "Polyconic 
projection" was added to later editions. Tables of coordinates published by the 
USGS appeared in 1904, and the Polyconic was the only projection mentioned by 
Beaman (1928, p. 167). 

Mappers in the Coast and Geodetic Survey, influenced in turn by military and 
civilian mappers of Europe, established the State Plane Coordinate System in the 
1930's. This system involved the Lambert Conformal Conic projection for States 
of larger east-west extension and the Transverse Mercator for States which were 
longer from north to south. In the late 1950's, the USGS began changing quadran
gles from the Polyconic to the projection used in the State Plane Coordinate 
System for the principal State on the map. The USGS also adopted the Lambert 
for its series of State base maps. 

As the variety of maps issued by the USGS increased, a broad range ofprojec
tions became important: The Polar Stereographic for the map of Antarctica, the 
Lambert Azimuthal Equal-Area for maps of the Pacific Ocean, and the Albers 
Equal-Area Conic for the National Atlas (USGS, 1970) maps of the United 
States. Several other projections have been used for other maps in the National 
Atlas, for tectonic maps, and for grids in the panhandle of Alaska. The mapping 
of extraterrestrial bodies, such as the Moon, Mars, and Mercury, involves old 
projections in a completely new setting. Perhaps the first projection to be origi
nated within the USGS is the Space Oblique Mercator for continuous mapping 
using imagery from artificial satellites. 

It is hoped that this expanded study will assist readers to understand better 
not only the basis for maps issued by the USGS, but also the principles and 
formulas for computerization, preparation of new maps, and transference of data 
between maps prepared on different projections. 
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MAP PROJECTIONS-GENERAL CONCEPTS 

I. CHARACTERISTICS OF MAP PROJECTIONS 

The general purpose of map projections and the basic problems encountered 
have been discussed often and well in various books on cartography and map 
projections. (Robinson, Sale, Morrison, and Muehrcke, 1984; Steers, 1970; and 
Greenhood, 1964, are among later editions of earlier standard references.) Every 
map user and maker should have a basic understanding of projections, no matter 
how much computers seem to have automated the operations. The concepts will 
be concisely described here, although there are some interpretations and formu
las that appear to be unique. 

For almost 500 years, it has been conclusively established that the Earth is 
essentially a sphere, although a number of intellectuals nearly 2,000 years earlier 
were convinced of this. Even to the scholars who considered the Earth flat, the 
skies appeared hemispherical, however. It was established at an early date that 
attempts to prepare a flat map of a surface curving in all directions leads to 
distortion of one form or another. 

A map projection is a systematic representation of all or part of the surface of a 
round body, especially the Earth, on a plane. This usually includes lines delineat
ing meridians and parallels, as required by some definitions of a map projection, 
but it may not, depending on the purpose of the map. A projection is required in 
any case. Since this cannot be done without distortion, the cartographer must 
choose the characteristic which is to be shown accurately at the expense of others, 
or a compromise of several characteristics. If the map covers a continent or the 
Earth, distortion will be visually apparent. If the region is the size of a small 
town, distortion may be barely measurable using many projections, but it can still 
be serious with other projections. There is literally an infinite number of map 
projections that can be devised, and several hundred have been published, most 
of which are rarely used novelties. Most projections may be infinitely varied by 
choosing different points on the Earth as the center or as a starting point. 

It cannot be said that there is one "best" projection for mapping. It is even 
risky to claim that one has found the "best" projection for a given application, 
unless the parameters chosen are artificially constricting. A carefully constructed 
globe is not the best map for most applications because its scale is by necessity too 
small. A globe is awkward to use in general, and a straightedge cannot be 
satisfactorily used on one for measurement of distance. 

The details of projections discussed in this book are based on perfect plotting 
onto completely stable media. In practice, of course, this cannot be achieved. The 
cartographer may have made small errors, especially in hand-drawn maps, but a 
more serious problem results from the fact that maps are commonly plotted and 
printed on paper, which is dimensionally unstable. Typical map paper can expand 
over 1 percent with a 60 percent increase in atmospheric humidity, and the 
expansion coefficient varies considerably in different directions on the same sheet. 
This is much greater than the variation between common projections on large
scale quadrangles, for example. The use of stable plastic bases for maps is recom
mended for precision work, but this is not always feasible, and source maps may 
be available only on paper, frequently folded as well. On large-scale maps, such as 
topographic quadrangles, measurement on paper maps is facilitated with rectan
gular grid overprints, which expand with the paper. Grids are discussed later in 
this book. 

The characteristics normally considered in choosing a map projection are as 
follows: 
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1. Area.-Many map projections are designed to be equal-area, so that a coin 
of any size, for example, on one part of the map covers exactly the same area of 
the actual Earth as the same coin on any other part of the map. Shapes, angles, 
and scale must be distorted on most parts of such a map, but there are usually 
some parts of an equal-area map which are designed to retain these characteris
tics correctly, or very nearly so. Less common terms used for equal-area projec-
tions are equivalent, homolographic, or homalographic (from the-Greek-homalos---------
or homos ("same") and graphos ("write")); authalic (from the Greek autos ("same") 
and ailos ("area")), and equiareal. 

2. Shape.-Many of the most common and most important projections are 
conformal or orthomorphic (from the Greek orthos or "straight" and morphe or 
"shape"), in that normally the relative local angles about every point on the map 
are shown correctly. (On a conformal map of the entire Earth there are usually 
one or more "singular" points at which local angles are still distorted.) Although a 
large area must still be shown distorted in shape, its small features are shaped 
essentially correctly. Conformality applies on a point or infinitesimal basis, whereas 
an equal-area map projection shows areas correctly on a finite, in fact mapwide 
basis. An important result of conformality is that the local scale in every direction 
around any one point is constant. Because local angles are correct, meridians 
intersect parallels at right (90°) angles on a conformal projection, just as they do on 
the Earth. Areas are generally enlarged or reduced throughout the map, but they 
are correct along certain lines, depending on the projection. Nearly all large-scale 
maps of the Geological Survey and other mapping agencies throughout the world 
are now prepared on a conformal projection. No map can be both equal-area and 
conformal. 

While some have used the term aphylactic for all projections which are neither 
equal-area nor conformal (Lee, 1944), other terms have commonly been used to 
describe special characteristics: 

3. Scale.-No map projection shows scale correctly throughout the map, but 
there are usually one or more lines on the map along which the scale remains true. 
By choosing the locations of these lines properly, the scale errors elsewhere may 
be minimized, although some errors may still be large, depending on the size of 
the area being mapped and the projection. Some projections show true scale 
between one or two points and every other point on the map, or along every 
meridian. They are called equidistant projections. 

4. Direction.-While conformal maps give the relative local directions cor
rectly at any given point, there is one frequently used group of map projections, 
called azimuthal (or zenithal), on which the directions or azimuths of all points on 
the map are shown correctly with respect to the center. One of these projections 
is also equal-area, another is conformal, and another is equidistant. There are also 
projections on which directions from two points are correct, or on which direc
tions from all points to one or two selected points are correct, but these are rarely 
used. 

5. Special characteristics.-Several map projections provide special characteris
tics that no other projection provides. On the Mercator projection, all rhumb 
lines, or lines of constant direction, are shown as straight lines. On the Gnomonic 
projection, all great circle paths-the shortest routes between points on a sphere
are shown as straight lines. On the Stereographic, all small circles, as well as 
great circles, are shown as circles on the map. Some newer projections are spe
cially designed for satellite mapping. Less useful but mathematically intriguing 
projections have been designed to fit the sphere conformally into a square, an 
ellipse, a triangle, or some other geometric figure. 

6. Method of construction.-ln the days before ready access to computers and 
plotters, ease of construction was of greater importance. With the advent of 
computers and even pocket calculators, very complicated formulas can be handled 
almost as routinely as simple projections in the past. 
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While the above six characteristics should ordinarily be considered in choosing 
a map projection, they are not so obvious in recognizing a projection. In fact, if 
the region shown on a map is not much larger than the United States, for example, 
even a trained eye cannot often distinguish whether the map is equal-area or 
conformal. It is necessary to make measurements to detect small differences in 
spacing or location of meridians and parallels, or to make other tests. The type of 
construction of the map projection is more easily recognized with experience, if 
the projection falls into one of the common categories. 

There are three types of developable1 surfaces onto which most of the map 
projections used by the USGS are at least partially geometrically projected. They 
are the cylinder, the cone, and the plane. Actually all three are variations of the 
cone. A cylinder is a limiting form of a cone with an increasingly sharp point or 
apex. As the cone becomes flatter, its limit is a plane. 

If a cylinder is wrapped around the globe representing the Earth (see fig. 1), so 
that its surface touches the Equator throughout its circumference, the meridians 
of longitude may be projected onto the cylinder as equidistant straight lines 
perpendicular to the Equator, and the parallels of latitude marked as lines paral
lel to the Equator, around the circumference of the cylinder and mathematically 
spaced for certain characteristics. For some cases, the parallels may also be 
projected geometrically from a common point onto the cylinder, but in the most 
common cases they are not perspective. When the cylinder is cut along some 
meridian and unrolled, a cylindrical projection with straight meridians and straight 
parallels results. The Mercator projection is the best-known example, and its 
p~rallels must be mathematically spaced. 

If a cone is placed over the globe, with its peak or apex along the polar axis of 
the Earth and with the surface of the cone touching the globe along some particu
lar parallel of latitude, a conic (or conical) projection can be produced. This time 
the meridians are projected onto the cone as equidistant straight lines radiating 
from the apex, and the parallels are marked as lines around the circumference of 
the cone in planes perpendicular to the Earth's axis, spaced for the desired 
characteristics. The parallels may not be projected geometrically for any useful 
conic projections. When the cone is cut along a meridian, unrolled, and laid flat, 
the meridians remain straight radiating lines, but the parallels are now circular 
arcs centered on the apex. The angles between meridians are shown smaller than 
the true angles. 

A plane tangent to one of the Earth's poles is the basis for polar azimuthal 
projections. In this case, the group of projections is named for the function, not 
the plane, since all common tangent-plane projections of the sphere are azimuthal. 
The meridians are projected as straight lines radiating from a point, but they are 
spaced at their true angles instead of the smaller angles of the conic projections. 
The parallels of latitude are complete circles, centered on the pole. On some 
important azimuthal projections, such as the Stereographic (for the sphere), the 
parallels are geometrically projected from a common point of perspective; on 
others, such as the Azimuthal Equidistant, they are nonperspective. 

The concepts outlined above may be modified in two ways, which still provide 
cylindrical, conic, or azimuthal projections (although the azimuthals retain this 
property precisely only for the sphere). 
1. The cylinder or cone may be secant to or cut the globe at two parallels instead 

of being tangent to just one. This conceptually provides two standard parallels; 
but for most conic projections this construction is not geometrically correct. 
The plane may likewise cut through the globe at any parallel instead of touch
ing a pole, but this is only useful for the Stereographic and some other perspec
tive projections. 

'A developable surface is one that can be transformed to a plane without distortion. 
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Regular Cylindrical Regular Conic 

Polar Azimuthal 
(plane) 

Oblique Azimuthal 
(plane I 

FIGURE I.-Projection of the Earth onto the three major surfaces. In a few cases, projection is 
geometric, but in most cases the projection is mathematical to achieve certain features. 

.. 
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2. The axis of the cylinder or cone can have a direction different from that of the 
Earth's axis, while the plane may be tangent to a point other than a pole (fig. 
1). This type of modification leads to important oblique, transverse, and equa
torial projections, in which most meridians and parallels are no longer straight 
lines or arcs of circles. What were standard parallels in the normal orientation 
now become standard lines not following parallels of latitude. 

Other projections resemble one or another of these categories only in some 
respects. There are numerous interesting pseudocylindrical (or "false cylindrical") 
projections. They are so called because latitude lines are straight and parallel, 
and meridians are equally spaced, as on cylindrical projections, but all meridians 
except the central meridian are curved instead of straight. The Sinusoidal is a 
frequently used example. Pseudoconic projections have concentric circular arcs 
for parallels, like conics, but meridians are curved; the Bonne is the only common 
example. Pseudoazimuthal projections are very rare; the polar aspect has concen
tric circular arcs for parallels, and curved meridians. The Polyconic projection is 
projected onto cones tangent to each parallel of latitude, so the meridians are 
curved, not straight. Still others are more remotely related to cylindrical, conic, 
or azimuthal projections, if at all. 
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2. LONGITUDE AND LATITUDE 

To identify the location of points on the Earth, a graticule or network of longi
tude and latitude lines has been superimposed on the surface. They are commonly 
referred to as meridians and parallels, respectively. The concept of latitudes and 
longitudes was originated early in recorded history by Greek and Egyptian 
scientists, especially the Greek astronomer Hipparchus (2nd century, B.C.). Clau
dius Ptolemy further formalized the concept (Brown, 1949, p. 50, 52, 68). 

PARALLELS OF LATITUDE 

Given the North and South Poles, which are approximately the ends of the axis 
about which the Earth rotates, and the Equator, an imaginary line halfway between 
the two poles, the parallels of latitude are formed by circles surrounding the 
Earth and in planes parallel with that of the Equator. If circles are drawn equally 
spaced along the surface of the sphere, with 90 spaces from the Equator to each 
pole, each space is called a degree of latitude. The circles are numbered from oo at 
the Equator to 90° North and South at the respective poles. Each degree is 
subdivided into 60 minutes and each minute into 60 seconds of arc. 

For 2,000 years, measurement of latitude on the Earth involved one of two 
basic astronomical methods. The instruments and accuracy, but not the principle, 
were gradually improved. By day, the angular height of the Sun above the hori
zon was measured. By night, the angular height of stars, and especially the 
current pole star, was used. With appropriate angular conversions and adjust
ments for time of day and season, the latitude was obtained. The measuring 
instruments included devices known as the cross-staff, astrolabe, back-staff, 
quadrant, sextant, and octant, ultimately equipped with telescopes. They were 
supplemented with astronomical tables called almanacs, of increasing complica
tion and accuracy. Finally, beginning in the 18th century, the use of triangulation 
in geodetic surveying meant that latitude on land could be determined with high 
precision by using the distance from other points of known latitude. Thus meas
urement of latitude, unlike that of longitude, was an evolutionary development 
almost throughout recorded history (Brown, 1949, p. 180-207). 

MERIDIANS OF LONGITUDE 

Meridians of longitude are formed with a series of imaginary lines, all intersect
ing at both the North and South Poles, and crossing each parallel of latitude at 
right angles, but striking the Equator at various points. If the Equator is equally 
divided into 360 parts, and a meridian passes through each mark, 360 degrees of 
longitude result. These degrees are also divided into minutes and seconds. While 
the length of a degree of latitude is always the same on a sphere, the lengths of 
degrees of longitude vary with the latitude (see fig. 2). At the Equator on the 
sphere, they are the same length as the degree oflatitude, but elsewhere they are 
shorter. 

There is only one location for the Equator and poles which serve as references 
for counting degrees oflatitude, but there is no natural origin from which to count 
degrees of longitude, since all meridians are identical in shape and size. It thus 
becomes necessary to choose arbitrarily one meridian as the starting point, or 
prime meridian. There have been many prime meridians in the course of history, 
swayed by national pride and international influence. For over 150 years, France 
officially used the meridian through Ferro, an island of the Canaries. Eighteenth
century maps of the American colonies often show longitude from London or 
Philadelphia. During the 19th century, boundaries of new States were described 
with longitudes west of a meridian through Washington, D.C., 77°03' 02.3" west 
of the Greenwich (England) Prime Meridian (VanZandt, 1976, p. 3). The latter 
was increasingly referenced, especially on seacharts due to the proliferation of 
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N. Pole 

FIGURE 2.-Meridians and parallels on the sphere. 

those of British origin. In 1884, the International Meridian Conference, meeting 
in Washington, agreed to adopt the "meridian passing through the center of the 
transit instrument at the Observatory of Greenwich as the initial meridian for 
longitude," resolving that "from this meridian longitude shall be counted in two 
directions up to 180 degrees, east longitude being plus and west longitude minus" 
(Brown, 1949, p. 283, 297). 

The choice of the prime meridian is arbitrary and may be stated in simple 
terms. The accurate measurement of the difference in longitude at sea between 
two points, however, was unattainable for centuries, even with a precision suffi
cient for the times. When extensive transatlantic exploration from Europe began 
with the voyages of Christopher Columbus in 1492, the inability to measure 
east-west distance led to numerous shipwrecks with substantial loss of lives and 
wealth. Seafaring nations beginning with Spain offered sizable rewards for the 
invention of satisfactory methods for measuring longitude. It finally became evi
dent that a portable, dependable clock was needed, so that the height of the Sun 
or stars could be related to the time in order to determine longitude. The study of 
the pendulum by Galileo, the invention of the pendulum clock by Christian Huygens 
in 1656, and Robert Hooke's studies of the use of springs in watches in the 1660's 
provided the basic instrument, but it was not until John Harrison of England 
responded to his country's substantial reward posted in 1714 that the problem 
was solved. For five decades, Harrison devised successively more reliable ver
sions of a marine chronometer, which were tested at sea and gradually accepted 
by the Board of Longitude in painstaking steps from 1765 to 1773. Final compensa
tion required intervention by the King and Parliament (Brown, 1949, p. 208-240; 
Quill, 1966). 

Thus a major obstacle to accurate mapping was overcome. On land, the meas
urement of longitude lagged behind that of latitude until the development of the 
clock and the spread of geodetic triangulation in the 18th century made accuracy a 
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reality. Electronic means of measuring distance and angles in the mid- to late-20th 
century have redefined the meaning of accuracy by orders of magnitude. 

CONVENTIONS IN PLOTTING 

When constructing meridians on a map projection, the central meridian, usu
ally a straight line, is frequently taken to be a starting point or oo longitude for 
calculation purposes. When the map is completed with labels, the meridians are 
marked with respect to the Greenwich Prime Meridian. The formulas in this book 
are arranged so that Greenwich longitude may be used directly. All formulas 
herein use the convention of positive east longitude and north latitude, and nega
tive west longitude and south latitude. Some published tables and formulas else
where use positive west longitude, so the reader is urged to use caution in compar
ing values. 

GRIDS 

Because calculations relating latitude and longitude to positions of points on a 
given map can become quite involved, rectangular grids have been developed for 
the use of surveyors. In this way, each point may be designated merely by its 
distance from two perpendicular axes on the flat map. The Y axis normally coin
cides with a chosen central meridian, y increasing north. The X axis is perpendicu
lar to the Y axis at a latitude of origin on the central meridian, with x increasing 
east. Frequently x and y coordinates are called "eastings" and "northings," 
respectively, and to avoid negative coordinates may have "false eastings" and 
"false northings" added. 

The grid lines usually do not coincide with any meridians and parallels except 
for the central meridian and the Equator. Of most interest in the United States 
are two grid systems: The Universal Transverse Mercator (UTM) Grid is described 
on p. 57, and the State Plane Coordinate System (SPCS) is described on p. 51. 
Preceding the UTM was the World Polyconic Grid (WPG), used until the late 
1940's and described on p.l27. 

Grid systems are normally divided into zones so that distortion and variation of 
scale within any one zone is held below a preset level. The type of boundaries 
between grid zones varies. Zones of the WPG and the UTM are bounded by 
meridians of longitude, but for the SPCS State and county boundaries are used. 
Some grid boundaries in other countries are defined by lines of constant grid 
value using a local or an adjacent grid as the basis. This adjacent grid may in turn 
be based on a different projection and a different reference ellipsoid. A common 
boundary for non-U.S. offshore grids is an ellipsoidal rhumb line, or line of con
stant direction on the ellipsoid (see p. 46); the ellipsoidal geodesic, or shortest 
route (see p.l99)is also used. The plotting of some of these boundaries can become 
quite complicated (Clifford J. Mugnier, pers. comm., 1985). 
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3. THE DATUM AND THE EARTH AS AN ELLIPSOID 

For many maps, including nearly all maps in commercial atlases, it may be 
assumed that the Earth is a sphere. Actually, it is more nearly an oblate ellipsoid 
of revolution, also called an oblate spheroid. This is an ellipse rotated about its 
shorter axis. The flattening of the ellipse for the Earth is only about one part in 
three hundred; but it is sufficient to become a necessary part of calculations in 
plotting accurate maps at a scale of 1:100,000 or larger, and is significant even for 
1:5,000,000-scale maps of the United States, affecting plotted shapes by up to 2/3 
percent (see p. 27). On small-scale maps, including single-sheet world maps, the 
oblateness is negligible. Formulas for both the sphere and ellipsoid will be dis
cussed in this book wherever the projection is used or is suitable in both forms. 

The Earth is not an exact ellipsoid, and deviations from this shape are continu
ally evaluated. The geoid is the name given to the shape that the Earth would 
assume if it were all measured at mean sea level. This is an undulating surface 
that varies not more than about a hundred meters above or below a well-fitting 
ellipsoid, a variation far less than the ellipsoid varies from the sphere. It is 
important to remember that elevations and contour lines on the Earth are reported 
relative to the geoid, not the ellipsoid. Latitude, longitude, and all plane coordi
nate systems, on the other hand, are determined with respect to the ellipsoid. 

The choice of the reference ellipsoid used for various regions of the Earth has 
been influenced by the local geoid, but large-scale map projections are designed to 
fit the reference ellipsoid, not the geoid. The selection of constants defining the 
shape of the reference ellipsoid has been a major concern of geodesists since the 
early 18th century. Two geometric constants are sufficient to define the ellipsoid 
itself. They are normally expressed either as (1) the semimajor and semiminor 
axes (or equatorial and polar radii, respectively), (2) the semimajor axis and the 
flattening, or (3) the semimajor axis and the eccentricity. These pairs are directly 
interchangeable. In addition, recent satellite-measured reference ellipsoids are 
defined by the semimajor axis, geocentric gravitational constant, and dynamical 
form factor, which may be converted to flattening with formulas from physics 
(Lauf, 1983, p. 6). 

In the early 18th century, Isaac Newton and others concluded that the Earth 
should be slightly flattened at the poles, but the French believed the Earth to be 
egg-shaped as the result of meridian measurements within France. To settle the 
matter, the French Academy of Sciences, beginning in 1735, sent expeditions to 
Peru and Lapland to measure meridians at widely separated latitudes. This estab
lished the validity of Newton's conclusions and led to numerous meridian measure
ments in various locations, especially during the 19th and 20th centuries; between 
1799 and 1951 there were 26 determinations of dimensions of the Earth. 

The identity of the ellipsoid used by the United States before 1844 is uncertain, 
although there is reference to a flattening of 11302. The Bessel ellipsoid of 1841 
(see table 1) was used by the Coast Survey from 1844 until1880, when the bureau 
adopted the 1866 evaluation by the British geodesist Alexander Ross Clarke 
using measurements of meridian arcs in western Europe, Russia, India, South 
Africa, and Peru (Shalowitz, 1964, p. 117-118; Clarke and Helmert, 1911, 
p. 807-808). This resulted in an adopted equatorial radius of6,378,206.4 m and a 
polar radius of 6,356,583.8 m, or an approximate flattening of 11294.9787. 

The Clarke 1866 ellipsoid (the year should be included since Clarke is also 
known for ellipsoids of 1858 and 1880) has been used for all of North America until 
a change which is currently underway, as described below. 

In 1909 John Fillmore Hayford reported calculations for a reference ellipsoid 
from U.S. Coast and Geodetic Survey measurements made entirely within the 
United States. This was adopted by the International Union of Geodesy and 
Geophysics (IUGG) in 1924, w!th a flattening of exactly 11297 and a semimajor 
axis of exactly 6,378,388 m. This is therefore called the International or the 
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TABLE 1.-Some official ellipsoids in use throughout the world1 

Equatorial Polar Radius Flattening 
Name Date Radius, a b, meters f Use 

meters 

GRS 802 ________ 1980 6,378,137* 6,356, 752.3 1/298.257 Newly adopted 
WGS 723 _______ 1972 6,378,135* 6,356, 750.5 1/298.26 NASA; Dept. of Defense; 

oil companies 
Australian _____ 1965 6,378,160* 6,356, 774.7 1/298.25* Australia 
Krasovsky _____ 1940 6,378,245* 6,356,863.0 1/298.3* Soviet Union 
lnternat'l ______ 1924} 6 378 388* 6,356,911.9 1/297* Remainder of the Hayford ________ 1909 ' ' 

worldt 
Clarke4 _________ 1880 6,378,249.1 6,356,514.9 1/293.46** Most of Africa; France 
Clarke __________ 1866 6,378,206.4* 6,356,583.8* 1/294.98 North America; Philip-

pines 
Airy4 ____________ 1830 6,377,563.4 6,356,256.9 1/299.32*:" Great Britain 
Bessel __________ 1841 6,377,397.2 6,356,079.0 1/299.15** Central Europe; Chile; 

Indonesia 
Everest4 _______ 1830 6,377,276.3 6,356,075.4 1/300.80** India; Burma; Paki-

stan; Afghan.; Thai-
land; etc. 

Values are shown to accuracy in excess significant figures, to reduce computational confusion. 
1 Maling, 1973, p. 7; Thomas, 1970, p. 84; Army, 1973, p. 4, endmap; Colvocoresses, 1969, p. 33; World Geodetic, 

1974. 
2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth. WGS 84 has same dimensions 

within accuracy shown. 
3 World Geodetic System. Ellipsoid derived from adopted model of Earth. 
4 Also used in some regions with various modified constants. 
* Taken as exact values. The third number (where two are asterisked) is derived using the following relationships: 

b ~ a (1-j); f ~ 1-b/a. Where only one is asterisked (for 1972 and 1980), certain physical constants not 
shown are taken as exact, but f as shown is the adopted value. 

** Derived from a and b, which are rounded off as shown after conversions from lengths in feet. 
t Other than regions listed elsewhere in column, or some smaller areas. 

Hayford ellipsoid, and is used in many parts of the world, but it was not adopted 
for use in North America, in part because of all the work already accomplished 
using the older datum and ellipsoid (Brown, 1949, p. 293; Hayford, 1909). 

There are over a dozen other principal ellipsoids, however, which are still used 
by one or more countries (table 1). The different dimensions do not only result 
from varying accuracy in the geodetic measurements (the measurements of loca
tions on the Earth), but the curvature of the Earth's surface (geoid) is not uniform 
due to irregularities in the gravity field. 

Until recently, ellipsoids were only fitted to the Earth's shape over a particular 
country or continent. The polar axis of the reference ellipsoid for such a region, 
therefore, normally does not coincide with the axis of the actual Earth, although 
it is assumed to be parallel. The same applies to the two equatorial planes. The 
discrepancy between centers is usually a few hundred meters at most. Only 
satellite-determined coordinate systems, such as the WGS 72 and GRS 80 men
tioned below, are considered geocentric. Ellipsoids for the latter systems repre
sent the entire Earth more accurately than ellipsoids determined from ground 
measurements, but they do not generally give the "best fit" for a particular 
region. 

The reference ellipsoids used prior to those determined by satellite are related 
to an "initial point" of reference on the surface to produce a datum, the name 
given to a smooth mathematical surface that closely fits the mean sea-level sur
face throughout the area of interest. The "initial point" is assigned a latitude, 
longitude, elevation above the ellipsoid, and azimuth to some point. Once a datum 
is adopted, it provides the surface to which ground control measurements are 
referred. The latitude and longitude of all the control points in a given area are 
then computed relative to the adopted ellipsoid and the adopted "initial point." 
The projection equations of large-scale maps must use the same ellipsoid parame-
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ters as those used to define the local datum; otherwise, the projections will be 
inconsistent with the ground control. 

The first official geodetic datum in the United States was the New England Datum, adopted in 
1879. It was based on surveys in the eastern and northeastern states and referenced to the Clarke 
Spheroid of 1866, with triangulation station Principio, in Maryland, as the origin. The first transconti
nental arc of triangulation was completed in 1899, connecting independent surveys along the Pacific 
Coast. In the intervening years, other surveys were extended to the Gulf of Mexico. The New 
England Datum was thus extended to the south and west without major readjustment of the surveys 
in the east. In 1901, this expanded network was officially designated the United States Standard 
Datum, and triangulation station Meades Ranch, in Kansas, was the origin. In 1913, after the geodetic 
organizations of Canada and Mexico formally agreed to base their triangulation networks on the 
United States network, the datum was renamed the North American Datum. 

By the mid-1920's, the problems of adjusting new surveys to fit into the existing network were 
acute. Therefore, during the 5-year period 1927-1932 all available primary data were adjusted into a 
system now known as the North American 1927 Datum.*** The coordinates of station Meades Ranch 
were not changed but the revised coordinates of the network comprised the North American 1927 
Datum (National Academy of Sciences, 1971, p. 7). 

Satellite data have provided geodesists with new measurements to define the 
best Earth-fitting ellipsoid and for relating existing coordinate systems to the 
Earth's center of mass. U.S. military efforts produced the World Geodetic Sys
tem 1966 and 1972 (WGS 66 and WGS 72). The National Geodetic Survey is 
planning to replace the North American 1927 Datum with a new datum, the 
North American Datum 1983 (NAD 83), which is Earth-centered based on both 
satellite and terrestrial data. The IUGG in 1980 adopted a new model of the Earth 
called the Geodetic Reference System (GRS) 80, from which is derived an ellip
soid which has been adopted for the new North American datum. As a result, the 
latitude and longitude of almost every point in North America will change slightly, 
as well as the rectangular coordinates of a given latitude and longitude on a map 
projection. The difference can reach 300m. U.S. military agencies are developing 
a worldwide datum called WGS 84, also based on GRS 80, but with slight 
differences. For Earth-centered datums, there is no single "origin" like Meades 
Ranch on the surface. The center of the Earth is in a sense the origin. 

For the mapping of other planets and natural satellites, only Mars is treated as 
an ellipsoid. Other bodies are taken as spheres (table 2), although some irregular 
satellites have been treated as triaxial ellipsoids and are "mapped" ortho
graphically. 

In most map projection formulas, some form of the eccentricity e is used, rather 
than the flattening f. The relationship is as follows: 

e2 = 2f- j2, or f = 1 - (1 - e2) 112 

For the Clarke 1866, e2 is 0.006768658. For the GRS 80, e2 is 0.0066943800. 

AUXILIARY LATITUDES 

By definition, the geographic or geodetic latitude, which is normally the lati
tude referred to for a point on the Earth, is the angle which a line perpendicular 
to the surface of the ellipsoid at the given point makes with the plane of the 
Equator. It is slightly greater in magnitude than the geocentric latitude, except 
at the Equator and poles, where it is equal. The geocentric latitude is the angle 
made by a line to the center of the ellipsoid with the equatorial plane. 

Formulas for the spherical form of a given map projection may be adapted for 
use with the ellipsoid by substitution of one of various "auxiliary latitudes" in 
place of the geodetic latitude. Oscar S. Adams (1921) developed series and other 
formulas for five substitute latitudes, generally building upon concepts described 
in the previous century. In using them, the ellipsoidal Earth is, in effect, first 
transformed to a sphere under certain restraints such as conformality or equal 
area, and the sphere is then projected onto a plane. If the proper auxiliary 

13 
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TABLE 2.-0fficial figures for extraterrestrial mapping 

[(From Davies, et al., 1983; Davies, Private commun., 1985.) Radius of Moon chosen so that all elevations are positive. Radius of 
Mars is based on a level of 6.1 millibar atmospheric pressure; Mars has both positive and negative elevations.] 

Body 
Equatorial 
radius a* 

(kilometers) 

Earth's Moon-------------------------------------------------------------------------------------- 1, 738.0 
Mercury --------------------------------------------------------------------------------------------- 2, 439. 0 
Venus ------------------------------------------------------------------------------------------------ 6, 051. 0 
Mars ------------------------------------------------------------------------------------------------- 3, 393. 4 * 

Galilean satellites of Jupiter 

I o ----------------------------------------------------------------------------------------------------- 1, 815 
Europa ---------------------------------------------------------------------------------------------- 1, 569 
Ganymede ------------------------------------------------------------------------------------------ 2, 631 
Callisto---------------------------------------------------------------------------------------------- 2,400 

Satellites of Saturn 

Mimas -----------------------------------------------------------------------------------------------Enceladus __________________________________________________________________________________________ _ 

Tethys ----------------------------------------------------------------------------------------------
Dione -----------------------------------------------------------------------------------------------
Rhea ------------------------------------------------------------------------------------------------
Titan ------------------------------------------------------------------------------------------------
Iapetus ----------------------------------------------------------------------------------------------

Satellites of Uranus 

198 
253 
525 
560 
765 

2,575 
725 

Ariel ------------------------------------------------------------------------------------------------- 665 
Umbrie]_____________________________________________________________________________________________ 555 

Titania .. --------------------------------------------------------------------------------------------- 800 
Oberon ---------------------------------------------------------------------------------------------- 815 
Miranda --------------------------------------------------------------------------------------------- 250 

Satellite of Neptune 

Triton------------------------------------------------------------------------------------------------ 1, 600 

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of 0.101929. Flattening/ = 
1 - (1 - e2)

1
/

2
• Unlisted satellites are taken as triaxial ellipsoids, or mapping is not expected in the near future. 

Mimas and Enceladus have also been given ellipsoidal parameters, but not for mapping. 

latitudes are chosen, the sphere may have either true areas, true distances in 
certain directions, or conformality, relative to the ellipsoid. Spherical map projec
tion formulas may then be used for the ellipsoid solely with the substitution of the 
appropriate auxiliary latitudes. 

It should be made clear that this substitution will generally not give the projec
tion in its preferred form. For example, using the conformal latitude (defined 
below) in the spherical Transverse Mercator equations will give a true ellipsoidal, 
conformal Transverse Mercator, but the central meridian cannot be true to scale. 
More involved formulas are necessary, since uniform scale on the central merid
ian is a standard requirement for this projection as commonly used in the ellipsoi
dal form. For the regular Mercator, on the other hand, simple substitution of the 
conformal latitude is sufficient to obtain both conformality and an Equator of 
correct scale for the ellipsoid. 

Adams gave formulas for all these auxiliary latitudes in closed or exact form, as 
well as in series, except for the authalic (equal-area) latitude, which could also 
have been given in closed form. Both forms are given below. For improved 
computational efficiency using the series, see equations (3-34) through (3-39). 
In finding the auxiliary latitude from the geodetic latitude, the closed form may 
be more useful for computer programs. For the inverse cases, to find geodetic 
from auxiliary latitudes, most closed forms require iteration, so that the series 
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form is probably preferable. The series form shows more readily the amount of 
deviation from the geodetic latitude cp. The formulas given later for the individual 
ellipsoidal projections incorporate these formulas as needed, so there is no need to 
refer back to these for computation, but the various auxiliary latitudes are grouped 
together here for comparison. Some of Adams' symbols have been changed to 
avoid confusion with other terms used in this book. 

The conformal latitude x, giving a sphere which is truly conformal in accord
ance with the ellipsoid (Adams, 1921, p. 18, 84), 

x = 2 arctan (tan ( '!T/4 + cp/2) [(1 - e sin cp)/(1 + e sin cp)]e/2 ) - 7T/2 (3-1) 

= 2 arctan[(1 + s~n cl>) ( 1 - e s~n cl> ) e] 112 - 7Tf2 
1 - sm c1> 1 + e sm c1> 

c1> - (e2/2 + 5e4/24 + 3e6/32 + 281e8/5760 + ... )sin 2cp 
+ (5e4/48 + 7e6/80 + 697e8/11520 + ... )sin 4c!> 
- (13e6/480 + 461e8/13440 + ... )sin 6c!> + (1237e8/161280 
+ ... )sin Bel> + ... 

with x and c1> in radians. In seconds of arc for the Clarke 1866 ellipsoid, 

x = c1> - 700. 0427" sin 2cp + 0. 9900" sin 4cp + 0. 0017" sin 6cp 

(3-1a) 

(3-2) 

(3-3) 

The inverse formula, for c1> in terms of x, may be a rapid iteration of an exact 
rearrangement of (3-1), successively placing the value of c1> calculated on the left 
side into the right side of (3-4) for the next calculation, using x as the first 
trial cp. When c1> changes by less than a desired convergence value, iteration is 
stopped. 

c1> = 2 arctan (tan ( 7T/4 + x/2)[(1 + e sin cp)/(1 - e sin cp)]e/2) - 7T/2 (3-4) 

The inverse formula may also be written as a series, without iteration (Adams, 
1921, p. 85): 

c1> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + ... ) sin 2x 
+ (7e4/48 + 29e6/240 + 81le8/11520 + ... ) sin 4x 

+ (7e6/120 + 81e8/1120 + ... ) sin 6x 
+ (4279e8/161280 + ... ) sin Bx + 

or, for the Clarke 1866 ellipsoid, in seconds, 

c1> = x + 700.0420" sin 2x + 1.3859" sin 4x + 0.0037" sin 6x 

(3-5) 

(3-6) 

Adams referred to x as the isometric latitude, but this name is now applied to 
I)J, a separate very nonlinear function of cp, which is directly proportional to the 
spacing of parallels of latitude from the Equator on the ellipsoidal Mercator 
projection. Another common symbol for isometric latitude is T. It is also useful for 
other conformal projections: 

ljJ = ln (tan(7r/4 + cp/2) [(1-e sin cf>)/(1 + e sin cp)y12) (3-7) 

Because of the rapid variation from cp, ljJ is not given here in series form. By 
comparing equations (3-1) and (3-7), it may be seen, however, that 

ljJ = ln tan ( '!T/4 + x/2) (3-8) 

so that x may be determined from the series in (3-2) and converted to ljJ with 
(3-8), although there is no particular advantage over using (3-7). 

For the inverse of (3-7), to find c1> in terms of I)J, the choice is between iteration 
of a closed equation (3-10) and use of series (3-5) with a simple inverse of (3-8): 

x = 2 arctan e<P - 7T/2 

where e is the base of natural logarithms, 2. 71828. 

(3-9) 

15 
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For the iteration, apply the principle of successive substitution used in (3-4) 
to the following, with (2 arctan e'-"-1T12) as the first trial <1>: 

<!> = 2 arctan !e'-"[0 + e sin <!>)/(1 - e sin <!>)]e12) - 1r/2 

Note that e and e are not the same. 

(3-10) 

The authalic latitude f3, on a sphere having the same surface area as the 
ellipsoid, provides a sphere which is truly equal-area (authalic), relative to the 
ellipsoid: 

(3-11) 

where 

q = (1- e2)(sin<j>/(1- e2 sin2 <!>)- (ll(2e))ln((1-e sin <P)/(1 + esin<j>)]) (3-12) 

and qp is q evaluated for a <!> of goo. The radius R q of the sphere having the same 
surface area as the ellipsoid is calculated as follows: 

(3-13) 

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, Rq is 
6,37o,gg7.2 m. 

The equivalent series for f3 (Adams, 1g21, p. 85) 

f3 = <!>- (e2/3 + 31e4/180 + 5ge6/560 + ... ) sin2<!> + (17e4/360 + 61e6/1260 + ... ) 
sin 4<!> - (383e6/45360 + ... ) sin 6<!> + . . . (3-14) 

where f3 and<!> are in radians. For the Clarke 1866 ellipsoid, the formula in seconds 
of arc is: 

f3 = <!> - 467.012g" sin 2<!> + 0.44g4" sin 4<!> + 0.0005" sin 6<!> (3-15) 

For <!> in terms of f3, an iterative inverse of (3-12) may be used with the 
inverse of (3-11): 

<!> = <!> + (1 - e
2 

sin
2 

<!>)
2 

[ _q_ _ sin<!> + _1_ ln ( 1 - e sin <!>J (3_ 16) 
2 cos <!> 1 - e2 1 - e2 sin2 <!> 2e 1 + e sin <!>~ 

where 

q = qP sin f3 (3-17) 

qp is found from (3-12) for a <!> of goo, and the first trial <!> is arcsin (q/2), used 
on the right side of (3-16) for the calculation of<!> on the left side, which is then 
used on the right side until the change is less than a preset limit. (Equation 
(3-16) is derived from equation (3-12) using a standard Newton-Raphson itera
tion.) 

To find <!> from f3 with a series: 

<!> = f3 + (e2/3 + 31e4/180 + 517e6/5040 + ... ) sin 2f3 
+ (23e4/360 + 251e6/3780 + ... ) sin 4f3 (3-18) 
+ (761e6/45360 + ... ) sin 6f3 + ... 

or, for the Clarke 1866 ellipsoid, in seconds, 

<!> = f3 + 467.0127" sin 2f3 + 0.6080" sin 4f3 + 0.0011" sin 6f3 (3-1g) 

The rectifying latitude tJ. (designated w by Adams), giving a sphere with correct 
distances along the meridians, requires a series in any case (or a numerical inte
gration which is not shown). 

(3-20) 

where 
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M = a[(1 - e214 - 3e4/64 - 5e6/256 - ... )<.f> - (3e2!8 + 3e4/32 
+ 45e6!1024 + ... ) sin 24> + (15e4/256 + 45e6/1024 + ... ) sin 44> 
- (35e6/3072 + ... ) sin 64> + ... ] (3-21) 

and MP is M evaluated for a 4> of 90°, for which all sine terms drop out. M is 
the distance along the meridian from the Equator to latitude Q>. For the Clarke 
1866 ellipsoid, the constants simplify to, in meters, 

M = 111132.0894<-t>a- 16216.94 sin 24> + 17.21 sin 44> - 0.02 sin 64> (3-22) 

The first coefficient in (3-21) has been multiplied by 11"1180 to use 4> in degrees. 
To use J..L properly, the radius RM of the sphere must be 2MPI1T for correct scale. 
For the Clarke 1866 ellipsoid, RM is 6,367,399.7 m. A series combining (3-20) 
and (3-21) is given by Adams (1921, p. 125): 

J..L = 4> - (3e1/2- 9e1
3/16 + ... ) sin 24> + (15e1

2/16 - 15e1
4/32 + ... ) 

sin 44> - (35e1
3/48 - ... ) sin 64> + (315e1

4/512 - ... ) 
sin 84> + (3-23) 

where 
(3-24) 

and J..L and 4> are given in radians. For the Clarke 1866 ellipsoid, in seconds, 

J..L = 4> - 525.3298" sin 24> + 0.5575" sin 44> + 0.0007" sin 64> (3-25) 

The inverse of equations (3-23) or (3-25), for 4> in terms of 1-1, given M, 
will be found useful for several map projections to avoid iteration, since a series 
is required in any case (Adams, 1921, p. 128). 

4> = 1-1 + (3e1/2 - 27e1
3/32 + ... ) sin 2J..L + (21e1

2/16 - 55e1
4/32 + ... ) 

sin 41-1 + (151e1
3/96 - ... ) sin 61-1 + (1097e1

4/512 - ... ) 
sin 81-1 + . . . (3-26) 

where e1 is found from equation (3-24) and 1-1 from (3-20), but M is given, 
not calculated from (3-21). For the Clarke 1866 ellipsoid, in seconds of arc, 

4> = 1-1 + 525.3295" sin 21-1 + 0. 7805" sin 4!-1 + 0.0016" sin 61-1 (3-27) 

The following closed and exact formulas, from which equations (3-20) through 
(3-25) may be ultimately derived, are given as a matter of interest. 

(3-27a) 

Equation (3-27a), the integral of (4-19) in a later chapter, may not be exactly 
integrated. While Simpson's rule may be used, it is not as satisfactory here as 
it is in some other cases (equation (27-6a), etc.). However, (3-27a) may be 
transformed to an elliptic integral of the second kind, for which the arithmetic
geometric-mean (A.G.M.) iteration can provide any desired accuracy within com
puter programming limitations (Messenger, T.J., pers. commun., 1984; Abram
owitz and Stegun, 1964, p. 598-99): 

M = a [f
0

<1> (1- e2 sin2Q>) 112 d<.f>- e2 sin 4> cos <.f>/(1- e2 sin2 <.f>)112] (3-27b) 

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are more useful 
for derivation than in substitutions for projections: 

The geocentric latitude <.f>g (designated ljJ by Adams) referred to in the first 
paragraph in this section is simply as follows: 

<.f>y = arctan [(1 - e2
) tan Q>] (3-28) 

As a series, 

<.f>y = 4> - e2 sin 24> + (el/2) sin 44> - (e2
3/3) sin 64> + (3-29) 

17 
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TABLE 3.-Corrections for auxiliary latitudes on the Clarke 1866 ellipsoid 

[Corrections are given, rather than actual values. For example, if the geodetic latitude is 50"N., the confonnallatitude is 50" - 11'29. 7" = 

49" 48'30.3" N. For southern latitudes, the corrections are the same, disregarding the sign of the latitude. That is, the conformal 
latitude for a <f> of lat. 50' S. is 49' 48"30.3"' S. From Adams, 1921] 

Geodetic Conformal Authalic Rectifying Geocentric Parametric 
(<jl) <x-<Pl (~-q,) (fL-<jl) (q, -<!>) (TJ-<!>) 

goo ----------------- 0' 00.0" 0' 00.0" 0' 00.0" 0' 00.0" 0' 00.0" 
85 ----------------- 2 01.9 -1 21.2 -1 31.4 - 2 02.0 -1 00.9 
80 ----------------- - 4 00.1 -2 40.0 -3 00.0 4 00.3 -2 00.0 
75 ----------------- - 5 50.9 -3 53.9 -4 23.1 5 51.3 -2 55.4 
70 ----------------- 7 31.0 -5 00.6 -5 38.2 - 7 31.4 -3 45.4 
65 ______________ .., __ - 8 57.2 -5 58.2 -6 43.0 8 57.7 -4 28.6 
60 ----------------- -10 07.1 -6 44.8 -7 35.4 -10 07.6 -5 03.6 
55 ----------------- -10 58.5 -7 19.1 -8 14.0 -10 58.9 -5 29.3 
50 ----------------- -11 29.7 -7 40.1 -8 37.5 -11 30.2 -5 45.0 
45 ..................................... -11 40.0 -7 47.0 -8 45.3 -11 40.5 -5 50.2 
40 ----------------- -11 29.1 -7 39.8 -8 37.2 -11 29.4 -5 44.8 
35 ----------------- -10 57.2 -7 18.6 -8 13.3 -10 57.4 -5 28.9 
30 ----------------- -10 05.4 -6 44.1 -7 34.5 -10 05.6 -5 03.0 
25 ----------------- 8 55.3 -5 57.3 -6 41.9 8 55.4 -4 28.0 
20 ----------------- - 7 29.0 -4 59.7 -5 37.1 - 7 29.1 -3 44.8 
15 ----- .. ----------- - 5 49.2 -3 53.1 -4 22.2 - 5 49.2 -2 54.9 
10 ----------------- 3 58.8 -2 39.4 -2 59.3 3 58.8 -1 59.6 
5 ___ ,.. _____________ - 2 01.2 -1 20.9 -1 31.0 - 2 01.2 -1 00.7 
0 ----------------- 0 00.0 0 00.0 0 00.0 0 00.0 0 00.0 

where <f>g and q, are in radians and e2 = e2/(2 - e2
). For the Clarke 1866 ellipsoid, 

in seconds of arc, 

<f>g = q, - 700.44" sin 24> + 1.19" sin 44> (3-30) 

The reduced or parametric latitude 'YJ (designated e by Adams) of a point on 
the ellipsoid is the latitude on a sphere of radius a for which the parallel has the 
same radius as the parallel of geodetic latitude q, on the ellipsoid through the 
given point: 

'YJ = arctan [(1 - e2 )112 tan <Pl (3-31) 

As a series, 

(3-32) 

where e1 is found from equation (3-24), and 'YJ and <Pare in radians. For the Clarke 
1866 ellipsoid, using seconds of arc, 

'YJ = q, - 350.22" sin 24> + 0.30" sin 44> (3-33) 

The inverses of equations (3-28) and (3-31) for <P in terms of geocentric or 
reduced latitudes are relatively easily derived and are noniterative. The inverses 
of series equations (3-29), (3-30), (3-32), and (3-33) are therefore omitted. 
Table 3 lists the correction for these auxiliary latitudes for each 5° of geodetic 
latitude. 

COMPUTATION OF SERIES 

Most of the trigonometric series approximations throughout this book (for 
example, equations (3-2) and (3-5)) are given in terms of multiple angles. In this 
arrangement, the coefficients converge to zero more rapidly, but handling by 
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computer is normally somewhat slower than that occurring with nested trigono
metric series. The latter are equivalent to power polynomials and require a mini
mum number of computations of trigonometric functions from series built into the 
software of most computers. 

The pertinent series in this book fall into one of three forms (3-34), (3-36) and 
(3-38), in which<!> may be any variable, andft<!>) is the function: 

If /(<!>) = A sin 2<1> + B sin 4<!> + C sin 6<!> + D sin 8<!> (3-34) 

then /(<!>) = sin 2<1> (A' + cos 2<1> (B' + cos 2<1> (C' + D' cos 2<!>))) (3-35) 

where 

A' =A- C 
B' = 2B- 4D 
C' = 4C 
D' =8D 

If ft<l>) = A sin <!> + B sin 3<!> + C sin 5<!> + D sin 7<1> 

then ft<!>) = sin <1> (A' + sin2<j> (B' + sin2<!> (C' + D' sin2<j>))) 

where 

A I = A + 3B + 5C + 7 D 
B' = -4B - 20C - 56D 
C' = 16C + 112D 
D' = -64D 

(3-36) 

(3-37) 

If ft<!>) = A + B cos 2<!> + C cos 4<!> + D cos 6<!> + E cos 8<!> (3-38) 

then ft<l>) =A'+ cos2<J>(B' + cos2<j>(C' + cos2<j>(D' + E' cos2<j>))) (3-39) 

where 

A' =A- C + E 
B' =B- 3D 
C' = 2C- 8E 
D' =4D 
E' =8E 

These are exact equivalents of the series as shown. First the primed coeffi
cients are computed once for the full set of conversions from the original coeffi
cients of (3-34), (3-36), or (3-38), then sin 2<!> and cos 2<!> are computed once for 
each point in (3-35), or sin <!>and sin2<!> once for each point in (3-37), or cos 2<!> 
once for each point in (3-39). Computation of/(<!>) may then proceed from the 
innermost nest outward with a speed up to 25-35 percent faster than that with 
multiple-angle series. 

For more efficient transformation of a great number of points from one set of 
coordinates to another, polynomial approximations for the entire projection may 
be considered. This is normally only practical for a limited region. For techniques 
in determining the polynomial coefficients, the reader is referred to Snyder (1985a, 
p. 5-6, 15-24). 
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4. SCALE VARIATION AND ANGULAR DISTORTION 

Since no map projection maintains correct scale throughout, it is important to 
determine the extent to which it varies on a map. On a world map, qualitative 
distortion is evident to an eye familiar with maps, after noting the extent to which 
landmasses are improperly sized or out of shape, and the extent to which meridi
ans and parallels do not intersect at right angles, or are not spaced uniformly 
along a given meridian or given parallel. On maps of countries or even of continents, 
distortion may not be evident to the eye, but it becomes apparent upon careful 
measurement and analysis. 

TISSOT'S INDICA TRIX 

In 1859 and 1881, Nicolas Auguste Tissot published a classic analysis of the 
distortion which occurs on a map projection (Tissot, 1881; Adams, 1919, p. 153-163; 
Maling, 1973, p. 64-67). The intersection of any two lines on the Earth is repre
sented on the flat map with an intersection at the same or a different angle. At 
almost every point on the Earth, there is a right angle intersection of two lines in 
some direction (not necessarily a meridian and a parallel) which are also shown at 
right angles on the map. All the other intersections at that point on the Earth will 
not intersect at the same angle on the map, unless the map is conformal, at least 
at that point. The greatest deviation from the correct angle is called w, the 
maximum angular deformation. For a conformal map, w is zero. (In some texts, 2w 
is used rather than w.) 

Tissot showed this relationship graphically with a special ellipse of distortion 
called an indicatrix. An infinitely small circle on the Earth projects as an infinitely 
small, but perfect, ellipse on any map projection. If the projection is conformal, 
the ellipse is a circle, an ellipse of zero eccentricity. Otherwise, the ellipse has a 
major axis and minor axis which are directly related to the scale distortion and to 
the maximum angular deformation. 

In figure 3, the left-hand drawing shows a circle representing the infinitely 
small circular element, crossed by a meridian >-. and parallel <!> on the Earth. The 
right-hand drawing shows this same element as it may appear on a typical map 
projection. For general purposes, the map is assumed to be neither conformal nor 
equal-area. The meridian and parallel may no longer intersect at right angles, but 

(AJ (a) 

FIGURE 3.-Tissot's Indicatrix. An infinitely small circle on the Earth (A) appears as an ellipse 
on a typical map (B). On a conformal map, (B) is a circle of the same or of a different size. 
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there is a pair of axes which intersect at right angles on both Earth (AB and CD) 
and map (A'B' and C'D'). There is also a pair of axes which intersect at right 
angles on the Earth (EF and GH), but at an angle on the map (E' F' and G' H') 
farthest from a right angle. The latter case has the maximum angular deformation 
w. The orientation of these axes is such that 1-L + 1-L' = 90°, or, for small distortions, the 
lines fall about halfway between A'B' and C'D'. The orientation is of much less 
interest than the size of the deformation. If a and b, the major and minor semiaxes 
of the indicatrix, are known, then 

sin (w/2) = Ia - bll(a + b) (4-1) 

If lines A. and <!>coincide with a and b, in either order, as in cylindrical and conic 
projections, the calculation is relatively simple, using equations (4-2) through 
(4-6) given below. 

Scale distortion is most often calculated as the ratio of the scale along the 
meridian or along the parallel at a given point to the scale at a standard point or 
along a standard line, which is made true to scale. These ratios are called "scale 
factors." That along the meridian is called hand along the parallel, k. The term 
"scale error" is frequently applied to (h-1) and (k-1). If the meridians and 
parallels intersect at right angles, coinciding with a and b in figure 3, the scale 
factor in any other direction at such a point will fall between hand k. Angle w may 
be calculated from equation (4-1), substituting h and k in place of a and b. In 
general, however, the computation of w is much more complicated, but is impor
tant for knowing the extent of the angular distortion throughout the map. 

The formulas are given here to calculate h, k, and w; but the formulas for hand 
k are applied specifically to all projections for which they are deemed useful as the 
projection formulas are given later. Formulas for w for specific projections have 
generally been omitted. 

Another term occasionally used in practical map projection analysis is "con
vergence" or "grid declination." This is the angle between true north and grid 
north (or direction of the Y axis). For regular cylindrical projections this is zero, 
for regular conic and polar azimuthal projections it is a simple function oflongitude, 
and for other projections it may be determined from the projection formulas by 
calculus from the slope of the meridian (dy!dx) at a given latitude. It is used pri
marily by surveyors for fieldwork with topographic maps. Convergence is not dis
cussed further in this work. 

DISTORTION FOR PROJECTIONS OF THE SPHERE 

The formulas for distortion are simplest when applied to regular cylindrical, 
conic (or conical), and polar azimuthal projections of the sphere. On each of these 
types of projections, scale is solely a function of the latitude. 

Given the formulas for rectangular coordinates x and y of any cylindrical projec
tion as functions solely of longitude A. and latitude <!>, respectively, 

h = dyi(Rd<!>) 
k = dxi(R cos <f>dX.) 

(4-2) 
(4-3) 

Given the formulas for polar coordinates p and 8 of any conic projection as 
functions solely of<!> and X., respectively, where n is the cone constant or ratio of 8 
to (A. - A.0), 

h = -dpi(Rd<!>) 
k = npi(R cos <!>) 

(4-4) 
(4-5) 
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Transverse Mercator Projection 
FIGURE 4.-Distortion patterns on common conformal map projections. The Transverse Mercator and 

the Stereographic are shown with reduction in scale along the central meridian or at the center of 
projection, respectively. If there is no reduction, there is a single line of true scale along the 
central meridian on the Transverse Mercator and only a point of true scale at the center of the 
Stereographic. The illustrations are conceptual rather than precise, since each base map projec
tion is an identical conic. 
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FIGURE 4.-Continued. 
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Oblique Stereographic Projection 
FIGURE 4.-Continued 

Given the formulas for polar coordinates p and e of any polar azimuthal projec
tion as functions solely of <1> and A., respectively, equations (4-4) and (4-5) apply, 
with n equal to 1.0: 

h = -dp!(Rd<!>) 
k = pi(R cos <!>) 

(4-4) 
(4-6) 

Equations (4-4) and (4-6) may be adapted to any azimuthal projection cen
tered on a point other than the pole. In this case h' is the scale factor in the 
direction of a straight line radiating from the center, and k' is the scale factor in a 
direction perpendicular to the radiating line, all at an angular distance c from the 
center: 

h' 
k' 

dp!(Rdc) 
p/(R sin c) 

(4-7) 
(4-8) 

An analogous relationship applies to scale factors on oblique cylindrical and 
conic projections. 

For any of the pairs of equations from (4-2) through (4-8), the maximum 
angular deformation w at any given point is calculated simply, as stated above, 

sin (w/2) = lh - kll(h + k) (4-9) 

where lh-kl signifies the absolute value of (h-k), or the positive value without 
regard to sign. For equations (4-7) and (4-8), h' and k' are used in (4-9) 
instead of h and k, respectively. In figure 4, distortion patterns are shown for 
three conformal projections of the United States, choosing arbitrary lines of true 
scale. 

For the general case, including all map projections of the sphere, rectangular 
coordinates x and y are often both functions of both <1> and A., so they must be 
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partially differentiated with respect to both<!> and X., holding X. and<!>, respectively, 
constant. Then, 

where 

h = (1/R) [(ax!a<j>)2 + (ay!a<j>)2
]112 

k = [l!(R cos <!>)] [(axlaX.)2 + (ay/ax.)2]Ii2 

a' = (h2 + k2 + 2hk sin 8')112 

b' = (h2 + k2 - 2hk sin 6')112 

sin 8' = [(ay!a<j>) (axlax.) - (ax/a<!>) (ay!aX.)]!(R2hk cos<!>) 

(4-10) 
(4-11) 
(4-12) 
(4-13) 

(4-14) 

8' is the angle at which a given meridian and parallel intersect, and a' and b' are 
convenient terms. The maximum and minimum scale factors a and b, at a given 
point, may be calculated thus: 

a = (a' + b')/2 
b = (a' - b')/2 

Equation (4-1) simplifies as follows for the general case: 

sin (w/2) = b' Ia' 

The areal scale factor s: 

s = hk sin 6' 

For special cases: 

(4-12a) 
(4-13a) 

(4-1a) 

(4-15) 

(1) s = hk if meridians and parallels intersect at right angles (8' = 90°); 
(2) h = k and w = 0 if the map is conformal; 
(3) h = Ilk on an equal-area map if meridians and parallels intersect at right 
angles. 2 

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID 

The derivation of the above formulas for the sphere utilizes the basic formulas 
for the length of a given spacing (usually 1 o or 1 radian) along a given meridian or a 
given parallel. The following formulas give the length of a radian of latitude (L.p) 
and of longitude (LA) for the sphere: 

L.p = R 
LA = R cos<!> 

(4-16) 
(4-17) 

where R is the radius of the sphere. For the length of 1 o of latitude or longitude, 
these values are multiplied by TI/180. 

The radius of curvature on a sphere is the same in all directions. On the 
ellipsoid, the radius of curvature varies at each point and in each direction along a 
given meridian, except at the poles. The radius of curvature R' in the plane of the 
meridian is calculated as follows: 

(4-18) 

2Maling (1973, p. 49-81) has helpful derivations of these equations in less condensed forms. There are typo
graphical errors in several of the equations in Maling, but these may be detected by following the derivation closely. 
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TABLE 4.-Lengths, in meters, of 1 o of latitude and longitude on two ellipsoids of reference 

Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid 
(¢) ____ 1 ~-l~-~· ______ 1 ~_long. ____ 1 o !at_. _____ 1 ° long_: ____ _ 

90°--------------- 111,699.4 0.0 111,700.0 0.0 
85 --------------- 111,690.7 9,735.0 111,691.4 9,735.0 
80 --------------- 111,665.0 19,394.4 111,665.8 19,394.5 
75 --------------- 111,622.9 28,903.3 111,624.0 28,903.5 
70 --------------- 111,565.9 38,188.2 111,567.4 38,188.5 
65 --------------- 111,495.7 47,177.5 111,497.7 47,177.9 
60 --------------- 111,414.5 55,802.2 111,417.1 55,802.8 
55 --------------- 111,324.8 63,996.4 111,327.9 63,997.3 
50 --------------- 111,229.3 71,698.1 111,233.1 71,699.2 
45 --------------- 111,130.9 78,849.2 111,135.4 78,850.5 
40 --------------- 111,032.7 85,396.1 111,037.8 85,397.7 
35 --------------- 110,937.6 91,290.3 110,943.3 91,292.2 
30 --------------- 110,848.5 96,488.2 110,854.8 96,490.4 
25 --------------- 110,768.0 100,951.9 110,174.9 100,954.3 
20 --------------- 110,698.7 104,648.7 110,706.0 104,651.4 
15 --------------- 110,642.5 107,551.9 110,650.2 107,554.8 
10 --------------- 110,601.1 109,640.7 ll0,609.1 109,643.7 
5 --------------- 110,575.7 110,899.9 110,583.9 110,903.1 
0 --------------- 110,567.2 111,320.7 110,575.5 111,323.9 

The length of a radian of latitude is defined as the circumference of a circle of this 
radius, divided by 21T, or the radius itself. Thus, 

(4-19) 

For the radius of curvature N of the ellipsoid in a plane perpendicular to the 
meridian and also perpendicular to a plane tangent to the surface, 

(4-20) 

Radius N is also the length of the perpendicular to the surface from the surface 
to the polar axis. The length of a radian of longitude is found, as in equation 
(4-17), by multiplying N by cos 4>, or 

(4-21) 

The lengths of 1 o of latitude and 1 o of longitude for the Clarke 1866 and the Inter
national ellipsoids are given in table 4. They are found from equations (4-19) and 
(4-21), multiplied by 'iT/180 to convert to lengths for 1°. 

When these formulas are applied to equations (4-2) through (4-6), the values 
of h and k for the ellipsoidal forms of the projections are found to be as follows: 

For cylindrical projections: 

h = dyi(R'd<f>) 
= (1-e2 sin2 <f>)312 dy![a(1-e2 )d<f>] (4-22) 

'· k = dx!(N cos <f>dA.) 
= (1-e2 sin2 <f>)112 dx!(a cos 4> dA.) (4-23) 

For conic projections: 

h = -dp!(R'd<f>) 
= -(1-e2 sin2 <f>)312 dp/[a(1-e2 )d<f>] (4-24) 
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k = npi(N cos <!>) 
= np(l-e2 sin2 <J>) 112/(a cos <!>) 

For polar azimuthal projections: 

h = -(1-e2 sin2 <J>)312 dpl[a(1-e2 )d<J>] 
k = p(l-e2 sin2 <j>)112/(a cos <J>) 

(4-25) 

(4-24) 
(4-26) 

Equations (4-7) and (4-8) do not have ellipsoidal equivalents. Equation (4-9) 
remains the same for equations (4-22) through (4-26): 

sin (w/2) = lh-kll(h+k) (4-9) 

For the general projection of the ellipsoid, equations (4-10) and (4-11) are 
similarly modified: ' 

h = [(ax/a<j>)2 + (ay!a<J>)2
] 112(1-e2 sin2 <J>)312/[a(l-e2

)] 

k = [(ax/aA.)2 + (aylaA.)2
] 112(1-e2 sin2 <J>) 112/(a cos <J>) 

(4-27) 
(4-28) 

Equations (4-12) through (4-15), (4-12a), (4-13a), and (4-1a), listed for the 
sphere, apply without change, except that R 2 becomes a2(1-e2)/(1-e2sin2<j>)2 in 
(4-14). 

Specific calculations are shown during the discussion of individual projections. 
The importance of using the ellipsoid instead of the sphere for designing a pro

jection may be quantitatively evaluated by determining the ratio or product of 
some of the elementary relationships. The ratio of the differential length of a 
radian of latitude along a meridian on the sphere to that on the ellipsoid is found 
by dividing the equation (4-16) by equation (4-19), or 

(4-29) 

A related ratio for the length of a radian of longitude along a parallel on the 
sphere to that on the ellipsoid is found by dividing equation (4-17) by equation 
(4-21), or 

(4-30) 

From these, the local shape factor C8 may be found as the ratio of (4-29) to 
(4-30): 

(4-31) 

and the area factor C a is their product: 

(4-32) 

If hand k are calculated for the spherical version of a map projection, the actual 
scale factors on the spherical version relative to the ellipsoid may be determined 
by multiplying h by Cm and k by Cp. For normal cylindrical and conic projections 
and polar azimuthal projections, the conformality or shape factor may be taken as 
hlk (not the same as w) multiplied by C8 , and the area scale factor hk may be 
multiplied by C a· 

Except for C 8 , which is independent of Ria, R must be given an arbitrary value 
such as Rq (see equation (3-13)), RM (see second sentence following equation 
(3-22)), or another reasonable balance between the major and minor semiaxes a 
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TABLE 5.-Ellipsoidal correction factors to apply to spherical projections based on Clarke 1866 
ellipsoid 

Lat. (N&S) C,/' cp c. c• m 

90° _______________ 
0.99548 0.99548 1.00000 0.99099 

75 --------------- .99617 .99571 1.00046 .99189 

60 --------------- .99803 .99633 1.00170 .99437 

45 --------------- 1.00058 .99718 1.00341 .99775 

30 --------------- 1.00313 .99802 1.00511 1.00114 

15 --------------- 1.00499 .99864 1.00636 1.00363 

0 --------------- 1.00568 .99887 1.00681 1.00454 

Multiply by* • h k hlk hk 
• Cm = 1.0 for 48.24° lat. and Ca = 1.0 for35.32°lat. Values ofCm, CP, and Ca are based on a radius of6,370.997m for 

the sphere used in the spherical map projection. 
•• h = scale factor along meridian. 

k = scale factor along parallel of latitude. 
For normal cylindrical and conic projections and polar azimuthal projections: 
hlk = shape factor. 
hk = area scale factor. 
For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m, 

h = 1.00132 and k = 0.99868 at lat. 45° N., this map has an areascalefactorof1.00132 x 0.99868 x 00.99775 = 0.99775, 
relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, this factor would be 
1.0. 

and b of the ellipsoid. Using Rq and the Clarke 1866 ellipsoid, table 5 shows the 
magnitude of these corrections. Thus, a conformal projection based on the sphere 
has the correct shape at the poles for the ellipsoid, but the shape is about % of 
1 percent (0.00681) in error near the Equator (that is, Tissot's Indicatrix is an 
ellipse with minor axis about % of 1 percent shorter than the major axis at the 
Equator when the spherical form is compared to the ellipsoid). 

A map extending over a large area will have a scale variation of several percent, 
which far outweighs the significance of the less-than-1-percent variation between 
sphere and ellipsoid. A map of a small area, such as a large-scale detailed topo
graphic map, or even a narrow strip map, has a small-enough intrinsic scale 
variation to make the ellipsoidal correction a significant factor in accurate mapping; 
e.g., a 7.5-min quadrangle normally has an intrinsic scale variation of 0.0002 
percent or less. 

CAUCHY-RIEMANN AND RELATED EQUATIONS 

Relatively simple equations provide necessary and sufficient conditions for any 
map projection, spherical or ellipsoidal, to be conformal. These are called the 
Cauchy-Riemann equations after two 19th-century mathematicians. The concept 
had been devised, however, during the 18th century. These equations may be 
written as follows: 

ax!aA. = ay!aljl 
ax!aljl = -ay!aA. 

(4-33) 
(4-34) 

where lj1 is the isometric latitude defined by equation (3-7) for the ellipsoid, or 
with e = 0 in the same equation for the sphere. In the latter case, the above 
equations simplify to 

ax!(cos <1> aA.) = ay/a<f> 
ax/a<!> = - ay!(cos <1> a A.) 

For the ellipsoid, equations (4-33) and (4-34) may be written 

(4-35) 
(4-36) 
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ax/(cos <!> aA.) = (1-e2 sin2 <!>) ay/[(1-e2
) a<j>] 

(1-e2 sin2<j>)ax/[(1-e2 )a<!>J = -ay/(cos <!> aA.) 
(4-37) 
(4-38) 

By substituting x' in place of A. and y' in place of 1\J in equations (4-33) and 
(4-34), conditions are met for conformal transformation of one set of rectangular 
coordinates (x', y') to another (x, y). That is, 

ax/ax' = aylay' 
axlay' = -ay/ax' 

(4-39) 
(4-40) 

In this case, if (x', y') represents the transformation of the sphere or ellipsoid 
onto a flat surface, this transformation must also be conformal. The double trans
formation is used in a later chapter for the Modified-Stereographic Conformal 
projections. 

Analogous relationships may be obtained for equal-area transformations. The 
following equation applies to the ellipsoid: 

(4-41) 

For the sphere, this simplifies to 

(ax/aX.) (ayla<!>) - (ax/a<!>) (ay/ax.) = R 2 cos <1> (4-42) 

For spherical pseudocylindrical equal-area projections, such as the sinusoidal, the 
parallels are straight lines parallel to the Equator, so that (ay/aA.) = 0. For the 
many projections in this category, equation (4-42) simplifies further to 

X = R2 A. cos <!>l(dyld<!>) (4-43) 

in which y can be any function of <!> for a chosen spacing of the parallels. 
An equal-area transformation from one set of rectangular coordinates to another 

must satisfy the following relationship: 

(ax/ax') (aylay') - (ax!ay') (aylax') = S (4-44) 

where S is the area ratio of the (x,y) map to the (x', y') map. 
Most of the above equations (4-33) through (4-44) are difficult to use to derive 

new projections, although they may be used to determine whether existing projec
tions are conformal or equal-area. Equation (4-43), however, may be fairly read
ily used to devise new projections which are pseudocylindrical and equal-area. 
Equation (26-4), discussed later, is a general equation satisfying (4-39) and 
(4-40), although it is not the only such equation. There is no known general 
equation satisfying equation (4-44) except in a very elementary way. 
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5. TRANSFORMATION OF MAP GRA TICULES 

As discussed later, several map projections have been adapted to showing some 
part of the Earth for which the lines of true scale have an orientation or location 
different from that intended by the inventor of the basic projection. This is 
equivalent to moving or transforming the graticule of meridians and parallels on 
the Earth so that the "north pole" of the graticule assumes a position different 
from that of the true North Pole of the Earth. The projection for the sphere may 
be plotted using the original formulas or graphical construction, but applying 
them to the new graticule orientation. The actual meridians and parallels may 
then be plotted by noting their relationship on the sphere to the new graticule, 
and landforms drawn with respect to the actual geographical coordinates as usual. 

In effect, this procedure was used in the past in an often entirely graphical 
manner. It required considerable care to avoid cumulative errors resulting from 
the double plotting of graticules. With computers and programmable hand 
calculators, it now can be a relatively routine matter to calculate directly the 
rectangular coordinates of the actual graticule in the transformed positions or, 
with an automatic plotter, to obtain the transformed map directly from the 
computer. 

The transformation most notably has been applied to the azimuthal and cylindri
cal projections, but in a few cases it has been used with conic, pseudocylindrical, 
and other projections. While it is fairly straightforward to apply a suitable trans
formation to the sphere, transformation is much more difficult on the ellipsoid 
because ofthe constantly changing curvature. Transformation has been applied to 
the ellipsoid, however, in important cases under certain limiting conditions. 

If either true pole is at the center of an azimuthal map projection, the projec
tion is called the polar aspect. If a point on the Equator is made the center, the 
projection is called the equatorial or, less often, meridian or meridional aspect. 
If some other point is central, the projection is the oblique or, occasionally, 
horizon aspect. 

For cylindrical and most other projections, such transformations are called 
transverse or oblique, depending on the angle of rotation. In transverse projections, 
the true poles of the Earth lie on the equator of the basic projection, and the poles 
of the projection lie on the Equator of the Earth. Therefore, one meridian of the 
true Earth lies along the equator of the basic projection. The Transverse Merca
tor projection is the best-known example and is related to the regular Mercator in 
this manner. For oblique cylindrical projections, the true poles of the Earth lie 
somewhere between the poles and the equator of the basic projection. Stated 
another way, the equator of the basic projection is drawn along some great circle 
route other than the Equator or a meridian of the Earth for the oblique cylindrical 
aspect. The Oblique Mercator is the most common example. Further subdivisions 
of these aspects have been made; for example, the transverse aspect may be first 
transverse, second transverse, or transverse oblique, depending on the positions 
of the true poles along the equator of the basic projection (Wray, 197 4). This has 
no significance in a transverse cylindrical projection, since the appearance of the 
map does not change, but for pseudocylindrical projections such as the Sinusoidal, 
it makes a difference, if the additional nomenclature is desired. 

To determine formulas for the transformation of the sphere, two basic laws of 
spherical trigonometry are used. Referring to the spherical triangle in figure 5, 
with three points having angles A, B, and Con the sphere, and three great circle 
arcs a, b, and c connecting them, the Law of Sines declares that 

sin A/sin a = sin B/sin b = sin C/sin c (5-1) 

while by the Law of Cosines, 
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C (N.Pole) 

FIGURE 5.-Spherical triangle. 

cos c = cos b cos a + sin b sin a cos C (5-2) 

If Cis placed at the North Pole, it becomes the angle between two meridians 
extending to A and B. If A is taken as the starting point on the sphere, and B the 
second point, c is the great circle distance between them, and angle A is the 
azimuth Az east of north which point B bears to point A. When latitude <PI and 
longitude X.0 are used for point A, and<!> and X. are used for point B, equation (5-2) 
becomes the following for great circle distance: 

cos c = sin <I> I sin <!> + cos <PI cos <!> cos (A.- 1..0 ) (5-3) 

While (5-3) is the standard and simplest form of this equation, it is not accu
rate in practical computation for values of c very close to zero. For such cases, the 
equation may be rearranged as follows (Sinnott, 1984): 

sin (c/2) = /sin2[(<!>-<l>I)/2] + cos <PI cos<!> sin2 [(X.-X.0)!2])1-'z (5-3a) 

This equation is also exact, and is very accurate in practice for values of c from 0 
to nearly 180°. 

Equation (5-1) becomes the following for the azimuth: 

sin Az = sin (X.- X.0) cos <j>/sin c (5-4) 

or, with some rearrangement, 

cos Az = [cos <!>I sin <!> - sin <!>I cos <!> cos (X.- 1..0) ]/sin c (5-4a) 

or, eliminating c, 

tan Az = cos <!> sin (X.- X.0)/[cos <I> I sin <!> - sin <I> I cos <!> cos (X.- X.0)] (5-4b) 

Either of the three equations (5-4) through (5-4b) may be used for the azimuth, 
depending on the form of equation preferred. Equation (5-4b) is usually preferred, 
since it avoids the inaccuracies of finding an arcsin near 90° or an arccos near 0°. 
Quadrant adjustment as described under the list of symbols should be employed. 
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FIGURE 6.-Rotation of a graticule for transformation of projection. Dashed lines show actual longi
tudes and latitudes(}.. and<!>). Solid lines show the transformed longitudes and latitudes(}..' and 
<!>') from which rectangular coordinates (x and y) are determined according to map projection 
used. 

In order to find the latitude <f> and longitude >.. at a given arc distance c and 
azimuth Az east of north from (<f>b >..0), the inverse of equations (5-3) and (5-4b) 
may be used: 

<f> = arcsin (sin 4>1 cos c + cos <f>1 sin c cos Az) (5-5) 

>.. = >..0 + arctan [sin c sin Az/(cos 4> 1 cos c - sin <f> 1 sin c cos Az)] (5-6) 

Applying these relationships to transformations, without showing some inter
mediate derivations, formulas (5-7) through (5-8b) are obtained. To place the 
North Pole of the sphere at a latitude a on a meridian f3 east of the central merid
ian (>..' = 0) of the basic projection (see fig. 6), the transformed latitude <f>' and 
transformed longitude >..' on the basic projection which correspond to latitude <f> 
and longitude >.. of the spherical Earth may be calculated as follows, letting the 
central meridian >..0 correspond with >..' = [3: 

or . 

sin <f>' = sin a sin <f> - cos a cos <f> cos(>.. - >..0) 

sin (>..' - [3) =cos <f> sin (>.. - >..0 )/cos <f>' 
(5-7) 
(5-8) 

cos (>..' - [3) [sin a cos <f> cos (>.. - >..0) + cos a sin <f>]/cos <f>' (5-8a) 

or 

tan (>..' - [3) cos <f> sin (X. - >..0)/[sin a cos <f> cos (X. - >..0) + cos a sin <f>] 
(5-8b) 
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Equation (5-8b) is generally preferable to (5-8) or (5-8a) for the reasons stated 
after equation (5-4b). 

These are general formulas for the oblique transformation. (For azimuthal pro
jections, 13 may always be taken as zero. Other values of 13 merely have the effect 
of rotating the X and Y axes without changing the projection.) 

The inverse forms of these equations are similar in appearance. To find the 
geographic coordinates in terms of the transformed coordinates, 

or 

or 

sin 4> =sin a sin 4>' + cos a cos 4>' cos (X.'- 13) 
sin (X. - X.0) =cos 4>' sin (X.' - 13)/cos 4> 

cos (X. - X-0) = [sin a cos 4>' cos (X.' - 13) - cos a sin 4>']/cos 4> 

(5-9) 
(5-10) 

(5-10a) 

tan (X. - X.0) = cos 4>' sin (X.' - 13)/[sin a cos 4>' cos (X.' - 13) - cos a sin 4>'] (5-10b) 

with equation (5-10b) usually preferable to (5-10) and (5-10a) for the same 
reasons as those given for (5-4b). 

If a = 0, the formulas simplify considerably for the transverse or equatorial 
aspects. It is then more convenient to have central meridian X.0 coincide with the 
equator of the basic projection rather than with its meridian 13. This may be 
accomplished by replacing (X. - X.0) with (X. - X.0 - 90°) and simplifying. 

If 13 = 0, so that the true North Pole is placed at (X.' = 0, 4>' = 0): 

sin 4>' = -cos 4> sin (X. - X.0 ) 

cos X.' =sin <f>/[1 - cos2 4> sin2 (X. - X-0)]112 

or 

tan X.' = - cos (X. - X-0)/tan 4> 

If 13 = 90°, placing the true North Pole at (X.' = 90°, 4>' = 0): 

sin 4>' = - cos 4> sin (X. - X.0 ) 

cos X.' =cos 4> cos (X. - X-0 )/[1 - cos2 4> sin2 (X. - X-0 )]112 

or 

tan X.' =tan <f>/cos (X. - X-0 ) 

The inverse equations (5-9) through (5-10b) may be similarly altered. 

(5-11) 
(5-12) 

(5-12a) 

(5-13) 
(5-14) 

(5-14a) 

As stated earlier, these formulas may be directly incorporated into the formu
las for the rectangular coordinates x and y of the basic map projection for a direct 
computer or calculator output. If only one or two projections are involved in a 
package, this may be more efficient. For such transformations of several projec
tions in one software package, it is often easier to calculate the transverse or 
oblique projection coordinates by first calculating 4>' and X.' for each point to be 
plotted (using a general subroutine) and then calculating the rectangular coordi
nates by inserting 4>' and X.' into the basic projection formulas. In still other cases, 
a graphical method has been used. 

While these formulas, or their equivalents, will be incorporated into the formu
las given later for individual oblique and transverse projections, the concept 
should help interrelate the various aspects or types of centers of a given projec
tion. The extension of these concepts to the ellipsoid is much more involved tech
nically and in some cases requires approximation. General discussion of this is 
omitted here. 
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS 

Because of the hundreds of map projections already published and infinite num
ber which are theoretically possible, considerable attention has been given to 
classification of projections so that the user is not overwhelmed by the numbers 
and the variety. Generally, the proposed systems classify projections on the basis 
of property (equal-area, conformal, equidistant, azimuthal, and so forth), type 
of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee (1944) 
proposed a combination: 

Conical projections 
Cylindric 
Pseudocylindric 
Conic 
Pseudoconic 
Polyconic 
Azimuthal 

Perspective 
N onperspective 

N onconical projections 
Retroazimuthal (not discussed here) 
Orthoapsidal (not discussed here) 
Miscellaneous 

Each of these categories was further subdivided into conformal, authalic (equal
area), and aphylactic (neither conformal nor authalic), but some subdivisions have 
no examples. This classification is partially used in this book, as the section head
ings indicate, but the headings are influenced by the number of projections 
described in each category: Pseudocylindrical projections are included with the 
"miscellaneous" group, and "space map projections" are given a separate section. 

Interest has been shown in some other forms of classification which are more 
suitable for extensive treatises. In 1962, Waldo R. Tobler provided a simple but 
all-inclusive proposal (Tobler, 1962). Tobler's classification involves eight cate
gories, four for rectangular and four for polar coordinates. For the rectangular 
coordinates, category A includes all projections in which both x and y vary with 
both latitude <!> and longitude A., category B includes all in which y varies with 
both <!> and >.. while x is only a function of>.., C includes those projections in which 
x varies with both <!> and A. while y varies only with <!>, and D is for those in which 
x is only a function of A. andy only of <j>. There are very few published projections 
in category B, but C is usually called pseudocylindrical, D is cylindrical, and A 
includes nearly all the rest which do not fit the polar coordinate categories. 

Tobler's categories A to D for polar coordinates are respectively the same as 
those for rectangular, except that radius pis read for y and angle e is read for x. 
The regular conic and azimuthal projections fall into category D, and the pseudo
conical (such as Bonne's) into C. Category A may have a few projections like A 
(rectangular) for which polar coordinates are more convenient than rectangular. 
There are no well-known projections in B (polar). 

Hans Maurer's detailed map projection treatise of 1935 introduced a "Linnaean" 
classification with five families ("true-circular," "straight-symmetrical," "curved
symmetrical," "less regular," and "combination grids," to quote a translation) 
subdivided into branches, subbranches, classes, groups, and orders (Maurer, 
1935). As Maling says, Maurer's system "is only useful to the advanced student 
of the subject," but Maurer attempts for map projections what Linnaeus, the 
Swedish botanist, accomplished for plants and animals in the 18th century (Maling, 
1973, p. 98). Other approaches have been taken by Goussinsky (1951) and Starostin 
(1981). 
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SUGGESTED PROJECTIONS 

Following is a simplified listing of suggested projections. The recommendation 
can be directly applied in many cases, but other parameters such as the central 
meridian and parallel or the standard parallels must also be determined. These 
additional parameters are often chosen by estimation, but they can be chosen by 
more refined methods to reduce distortion (Snyder, 1985a, p. 93-109). In other 
cases a more complicated projection may be chosen because of special features 
in the extent of the region being mapped; the GS50 projection (50-State map) 
described in this book is an example. Some commonly used projections are not 
listed in this summary because it is felt that other projections are more suitable 
for the applications listed, which are not all-inclusive. Some of the projections 
listed here are not discussed elsewhere in this book. 

Region mapped 
1. World (Earth should be treated as a sphere) 

A. Conformal (gross area distortion) 
(1) Constant scale along Equator 

Mercator 
(2) Constant scale along meridian 

Transverse Mercator 
(3) Constant scale along oblique great circle 

Oblique Mercator 
(4) Entire Earth shown 

Lagrange 
August 
Eisenlohr 

B. Equal-Area 
(1) Standard without interruption 

Hammer 
Mollweide 
Eckert IV or VI 
McBryde or McBryde-Thomas variations 
Boggs Eumorphic 
Sinusoidal 
misc. pseudocylindricals 

(2) Interrupted for land or ocean 
any of above except Hammer 
Goode Homolosine 

(3) Oblique aspect to group continents 
Briesemeister 
Oblique Mollweide 

C. Equidistant 
(1) Centered on pole 

Polar Azimuthal Equidistant 
(2) Centered on a city 

Oblique Azimuthal Equidistant 
D. Straight rhumb lines 

Mercator 
E. Compromise distortion 

Miller Cylindrical 
Robinson 

2. Hemisphere (Earth should be treated as a sphere) 
A. Conformal 

Stereographic (any aspect) 
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B. Equal-Area 
Lambert Azimuthal Equal-Area (any aspect) 

C. Equidistant 
Azimuthal Equidistant (any aspect) 

D. Global look 
Orthographic (any aspect) 

3. Continent, ocean, or smaller region (Earth should be treated as a sphere for 
larger continents and oceans and as an ellipsoid for smaller regions, especially 
at a larger scale) 

A. Predominant east-west extent 
(1) Along Equator 

Conformal: Mercator 
Equal-Area: Cylindrical Equal-Area 

(2) Away from Equator 
Conformal: Lambert Conformal Conic 
Equal-Area: Albers Equal-Area Conic 

B. Predominant north-south extent 
Conformal: Transverse Mercator 
Equal-Area: Transverse Cylindrical Equal-Area 

C. Predominant oblique extent (for example: North America, South America, 
Atlantic Ocean) 
Conformal: Oblique Mercator 
Equal-Area: Oblique Cylindrical Equal-Area 

D. Equal extent in all directions (for example: Europe, Africa, Asia, Australia, 
Antarctica, Pacific Ocean, Indian Ocean, Arctic Ocean, Antarctic Ocean) 
(1) Center at pole 

Conformal: Polar Stereographic 
Equal-Area: Polar Lambert Azimuthal Equal-Area 

(2) Center along Equator 
Conformal: Equatorial Stereographic 
Equal-Area: Equatorial Lambert 

Azimuthal Equal-Area 
(3) Center away from pole or Equator 

Conformal: Oblique Stereographic 
Equal-Area: Oblique Lambert 

Azimuthal Equal-Area 
E. Straight rhumb lines (principally for oceans) 

Mercator 
F. Straight great-circle routes 

Gnomonic (for less than hemisphere) 
G. Correct scale along meridians 

(1) Center at pole 
Polar Azimuthal Equidistant 

(2) Center along Equator 
Plate Carree (Equidistant Cylindrical) 

(3) Center away from pole or Equator 
Equidistant Conic 
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CYLINDRICAL MAP PROJECTIONS 

The map projection best known by name is certainly the Mercator-one of the 
cylindricals. Perhaps easiest to draw, if simple tables __ are on hand, the regular 
cylindrical projections consist of meridians which are equidistant parallel straight 
lines, crossed at right angles by straight parallel lines of latitude, generally not 
equidistant. Geometrically, cylindrical projections can be partially developed by 
unrolling a cylinder which has been wrapped around a globe representing the 
Earth, touching at the Equator, and on which meridians have been projected 
from the center of the globe (fig. 1). The latitudes can also be perspectively pro
jected onto the cylinder for some projections (such as the Cylindrical Equal-Area 
and the Gall), but not on the Mercator and several others. When the cylinder is 
wrapped around the globe in a different direction, so that it is no longer tangent 
along the Equator, an oblique or transverse projection results, and neither the 
meridians nor the parallels will generally be straight lines. 
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7. MERCATOR PROJECTION 

SUMMARY 

• Cylindrical. 
• Conformal. 
• Meridians are equally spaced straight lines. 
• Parallels are unequally spaced straight lines, closest near the Equator, cutting 

meridians at right angles. 
• Scale is true along the Equator, or along two parallels equidistant from the 

Equator. 
• Loxodromes (rhumb lines) are straight lines. 
• Not perspective. 
• Poles are at infinity; great distortion of area in polar regions. 
• Used for navigation. 
• Presented by Mercator in 1569. 

HISTORY 

The well-known Mercator projection was perhaps the first projection to be 
regularly identified when atlases of over a century ago gradually began to name 
projections used, a practice now fairly commonplace. While the projection was 
apparently used by Erhard Etzlaub (1462-1532) of Nuremberg on a small map 
on the cover of some sundials constructed in 1511 and 1513, the principle remained 
obscure until Gerardus Mercator (1512-94) (fig. 7) independently developed it 
and presented it in 1569 on a large world map of 21 sections totaling about 1.3 by 
2 m (Keuning, 1955, p. 17 -18). 

Mercator, born at Rupelmonde in Flanders, was probably originally named 
Gerhard Cremer (or Kremer), but he always used the latinized form. To his 
contemporaries and to later scholars, he is better known for his skills in map and 
globe making, for being the first to use the term "atlas" to describe a collection 
of maps in a volume, for his calligraphy, and for first naming North America as 
such on a map in 1538. To the world at large, his name is identified chiefly with 
his projection, which he specifically developed to aid navigation. His 1569 map is 
entitled "Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate 
Accommodata (A new and enlarged description of the Earth with corrections for 
use in navigation)." He described in Latin the nature of the projection in a large 
panel covering much of his portrayal of North America: 

* * * In this mapping of the world we have [desired] to spread out the surface of the globe into a 
plane that the places shall everywhere be properly located, not only with respect to their true direc
tion and distance, one from another, but also in accordance with their due longitude and latitude; and 
further, that the shape of the lands, as they appear on the globe, shall be preserved as far as possible. 
For this there was needed a new arrangement and placing of meridians, so that they shall become 
parallels, for the maps hitherto produced by geographers are, on account of the curving and the bend
ing of the meridians, unsuitable for navigation * * *. Taking all this into consideration, we have some
what increased the degrees of latitude toward each pole, in proportion to the increase of the parallels 
beyond the ratio they really have to the equator. (Fite and Freeman, 1926, p. 77-78.) 

Mercator probably determined the spacing graphically, since tables of secants 
had not been invented. Edward Wright (ca. 1558-1615) of England later devel
oped the mathematics of the projection and in 1599 published tables of cumulative 
secants, thereby indicating the spacing from the Equator (Keuning, 1955, p. 18). 

FEATURES AND USAGE 

The meridians of longitude of the Mercator projection are vertical parallel 
equally spaced lines, cut at right angles by horizontal straight parallels which are 
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FIGURE 7.-Gerardus Mercator (1512-94). The inventor of the most famous map projection, which is 
the prototype for conformal mapping. 

increasingly spaced toward each pole so that conformality exists (fig. 8). The 
spacing of parallels at a given latitude on the sphere is proportional to the secant 
of the latitude. 

The major navigational feature of the projection is found in the fact that a 
sailing route between two points is shown as a straight line, if the direction or 
azimuth of the ship remains constant with respect to north. This kind of route is 
called a loxodrome or rhumb line and is usually longer than the great circle path 
(which is the shortest possible route on the sphere). It is the same length as a 
great circle only if it follows the Equator or a meridian. The projection has been 
standard since 1910 for nautical charts prepared by the former U.S. Coast and 
Geodetic Survey (now National Ocean Service) (Shalowitz, 1964, p. 302). 

The great distortion of area on the Mercator projection of the Earth leads to 
mistaken concepts when it is the chief basis of world maps seen by students in 
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school. The classic comparison of areas is between Greenland and South America. 
Greenland appears larger, although it is only one-eighth the size of South America. 
Furthermore, the North and South Poles cannot be shown, since they are at 
infinite distance from other parallels on the projection, giving a student an impres
sion they are inaccessible (which of course they seemed to explorers long after the 
time of Mercator). The last 50 years have seen an increased emphasis on the use 
of other projections for world maps in published atlases. 

Nevertheless, the Mercator projection is fundamental in the development of 
map projections, especially those which are conformal. It remains a standard 
navigational tool. It is also especially suitable for conformal maps of equatorial 
regions. The USGS has recently used it as an inset of the Hawaiian Islands on the 
1:500,000-scale base map of Hawaii, for a Bathymetric Map of the Northeast 
Equatorial Pacific Ocean (although the projection is not stated) and for a Tectonic 
Map of the Indonesia region, the latter two both in 1978 and at a scale of 
1:5,000,000. 

The first detailed map of an entire planet other than the Earth was issued in 
1972 at a scale of 1:25,000,000 by the USGS Center of Astrogeology, Flagstaff, 
Arizona, following imaging of Mars by Mariner 9. Maps of Mars at other scales 
have followed. The mapping of the planet Mercury followed the flybys of Mariner 
10 in 1974. Beginning in the late 1960's, geology of the visible side of the Moon 
was mapped by the USGS in quadrangle fashion at a scale of 1:1,000,000. The four 
Galilean satellites of Jupiter and several satellites of Saturn were mapped follow
ing the Voyager missions of 1979-81. For all these bodies, the Mercator projec
tion has been used to map equatorial portions, but coverage extended in some 
early cases to lats. 65° N. and S. (table 6). 

The cloudy atmosphere of Venus, circled by the Pioneer Venus Orbiter begin
ning in late 1978, is delaying more precise mapping of that planet, but the Merca
tor projection alone was used to show altitudes based on radar reflectivity over 
about 93 percent of the surface. 

FORMULAS FOR THE SPHERE 

There is no suitable geometrical construction of the Mercator projection. For 
the sphere, the formulas for rectangular coordinates are as follows: 

x = R (X. - X.0) 

y = R ln tan (TI/4 + <!>/2) 

or 

y = (R/2) [ln ((1 + sin <j>)/(1 - sin <!>))] 

(7-1) 
(7-2) 

(7-2a) 

where R is the radius of the sphere at the scale of the map as drawn, and <1> and X. 
are given in radians. There are also several other forms in which equation (7-2) 
may be written, such as y = R arcsinh (tan <!>) = R arctanh (sin <!>) = R ln (tan 
<!> + sec<!>). The X axis lies along the Equator, x increasing easterly. The Y axis 
lies along the central meridian X.0 , y increasing northerly. If (X. - X.0) lies outside 
the range ± 180°, 360° should be added or subtracted so it will fall inside the 
range. To use <!> and X. in degrees, 

X= 1T R (X.0 -X.o0 )/180° 
y = R ln tan (45° + <1>0 /2) 

(7-la) 
(7-2b) 

Note that if<!> is ± TI/2 or ± 90°, y is infinite. For scale factors, application of 
equations (4-2), (4-3), and (4-9) to (7-1) and (7-2) or (7-2a) gives results 
consistent with the conformal feature of the Mercator projection: 
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Body1 

Moon 

Mercury 

Venus 

Mars 

Satellite ofUranus 
Ariel 

Satellite of Neptune 
Triton 

Scale 

1:5,000,000 
1:2,000,000 
1:1,000,000 
1:15,000,000 
1:5,000,000 
1:50,000,000 
1:25,000,000 
1:15,000,000 
1:5,000,000 
1:25,000,000 
1:15,000,000 
1:5,000,000 
1:2,000,000 
1:500,000 

1:10,000,000 
1:5,000,000 

(see Ganymede) 

MAP PROJECTIONS-A WORKING MANUAL 

TABLE 6.-Map projections used for extraterrestrial mapping 
[From Batson, private commun,, 1985] 

Map format 
(see below)2 Body1 Scale 

F Galilean satellites of Jupiter 
K 
K Io } 1:25,000,000 
A-1 Europa 1:15,000,000 
E-1 1:5,000,000 
A-1 1:2,000,000 
B-1 Ganymede} 1:25,000,000 
c Callisto 1:15,000,000 
G 1:5,000,000 
A-2 1:2,000,000 
B-2 
D Satellites of Saturn 
H 
L Mimas } 1:2,000,000 

Enceladus 
Miranda 

A-1 Tethys } 1:10,000,000 
B-1 Dione 1:5,000,000 

Rhea 1:10,000,000 
1:5,000,000 

Iapetus 1:10,000,000 

TABLE 6.-Map projections used for extraterrestrial mapping- Continued 

Map format2 Lat. range Projection3 Scale Factor at Lat. N &S3 
Matching parallel 
Scale factor at Lat. N &S 

Quadrangle size 
Long. X Lat. 

A-1 57°S-57°N5 MER 1.0000 oo 1. 7883 56° 360° 114o5 
55° to pole PS 1.6354 90 1.7883 56 360 35 

A-z! 57°S-57°W MER 1.0000 0 1.9922 60 360 1146 

55° to pole PS 1.8589 90 1.9922 60 360 35 
B-1 57°S-57°N MER 1.0000 0 1.7883 56 180 114 

55° to pole PS 1.6354 90 1.7883 56 360 35 
B-24 57°8-57°N MER 1.0000 0 1. 7819 56 180 114 

55°·to pole PS 1.6298 90 1. 7819 56 360 35 
c 57°S-57°N MER 1.0000 0 1.7883 56 120 57 

55° to pole PS 1.6354 90 1. 7883 56 360 35 
D4 30°S-30°N MER 1.0000 0 1.1532 30 45 30 

30°-65°N&S LCC 1.1259 SP 1.1532 30 60 35 
1.1611 65 

65° to pole PS 1.1067 90 1.1611 65 360 25 
E-1 22°S-22°N7 MER 1.0000 0 1.0824 22.5 72 447 

21°-66°N&S8 LCC 1.0494 SP 1.0824 22.5 90 458 

1.0946 67.5 
65° to pole PS 1.0529 90 1.0946 67.5 360 25 

E-2 22oS-22°N MER 1.0000 13 1.0461 21.34 72 44 
21°-66°N&S LCC 1.0000 SP 1.0461 21.34 90 45 

1.0484 65.19 
65° to pole PS 1.0000 90 1.0484 65.19 360 25 

F 50°8-50°N MER 1.0000 34.06 1.1716 45 180 100 
45° to pole PS 1.0000 90 1.1716 45 360 45 

G 25°S-25°N MER 1.0000 15.90 1.0612 25 40 25 
25°-75°N&S LCC 1.0000 SP 1.0612 25 30 25 

(below 50° lat.) 
1.0179 75 60 25 

(above 50° lat.) 

Map format 
(see below)2 

Std. Parallels 
Lat., Lat. 

A-1 
A-1 
F 
K 
A-1 
B-1 
E-2 
J 

A-1 

A-1 
A-1 
A-1 
B-1 
A-1 

35.83°, 59.17° 

28°, 62° 

30°, 58° 

34°, 73° 
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TABLE 6.-Map projections used for extraterrestrial mapping-Continued 

Map fonnat2 Scale Factor at Lat. N&S3 
Matching parallel Quadrangle size 

Lat. range Projection3 Scale factor at Lat. N &S Long. X Lat. 

75° to pole PS 1.0000 90 1.0179 75 360 15 
30°8-30°N MER 1.0000 27.476 1.0243 30 22.5 15 
30°-65°N&S LCC 1.0000 SP 1.0243 30 22.5 17.5 

(below 47.5° lat.) 
1.0313 65 30 17.5 

(above 4 7. 5° lat.) 
65° to pole PS 0.9830 90 1.0313 65 45 12.5 

(below 77.5° lat.) 
180 12.5 
(above 77. 5o lat.) 

J 22°8-22°N MER 1.0000 13 1.0461 21.34 36 22 
21°-66°N&S LCC 1.0000 SP 1.0461 21.34 30 22.5 

(below 43.5° lat.) 
1.0484 65.19 45 22.5 

(above 43.5° lat.) 
65° to pole PS 1.0000 90 1.0484 65.19 90 17.5 

(below 82.5° lat.) 
360 7.5 
(above 82. 5o lat.) 

K 16"8-16°N MER 1.0000 11.012 1.0211 16 40 329 

16•-4soN&S LCC 1.0000 SP 1.0211 16 45 32 
48·-so·N&S LCC 1.0000 SP none 72 32 
so· to pole PS 1.0000 90 none 360 10 
82.5°8-82.5°N TM10 0.9960 CM none 5 5 

(below 47.5° lat.) 
6.67 5 

(above 47.5• lat.) 
82. 5• to pole PS 1.0000 87.5 none 40 5 

(below 87.5° lat.) 
360 2.5 
(above 87. 5• lat.) 

Notes: 1 Taken as sphere, except for Mars (ellipsoid, eccentricity - 0.101929). 
Orthographic projection used for irregular satellites of Mars (Phobos and Deimos), of Jupiter (Amalthea), and Saturn (Hyperion). 
Lambert Azimuthal Equal-Area projection used in polar and equatorial aspects for full hemispheres of several planets and satellites. 
Oblique Stereographic projection used far basins and other regions of Mars, Moon, etc. 
2 Official format designations use only the letter. Numbers have been added for convenience in this table. 
3 Abbreviations: MER-Mercator, PS-Polar Stereographic, LCC-Lambert Confonnal Conic, TM-Transverse Mercator, SP-Standard Parallels. 
4 Scale factors based on Mars ellipsoid. 
6 Venus 1:50,000,000 originally 65"S. to 78"N. Mercator with no polar continuation. 
6 Originally 65"S.-65"N., 130"lat. quad range. 
7 Originally 25"S. -25"N., 50" lat. quad range. 
8 Originally 20"-70"N.&S., 50" lat. quad range. 
9 For Moon 1:1,000,000, quads are 20" long. x 16" lat. 
10 Zones are 20° long. x 75o lat. 
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53.33°, 74.67° 



44 MAP PROJECTIONS-A WORKING MANUAL 

h = k = sec <!> = 1/cos <!> 
(I)= 0 

(7-3) 

Normally, for conformal projections, the use of h (the scale factor along a 
meridian) is omitted, and k (the scale factor along a parallel) is used for the scale 
factor in any direction. The areal scale factor for conformal projections is k 2 or 
sec2 <!> for the Mercator in spherical form. 

The inverse formulas for the sphere, to obtain <!> and X. from rectangular coordi
nates, are as follows: 

or 

<!> = TI/2 - 2 arctan (e-y!R) 

<!> = arctan[sinh(y/R)] 

X.= x/R + X.o 

(7-4) 

(7-4a) 

(7-5) 

Here e = 2. 7182818 ... , the base of natural logarithms, not eccentricity. These 
and subsequent formulas are given only in radians, as stated earlier, unless the 
degree symbol is used. Numerical examples (see p. 266) are given in degrees, 
showing conversion. 

FORMULAS FOR THE ELLIPSOID 

For the ellipsoid, the corresponding equations for the Mercator are only a little 
more involved (see p. 267 for numerical example): 

[ 

x = a(X.(-~~e sin<!> )e/2 J 
y =aln tan(TI/4+<!>/2) . 

1 +e sm <!> 

(7-6) 

(7-7) 

or 

[ ( 
1 + sin <!> ) ( 1 - e sin <!> )e J 

y = (a/2)ln 
1 - sin <!> 1 + e sin <!> (7-7a) 

where a is the equatorial radius ofthe ellipsoid, and e is its eccentricity. Compar
ing equation (3-7), it is seen that y = at!J. From equations (4-22) and (4-23), it 
may be found that 

h = k = (1-e2 sin2 <!>) 112/cos <!> (7-8) 

and of course w = 0. The areal scale factor is k 2
• The derivation ofthese equations 

is shown in Thomas (1952, p. 1, 2, 85-90). 
The X and Y axes are oriented as they are for the spherical formulas, and 

(X. - X.0) should be similarly adjusted. Thomas also provides a series equivalent 
to equation (7 -7), slightly modified here for consistency: 

yla = ln tan (TI/4+<!>/2)- (e2 +e414+e618+ ... ) sin<!> 
+ (e4/12 + e6/16 + ... ) sin 3<!> - (e6180 + ... ) sin 5<!> + (7-7b) 

The inverse formulas for the ellipsoid require rapidly converging iteration, if 
the closed forms of the equations for finding <!> are used: 

<!> = TI/2-2 arctan (t[(1-e sin <j>)/(1+e sin <j>)]ei2) (7-9) 

where 

(7-10) 
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TABLE 7.-Mercator projection: Rectangular coordinates 

Latitude S2here {R= 1} Clarke 1866 elli2soid {a= 1} 
(¢) y 

goo _______________ Infinite 
85 --------------- 3.13130 
80 --------------- 2.43625 

75 -------~------- 2.02759 
70 --------------- 1.73542 

65 --------------- 1.50645 

60 --------------- 1.31696 
55 --------------- 1.15423 

50 --------------- 1.01068 

45 --------------- .88137 

40 --------------- .76291 

35 --------------- .65284 

30 --------------- .54931 

25 --------------- .45088 

20 --------------- .35638 
15 --------------- .26484 

10 --------------- .17543 

5 --------------- .08738 
0 --------------- .00000 

X 0.017453 (A->-o) 

Note: x, y = rectangular coordinates. 
4> = geodetic latitude. 

k y 

Infinite Infinite 
11.47371 3.12454 
5.75877 2.42957 
3.86370 2.02104 
2.92380 1.72904 
2.36620 1.50031 
2.00000 1.31109 
1.74345 1.14868 
1.55572 1.00549 
1.41421 .87658 
1.30541 .75855 
1.22077 .64895 
1.15470 .54592 
1.10338 .44801 
1.06418 .35406 
1.03528 .26309 
1.01543 .17425 
1.00382 .08679 
1.00000 .00000 

0.017453 (A->-o) 

(A-A0) = geodetic longitude, measured east from origin in degrees. 
k = scale factor, relative to scale at Equator. 
R = radius of sphere at scale of map. 
a = equatorial radius of ellipsoid at scale of map. 
If latitude is negative (south), reverse sign of y. 

e is the base of natural logarithms, 2. 71828 ... , 

and the first trial <1> = 1r/2-2 arctan t 

k 

Infinite 
11.43511 
5.73984 
3.85148 
2.91505 
2.35961 
1.99492 
1.73948 
1.55263 
1.41182 
1.30358 
1.21941 
1.15372 
1.10271 
1.06376 
1.03504 
1.01532 
1.00379 
1.00000 

(7-11) 

Inserting the first trial <1> in the right side of equation (7- 9), <!> on the left side is 
calculated. This becomes the new trial <!>, which is used on the right side. The 
process is repeated until the change in <!> is less than a chosen convergence factor 
depending on the accuracy desired. This <1> is then the final value. For A., 

A. = xla + A.o (7-12) 

The scale factor is calculated from equation (7-8), using the calculated <j>. 
To avoid the iteration, the series (3-5) may be used with (7-13) in place of 

(7-9): 

<!> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + ... ) sin 2x + (7e4/48 + 29e6/240 + 
811e8/11520 + ... ) sin 4x + (7e6/120 + 81e8/1120 + ... ) sin 6x + 
(4279e8/161280 + ... ) sin 8x + . . . (3-5) 

where 

x = 1r/2-2 arctan t (7-13) 

For improved computational efficiency using the series, see p. 19. 
Rectangular coordinates for each 5° of latitude are given in table 7, for both the 

sphere and the Clarke 1866 ellipsoid, assuming Rand a are both 1.0. It should be 
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noted that k for the sphere applies only to the sphere. The spherical projection is 
not conformal with respect to the ellipsoidal Earth, although the variation is 
negligible for a map with an equatorial scale of 1:15,000,000 or smaller. It should 
be noted that any central meridian can be chosen as A.0 for an existing Mercator 
map, if forward or inverse formulas are to be used for conversions. 

MEASUREMENT OF RHUMB LINES 

Since a major feature of the Mercator projection is the straight portrayal of 
rhumb lines, formulas are given below to determine their true lengths and 
azimuths. If a straight line on the map connects two points with respective lati
tudes and longitudes (<h, A1) and (<j>2 , A.2 ), the respective rectangular coordinates 
(xb y1) and (x2 , y2) are calculated using equations (7 -1) and (7 -2) for the sphere 
or (7-6) and (7-7) for the ellipsoid, inserting the respective subscripts. 

For the true (not magnetic) compass bearing or azimuth Az clockwise from 
north along the rhumb line, 

(7-14) 

Transposing and using forward and inverse equations for the Mercator, latitude 
or longitude along the rhumb line may be found for a given longitude or latitude, 
respectively, knowing the initial point and the azimuth. For example, 

(7-15) 

in which (x1, y 1) are calculated for C<l>t. A. 1) from (7-6) and (7-7), x2 is calculated 
from A.2 from (7-6), and <1>2 is calculated from y2 using (7-9) and (7-10). 

For the true distance s along the rhumb line from <j>1 to <j>2 , 

(7-16) 

where M 2 and Mb the distances from the Equator along the meridian, are found 
for <j>2 and <Pt. respectively, using equation (3-21) and the same subscripts on M 
and <j>: 

M = a[(1-e2!4-3e4164-5e6!256- ... ) <j>- (3e2/8 + 3e4!32 
+ 45e6/1024 + ... ) sin 2<1> + (15e4/256 + 45h1024 + ... ) 
sin 4<J> - (35e6/3072 + ... ) sin 6<1> + ... ] 

but if <j> 1 = <j>2 , equation (7 -16) is indeterminate and 

(3-21) 

(7-17) 

For the true distance s from initial latitude <j> 1 to latitude <j>, equation (7 -16) 
may be used with M instead of M 2 . To find (<J>,A.) corresponding to a given distance 
s from C<l>t. A. 1) along the rhumb line, (7-16) may be inverted to give: 

M = s cos Az + M 1 (7-18) 

M may be converted to <l> using (3-26), 

<J> = f.L + (3e1/2-27e1
3/32 + ... ) sin 2J..L + (21e/!16-55e1

4/32 + ... ) 
sin 4J..L + (151e1

3/96- ... ) sin 6f.L + (1097e1
4/512- ... ) sin 8J-L + 

(3-26) 
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where 

(3-24) 

and, in a rearrangement of (3-20) and (3-21), 

(7-19) 

Then for longitude A., rearranging (7-6), (7-7), and (7-14), 

~ ( 
1-e sin <1> )e/2] A. = A.1 + tan Az ln tan ('TT/4 + <!>/2) . 
1 +e sm <1> 

(7-20) 

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL 

The above formulas are based on making the Equator of the Earth true to scale 
on the map. Thus, the Equator may be called the standard parallel. It is also 
possible to have, instead, another parallel (actually two) as standard, with true 
scale. For the Mercator, the map will look exactly the same; only the scale will be 
different. If latitude <1> 1 is made standard (the opposite latitude -<1>1 is also 
standard), the above forward formulas are adapted by multiplying the right side 
of equations (7 -1) through (7 -3) for the sphere, including the alternate forms, 
by cos <!> 1 . For the ellipsoid, the right sides of equations (7 -6), (7 -7), (7 -8), and 
(7 -7a) are multiplied by cos <!> 1/(1-e2 sin2 <!> 1) 112• For inverse equations, divide x 
andy by the same values before use in equations (7-4) and (7-5) or (7-10) and 
(7 -12). Such a projection is most commonly used for a navigational map of part 
of an ocean, such as the North Atlantic Ocean, but the USGS has used it for 
equatorial quadrangles of some extraterrestrial bodies as described in table 6. 
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8. TRANSVERSE MERCATOR PROJECTION 

SUMMARY 

• Cylindrical (transverse). 
• Conformal. 
• Central meridian, each meridian 90° from central meridian, and Equator are 

straight lines. 
• Other meridians and parallels are complex curves. 
• Scale is true along central meridian, or along two straight lines equidistant 

from and parallel to central meridian. (These lines are only approximately 
straight for the ellipsoid.) 

• Scale becomes infinite on sphere 90° from central meridian. 
• Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000. 
• Presented by Lambert in 1772. 

HISTORY 

Since the regular Mercator projection has little error close to the Equator (the 
scale 10° away is only 1.5 percent larger than the scale at the Equator), it has been 
found very useful in the transverse form, with the equator of the projection 
rotated 90° to coincide with the desired central meridian. This is equivalent to 
wrapping the cylinder around a sphere or ellipsoid representing the Earth so that 
it touches the central meridian throughout its length, instead of following the 
Equator of the Earth. The central meridian can then be made true to scale, no 
matter how far north and south the map extends, and regions near it are mapped 
with low distortion. Like the regular Mercator, the map is conformal. 

The Transverse Mercator projection in its spherical form was invented by the 
prolific Alsatian mathematician and cartographer Johann Heinrich Lambert 
(1728-77) (fig. 9). It was the third of seven new projections which he described 
in 1772 in his classic Beitrage (Lambert, 1772). At the same time, he also de
scribed what are now called the Cylindrical Equal-Area, the Lambert Conformal 
Conic, and the Lambert Azimuthal Equal-Area, each of which will be discussed 
subsequently; others are omitted here. He described the Transverse Mercator 
as a conformal adaptation of the Sinusoidal projection, then commonly in use 
(Lambert, 1772, p. 57-58). Lambert's derivation was followed with a table of 
coordinates and a map of the Americas drawn according to the projection. 

Little use has been made of the Transverse Mercator for single maps of 
continental areas. While Lambert only indirectly discussed its ellipsoidal form, 
mathematician Carl Friedrich Gauss (1777 -1855) analyzed it further in 1822, and 
L. Kruger published studies in 1912 and 1919 providing formulas suitable for 
calculation relative to the ellipsoid. It is, therefore, sometimes called the Gauss 
Conformal or the Gauss-Kriiger projection in Europe, but Transverse Mercator, 
a term first applied by the French map projection compiler Germain, is the name 
normally used in the United States (Thomas, 1952, p. 91- 92; Germain, 1865?, p. 
347). 

Until recently, the Transverse Mercator projection was not precisely applied to 
the ellipsoid for the entire Earth. Ellipsoidal formulas were limited to series for 
relatively narrow bands. In 1945, E. H. Thompson (and in 1962, L. P. Lee) 
presented exact or closed formulas permitting calculation of coordinates for the 
full ellipsoid, although elliptic functions, and therefore lengthy series, numerical 
integrations, and (or) iterations, are involved (Lee, 1976, p. 92-101; Snyder, 
1979a, p. 73; Dozier, 1980). 

The formulas for the complete ellipsoid are interesting academically, but they 
are practical only within a band between 4° of longitude and some 10° to 15° of arc 
distance on either side of the central meridian, because of the much more signifi
cant scale errors fundamental to any projection covering a larger area. 
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FIGURE 9.--Johann Heinrich Lambert (1728-77). Inventor of the Transverse Mercator, the Confor
mal Conic, the Azimuthal Equal-Area, and other important projections, as well as outstanding 
developments in mathematics, astronomy, and physics. 

FEATURES 

The meridians and parallels of the Transverse Mercator (fig. 10) are no longer 
the straight lines they are on the regular Mercator, except for the Earth's Equator, 
the central meridian, and each meridian 90° away from the central meridian. 
Other meridians and parallels are complex curves. 

The spherical form is conformal, as is the parent projection, and scale error is 
only a function of the distance from the central meridian, just as it is only a 
function of the distance from the Equator on the regular Mercator. The ellipsoidal 
form is also exactly conformal, but its scale error is slightly affected by factors 
other than the distance alone from the central meridian (Lee, 1976, p. 98). 
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0 

0 

FIGURE 10.-The Transverse Mercator projection. While the regular Mercator has constant scale along the Equator, the Transverse Mercator has 
constant scale along any chosen central meridian. This projection is conformal and is often used to show regions with greater north-south 
extent. 



8. TRANSVERSE MERCATOR PROJECTION 

The scale along the central meridian may be made true to scale, or deliberately 
reduced to a slightly smaller constant scale so that the mean scale of the entire 
map is more nearly correct. There are also forms of the ellipsoidal Transverse 
Mercator on which the central meridian is not held at a constant scale, but these 
forms are not used in practice (Lee, 1976, p. 100-101). If the central meridian is 
mapped at a reduced scale, two straight lines parallel to it and equally spaced 
from it, one on either side, become true to scale on the sphere. These lines are not 
perfectly straight on the ellipsoidal form. 

With the scale along the central meridian remaining constant, the Transverse 
Mercator is an excellent projection for lands extending predominantly north and 
south. 

USAGE 

The Transverse Mercator projection (spherical or ellipsoidal) was not described 
by Close and Clarke in their generally detailed article in the 1911 Encyclopaedia 
Britannica because it was "seldom used" (Close and Clarke, 1911, p. 663). Deetz 
and Adams (1934) favorably referred to it several times, but as a slightly used 
projection. 

The spherical form of the Transverse Mercator has been used by the USGS 
only recently. In 1979, this projection was chosen for a base map of North Amer
ica at a scale of 1:5,000,000 to replace the Bipolar Oblique Conic Conformal 
proje~tion previously used for tectonic and other geologic maps. The scale factor 
along the central meridian, long. 100° W., is reduced to 0.926. The radius of the 
Earth is taken at 6,371,204 m, with approximately the same surface area as the 
International ellipsoid, placing the two straight lines of true design scale 2,343 km 
on each side of the central meridian. 

While its use in the spherical form is limited, the ellipsoidal form of the Trans
verse Mercator is probably used more than any other one projection for geodetic 
mapping. 

In the United States, it is the projection used in the State Plane Coordinate 
System (SPCS) for States with predominant north-south extent. (The Lambert 
Conformal Conic is used for the others, except for the panhandle of Alaska, which 
is prepared on the Oblique Mercator. Alaska, Florida, and New York use both the 
Transverse Mercator and the Lambert Conformal Conic for different zones.) 
Except for narrow States, such as Delaware, New Hampshire, and New Jersey, 
all States using the Transverse Mercator are divided into two to eight zones, each 
with its own central meridian, along which the scale is slightly reduced to balance 
the scale throughout the map. Each zone is designed to maintain scale distortion 
within 1 part in 10,000. Several States beginning in 1935 also passed legislation 
establishing the SPCS as a permissible system for recording boundary descrip
tions or point locations. Several zone changes have occurred for-use with the new 
1983 datum. They are listed in Appendix C. . 

In addition to latitude and longitude as the basic frame of reference, the corre
sponding rectangular grid coordinates in feet are used to designate locations 
(Mitchell and Simmons, 1945). The parameters for each State are given in table 8. 
All are based on the Clarke 1866 ellipsoid. It is important to note that, for the 
metric conversion to feet using this coordinate system, 1m equals exactly 39.37 
in., not the current standard accepted by the National Bureau of Standards in 
1959, in which 1 in. equals exactly 2.54 em. Surveyors continue to follow the 
former conversion for consistency. The difference is only two parts in a million, 
but it is enough to cause confusion, if it is not accounted for. 

Beginning with the late 1950's, the Transverse Mercator projection was used 
by the USGS for nearly all new quadrangles (maps normally bounded by meridi
ans and parallels) covering those States using the TM Plane Coordinates, but the 
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TABLE 8.-U.S. State plane coordinate systems 

[T indicates Transverse Mercator; L, Lambert Conformal Conic; H, Hotine Oblique Mercator. Modified slightly and updated from 
Mitchell and Simmons, 1945, p. 45-47) 

Area Projection Zones Area Projection Zones 

Alabama -------- T 2 Montana -------- L 3 
Alaska ---------- T 8 Nebraska -------- L 2 

L 1 Nevada --------- T 3 
H 1 New Hampshire __ T 1 

Arnona --------- T 3 New Jersey ______ T 1 
Arkansas -------- L 2 New Mexico------ T 3 
California ------- L 7 New York ------- T 3 
Colorado -------- L 3 L 1 
Connecticut ------ L 1 North Carolina ___ L 1 
Delaware-------- T 1 North Dakota ____ L 2 
Florida ---------- T 2 Ohio ------------ L 2 

L 1 Oklahoma ------- L 2 
Georgj.~ --------- T 2 Oregon ---------- L 2 
Hawau ---------- T 5 Pennsylvania _____ L 2 

Idaho ----------- T 3 Puerto Rico & 
Illinois ---------- T 2 Virgin Islands __ L 2 
Indiana --------- T 2 Rhode Island _____ T 1 
Iowa ------------ L 2 Samoa ---------- L 1 
Kansas ---------- L 2 South Carolina ___ L 2 
Kentucky -------- L 2 South Dakota ____ L 2 
Louisiana -------- L 3 Tennessee ------- L 1 
Maine ----------- T 2 Texas----------- L 5 
Maryland -------- L 1 Utah ------------ L 3 
Massachusetts _; ___ L 2 Vermont -------- T 1 
Michigan1 

Virginia --------- L 2 
obsolete ------- T 3 Washington ------ L 2 
current -------- L 3 West Virginia ____ L 2 

Minnesota _______ L 3 Wisconsin ------- L 3 
Mississippi ------- T 2 Wyoming -------- T 4 
Missouri --------- T 3 

Transverse Mercator projection 

Zone Central meridian Scale reduction2 Origin8 (latitude) 

Alabama 
East ------- 85°50' w. 1:25,000 30°30' N. 
West ------- 87 30 1:15,000 30 00 

Alaska4 

2 ---------- 142 00 1:10,000 54 00 

3 ---------- 146 00 1:10,000 54 00 

4 ---------- 150 00 1:10,000 54 00 

5 ---------- 154 00 1:10,000 54 00 

6 ---------- 158 00 1:10,000 54 00 

7 ---------- 162 00 1:10,000 54 00 

8 ---------- 166 00 1:10,000 54 00 

9 ---------- 170 00 1:10,000 54 00 
Arizona 

East _______ 110 10 1:10,000 31 00 
Central _____ 111 55 1:10,000 31 00 
West ------- 113 45 1:15,000 31 00 

Delaware ------ 75 25 1:200,000 38 00 
Florida4 

East ------- 81 00 1:17,000 24 20 
West ------- 82 00 1:i7,000 24 20 
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TABLE 8.-U.S. State plane coordinate systems--Continued 

Transverse Mercator projection-Continued 

Zone Central meridian Scale reduction2 Origins (latitude) 

Georgia 
East _______ 82°10' w. 1:10,000 30°00' N. 
West _______ 84 10 1:10,000 30 00 

Hawaii 
1 ---------- 155 30 1:30,000 18 50 

2 ---------- 156 40 1:30,000 20 20 

3 ---------- 158 00 1:100,000 21 10 

4 ---------- 159 30 1:100,000 21 50 

5 ---------- 160 10 0 21 40 
Idaho 

East ------- 112 10 1:19,000 41 40' 
Central _____ 114 00 1:19,000 41 40 

West ------- 115 45 1:15,000 41 40 
Illinois 

East ------- 88 20 1:40,000 36 40 

West------- 90 10 1:17,000 36 40 
Indiana 

East _______ 85 40 1:30,000 37 30 

West ------- 87 05 1:30,000 37 30 
Maine 

East _______ 68 30 1:10,000 43 50 

West ------- 70 10 1:30,000 42 50 
Michigan ( old)4 

East _______ 83 40 1:17,500 41 30 
Central _____ 85 45 1:11,000 41 30 

West ------- 88 45 1:11,000 41 30 
Mississippi 

East _______ 88 50 1:25,000 29 40 
West _______ 90 20 1:17,000 30 30 

Missouri 
East _______ 90 30 1:15,000 35 50 
Central _____ 92 30 1:15,000 35 50 
West _______ 94 30 1:17,000 36 10 

Nevada 
East _______ 115 35 1:10,000 34 45 
Central _____ 116 40 1:10,000 34 45 

West ------- 118 35 1:10,000 34 45 
New Hampshire _ 71 40 1:30,000 42 30 
New Jersey _____ 74 40 1:40,000 38 50 
New Mexico 

East _______ 104 20 1:11,000 31 00 
Central _____ 106 15 1:10,000 31 00 
West _______ 107 50 1:12,000 31 00 

New York4 

East _______ 74 20 1:30,000 40 00 
Central _____ 76 35 1:16,000 40 00 
West _______ 78 35 1:16,000 40 00 

Rhode Island ____ 71 30 1:160,000 41 05 
Vermont _______ 72 30 1:28,000 42 30 
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TABLE 8.-U.S. State plane coordinate systems-Continued 

Transverse Mercator projection- Continued 

Zone Central meridian Scale reduction2 Origin3 (latitude) 

Wyoming 
East ______ _ 

East Central 
West Central 
West-------

Zone 

Alaska4 

10 ------------
Arkansas 

North --------
South ---------

California 

I -------------
11 -----------
III ------------
IV ------------
V ------------
VI -----------
VII -----------

Colorado 
North ________ _ 
Central _______ _ 
South ________ _ 

Connecticut ______ _ 
Florida• 

North --------
Iowa 

North ---------
South ________ _ 

Kansas 
North ________ _ 
South ________ _ 

Kentucky 
North ________ _ 
South ________ _ 

Louisiana 
North ________ _ 

South ---------
Offshore ______ _ 

Maryland ________ _ 
Massachusetts 

Mainland _____ _ 
Island ________ _ 

105°10' w. 
107 20 
108 45 
110 05 

1:17,000 
1:17,000 
1:17,000 
1:17,000 

40°40' N. 
40 40 
40 40 
40 40 

Lambert Conformal Conic projection 

Standard parallels 

34 56 
33 18 

40 00 
38 20 
37 04 
36 00 
34 02 
32 47 
33 52 

39 43 
38 27 
37 14 
41 12 

29 35 

42 04 
40 37 

38 43 
37 16 

37 58 
36 44 

31 10 
29 18 
26 10 
38 18 

41 43 
41 17 

36 14 
34 46 

41 40 
39 50 
38 26 
37 15 
35 28 
33 53 
34 25 

40 47 
39 45 
38 26 
41 52 

30 45 

43 16 
41 47 

39 47 
38 34 

38 58 
37 56 

32 40 
30 42 
27 50 
39 27 

42 41 
41 29 

Origin5 

Long. Lat. 

92 00 
92 00 

122 00 
122 00 
120 30 
119 00 
118 00 
116 15 
118 20 

105 30 
105 30 
105 30 

72 45 

84 30 

93 30 
93 30 

98 00 
98 30 

84 15 
85 45 

92 30 
91 20 
91 20 
77 00 

71 30 
70 30 

51 °00' N. 

34 20 
32 40 

39 20 
37 40 
36 30 
35 20 
33 30 
32 10 
34 085b 

39 20 
37 50 
36 40 
40 505d 

29 00 

41 30 
40 00 

38 20 
36 40 

37 30 
36 20 

30 40 
28 40 
25 40 
37 505C 

41 oo5d 

41 005C 
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TABLE 8.-U.S. State plane coordinate systems-Continued 

Lambert Conformal Conic projection-Continued 

Zone Standard parallels 
Origin6 

Long. Lat. 

Michigan (current)4 

North --------- 45°29' N. 47°05'. N. 87°00' w. 44°47' N. 
Central -------- 44 11 45 42 84 20 43 19 
South --------- 42 06 43 40 84 20 41 30 

Minnesota 
North--------- 47 02 48 38 93 06 46 30 
Central -------- 45 37 47 03 94 15 45 00 
South --------- 43 47 45 13 94 00 43 00 

Montana 
North --------- 47 51 48 43 109 30 47 00 
Central -------- 46 27 47 53 109 30 45 50 
South --------- 44 52 46 24 109 30 44 00 

Nebraska 
North --------- 41 51 42 49 100 00 41 20 
South --------- 40 17 41 43 99 30 39 40 

New York4 

Long Island ____ 40 40 41 02 74 00 40 30Sf 
North Carolina----- 34 20 36 10 79 00 33 45 
North Dakota 

North --------- 47 26 48 44 100 30 47 00 
South --------- 46 11 47 29 100 30 45 40 

Ohio 
North --------- 40 26 41 42 82 30 39 40 
South __________ 38 44 40 02 82 30 38 00 

Oklahoma 
North--------- 35 34 36 46 98 00 35 00 
South --------- 33 56 35 14 98 00 33 20 

Oregon 
North--------- 44 20 46 00 120 30 43 40 
South--------- 42 20 44 00 120 30 41 40 

Pennsylvania 
North--------- 40 53 41 57 77 45 40 10 
South --------- 39 56 40 58 77 45 39 20 

Puerto Rico and 
Virgin Islands 

1 ------------- 18 02 18 26 66 26 17 505g 

2 (St. Croix) ____ 18 02 18 26 66 26 17 505f, g 

Samoa ------------ 14°16' s. (single) 170 005h 

South Carolina 
North --------- 33°46' N. 34 58 81 00 33 00 
South --------- 32 20 33 40 81 00 31 50 

South Dakota 
North --------- 44 25 45 41 100 00 43 50 
South --------- 42 50 44 24 100 20 42 20 

Tennessee -------- 35 15 36 25 86 00 34 405f 
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TABLE 8.-U.S. State plane coordinate systems-Continued 

Lambert Conformal Conic projection- Continued 

Zone Standard parallels 
Origin6 

Long. 

Texas 
North --------- 34°39' N. 36°11' N. 101°30' w. 
North central ___ 32 08 33 58 97 30 
Central -------- 30 07 31 53 100 20 
South central ___ 28 23 30 17 99 00 
South --------- 26 10 27 50 98 30 

Utah 
North --------- 40 43 41 47 Ill 30 
Central -------- 39 01 40 39 Ill 30 
South --------- 37 13 38 21 Ill 30 

Virginia 
North--------- 38 02 39 12 78 30 
South --------- 36 46 37 58 78 30 

Washington 
North--------- 47 30 48 44 120 50 
South _________ 45 50 47 20 120 30 

West Virginia 
North --------- 39 00 40 15 79 30 
South --------- 37 29 38 53 81 00 

Wisconsin 
North--------- 45 34 46 46 90 00 
Central ________ 44 15 45 30 90 00 
South --------- 42 44 44 04 90 00 

Hotine Oblique Mercator projection 

Zone 

Alaska4 

1 

Center of projection 
Long. Lat. 

Azimuth of 
central line 

arctan ( - 3/4) 

Great Lakes (U.S. Lake Survey, not State plane coordinates) 
1 (Erie, Ont., 

St. Lawrence R.) 78 006b 

2 (Huron) 82 306c 

3 (Michigan) 87 006d 

4 (Superior, Lake {88 50 
of the Woods) 00.256"6e 

44 00 
43 00 
44 00 
47 12 
21.554" 

55 40 
350 37 

15 00 
285 41 
42.593" 

Lat. 

34°00' N. 
31 40 
29 40 
27 50 
25 40 

40 20 
38 20 
36 40 

37 40 
36 20 

47 00 
45 20 

38 30 
37 00 

45 10 
43 50 
42 00 

Scale7 

reduction 

1:10,000 

1:10,000 
1:10,000 
1:10,000 
1:10,000 

Note.-AIJ these systems are based on the Clarke 1866 ellipsoid and are based on the 1927 datum. Origin refers to rectangular 
coordinates. For systems based on 1983 datum, see Appendix C. 

1 The major and minor axes of the ellipsoid are taken at exactly 1.0000382 times those of the Clarke 1866, for Michigan only. This 
incorporates an average elevation throughout the State of about 800 ft, with limited variation. 

2 Along the central meridian. 
3 At origin, x = 500,000 ft, y = 0 ft, except for Alaska zone 7, x = 700,000 ft; Alaska zone 9, x = 600,000 ft; and New Jersey, x = 

2,000,000 ft. 
4 Additional zones listed in this table under other projection(s). 
5 At origin, x = 2,000,000ft, y =Oft, except(a)x = 3,000,000ft, (b)x = 4,186,692.58, y = 4,160,926, 74ft, (c)x = 800,000ft, (d)x = 600,000 ft, 

(e) x = 200,000 ft, <0 y = 100,000 ft, (g) x = 500,000 ft, (h) x = 500,000 ft, y = 0, but radius to lat. of origin = -82,000,000 ft. 
6 Atcenter,(a)x = 5,000,000meters,y = -5,000,000m;(b)x = -3,950,000m,y = -3,430,000m;(c)x = 1,200,000m,y = -3,500,000 

m; (d) x = -1,000,000 m, y = -4,300,000 m; (e) x = 9,000,000 m, y = -1,600,000 m (Berry and Bormanis, 1970). 
7 At central point. 



8. TRANSVERSE MERCATOR PROJECTION 

central meridian and scale factor are those of the SPCS zone. Thus, all quadran
gles for a given zone may be mosaicked exactly. Beginning in 1977, many USGS 
maps have been produced on the Universal Transverse Mercator projection (see 
below). Prior to the late 1950's, the Polyconic projection was used. The change in 
projection was facilitated by the use of high-precision rectangular-coordinate plot
ting machines. Some maps produced on the Transverse Mercator projection sys
tem during this transition period are identified as being prepared according to the 
Polyconic projection. Since most quadrangles cover only 7Y2 minutes (at a scale of 
1:24,000) or 15 minutes (at 1:62,500) of latitude and longitude, the difference 
between the Polyconic and the Transverse Mercator for such a small area is much 
more significant due to the change of central meridian than due to the change of 
projection. The difference is still slight and is detailed later under the discussion 
of the Polyconic projection. The Transverse Mercator is used in many other 
countries for official topographic mapping as well. The Ordnance Survey of Great 
Britain began switching from a Transverse Equidistant Cylindrical (the Cassini
Soldner) to the Transverse Mercator about 1920. 

The use of the Transverse Mercator for quadrangle maps has been recently 
extended by the USGS to include the planet Mars. Although other projections are 
used at smaller scales, quadrangles at scales of 1:1,000,000 and 1:250,000, and 
covering areas from 200 to 800 km on a side, were drawn to the ellipsoidal 
Transverse Mercator between lats. 65°N. and S. The scale factor along the cen
tral meridian was made 1.0. For the current series, see table 6. 

In addition to its own series of larger-scale quadrangle maps, the Army Map 
Service used the Transverse Mercator for two other major mapping operations: 
(1) a series of 1:250,000-scale quadrangle maps covering the entire country, and 
(2) as the geometric basis for the Universal Transverse Mercator (UTM) grid. 

The entire area of the United States has been mapped since the 1940's in 
sections 2° of longitude (between even-numbered meridians, but in 3° sections in 
Alaska) by 1° of latitude (between each full degree) at a scale of 1:250,000, with the 
UTM grid superimposed and with some variations in map boundaries at coastlines. 
These maps were drawn with reference to their own central meridians, not the 
central meridians ofthe UTM zones (see below), although the 0.9996 central scale 
factor was employed. The central meridian of about one-third of the maps coin
cides with the central meridian of the zone, but it does not for about two-thirds, 
the "wing" sheets, which therefore do not perfectly match the center sheets. The 
USGS has assumed publication and revision of this series and is casting new maps 
using the correct central meridians. 

Transverse Mercator quadrangle maps fit continuously in a north-south direction, 
provided they are prepared at the same scale, with the same central meridian, 
and for the same ellipsoid. They do not fit exactly from east to west, if they have 
their own central meridians; although quadrangles and other maps properly con
structed at the same scale, using the SPCS or UTM projection, fit in all directions 
within the same zone. 

UNIVERSAL TRANSVERSE MERCATOR PROJECTION 

The Universal Transverse Mercator (UTM) projection and grid were adopted 
by the U.S. Army in 1947 for designating rectangular coordinates on large-scale 
military maps of the entire world. The UTM is the ellipsoidal Transverse Merca
tor to which specific parameters, such as central meridians, have been applied. 
The Earth, between lats. 84° N. and 80° S., is divided into 60 zones each generally 6° 
wide in longitude. Bounding meridians are evenly divisible by 6°, and zones are 
numbered from 1 to 60 proceeding east from the 180th meridian from Greenwich 
with minor exceptions. There are letter designations from south to north (see fig. 
11). Thus, Washington, D.C., is in grid zone 18S, a designation covering a quad-
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rangle from long. 72° to 78° W. and from lat. 32° to 40° N. Each of these quadrangles 
is further subdivided into grid squares 100,000 meters on a side with double-letter 
designations, including partial squares at the grid boundaries. From lat. 84" N. 
and 80° S. to the respective poles, the Universal Polar Stereographic (UPS) projec
tion is used instead. 

As with the SPCS, each geographic location in the UTM projection is given x 
and y coordinates, but in meters, not feet, according to the Transverse Mercator 
projection, using the meridian halfway between the two bounding meridians as 
the central meridian, and reducing its scale to 0.9996 of true scale (a 1:2,500 
reduction). The reduction was chosen to minimize scale variation in a given zone; 
the variation reaches 1 part in 1,000 from true scale at the Equator. The USGS, 
for civilian mapping, uses only the zone number and the x and y coordinates, 
which are sufficient to define a point, if the ellipsoid and the hemisphere (north or 
south) are known; the 100,000-m square identification is not essential. The lines of 
true scale are approximately parallel to and approximately 180 km east and west 
of the central meridian. Between them, the scale is too small; beyond them, it is 
too great. In the Northern Hemisphere, the Equator at the central meridian is 
considered the origin, with an x coordinate of 500,000 m and a y of 0. For the 
Southern Hemisphere, the same point is the origin, but, while x remains 500,000 
m, y is 10,000,000 m. In each case, numbers increase toward the east and north. 
Negative coordinates are thus avoided (Army, 1973, p. 7, endmap). A page of 
coordinates for the UTM projection is shown in table 9. 

The ellipsoidal Earth is used throughout the UTM projection system, but the 
reference ellipsoid changes with the particular region of the Earth. For all land 
under United States jurisdiction, the Clarke 1866 ellipsoid is used for the map 
projection. For the UTM grid superimposed on the map of Hawaii, however, the 
International ellipsoid is used. The Geological Survey uses the UTM graticule and 
grid for its 1:250,000- and larger-scale maps of Alaska, and applies the UTM grid 
lines or tick marks to its quadrangles and State base maps for the other States, 
although they are generally drawn with different projections or parameters. 

FORMULAS FOR THE SPHERE 

A partially geometric construction of the Transverse Mercator for the sphere 
involves constructing a regular Mercator projection and using a transforming 
map to convert meridians and parallels on one sphere to equivalent meridians and 
parallels on a sphere rotated to place the equator of one along the chosen central 
meridian of the other. Such a transforming map may be the equatorial aspect of 
the Stereographic or other azimuthal projection, drawn twice to the same scale on 
transparencies. The transparencies may then be superimposed at 90° angles and 
the points compared. 

In an age of computers, it is much more satisfactory to use mathematical 
formulas. The rectangular coordinates for the Transverse Mercator applied to the 
sphere (Thomas, 1952, p. 6): 

or 

where 

(note: If B 

x = ¥2Rk0 In [(1 + B)/(1 - B)] 

x = Rk0 arctanh B 
y = Rk0 (arctan [tan <!>Ieos (A. - A.0 )] - <!>o) 
k = kJ(l - B2)112 

B = cos <!> sin (A. - A.0) 

± 1, x is infinite) 

(8-1) 

(8-2) 
(8-3) 
(8-4) 

(8-5) 



8. TRANSVERSE MERCATOR PROJECTION 59 

TABLE 9.-Universal Transverse Mercator grid coordinates 

U.T.M. GRID OOORDINATES • CLARKE 1866 SPHEROID 

LATITUDE 48"00'00" LATITUDE 411"15'00" 
WestaiC.M. EastoiC.M. WestoiC.M. East oiC.M. A). E E H A 'I. E E H 

~: 5 oo.ooo.o 5 oo.ooo.o 5,316;lr81 .3 
~: 5 oo.ooo.o 5 oo.ooo.o 5.343,868.4 

4 90,675.3 5 09,324.7 5.316,088.9 490,720.4 5 09.279.6 5,343,875.9 
1500 481,350.5 518.649.5 5,316,111.6 1500 481,440.8 518.559.2 '5,343,898.6 
2230 472.025.8 527.974.2 5.3 I 6,1 4 9 .4 2230 4 72,161.2 5 z 7.8 38.8 5.3 43,936.3 

3000 4 62,701.1 53 7,2 98.9 5,31 6,202.3 3000 4 ~ 2,8 81.7 537.1!8.3 5.3 43,989.2 
3730 4 53,376.4 5 46.623.6 5,316.2 70".3 3730 4 5 3.602.1 5 46.397.9 5.3 44,05 7.2 4500 4 44.051.8 5 55,948.2 5,316,353.5 4500 4 44.322.6 5 55,677.4 5,344,140.2 5230 4 34.727.1 5 65,272.9 5,3' 6,451.7 5230 435.043.1 564,956.9 5.3 44,238.4 

10000 4 25.402.5 5 74,597.5 5,3 '6.565.1 10000 4 25.763.7 57 4,2 36.3 5,344,351.7 
0730 4 16.0 78.0 58 3,9 22.0 5.3 16,6 93.6 0730 416.484.3 5 83,515.7 5.3 44,4 80 .I 
1500 4 06,753.5 5 93.2 46.5 5.:!11 6,83 7.3 1500 4 07,204.9 5 92,7 95.1 5,.5 44.62.5 .6 
2230 397,429.0 6 02,5 71.0 5.316.996.1 2230 .5 97,925.6 6 02.0 74.4 5,3 44,782.2 

3000 3 81U 04.5 6 I 1,8 95.5 5.3 17,169.9 3000 3 88,646.3 6 I 1,3 53.7 5,3 44,955.9 
3730 3 78.780.2 621.219.8 '5,317,359.0 3730 3 79,367.1 6 20,6 32.9 5,3 45,1 4 4 .8 
4500 369,455.9 630,544.1 5,317.563.1 4500 3 70,088.0 6 29.912.0 5,345.348.7 
5230 360,131.6 6 3 9,8 68.4. 5.3 I 7,7 82.4 5230 3 60,808.9 6 3 9.1 91.1 5.3 45.56 7.8 

20000 3 50,807.4 6 49.192.6 5,318,016.8 20000 351,529.9 6 4 8.4 70.1 5,3 45,802.0 
0730 3 41,4 83.3 658.516.7 5,318.266.3 0730 3 42.251.0 6 57,7 49.0 5,346,051 . .5 
1500 332,159.3 6 67.840.7 5,318.531.0 1500 3 32,972.2 6 6 7.027.8 5,.546,315 .7 
2230 3 2 2,835.4 6 7 7.1 64.6 5,318,81 0.8 2230 323,693.4 6 76,306.6 5,346595.3 

3000 3 1 3,511.5 6 8 6.4 88.5 5,319,105.9 3000 314,414.8 6 85,5 85.2 5,3 46,889.9 
3730 3 0 4.1 87.7 6 95.812.3 5,319.41 5.9 3730 3 05,136.2 6 94,8 63.8 5,347,199.7 
4500 2 94,964.1 7 0'5.1 35.9 5,319,7 41.1 4500 2 95,857.8 7 04,142.2 5,3 47,52 4.7 
5230 2 85,5 4 0.5 7 1 4.4 59.5 5,320.081.5 5230 2 86,5 79.4 7 13,420.6 5,3 47,864.7 

30000 2 7 6,217.0 7 23.783.0 5,320,43'7.0 30000 2 77,301.2 7 22.698.8 5,348,219.9 
0730 2 6 6.8 93.7 733.106 . .5 5,.5 20,807.7 0730 2 68.023.1 7 31,976.9 5,.5 48,590 . .5 
1500 2 5 7,5 70.5 7 42.429.5 5,.521,193.6 1500 2 5 8,7 45.1 741,254.9 5,.5 48.975.8 
2230 2 4 8.2 4 7.4 7 51,7 5.2.6 5.3 21,594.6 2230 2 4 9,4 67.3 7 50,532.7 5,.5 49,376.4 

3000 2 38.924.4 7 61.075.6 5,3 22,010.8 3000 2 40,189.6 7 59.810.4 5,.5 49,792.2 
3730 2 2 9.6 0 I .5 7 70,.598.5 5,322.442.1 3730 230,912.0 7 69.088.0 5,.5 50,223.1 
4500 2 20.278.8 7 7 9,7 21.2 5,3 22,888.6 4500 2 2 1,6 3 4.6 7 7 8.:5 65.4 5,3 50,669.2 
5230 210,956.2 7 89.043.8 5,32.5.:550.3 5230 2 1 2,3 57.3 7 87.642.7 5,351,1.50.4 

40000 2 01,633.8 7 98.366.2 5,323.827.1 40000 203.080.2 ") 96.9 1 9.8 5.351606.8 

LATITUDE 48"07'30" LATITUDE 48"22'30' 
We•tofC.M. EastofC.M. WestoiC.M. EastofC.M. 

A). E E N A •. E E N 
0'00'00' 5 QO.ooo.o 5 oo.ooo.o 5,3 29,':1 74. 0"0000' 5 oo.ooo.o 5 oo.ooo.o 5,357.?~;: .3 

0730 4 90,697.8 5 09.302.2 '5,329.982.3 0730 4 90,7 43.0 5 09.257.0 5,357,769.9 
1500 481,,595.6 5 1 8,6 04.4 5. 3 30,00 4.9 1500 4 81,486.1 518.513.9 5,3 57,792.5 
2230 472,093.5 5 27,906.5 5.3 30.042.7 2230 4 72.229.2 5 27.7 70.8 '5,3 57,830.3 

3000 4 62,7 9 I .3 5:57.208.7 5.3 30,095.6 3000 4 62,9 72.2 53 7.027.8 5,357,883 I 
3730 4 5 3,4 89.2 5 46.510.8 5.3 30,163.6 3730 4 5 3,715.3 5 46.284.7 5,3 5 7.9 5 1.0 
4500 4 4 4,1 87,1 55 5.81 2.9 5,3 30.246.7 4500 4 4 4,4 56.5 5 55.5 4 f 5 5.358.034.1 
5230 4 3 4.8 85.0 565.115.0 5,.5 30,.54 4.9 5230 4 35.201.6 5 64,798 4 5.3 58.132 2 

10000 425.582.9 57 4.4 17.1 '5,3 30,"458 .3 10000 4 25.944.8 57 4.055.2 5.358.245.4 
0730 4 1 6.2 80.9 58 3,7 (9.1 5,3 30.586.7 0730 4 16,6 68.0 5 83,31 z.o ~u 56.3 73 8 
1500 4 06,9 7 9.0 '5 93.021.0 5.:5 30.7 30 .3 1500 A 0 7,4 31.3 !; 92,568.7 5,3 58.51 7.2 
2230 3 9 7,6 77.0 6 02.323.0 5,3 30,889.0 2230 3 98.1 74.6 6 01,825.4 5,3 58.6 75.7 

3000 3 6 8.3 75.2 6 I 1,6 2 4.8 5, 3 3 I ,0 6 2 .9 3000 3 88,918.0 6' 1,082.0 5.3 58.84 9.4 
3730 3 7 9,073.4 6 20,926.6 5.331,251.7 3730 3 79,6 61.5 6 20.338.5 5.~ 59,038.1 
4500 3 6 9,7 71.6 6 30,228.4 5,3 31,45 5.8 4500 3 70,4 05.0 6 2 9.5 95.0 5.3 59.242.0 
5230 3 6 0,4 6 9.9 6 3 9,5 30.1 5.3 31,6 75.0 5230 3 61.148.6 6 .58.8 5 '.4 5.359460 9 

2 0000 3 51,168.3 648.831.7 5.3 31,90 9.3 20000 3 51.8 92.2 6 48.107.8 5,3 59.6 95.0 
0730 3 41,666.8 6 5 8,1 33.2 5,3 32,1 58.7 0730 3 42,636.0 6 5 7,3 64.0 5,3 59.944.2 
1500 3.52,565.3 6 6 7,4 34.7 5,3 .52,42 3.2 1500 .533.379.8 6 66,620.2 5.3 60,20 8 .5 
2230 3 2 3,2 64.0 6 76,7 36.0 5. 3 32,70 2.9 2230 324.123.7 6 75.876.3 5. 3 60,4 8 7 .9 

3000 313,962.7 6 86.037 3 5,332,997.7 3000 3 1 4,8 6 7.7 685.132.3 5.3 60.7 82 4 
37 30 3 0 4,6 61.5 6 95.3 38.5 5.3 33,30 7.7 3730 :5 05,611.9 694,388.1 5.361,092.0 
4500 2 95.360.4 7 0 4,6 3 9.6 5.333,6.528 4500 z 96.356.1 7 0 3,6 4 3.9 5.3 61,416 8 
5230 2 86,059.5 713,9~0-~ 5,333,973.0 5230 287,100.4 7 1 2,6 99.6 5.361.756 '! 

3 0000 2 76.758.6 7 2 3.2 4 I .4 5 . .5 34,32 8.4 3 0000 2 77,844.9 722,155.1 5.362,1 I I 7 
0730 2 6 7.4 57.9 7 32.542.2 5.334,698 9 0730 2 6 B.5 89.5 7 31,41 o.5 5.~ 62,4 81 9 
1500 z 5 8.1 5 7.2 7 4 1,842.8 5. 3 3 5.0 8 4 .6 1500 2 59,334.2 7 4 0,665.8 5.3 62,86 7.2 
22 30 z 48.856.7 7 5 !,I 43.3 5.3 35.4 85.4 2230 2 50,079.1 7 4 9,9 2 o.9 5.3 63.26 7.6 

3000 2 39,556.4 7 60,44.5.6 5.3:55,901.4 3000 2 4 0,8 24.1 759,175.9 5.363,683.1 
3730 230.256.1 769.743.9 5.3 36.332.5 3730 231,569.2 7 6 8.4 3 o.a ~ . .564,1 13 9 
4500 220.956.0 7 79,044.0 5,3 36,7 78.8 4500 2 2 2.31 4.5 777,685.5 5,.564,559.7 
5230 2 I 1,656.1 7 88,343.9 5.3 37.2 40.3 52 30 2 I .5,06 0.0 7 86,940.0 5 . .565.020 7 

L_4 oooo 2 02.3 56.3 7 97.643.7 5,337.716.9 40000 2 0.5,805.6 7 96,194.4 53654968 

GRID COORDINATES FOR 7.5 MlNtrrE INTERSECTIONS 
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and k0 is the scale factor along the central meridian A.0 • The origin of the coordi
nates is at (<f>0, A.0). The Y axis lies along the central meridian A.0 , y increasing 
northerly, and the X axis is perpendicular, through <l>o at i\.0 , x increasing easterly. 

The inverse formulas for (<f>, i\.) in terms of (x, y): 

<f> = arcsin [sin D/cosh (x!Rk0 )] 

i\. = i\.0 + arctan [sinh (x!Rk0)/cos D] 

where 

D = yi(Rk0) + <f>0 , using radians 

(8-6) 
(8-7) 

(8-8) 

Rectangular coordinates for the sphere are shown in table 10. Only one octant 
(quadrant of a hemisphere) needs to be listed, since all other octants are identical 
except for sign change. See p. 268 for numerical examples. 

FORMULAS FOR THE ELLIPSOID 

For the ellipsoidal form, the most practical form of the equations is a set of 
series approximations which converge rapidly to the correct centimeter or less at 
full scale in a zone extending 3° to 4 o of longitude from the central meridian. Beyond 
this, the forward series as given here is accurate to about a centimeter at 7o 
longitude, but the inverse series does not have sufficient terms for this accuracy. 
The forward series may be used with meter accuracy to 10° of longitude. (Many 
additional terms for use to 24° oflongitude may be found in Army (1962).) Coordi
nate axes are the same as they are for the spherical formulas above. The for-

TABLE 10.-'fransverse Mercator projection: Rectangular coordinates for the sphere 

[Radius of the Earth is 1.0 unit. Longitude measured from central meridian. y coordinate is in parentheses under x coordinate. 
Origin of rectangular coordinates at Equator and central meridan. x increases east; y increases north. One octant of globe is 
given; other octants are symmetrical] 

~g. 
L 

oo 100 20° 30° 40° 

90° -------------- 0.0000 0.0000 0.0000 0.0000 0.0000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .00000 .03016 .05946 .08704 .11209 
(1.39626) (1.39886) (1.40659) (1.41926) (1.43653) 

70 -------------~- .00000 .05946 .11752 .17271 .22349 
(1.22173) (1.22662) (1.24125) (1.26545) (1.29888) 

60 --------------- .00000 .08704 .17271 .25541 .33320 
(1.04720) (1.05380) (1.07370) (1.10715) (1.15438) 

50 --------------- .00000 .11209 .22349 .33320 .43943 
( .87266) ( .88019) ( .90311) ( .94239) ( .99951) 

40 --------------- .00000 .13382 .26826 .40360 .53923 
( .69813) ( .70568) ( .72891) ( .76961) ( .83088) 

30 --------------- .00000 .15153 .30535 .46360 .62800 
( .52360) ( .53025) ( .55094) ( .58800) ( .64585) 

20 --------------- .00000 .16465 .33320 .50987 .69946 
( .34907) ( .35401) ( .36954) ( .39786) ( .44355) 

10 --------------- .00000 .17271 .35051 .53923 .74644 
( .17453) ( .17717) ( .18549) ( .20086) ( .22624) 

0 --------------- .00000 .17543 .35638 .54931 .76291 
( .00000) ( ;00000) ( .00000) ( .00000) ( .00000) 
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rnulas below are only slightly modified from those presented in standard refer
ences to provide mm accuracy at full scale (Army, 1973, p. 5-7; Thomas, 1952, 
p. 2-3). (Seep. 269 for numerical examples.) 

x = koN[A + (1- T + C)A3 /6 + (5-18T + r'2 + 72C- 58e'2)A5/120] 
y = k0 \M- M 0 + N tan <I> [A2/2 + (5 - T + 9C + 4C2

) 

A 4/24 + (61 - 58T + 'J"2 + 600C - 330e'2)A6!720]j 
k = k0[1 + (1 + C)A2/2 + (5- 4T + 42C + 13C2 - 28e'2)A4/24 

+ (61 - 148T + 16rz)A61720] 

(8-9) 

(8-10) 

(8-11) 

where k0 = scale on central meridian (e.g., 0.9996 for the UTM projection) 

e'2 = e2/(1 - e2
) 

N = a/(1 - e2 sin2 <1>)112 

T = tan2<1> 
C = e'2 cos2 <1> 
A = (>.. - >..0) cos <1>, with >.. and >..0 in radians 
M = a[(1 - e2/4 - 3e4/64 - 5e6/256 - ... ) <1> - (3e2/8 + 3e4/32 

+ 45e6/1024 + ... ) sin 2<1> + (15e4/256 + 45e6/1024 
+ ... ) sin 4<1> - (35e6/3072 + ... ) sin 6<!> + ... ) 

(8-12) 
(4-20) 
(8-13) 
(8-14) 
(8-15) 

(3-21) 

with <1> in radians. M is the true distance along the central meridian from the 
Equator to <j>. See equation (3-22) for a simplification for the Clarke 1866 ellipsoid. 

M 0 = M calculated for <1>0 , the latitude crossing the central meridian >..0 at the 
origin of the x, y coordinates. 

Note: If <1> = ::!:: -rr/2, all equations should be omitted except (3-21), from which 
M and M 0 are calculated. Then x = 0, y = k0(M- M 0), k = k0 • 

TABLE 10.-'li'ansverse Mercator projection: Rectangular coordinates for the sphere--Continued 

~· La 50° 60° 70° goo goo 

goo ------------~- 0.0000 0.0000 0.0000 0.0000 0.0000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .13382 .15153 .16465 .17271 .17543 
(1.457g4) (1.48286) (1.51056) (1.5401g) (1.57080) 

70 --------------- .26826 .30535 .33320 .35051 .35638 
(1.340g7) (1.3g078) (1.446g5) (1.50768) (1.57080) 

60 --------------- .40360 .46360 .5og87 .53g23 .54g31 
(1.21544) (1.28976) (1.37584) (1.47087) (1.57080) 

50 --------------- .53923 .62800 .6gg46 .74644 .76291 
(1.07616) (1.17355) (1.2g132) (1.42611) (1.57080) 

40 --------------- .67281 .7g889 ,g0733 ,g8310 1.01068 
( .91711) (1.03341) (1.18375) (1.36673) (1.57080) 

30 --------------- .7988g .97296 1.13817 1.26658 1.31696 
( .73182) ( .85707) (1.0359g) (1.27864) (1.57080) 

20 --------------- ,g0733 1.13817 1.38932 1.6254g 1.73542 
( .61522) ( .62g23) ( .81648) (1.12564) (1.57080) 

10 --------------- ,g8310 1.26658 1.6254g 2.08g7o 2.43625 
( .26773) ( .33g04) ( .47601) ( .79305) (1.57080) 

0 --------------- 1.01068 1.316g6 1.73542 2.43625 
( .00000) ( .00000) ( .00000) ( .00000) Inf. 
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FIGURE H.-Universal Transverse Mercator (UTM) grid zone designations for the world shown on a horizontally expanded Equidistant Cylindrical projection index map. 
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TABLE H.-Universal Transverse Mercator projection: Location of points with given scale factor 

[x coordinates in meters at various latitudes. Based on inversion of equation (8-16), using Clarke 1866 ellipsoid. Values are on or 
to right of central meridian (x=500,000 m). For coordinates left of central meridian, subtract values of x from 1,000,000 m. 
Latitude is north or south] 

Lat. 
Scale factor 

0.9996 0.9998 1.0000 1.0002 1.0004 1.0006 

goo ----------- 500,000 627,946 680,943 721,609 755,892 786,096 
70 ----------- 500,000 627,871 680,836 721,478 755,741 785,927 
60 ----------- 500,000 627,755 680,673 721,278 755,510 785,668 
50 ----------- 500,000 627,613 680,472 721,032 755,226 785,352 
40 ----------- 500,000 627,463 680,260 720,772 754,925 785,015 
30 ----------- 500,000 627,322 680,060 720,528 754,643 784,700 
20 ----------- 500,000 627,207 679,898 720,329 754,414 784,443 
10 ----------- 500,000 627,132 679,792 720,199 754,264 784,276 
0 ----------- 500,000 627,106 679,755 720,154 754,212 784,218 

Equation (8-11) for k may also be written as a function of x and <1>: 

k = k0[1 + (1 + e'2 cos2 <j>)x2/(2k2~)] (8-16) 

These formulas are somewhat more precise than those used to compute the State 
Plane Coordinate tables, which were adapted to use desk calculators of 30-40 
years ago. Table 11 shows the variation of k with x. 

To obtain UTM or SPCS coordinates, the appropriate "false easting" is added 
to x and "false northing" added toy after calculation using (8-9) and (8-10). 

For the inverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 2-3): 

<I> = <1> 1 - (N1 tan <I>1/R 1)[D
2/2- (5 + 3T1 + 10C1 - 4C1

2 - 9e'2)D4/24 
+ (61 + 90T1 + 298C1 +45T1

2 - 252e'2 - 3C1
2)D6!720] (8-17) 

A = Ao + [D - (1 + 2T1 + C1)D
3/6 + (5 - 2C1 + 28T1 

- 3C1
2 + 8e'2 + 24T/)D5/120]/cos <1> 1 (8-18) 

where <1> 1 is the "footpoint latitude" or the latitude at the central meridian which 
has the same y coordinate as that of the point (<!>, A.). 

It may be found from equation (3-26): 

<1> 1 = ,_., + (3e1/2 - 27e1
3/32 + ... ) sin 2,_., + (2le1

2/16 
- 55e1

4/32 + ... )sin4,_., + (151e1
3/96 + ... )sin6,_., + (1097e1

4/512- ... ) 
sin 8,_., + . . . (3-26) 

where 

el = [1-(1-ez)v2]/[l + (1-e2)1f2] 
,_., = M![a(l-e2/4 - 3e4!64 - 5e6/256- ... )] 
M = Mo + ylk0 

with M0 calculated from equation (3-21) or (3-22) for the given <j>0 • 

(3-24) 
(7-19) 
(8-20) 

Fo_r improved computational efficiency using series (3-21) and (3-26), see 
p. 19. From <1> 11 other terms below are calculated for use in equations (8-17) and 
(8-18). (If <1> 1 = ±1r/2, (8-12), (8-21) through (8-25), (8-17) and (8-18) are 
omitted, but <1> = ± 90°, taking the sign of y, while A is indeterminate, and may be 
called A0 • Also, k = k0.) 
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64 MAP PROJECTIONS-A WORKING MANUAL 

e'2 = e2/(1-e2) 

cl = e' 2 cos2 <Pt 
T1 = tan2 <!>1 

N1 = a/(1-e2 sin2 <j>1)v2 

R 1 = a(1-e2)/(1-e2 sin2 <j>1)312 

D = x!(N1ko) 

(8-12) 
(8-21) 
(8-22) 
(8-23) 
(8-24) 
(8-25) 

To convert from tabular rectangular coordinates to <!> and A., it is necessary to 
subtract any "false easting" from x and "false northing" from y before inserting x 
and y into the inverse formulas. To convert coordinates measured on an existing 
map, the correct central meridian must be used for the Y axis on the Transverse 
Mercator, but the X axis may cross it perpendicularly at any latitude chosen by 
the user. 

"MODIFIED TRANSVERSE MERCATOR" PROJECTION 

In 1972, the USGS devised a projection specifically for the revision of a 1954 
map of Alaska which, like its predecessors, was based on the Polyconic projection. 
The projection was drawn to a scale of 1:2,000,000 and published at 1:2,500,000 
(map "E") and 1:1,584,000 (map "B"). Graphically prepared by adapting coordi
nates for the Universal Transverse Mercator projection, it is identified as the 
"Modified Transverse Mercator" projection. It resembles the Transverse Merca
tor in a very limited manner and cannot be considered a cylindrical projection. It 
approximates an Equidistant Conic projection for the ellipsoid in actual con
struction. Because of the projection name, it is listed here. The projection was 
also used in 1974 for a base map of the Aleutian-Bering Sea Region published at 
the 1:2,500,000 scale. 

The basis for the name is clear from an unpublished 1972 description of the 
projection, in which it is also stressed that the "latitudinal lines are parallel" and 
the "longitudinal lines are straight." The computations 

were taken frqm the AMS Technical Manual #21 (Universal Transverse Mercator) based on the Clarke 
1866 Spheroid.*** The projection was started from aN -S central construction line of the 153° longi
tude which is also the centerline of Zone 5 from the UTM tables. Along this line each even degree 
latitude was plotted from book values. At the plotted point for the 64° latitude, a perpendicular to the 
construction line (153°) was plotted. From the center construction line for each degree east and west 
for 4° (the limits of book value of Zone #5) the curvature oflatitude was plotted. From this 64° latitude, 
each 2o latitude north to 70° and south to 54o was constructed parallel to the 64° latitude line. Each degree 
of longitude was plotted on the 58° and 68° latitude line. Through corresponding degrees of longitude 
along these two lines oflatitude a straight line (line oflongitude) was constructed and projected to the 
limits of the map. This gave a small projection go in width and approximately 18° in length. This 
projection was repeated east and west until a projection of some 72° in width was attained. 

For transferring data to and from the Alaska maps, it was necessary to deter
mine projection formulas for computer programming. Since it appeared to be 
unnecessarily complicated to derive formulas based on the above construction, it 
was decided to test empirical formulas with actual coordinates. After careful 
measurements of coordinates for graticule intersections were made in 1979 on the 
stable-base map, it was determined that the parallels very closely approximate 
concentric circular arcs, spaced in proportion to their true distances on the ellipsoid, 
while the meridians are nearly equidistant straight lines radiating from the center 
of the circular arcs. Two parallels have a scale equal to that along the meridians. 
The Equidistant Conic projection for the ellipsoid with two standard parallels was 
then applied to these coordinates as the closest approximation among projections 
with available formulas. After various trial values for scale and standard parallels 
were tested, the empirical formulas below (equations (8-26) through (8-32)) 
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were obtained. These agree with measured values within 0.005 inch at mapping 
scale for 44 out of 58 measurements made on the map and within 0.01 inch for 54 of 
them. 

FORMULAS FOR THE "MODIFIED TRANSVERSE MERCATOR" PROJECTION 

The "Modified Transverse Mercator" projection was found to be most closely 
equivalent to an Equidistant Conic projection for the Clarke 1866 ellipsoid, with 
the scale along the meridians reduced to 0. 9992 of true scale and the standard 
parallels at lat. 66.09° and 53.50° N. (also at 0.9992 scale factor). For the Alaska 
Map "E" at 1:2,500,000, using long. 150° W. as the central meridian and lat. 58° N. 
as the latitude of the origin on the central meridian, the general formulas (Snyder, 
1978a, p. 378) reduce with the above parameters to the following, giving x and y 
in meters at the map scale. The Y axis lies along the central meridian, y increas
ing northerly, and the X axis is perpendicular at the origin, x increasing easterly. 

For the forward formulas: 

X = p sin 8 
y = 1.5616640 - p cos e 

where 

0.8625111(.\0 + 150°) 
p 4.1320402 - 0.04441727<1>0 + 0.0064816 sin 2<1> 

For the inverse formulas: 

where 

(110.8625111) arctan [x/(1.5616640 - y)] - 150° 
(4.1320402 + 0.0064816 sin 2<1> - p)/0.04441727 

p = [x-2 + (1.5616640 - y)2]li2 

(8-26) 
(8-27) 

(8-28) 
(8-29) 

(8-30) 
(8-31) 

(8-32) 

For Alaska Map "B" at a scale of 1:1,584,000, the same formulas may be used, 
except that x andy are (2,500/1,584) times the values obtained from (8-26) and 
(8-27). For the inverse formulas, the given x and y must be divided by 
(2,500/1,584) before insertion into (8-30) and (8-32). 

The equation for <1>, (8-31), involves iteration by successive substitution. If an 
initial <1> of 60° is inserted into the right side, <1> on the left may be calculated and 
substituted into the rlght in place of the previous trial <j>. Recalculations continue 
until the change in <1> is less than a preset convergence. If A. as calculated is less 
than -180°, it should be added to 360° and labeled East Longitude. 

Formulas to adjust x and y for the map inset of the Aleutian Islands are omitted 
here, but the coordinates above are rotated counterclockwise 29.79° and trans
posed + 0. 798982 m for x and + 0.347600 m for y. 
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9. OBLIQUE MERCATOR PROJECTION 

SUMMARY 

• Cylindrical (oblique). 
• Conformal. 
• Two meridians 180° apart are straight lines. 
• Other meridians and parallels are complex curves. 
• Scale on the spherical form is true along chosen central line, a great circle at an 

oblique angle, or along two straight lines parallel to central line. The scale on 
the ellipsoidal form is similar, but varies slightly from this pattern. 

• Scale becomes infinite 90° from the central line. 
• Used for grids on maps of the Alaska panhandle, for mapping in Switzerland, 

Madagascar, and Borneo and for atlas maps of areas with greater extent in 
an oblique direction. 

• Developed 1900-50 by Rosenmund, Laborde, Hotine, and others. 

HISTORY 

There are several geographical regions such as the Alaska panhandle centered 
along lines which are neither meridians nor parallels, but which may be taken as 
great circle routes passing through the region. If conformality is desired in such 
cases, the Oblique Mercator is a projection which should be considered. 

The historical origin of the Oblique Mercator projection does not appear to be 
sharply defined, although it is a logical generalization of the regular and Trans
verse Mercator projections. Apparently, Rosenmund (1903) made the earliest 
published reference, when he devised an ellipsoidal form which is used for topo
graphic mapping of Switzerland. The projection was not mentioned in the detailed 
article on "Map Projections" in the 1911 Encyclopaedia Britannica (Close and 
Clarke, 1911) or in Rinks' brief text (1912). Laborde applied the Oblique Mercator 
to the ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 1930; 
Laborde, 1928). H. J. Andrews (1935, 1938) proposed the spherical forms for 
maps of the United States and Eurasia. Rinks presented seven world maps on the 
Oblique Mercator, with poles located in several different positions, and a conse
quent variety in the regions shown more satisfactorily (Rinks, 1940, 1941). 

A study of conformal projections of the ellipsoid by British geodesist Martin 
Hotine (1898-1968), published in 1946-47, is the basis of the U.S. use of the 
ellipsoidal Oblique Mercator, which Hotine called the "rectified skew orthomorphic" 
(Hotine, 1947, p. 66-67). The Hotine approach has limitations, as discussed 
below, but it provides closed formulas which have been adapted for U.S. mapping 
of suitable zones. One of its limitations is overcome by a recent series form of the 
ellipsoidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations result 
instead. This later form resulted from development of formulas for the .continuous 
mapping of satellite images, using the Space Oblique Mercator projection (to be 
discussed later). 

While Hotine projected the ellipsoid conformally onto an "aposphere" of con
stant total curvature and thence to a plane, J. H. Cole (1943, p. 16-30) projected 
the ellipsoid onto a "conformal sphere," using conformal latitudes (described earlier) 
to make the sphere conformal with respect to the ellipsoid, then plotted the 
spherical Oblique Mercator from this intermediate sphere. Rosenmund's system 
for Switzerland is a more complex double projection through a conformal sphere 
(Rosenmund, 1903; Bolliger, 1967). Laborde combined the conformal sphere with 
a complex-algebra transformation of the Oblique Mercator (Reignier, 1957, 
p. 130). 
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FIGURE 12.-0blique Mercator projection with the center of projection at lat. 45o N. on the central 
meridian. A straight line through the point and, in this example, perpendicular to the central 
meridian is true to scale. The projection is conformal and has been used for regions lying along a 
line oblique'to meridians. 

FEATURES 

The Oblique Mercator for the sphere is equivalent to a regular Mercator projec
tion which has been altered by wrapping a cylinder around the sphere so that it 
touches the surface along the great circle path chosen for the central line, instead 
of along the Earth's Equator. A set of transformed meridians and parallels rela
tive to the great circle may be plotted bearing the same relationship to the 
rectangular coordinates for the Oblique Mercator projection, as the geographic 
meridians and parallels bear to the regular Mercator. It is, therefore, possible to 
convert the geographic meridians and parallels to the transformed values and 
then to use the regular Mercator equations, substituting the transformed values 
in place of the geographic values. This is the procedure for the sphere, although 
combined formulas are given below, but it becomes much more complicated for 
the ellipsoid. The advent of present-day computers and programmable pocket 
calculators make these calculations feasible for sphere or ellipsoid. 

The resulting Oblique Mercator map of the world (fig. 12) thus resembles the 
regular Mercator with the landmasses rotated so that the poles and Equator are 
no longer in their usual positions. Instead, two points 90° away from the chosen 
great circle path through the center of the map are at infinite distance off the 
map. Normally, the Oblique Mercator is used only to show the region near the 
central line and for a relatively short portion of the central line. Under these 
conditions, it looks similar to maps of the same area using other projections, 
except that careful scale measurements will show differences. 

67 



68 MAP PROJECTIONS-A WORKING MANUAL 

TABLE 12.-Hotine Oblique Mercator projection parameters used for Landsat 1, 2, and 3 imagery 

HOM Limiting Central Central Azimuth 
zone latitudes latitude longitude' of axis 

1 ---------- 48°N-81 °N 67.0983°N 81.9700°W 24.7708181° 
2 ---------- 23°N-48°N 36.0000°N 99.2750°W 14.3394883° 
3 ---------- 23° 8-23°N 0.0003°N 108.5069°W 13.001443° 
4 ---------- 23°8-48°8 36.0000°8 117.7388°W 14.33948832° 
5 ---------- 48°8-81°8 67.0983°8 135.0438°W 24.7708181° 
6 ---------- 48°8-81°8 67.0983°8 85.1220°E -24.7708181° 
7 ---------- 23° 8-48°8 36.0000°8 67.8170°E -14.33948832° 
8 ---------- 23°8-23°N o.0003°N 58.5851°E -13.001443° 
9 ---------- 23°N-48°N 36.0000°N 49.3532°E -14.33948832° 

10---------- 48°N-81 °N 67.0983°N 32.0482°E - 24.7708181° 

1 For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (360./251) x (p-
31). 
Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Mercator formulas, 
with <f>o the central latitude, }.0 the central longitude, and a 0 the azimuth of axis east of north. Scale factor k0 at center 
is 1.0. 

It should be remembered that the regular Mercator is in fact a limiting form of 
the Oblique Mercator with the Equator as the central line, while the Transverse 
Mercator is another limiting form of the Oblique with a meridian as the central 
line. As with these limiting forms, the scale along the central line of the Oblique 
Mercator may be reduced to balance the scale throughout the map. 

USAGE 

The Oblique Mercator projection is used in the spherical form for a few atlas 
maps. For example, the National Geographic Society uses it for atlas and sheet 
maps of Hawaii, the West Indies, and New Zealand. The spherical form is being 
used by the USGS for maps of North and South America and Australasia in a new 
set of 1:10,000,000-scale maps of Hydrocarbon Provinces. For North America, 
the central scale factor is 0.968, and the transformed pole is at lat. 10°N, long. 
10°E. For South America, these numbers are 0. 974, 10°N., and 30°E., respectively; 
for Australasia, 0.978, 55°N, and 160°W. These parameters were chosen after a 
least-squares analysis of over 100 points on each continent to determine optimum 
parameters for a common conformal projection. 

In the ellipsoidal form it was used, as mentioned above, by Rosenmund for 
Switzerland and Laborde for Madagascar. Hotine used it for Malaya and Borneo 
and Cole for Italy. It is used in the Hotine form by the USGS for grid marks on 
zone 1 (the panhandle) of Alaska, using the State Plane Coordinate System as 
adapted to this projection by Erwin Schmid of the former Coast and Geodetic 
Survey. The Hotine form was also adopted by the U.S. Lake Survey for mapping 
of the five Great Lakes, the St. Lawrence River, and the U.S.-Canada Border 
Lakes west to the Lake of the Woods (Berry and Bormanis, 1970). Four zones 
are involved; see table 8 for parameters of these and the Alaska zones. 

More recently, the Hotine form was adapted by John B. Rowland (USGS) for 
mapping Landsat 1, 2, and 3 satellite imagery in two sets of five discontinuous 
zones from north to south (table 12). The central line of the latter is only a close 
approximation to the satellite groundtrack, which does not follow a great circle 
route on the Earth; instead, it follows a path of constantly changing curvature. 
Until the mathematical implementation of the Space Oblique Mercator (SOM) 
projection, the Hotine Oblique Mercator (HOM) was probably the most suitable 
projection available for mapping Landsat type data. In addition to Landsat, 
the HOM projection has been used to cast Heat Capacity Mapping Mission (HCMM) 
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imagery since 1978. NOAA (National Oceanic and Atmospheric Administration) 
has also cast some weather satellite imagery on the HOM to make it compatible 
with Landsat in the polar regions which are beyond Landsat coverage (above lat. 
82°). 

The parameters for a given map according to the Oblique Mercator projection 
may be selected in various ways. If the projection is to be used for the map of a 
smaller region, two points located near the limits of the region may be selected to 
lie upon the central line, and various constants may be calculated from the lati
tude and longitude of each of the two points. A second approach is to choose a 
central point for the map and an azimuth for the central line, which is made to 
pass through the central point. A third approach, more applicable to the map of a 
large portion of the Earth's surface, treated as spherical, is to choose a location on 
the original sphere of the pole for a transformed sphere with the central line as 
the equator. Formulas are given for each of these approaches, for sphere and 
ellipsoid. 

FORMULAS FOR THE SPHERE 

Starting with the forward equations, for rectangular coordinates in terms of 
latitude and longitude (see p. 272 for numerical examples): 

1. Given two points to lie upon the central line, with latitudes and longitudes 
(<l>J,X.1) and (<!>2,1..2) and longitude increasing easterly and relative to Green
wich. The pole of the oblique transformation at (<J>P,X.P) may be calculated 
as follows: 

X.P = arctan [(cos <1> 1 sin <!>2 cos 1..1 - sin <1> 1 cos <1>2 cos 1..2)/ 

(sin <1> 1 cos <1>2 sin 1..2 - cos <1> 1 sin <1>2 sin 1..1)] 

<I>P = arctan [- cos (X.P - X.1)/tan <l>d 
(9-1) 
(9-2) 

The Fortran ATAN2 function or its equivalent should be used with equation 
(9-1), but not with (9-2). The other pole is located at ( -<j>P,X.P±1T). Using 
the positive (northern) value of <J>P, the following formulas give the rectangular 
coordinates for point (<j>,X.), with k 0 the scale factor along the central line: 

x = Rk0 arctan ([tan <1> cos <I>P + sin <I>P sin (X. - 1..0)]/cos (X.- 1..0)] 
y = (R/2)k0ln[(1 + A)/(1-A)] 

or 

where 

y = Rk0 arctanh A 
k =kof(1-A2)112 

A = sin <I>P sin <1> - cos <I>P cos <1> sin (X. - 1..0) 

With these formulas, the origin of rectangular coordinates lies at 

(9-3) 
(9-4) 

(9-4a) 
(9-5) 

(9-6) 

(9-6a) 

and the X axis lies along the central line, x increasing easterly. The trans
formed poles are y equals infinity. 
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2. Given a central point (<f>c, A.) with longitude increasing easterly and relative to 
Greenwich, and azimuth ~ east of north of the central line through (<f>c, A.c), 
the pole of the oblique transformation at (<f>P' A.P) may be calculated as follows: 

<!>P == arcsin (cos <!>c sin ~) 
X.P = arctan [- cos f3/(- sin <!>c sin f3)) + X.c 

(9-7) 
(9-8) 

These values of <!>P and X.P may then be used in equations (9-3) through 
(9-6) as before. 

3. For an extensive map, <!>P and A.P may be arbitrarily chosen by eye to give the 
pole for a central line passing through a desired portion of the globe. These 
values may then be directly used in equations (9-3) through (9-6) without 
intermediate calculation. 

For the inverse formulas, equations (9-1) and (9-2) or (9-7) and (9-8) must 
first be used to establish the pole of the oblique transformation, if it is not known 
already. Then, 

<!> =arcsin [sin <!> tanh (y!Rk0) + cos <!>P sin (x!Rk0)/cosh (y/Rk0)] 
A. == A.0 + arctan [sin <!>P sin (x!Rk0) - cos <!>P sinh (y/Rk0)]/cos (x!Rk0)j 

FORMULAS FOR THE ELLIPSOID 

(9-9) 
(9-10) 

These are the formulas provided by Hotine, slightly altered to use a positive 
eastern longitude (he used positive western longitude), to simplify calculations of 
hyperbolic functions, and to use symbols consistent with those of this bulletin. 
The central line is a geodesic, or the shortest route on an ellipsoid, corresponding 
to a great circle route on the sphere. 

It is customary to provide rectangular coordinates for the Hotine in terms 
either of (u, v) or (x, y). The (u, v) coordinates are similar in concept to the (x, y) 
calculated for the foregoing spherical formulas, with u corresponding to x for the 
spherical formulas, increasing easterly from the origin along the central line, but 
v corresponds to -y for the spherical formulas, so that v increases southerly in a 
direction perpendicular to the central line. For the Hotine, x andy are calculated 
from (u, v) as "rectified" coordinates with the Y axis following the meridian 
passing through the center point, and increasing northerly as usual, while the X 
axis lies east and west through the same point. The X and Y axes thus lie in 
directions like those of the Transverse Mercator, but the scale-factor relation
ships remain those of the Oblique Mercator. 

The normal origin for (u, v) coordinates in the Hotine Oblique Mercator is 
approximately at the intersection of the central line with the Earth's Equator. 
Actually it occurs at the crossing of the central line with the equator of the 
"aposphere," and is, thus, a rather academic location. The "aposphere" is a sur
face with a constant "total" curvature based on the curvature along the meridian 
and perpendicular thereto on the ellipsoid at the chosen central point for the 
projection. The ellipsoid is conformally projected onto this aposphere, then to a 
plane. As a result, the Hotine is perfectly conformal, but the scale along the 
central line is true only at the chosen central point along that line or along a 
relatively flat elliptically shaped line approximately centered on that point, if the 
scale of the central point is arbitrarily reduced to balance scale over the map. The 
variation in scale along the central line is extremely small for a map extending 
less than 45° in arc, which includes most existing usage of the Hotine. A longer 
central line suggests the use of a different set of formulas, available as a limiting 
form of the Space Oblique Mercator projection. On Rosenmund's (1903), Laborde's 
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(1928), and Cole's (1943) versions of the ellipsoidal Oblique Mercator, the central 
line is a great circle arc on the intermediate conformal sphere, not a geodesic. As 
on Hotine's version, this central line is not quite true to scale except at one or two 
chosen points. 

The projection constants may be established for the Hotine in one of two ways, 
as they were for the spherical form. Two desired points, widely separated on the 
map, may be made to fall on the central line of the projection, or the central line 
may be given a desired azimuth through a selected central point. Taking these 
approaches in order: 

Alternate A, with the central line passing through two given points. 
Given: 

a and e for the reference ellipsoid. 
k0 = scale factor at the selected center of the map, lying on the central line. 
<f>o = latitude of selected center of the map. 
(<f>t. A. 1) = latitude and longitude (east of Greenwich is positive) ofthe first point 

which is to lie on the central line. 
( <!>2, A.2) = latitude and longitude of the second point which is to lie on the 

central line. 
( <!>, A.) = latitude and longitude of the point for which the coordinates are 

desired. 

There are limitations to the use of variables in these formulas: To avoid indeter
minates and division by zero, <f>o or <f> 1 cannot be ± 7r/2, <f>1 cannot be zero or equal 
to <!>2 (although <!>2 may be zero), and <f>2 cannot be -'Tr/2. Neither <!>0, <!>11 nor <!>2 

should be± 7r/2 in any case, since this would cause the central line to pass through 
the pole, for which the Transverse Mercator or polar Stereographic would proba
bly be a more suitable choice. A change of 10-7 radian in variables from these 
special values will permit calculation of an otherwise unsatisfactory condition. 

It is also necessary to place both (<f>1, A.1) and (<!>2, A.2) on the ascending portion, or 
both on the descending portion, ofthe central line, relative to the Earth's Equator. 
That is, the central line should not pass through a maximum or minimum between 
these two points. 

If e is zero, the Hotine formulas give coordinates for the spherical Oblique 
Mercator. 

Because of the involved nature of the Hotine formulas, they are given here in 
an order suitable for calculation, and in a form eliminating the use of hyperbolic 
functions as given by Hotine in favor of single calculations of exponential functions 
to save computer time. The corresponding Hotine equations are given later for 
comparison (seep. 274 for numerical examples). 

or 

B = [1 + e2 cos4 <f>of(1-e2)]112 
A = aBk0(1-e2)I12/(1-e2 sin2 <f>0) 

t0 tan ( 7r/4-<f>of2)/[(1-e sin <f>0)1(1 + e sin <f>0)]et2 

[( 
1 - si~ <f>o ) ( 1 + e s~n <f>o )• ]112 
1 + sm <f>o 1 - e sm <l>o 

t1 = same as (9-13), using <f>1 in place of <f>0 • 

t2 =same as (9-13), using <!>2 in place of <f>0• 

D = B(1-e2)I12/[cos <f>0(1 - e2 sin2 <f>0)I12] · 

(9-11) 
(9-12) 
(9-13) 

(9-13a) 

(9-14) 

If <f>o = 0, D may calculate to slightly less than 1.0 and create a problem in the next 
step. If D2 <1, it should be made 1. 

E = [D ± (D2 - 1)11Z]t0B, taking the sign of <f>o 
H = tlB 

(9-15) 
(9-16) 
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L = t2B 

F =EIH 
G = (F- 1/F)/2 
J = (E2 

- LH)I(E2 + LH) 
P = (L - H)I(L + H) 
11.0 = (11.1 + 11.2 )/2 - arctan (J tan [B(A.1 - 11.2 )12]/P)!B 
'Yo =arctan (sin [B(A. 1 - 11.0)]/G} 
ac = arcsin [D sin -y0] 

(9-17) 
(9-18) 
(9-19) 
(9-20) 
(9-21) 
(9-22) 
(9-23) 
(9-24) 

To prevent problems when straddling the 180th meridian with 11. 1 and 11.2 , before 
calculating (9-22), if(A.1 - 11.2 ) < - 180°, subtract 360°from 11.2 • If(A.1 - 11.2)> 180°, add 
360° to 11.2 . Also adjust 11.0 and (A 1 - 11.0) to fall between ± 180° by adding or subtracting 
360°. The Fortran ATAN2 function is not to be used for equations (9-22) and (9-23). 
The above equations (9-11) through (9-24) provide constants for a given 
map and do not involve a specific point (If>, A.). Angle ac is the azimuth of the cen
tral line as it crosses latitude <f>0 , measured east of north. For point (If>, A), calcu
late the following: 

t = same as equation (9-13), but using 4> in place of <f>0 • 

If <P = ±1r/2, do not calculate t, but go instead to (9-30). 

Q =EitB 
s = (Q - 1/Q)/2 
T = (Q + l!Q)/2 
V = sin [B(A - A0)] 

U = (-V cos 'Yo + S sin -y0)/T 
v =A ln [(1- U)/(1 + U)]I2B 

Note: If U = ±1, vis infinite; if 4> = ±1r/2, v=(AIB) In tan ('!T/4+-yo/2) 

u = A arctan (CS cos 'Yo + V sin -y0)/cos [B(I\ -1\0 )])/B 

Note: If cos (B(A.-1\0)]=0, u=AB(A-1\0). If 4> = ±1r/2, u = A<f>IB. 

(9-25) 
(9-26) 
(9-27) 
(9-28) 
(9-29) 
(9-30) 

(9-31) 

Care should be taken that (I\-A0) has 360° added or subtracted, if the 180th 
meridian falls between, since multiplication by B eliminates automatic correction 
with the sin or cos function. 

The scale factor: 

k = A cos (Bu!A)(l-e2sin2<f>)112f(a cos 4> cos [B(I\- A0)]j (9-32) 

If "rectified" coordinates (x, y) are desired, with the origin at a distance 
(x0 , y0 ) from the origin of the (u,v) coordinates, relative to the (X,Y) axes (see 
fig. 13): 

X = V COS ac + U sin <lc + Xo 

y = u cos ac - v sin ac + Yo 
(9-33) 
(9-34) 

The formulas given by Hotine and essentially repeated in Thomas (1952, p. 7 -9), 
modified for positiv~ east longitude, u and v increasing in the directions shown in 
figure 13, and symbols consistent with the above, relate to the foregoing formulas 
as follows:3 

3Hotine uses positive west longitude, x corresponding to u here, and y corresponding to -v here. Thomas uses 
positive west longitude, y corresponding to u here, and x corresponding to -v here. In calculations of Alaska zone 1, 
west longitude is positive, but u and v agree with u and v, respectively, here. 
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Meridian of u,v origin 

Xo 
--.....!..&::-~=-=::::::''f---~r----.....a...,...x axis 
origin 
of (x, y) 
X:O 

Y=O 
Vaxis 

Uaxis 

FIGURE 13.-Coordinate system for the Hotine Oblique Mercator projection. 

Equivalent to (9-11): 

Equivalent to (9-12): 

Other formulas: 

e'2 = e2/(1-e2) 

B = (1 + e'2 cos 4 <!>0)112 

R'0 = a(1-e2)/(1-e2 sin 24>0)a12 

N 0 = al(1-e2 sin 2 <!>0)112 

A = Bk0 (R 'oN 0)112 

r 0 = N 0 cos <!>o 
ljln =In [tan ( TI/4 + <!>n/2)[(1-e sin <!>n)/(1 + e sin <!>n)Je12) 

Note: ljln is equivalent to (-In tn) using equation (9-13). 

C = ± arccosh (A!r0 ) - Blj/0 

Note: C is equivalent to In E, where E is found from equation (9-15); D, from 
(9-14), is (Air0 ). 

tan [V2B(>..1 ->..2)] tanh (1/2B(Ij11 +lj12)+C] 
tanh (V2B(Ijlt-$2)] 

The tanh in the numerator is J from equation (9-20), while the tanh in the de
nominator is P from (9-21). The entire equation is equivalent to (9-22). 
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tan 'Yo = sin [8(}1.1 - }1.0)]/sinh (Bo/1 + C) 

This equation is equivalent to (9-23), the sinh being equivalent toG from (9-19). 

tanh (Bv!Ak0) = !cos 'Yo sin [B(h - }1.0)] - sin 'Yo sinh (Bijl + C))/cosh (Bijl + C) 

This equation is equivalent to (9-30), with S the sinh function and T the cosh 
function. 

tan (Bu!Ak0 ) = [cos 'Yo sinh (B>V + C) + sin 'Yo sin [B(h - }1.0)])/cos [B(h - A.0)] 

This equation is equivalent to (9-31). 
Alternate B. The following equations provide constants for the Hotine Oblique 

Mercator projection to fit a given central point and azimuth of the central line 
through the central point. Given: a, e, k0 , <!>0 , and(<!>, h) as for alternate A, but in
stead of (<!>11 }1.1) and (<!>2 , }1.2), he and ac are given, 

where 

(<!>0 , he) =latitude and longitude (east of Greenwich is positive), respectively, of 
the selected center of the map, falling on the central line. 

ac = angle of azimuth east of north, for the central line as it passes through 
the center of the map (<!>0 , he). 

Limitations: <l>o cannot be zero or ± 7T/2, and the central line cannot be at a 
maximum or minimum latitude at <l>o· If e = 0, these formulas also give coordinates 
for the spherical Oblique Mercator. As with alternate A, these formulas are given 
in the order of calculation and are modified to minimize exponential computations. 
Several of these equations are the same as some of the equations for alternate A: 

B = [1 + e2 cos4 <!>o/(1 - e2
))112 

A = aBk0 (1 - e2)v2f(1 - e2sin2 <!>o) 
t0 = tan(7r/4- <!>o/2)/[(1- esin<!>0)!(1 + esin<!>0)]et2 
D = B(1 - e2)1t2f[cos c:f>o (1 - e2 sin2 <!>0)112) 

(9-11) 
(9-12) 
(9-13) 
(9-14) 

If c:f>o = 0, D may calculate to slightly less than 1.0 and create a problem in the next 
step. If D2<1, it should be made 1. 

F = D ± (D2 - 1)1t2, taking the sign of <l>o 
E =Ft0B 

G = (F- 1/F)/2 
'Yo = arcsin (sin ajD) 
ho = }\c - [arcsin (G tan -y0))/B 

(9-35) 
(9-36) 
(9-19) 
(9-37) 
(9-38) 

The values of u and v for center point (<!>0 , A.) may be calculated directly at this 
point: 

u<<~>o. Acl = ± (AlB) arctan [(D2 
- 1)112/cos ac], taking the sign of <!>0• (9-39) 

V(<!>o, l\c) 0 

These are the constants for a given map. Equations (9-25) through (9-32) for 
alternate A may now be used in order, following calculation of the above 
constants. 

The inverse equations for the Hotine Oblique Mercator projection on the ellipsoid 
may be shown with few additional formulas. To determine<!> and}\ from x andy, 
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or from u and v, the same parameters of the map must be given, except for~ and A, 
and the constants of the map are found from the above equations (9-11) through 
(9-24) for alternate A or (9-11) through (9-38) for alternate B. Then, if x 
andy are given in accordance with the definitions for the forward equations, they 
must first be converted to (u, v): 

v = (X - Xo) cos O:c - (y - Yo) sin O:c 

u = (y - y0 ) cos a:c + (X - Xo) sin a:c 

(9-40) 
(9-41) 

If (u, v) are given, or calculated as just above, the following steps are performed 
in order: 

Q' = e-(Bv!A) (9-42) 

where e = · 2. 71828 . . . , the base of natural logarithms 

S' = (Q' - 1/Q')/2 (9-43) 
T' = (Q' + 1/Q')/2 (9-44) 
V' =sin (Bu/A) (9-45) 
U' = (V' cos "Yo + S' sin -y0)/T' (9-46) 

t = (E/[(1 + U')/(1- U')]II2jvB (9-47) 

But if U' = ± 1, ~ = ±90°, taking the sign of U', A may be called A0 , and 
equations (7-9) and (9-48) below are omitted. 

~ = -rr/2 - 2 arctan (t[(1 - e sin ~)/(1 + e sin ~)]et2) (7-9) 

Equation (7 -9) is solved by iteration, using ~ = (-rr/2 - 2 arctan t) as the first 
trial~ on the right side, and using the successive calculations of~ on the left side 
as successive values of <1> on the right side, until the change in <1> is less than a chosen 
convergence value. 

A = X.0 - arctan [(S' cos "Yo - V' sin -y0)/cos (Bu!A)]IB (9-48) 

Since the arctan (found as the AT AN2 function) is divided by B, it is necessary to 
add or subtract 360° properly, before the division. 

To avoid the iteration, the series (3-5) may be used with (7-13) in place of 
(7-9): 

<1> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + ... ) sin 2x + 
(7e4/48 + 29e6/240 + 81le8/11520 + ... )sin4x + (7e6/120 + 81e8/1120 + ... ) 
sin 6x + (4279e8/161280 + ... ) sin Sx + . . . (3-5) 

where 

x = -rr/2 - 2 arctan t (7-13) 

For improved computational efficiency using this series, seep. 19. 
The equivalent inverse equations as given by Hotine are as follows, following 

the calculation of constants using the same formulas as those given in his forward 
equations: 

tan [B(X. - X.0)] =[sin "Yo sin (Bu!A) + cos 'Yo sinh (Bv/A)]/cos (Bu!A) 
tanh (Bij! + C)= [cos "Yo sin (Bu!A) - sin "Yo sinh (Bv/A)]/cosh (Bv!A) 
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10. CYLINDRICAL EQUAL-AREA PROJECTION 

SUMMARY 

• Cylindrical. 
• Equal-area. 
• Meridians on normal aspect are equally spaced straight lines. 
• Parallels on normal aspect are unequally spaced straight lines, closest near the 

poles, cutting meridians at right angles. 
• On transverse aspect, central meridian, each meridian 90° from central meridian, 

and Equator are straight lines. Other meridians and parallels are complex 
curves. 

• On oblique aspect, two meridians 180° apart are straight lines. Other meridians 
and parallels are complex curves. 

• On normal aspect, scale is true along Equator, or along two parallels equidis
tant from the Equator. 

• On transverse aspect, scale is true along central meridian, or along two straight 
lines equidistant from and parallel to central meridian. (These lines are only 
approximately straight for the ellipsoid.) 

• On oblique aspect, scale is true along chosen central line, an oblique great circle, 
or along two straight lines parallel to central line. Scale on ellipsoidal form is 
similar, but varies slightly from this pattern. 

• An orthographic projection of sphere onto cylinder. 
• Substantial shape and scale distortion near points 90° from central line. 
• Normal and transverse aspects presented by Lambert in 1772. 

HISTORY AND USAGE 

The fourth of the seven projections proposed by Johann Heinrich Lambert 
(1772, p. 71-72) and occasionally given his name, is the Cylindrical Equal-Area 
(fig. 14). In the same work (p. 72-73), he described its transverse aspect (fig. 16), 
which has hardly been used. Even the normal aspect has seldom been used except 
as a textbook example of the most easily constructed equal-area projection, but 
several modifications of the normal aspect have been published. 

These modifications consist of compressing the projection from east to west and 
expanding it in the same ratio from north to south, thereby moving the parallel of 
no distortion from the Equator to other latitudes. The earliest such modification 
is from Scotland: James Gall's Orthographic Cylindrical, not the same as his pre
ferred Stereographic Cylindrical, both of which were originated in 1855, has 
standard parallels of 45° N. and S. (Gall, 1885). Walther Behrmann (1910) of Ger
many chose 30°, based on certain overall distortion criteria (fig. 15). Very similar 
later projections were offered by Trystan Edwards of England in 1953 and Arno 
Peters of Germany in 1967; they were presented as revolutionary and original 
concepts, rather than as modifications of these prior projections with standard 
parallels at about 37° and 45°-47°, respectively (Maling, 1966, 1974). 

The oblique Cylindrical Equal-Area projection has been proposed with particu
lar parameters for maps of Eurasia and Africa (Thornthwaite, 1927) and of air 
routes of the British Commonwealth (Poole, 1934). Different parameters are used 
for fig. 17. The ellipsoidal form of the oblique and transverse aspects has appar
ently been developed only recently (Snyder, 1985b). 

FEATURES 

Like other regular cylindricals, the graticule of the normal Cylindrical Equal
Area projection consists of straight equally spaced vertical meridians perpendicu-
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lar to straight unequally spaced horizontal parallels. To achieve equality of area, 
the parallels are spaced from the Equator in proportion to the sine of the latitude. 
This is the simplest equal-area projection. 

The normal Cylindrical Equal-Area for the sphere is a true perspective projec
tion onto a cylinder tangent at the Equator: The meridians are projected from the 
center of the sphere, and the parallels are projected with lines parallel to the 
equatorial plane, or orthographically from infinity. Modifications such as 
Behrmann's, described above, are perspective projections onto a secant cylinder. 
For oblique and transverse aspects, the projection may be perspectively cast on 
a cylinder tangent or secant at an oblique angle, or centered on a meridian. 

There is no distortion of area anywhere on the projections, and no distortion 
of scale and shape at the standard parallels of the normal aspect, or at the standard 
lines of the oblique or transverse aspects. There is extreme shape and scale dis
tortion 90° from the central line, or at the poles on the normal aspect. These are 
the points which have infinite area and linear scale on the various aspects of the 
Mercator projection. This distortion, even on the modifications described above, 
is so great that there has been little use of any of the forms for world maps by 
professional cartographers, and many of them have strongly criticized the inten
sive promotion in the noncartographic community which has accompanied the 
presentation of one of the recent modifications. 

The meridians and parallels of the transverse and oblique aspects which are 
straight or curved on the Mercator projection are straight or curved, respectively, 
on the Cylindrical Equal-Area, except that the curves are differently shaped. 

In spite of the shape distortion in some portions of a world map, the projection 
is well suited for equal-area mapping of regions which are predominantly north
south in extent, or which have an oblique central line, or which lie near the Equa
tor. This is true in the same sense that for mid-latitude regions which extend 
predominantly east-west, the Albers Equal-Area Conic projection is recommended 
for equal-area mapping. Actually, the normal Cylindrical Equal-Area is the limit
ing form of the Albers when the Equator or two parallels symmetrical about the 
Equator are made standard. If such regions to be mapped are smaller than the 
United States, the ellipsoidal form should be considered. 

FORMULAS FOR THE SPHERE 

The geometric construction of the Cylindrical Equal-Area projection has been 
described above. The forward formulas for the normal aspect are as follows, given 
R, <f>8 , A.0 , <!>, and A., to find x and y (see p. 278 for numerical examples): 

X = R (A.- A.o) cos <l>s 
y = R sin <j>/cos <l>s 
h = cos <j>/cos <!>s 
k = llh 

(10-1) 
(10-2) 

(10-2a) 
(10-2b) 

where <f>s is the standard parallel (N. or S.), or the Equator in Lambert's original 
form. The X axis lies along the Equator, x increasing easterly. The Y axis lies 
along the central meridian A.0 , y increasing northerly, and the origin is(<!> = 0°, A.0). 

If (A. - A.0) lies outside the range ± 180°, 360° should be added or subtracted so that 
it will fall inside the range. 

For the transverse aspect, given h0 instead of <j>8 , 

x = (Rih0 ) cos <I> sin (A.- A.0) 

y = R h0 (arctan [tan <1> I cos (A. - A.0)] - <l>o) 
(10-3) 
(8-3) 
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FIGURE 14.-Lambert Cylindrical Equal-Area projection. Standard parallel is the Equator. Seldom used in this form, but is suitable for equal-area strips near 
the Equator. 

FIGURE 15.-Behrmann Cylindrical Equal-Area projection, with standard parallels at latitudes 30o N. and S. Same as figure 14, but compressed east to west 
and expanded north to south. 
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FIGURE 16.-Transverse Cylindrical Equal-Area projection. The central meridian, long. 90°W., as well as long. 90° E., coincides with the equator of the base 
projection. 

FIGURE 17 .-Oblique Cylindrical Equal-Area projection, with central oblique great circle inclined 60° to the Earth's Equator. No distortion along this central line. 
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where h0 is the scale factor (normally 1. 0) along the central meridian >...0 • The 
origin of the coordinates is at (<1>0 , >...0). The Y axis lies along the central meridian 
>...0 , y increasing northerly, and the X axis is perpendicular, through <Po at >...0 , x 
increasing easterly. 

For the oblique aspect, the alternatives used for the Oblique Mercator projec
tion are used here, with modification only in the formulas for the y coordinates: 

1. Given two points to lie upon the central line, with latitudes and longitudes 
C<l>t, At) and (<1>2 , >...2), and longitude increasing easterly and relative to Green
wich, the pole of the oblique transformation at (<J>p, A.p) may be calculated as 
follows: 

Ap =arctan [(cos <l>t sin <1>2 cos A.t-sin <1> 1 cos <1>2 cos '11.2)/ 

(sin <1> 1 cos c!>2 sin A.2 -cos <l>t sin cj>2 sin A.1)] 

<!>p = arctan [- cos (A.p- At)/tan <l>d 
(9-1) 
(9-2) 

The Fortran ATAN2 function or its equivalent should be used with equation 
(9-1), but not with (9-2). The other pole is located at (- <l>p, Ap :±: 180°). 
Using the positive (northern) value of <l>p, the following formulas provide the 
rectangular coordinates for point (<j>, >...), with h0 as the scale factor along the 
central line: 

x = Rh0 arctan ([tan <P cos cl>p + sin <Pp sin (A.- >...0)] I 
cos (A.->...0)) 

y = (Rih0 ) [sin <f>p sin c1> - cos <f>p cos <P sin (A.- >...0)] 

(10-4) 
(10-5) 

With these formulas for the oblique aspect, the origin of rectangular coor
dinates lies at 

<!>o = 0 
'11.0 = Ap + -rr/2 (9-6a) 

and the X axis lies along the central line, x increasingly easterly. The trans
formed poles are straight lines at y = R and are as long as the central line. 

2. Given a central point (<f>z, Az) with longitude increasing easterly and stated 
relative to Greenwich, and azimuth 'Y east of north of the central line through 
(<f>z, Az), the pole of the oblique transformation at (<f>p, Ap) may be calculated 
as follows: 

cl>p = arcsin (cos <l>z sin 'Y) 
Ap = arctan [-cos 'YI( -sin <Pz sin 'Y)] + Az 

(9-7) 
(9-8) 

These values of <f>p and Ap may be used in equations (10-4) and (10-5) as 
before. 

For the inverse formulas, first for the normal aspect, given R, <f>8 , '11.0 , x, andy, 
to find q, and >...: 

<P = arcsin [(y!R) cos cp8 ] 

A = xi(R cos <f>s) + '11.0 

For the transverse aspect, given h0 instead of <f>8 , 

c1> =arcsin ([1-(h0 x!R)2]I'2 sin D) 
A = '11.0 + arctan ((h0 x/R)/[[1-(h0 x!R)2 ]I12 cos Dl) 

(10-6) 
(10-7) 

(10-8) 
(10-9) 
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where 
D = y I (Rh0 ) + <!>0 , using radians (10-10) 

For the oblique aspect, equations (g-1) and (g-2) or (g-7) and (g-8) must first 
be used to establish the pole of the oblique transformation, if it is not known 
already. Then 

<!> =arcsin [CyhofR) sin <l>p + [1-(yhofR)2
]

112 cos <l>p sin 
[xi(Rh0)]) 

A. = A.0 + arctan ([[1-(yhofR)2
] 112 sin <l>p sin [xi(Rh0 )] 

- (yhofR) cos <!>p]/[[1-(yhofR)2
] 112 cos [xi(Rh0)]]) 

(10-11) 

(10-12) 

Note that the above equations for the oblique aspect may be used for the trans
verse aspect, letting <l>p = 0°, except that the axes are rotated goo. 

FORMULAS FOR THE ELLIPSOID 

In the following formulas, the ellipsoid is transformed onto the authalic 
sphere, but the scale along the desired central line is made constant by variably 
compressing the scale along this central line to match that along the same 
path on the ellipsoid. To retain correct area, the distances perpendicular to the 
central line are increased by the same ratio. For the oblique aspect, the central 
line is not a geodesic, but is instead an oblique great circle on the authalic sphere. 

For the forward formulas using the normal aspect, given a, e, <j>8 , A.0 , <j>, and A., 
to find x and y (see p. 281 for numerical examples), the equations are given in the 
order of computation: 

ko = cos <!>8/(1- e2 sin2 <!>8)112 

q = (1-e2) \sin <j>/(1-e2 sin2 <!>) - [11(2e)] 

x =a ko (A.-A.o) 
y =a ql(2k0) 

ln [(1-e sin <j>)/(1 +e sin<!>)]) 

(10-13) 

(3-12) 
(10-14) 
(10-15) 

For the transverse aspect, the subsequent formulas for the oblique aspect may 
be used, but the following are simpler for the transverse alone. Given a, e, h0 , 

A.0 , <!>0 , <!>, and A., to find x and y, first q is calculated from <!> using equation (3 -12) 
above. Then 

13 = arcsin (qlqp) (3-11) 

where 13 is the authalic latitude corresponding to <!>, and qp is found as q from 
equation (3-12) for a<!> of goo. 

13c = arctan [tan 13/cos (A.- A.0)] 

Qc = Qp sin 13c 
(10-16) 
(10-17) 

<l>c = <!> + (1 - e
2 

sin
2 

<!>c)
2 [~ _ sin <l>c +_! ln ( 1 - e sin <l>c )] (3_ 16) 

c 2 cos <!>c 1 - e2 1 - e2 sin2 <l>c 2e 1 + e sin <l>c 

Equation (3-16) requires iteration by successive substitution, using arcsin (qc/2) 
as the first trial <l>c on the right side, calculating <l>c on the left side, substituting 
this new <l>c on the right side, etc., until the change in <l>c is negligible. This does 
not converge if 13c = ± 90°, but then <l>c = 13c· 
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x = a cos ~ cos <f>c sin (!..- A.0)/[h0 cos ~c (1-e2 sin2 <f>c)112
] 

Me =a [(1-e214-3e4/64-5e6/256 - ... )<f>c 
- (3e2/8 + 3e4/32 + 45e6/1024 + ... ) sin 24>c 
+ (15e4/256 + 45e6/1024 + ... ) sin 44>c 
- (35e6/3072 + ... ) sin 6<f>e + ... ] 

Y = ho (Me-Mo) 

(10-18) 

(3-21) 
(10-19) 

where h0 is the scale factor along the central meridian A.0 , and ~c and <f>e are 
authalic and geodetic "footpoint" latitudes, respectively, with the same y value at 
the central meridian as the point (<f>, A.). Constant M0 is the value of Me calculated 
from (3-21) with latitude of origin 4>0 in place of <f>e· To avoid iteration, equations 
(10-17) and (3-16) may be replaced with the following series: 

<f>c = ~e + (e2/3 + 31e4/180 + 517e6/5040 + ... ) sin 2~c 
+ (23e4/360 + 251e6/3780 + ... ) sin 4~e 
+ (761e6/45360 + ... ) sin 6~e + ... (3-18) 

For the oblique aspect, the location of the pole ( <l>p, A.p) may be given, or it may 
be computed as described under the section on formulas for the sphere above. 
Points 4>1 , 4>2 , <l>p and <f>z, however, are replaced in equations (9-1), (9-2), (9-7) 
and (9-8) with ~h ~2 , ~P and 13z, respectively, and 13p is finally converted to <l>p, 
using equations (10-17) and (3-16), or just (3-18), and subscripts p instead of c. 

If the ellipsoid is either the Clarke 1866 or the International, Fourier constants 
may be taken from table 13. If it is a different ellipsoid, coefficients should be 
calculated as described after these formulas. They may be converted to the specific 
coefficients for the pole in use as follows: 

B = b + a2 cos 24>p + a4 cos 4<f>p + a6 cos 6<f>p + 
An = bn + a' n2 cos 2</>p + a' n4 cos 4<f>p + a' n6 cos 6</>p + 

where 
n = 2 and 4. 

(10-20) 
(10-21) 

From <f>, ~is determined using equations (3-12) and (3-11) above, and, if~p was 
not obtained earlier, it is calculated by substituting <l>p for <1> in (3-12) and obtain
ing ~P from (3-11). Then, 

A.' = arctan ![cos ~P sin 13-sin ~P cos 13 cos (A.-A.p)]! 
[cos 13 sin (A.-A.p)]j (10-22) 

x = ah0 [BA.' + A 2 sin 2A.' + A 4 sin 4A.' + A 6 sin 6A.' + ... ] (10-23) 

F = B + 2A2 cos 2A.' + 4A4 cos 4A.' + 6A6 cos 6A.' + ... (10-24) 

y = (aqpl2)[sin ~P sin 13 + cos ~P cos ~ cos (A.- A.p)]l(hoF) (10-25) 

The axes are as stated for the corresponding aspect of the spherical form. For 
more efficient computation of series (10-23) and (10-24) see p. 19. 

For the inverse formulas for the ellipsoid, the normal aspect will be discussed 
first. Given a, e, </>8 , A.0 , x, and y, to find <1> and A. (see p. 284 for numerical 
examples), k0 is determined from (10-13), and 

~ = arcsin [2ykof(aqp)] (10-26) 

where qP is found from (3-12), using 90° for <j>, then 4> is found from 13 using 
(10-17) and (3-16), or just (3-18), without subscripts, these equations being 
listed under the forward equations above. 
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TABLE 13.-Fourier coefficients for oblique and transverse 
Cylindrical Equal-Area projeetionfor the ellipsoid 

General coefficients: 

Coefficient 

b 
~ 
a4 
as 
bz 
a'22 
a'24 
a'2s 
b4 
a'42 
a'44 
a'4s 

Clarke 1866 Ellipsoid 

0.9991507126 
-0.0008471537 

0.0000021283 
-0.0000000054 
-0.0001412090 
-0.0001411258 

0. 0000000839 
0. 0000000006 

-0.0000000435 
-0.0000000579 
-0.0000000144 

0. 0000000000 

Coifficientsfor specific pole latitudes (Clarke 1866 ellipsoid): 

oo 
15 
30 
45 
60 
75 
90 

B 

0.9983056818 
0.9984181201 
0. 9987260769 
0. 9991485842 
0. 9995732199 
0. 9998854334 
1.0 

-0.0002822502 
-0.0002633856 
-0.0002118145 
-0.0001412929 
-0.0000706875 
-0.0000189486 

0.0 

Coefficients for specific pole latitudes (International ellipsoid): 

<!> B A2 

oo 0. 9983172080 -0.0002803311 
15 0. 9984288886 -0.0002615944 
30 0.9987347648 -0.0002103733 
45 0.9991544051 -0.0001403310 
60 0. 9995761449 -0.0000702060 
75 0. 9998862200 -0.0000188195 
90 1.0 0.0 

'.!J, = latitude of pole of oblique aspect (0° for transverse, 90° for normal). 
J:j, An, b, etc. = Fourier coefficients (see text for use). 

International Ellipsoid 

0.9991565046 
-0.0008413907 

0. 0000020994 
-0.0000000053 
-0.0001402483 
-0.0001401661 

0. 0000000827 
0. 0000000006 

-0.0000000429 
-0.0000000571 
-0.0000000142 

0. 0000000000 

-0.0000001158 
-0.0000001008 
-0.0000000652 
-0. 0000000290 
-0.0000000073 
-0.0000000005 

0.0 

-0.0000001142 
-0.0000000995 
- 0. 0000000644 
-0.0000000287 
-0.0000000072 
-0.0000000005 

0.0 

Note: B is used with A' in radians. A 6 = -0.0000000001 for <l>p = o• to 20•, but is zero to ten places at higher 
values of <f>p· 

Clarke 1866 ellipsoid: semimajor axis a = 6378206.4 m; eccentricity squared e2 = 0.006768658. 
International ellipsoid: a = 6378388 m; e2 = 0.006722670 .. 

A. = A.o + xl(a k0) (10-27) 

For the transverse aspect, given a, e, h0 , A.0 , x, and y, to find <l> and A.: 

Me= Mo + ylh0 

where M 0 is found from <l>o using (3-21) and changing subscripts c too. 

!Joe = Me/[a(1-e2/4-3e4/64-5e6/256- ... )] 
e1 = [1-(1-e2)V•]![1 + (1-e2)V2 ] 

<l>e =!Joe+ (3e1/2-27e1
3/32+ ... )sin2~J.e + (21e1

2/16-55e1
4/32+ ... ) 

sin 4~J.e + (151el/96- ... ) sin 6~J.e + (1097e1
4/512- ... ) 

sin 8~J.e + ... 

(10-28) 

(7-19) 
(3-24) 

(3-26) 
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Authalic latitude 13c is determined for <!>c using equations (3-12) and (3-11), adding 
subscripts c to both 13 and q:,. 

13' = -arcsin [h0 x cos 13c (1-e2 sin2 <1>c)Y2f(a cos <!>c)] 
13 = arcsin (cos 13' sin 13c) 
'11. = '11.0 - arctan (tan 13' /cos 13c) 

(10-29) 
(10-30) 
(10-31) 

Latitude <1> is found from 13 using (10-17) and (3-16), or just (3-18), all without 
subscripts c. 

For the oblique aspect, given a, e, h0 , <!>p, Xp, x, and y, to find <1> and '11., Fourier 
coefficients are determined as described above for the forward oblique ellipsoidal 
formulas, while the pole location (<!>p, 'Ap) may be determined if not provided, as 
described for the forward oblique spherical formulas, and qp is found from (3-12) 
using 90° for q:,. From x, '11.' is determined from an iterative inverse of (10-23): 

'11.' = [xl(ah0 )-A2 sin 2'li.'-A4 sin 4'li.'-A6 sin 6'11.'- ... JIB (10-32) 

Using a first trial '11.' = xl(ahoB), '11.' may be found by successive substitution of 
trial values into the right side of this equation and solving for a new '11.' until the 
change in '11.' is negligible. 

Equation (10-24) above is used to find F from '11.'. Then, 

13' = arcsin [2Fh0yl(aqp)] (10-33) 
13 = arcsin (sin 13p sin 13' + cos 13p cos 13' sin '11.') (10-34) 
'11. = 'Ap + arctan [cos 13' cos '11.'/(cos 13p sin 13'-sin 13p cos 13' sin '11.')] (10-35) 

As before, <1> is found from 13 using (10-17) and (3-16), or just (3-18), all without 
subscripts c. 

For the determination of Fourier coefficients, if they are not already provided, 
equation (10-23) above is equivalent to the following equation which requires nu
merical integration: 

xl(a h0 ) = foX' F d'll.' 

where 

F = [sin2 13p cos2 <1>cl[(1-e2 sin2 <!>c) cos4 13cJ 
+ (1-e2 sin2 <!>c) qp2 cos2 13p cos2 '11.'/(4 cos2 <1>c)JY2 

In order to compute coefficients Band An in (10-23), 

B = (2hr)f0'1T12 FdA.' 
An = [4/('TTn)] fo'IT12 F cos n'll.' d'll.' 

(10-36) 

(10-37) 

(10-38) 
(10-39) 

where n is 2, 4, and 6, successively. To compute coefficients which apply regard
less of the value of <!>p, equations (10-38) and (10-39) may be rewritten as 
equations (10-20) and (10-21), where 

b = (217r) f 0 'ITI2 B d<!>p 
an = (4/'TT) f 0'1T12 B cos n<!>p d<!>p 
bn = (2/'!T) f o 'ITI2 An d<!>p 
a' nm = (4/'TT) fo'IT12 An cos m <l>p d<!>p 

(10-40) 
(10-41) 
(10-42) 
(10-43) 
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and n has the values 2 and 4, while m = 2, 4, and 6. To determine the coeffi
cients from (10-40) through (10-43), double numerical integration is involved, 
but this involves a relatively modest computer program: Choosing an interval of 
go (sufficient for 10-place accuracy) in both <l>p and A.', and starting with both <l>p 
and A.' at oo, F is calculated from (10-37) as described below for each go of A.' from 
oo to goo, and the various values ofF summed in accordance with Simpson's rule as 
applied to equations (10-38) and (10-3g). Thus B, A 2 , A 4 , and A 6 are computed 
for <l>p = 0°. Similarly, the constants Band An are computed for each go of <l>p to and 
including goo, and the various values are summed by applying Simpson's rule to 
(10-40) through (10-43), to obtain b, a2 , etc. 

To compute F from equation (10-37) for a given A.', first ~P is found from 
<l>p using (3-12) and (3-11), subscripting <1> and ~ with p. Then, 

~c = arcsin (cos ~P sin A.') (10-44) 

Now <l>c is found from ~c using (10-17) and (3-16) or just (3-18). All variables 
for (10-37) are now known, except that it is indeterminate if <l>p = oo at the same 
time that A.' = goo. In that case, F = (qp/2)'1•. 
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11. MILLER CYLINDRICAL PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. 
• Used only in spherical form. 
• Cylindrical. 
• Meridians and parallels are straight lines, intersecting at right angles. 
• Meridians are equidistant; parallels spaced farther apart away from Equator. 
• Poles shown as lines. 
• Compromise between Mercator and other cylindrical projections. 
• Used for world maps. 
• Presented by Miller in 1942. 

HISTORY AND FEATURES 

The need for a world map which avoids some of the scale exaggeration of the 
Mercator projection has led to some commonly used cylindrical modifications, as 
well as to other modifications which are not cylindrical. The earliest common 
cylindrical example was developed by James Gall of Edinburgh about 1855 (Gall, 
1885, p. 119-123). His meridians are equally spaced, but the parallels are spaced 
at increasing intervals away from the Equator. The parallels of latitude are 
actually projected onto a cylinder wrapped about the sphere, but cutting it at lats. 
45° N. and S., the point of perspective being a point on the Equator opposite the 
meridian being projected. It is used in several British atlases, but seldom in the 
United States. The Gall projection is neither conformal nor equal-area, but has a 
blend of various features. Unlike the Mercator, the Gall shows the poles as lines 
running across the top and bottom of the map. 

What might be called the American version of the Gall projection is the Miller 
Cylindrical projection (fig. 18), presented in 1942 by Osborn Maitland Miller 
(1897-1979) of the American Geographical Society, New York (Miller, 1942). 
Born in Perth, Scotland, and educated in Scotland and England, Miller came to 
the Society in 1922. There he developed several improved surveying and mapping 
techniques. An expert in aerial photography, he developed techniques for convert
ing high-altitude photographs into maps. He led or joined several expeditions of 
explorers and advised leaders of others. He retired in 1968, having been best 
known to cartographers for several map projections, including the Bipolar Oblique 
Conic Conformal, the Oblated Stereographic, and especially his Cylindrical 
projection. 

Miller had been asked by S. Whittemore Boggs, Geographer of the U.S. Depart
ment of State, to study further alternatives to the Mercator, the Gall, and other 
cylindrical world maps. In his presentation, Miller listed four proposals, but the 
one he preferred, and the one used, is a fairly simple mathematical modification of 
the Mercator projection. Like the Gall, it shows visible straight lines for the 
poles, increasingly spaced parallels away from the Equator, equidistant meridians, 
and is not equal-area, equidistant along meridians, nor conformal. While the 
standard .parallels, or lines true to scale and free of distortion, on the Gall are at 
lats. 45° N. and S., on the Miller only the Equator is standard. Unlike the Gall, the 
Miller is not a perspective projection. 

The Miller Cylindrical projection is used for world maps and in several atlases, 
including the National Atlas of the United States (USGS, 1970, p. 330-331). 

As Miller (1942) stated, 

the practical problem considered here is to find a system of spacing the parallels of latitude such that 
an acceptable balance is reached between shape and area distortion. By an "acceptable" balance is 
meant one which to the uncritical eye does not obviously depart from the familiar shapes of the land 
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areas as depicted by the Mercator projection but which reduces areal distortion as far as possible 
under these conditions * * *.After some experimenting, the [Modified Mercator (b)] was judged to be 
the most suitable for Mr. Boggs's purpose * * *. 

FORMULAS FOR THE SPHERE 

Miller's spacings of parallels from the Equator are the same as if the Mercator 
spacings were calculated for 0.8 times the respective latitudes, with the result 
divided by 0.8. As a result, the spacing of parallels near the Equator is very close 
to the Mercator arrangement. 

The forward formulas, then, are as follows(see p. 287 for numerical examples): 

X = R(A.-A.o) 

y = R[ln tan (11'/4 + 0.4<!>)]/0.8 

or 

y = R[arcsinh (tan 0.8<!>)]/0.8 

or 

y ::; (R/1.6) ln ((1 + sin 0.8<!>)/(1-sin 0.8<!>)) 

The scale factor, using equations (4-2) and (4-3), 

h = sec 0.8<1> 
k = sec <1> 

The maximum angular deformation w, from equation (4-9), 

sin Vzw = (cos 0.8<!>-cos <!>)/(cos 0.8<1> + cos <!>) 

(11-1) 

(11-2) 

(11-2a) 

(11-2b) 

(11-3) 
(11-4) 

(11-5) 

The X axis lies along the Equator, x increasing easterly. The Y axis lies along the 
central meridian A.0 , y increasing northerly. If (A.-A.0) lies outside the range of 
±180°, 360° should be added or subtracted so that it will fall inside the range. 

The inverse equations are easily derived from equations (11-1) through (11-2a): 

<1> = 2.5 arctan e<0.8y!R)_511'18 (11-6) 

or 

<1> = arctan [sinh (0.8y/R)]/0.8 (11-6a) 

where e is 2. 71828 . . . , the base of natural logarithms. 

A. = A.0 + x!R (11-7) 

Rectangular coordinates are given in table 14. There is no basis for an ellipsoidal 
equivalent, since the projection is used for maps of the entire Earth and not for 
local areas at large scale. 
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TABLE 14.-Miller Cylindrical projection: Rectangular coordinates 

[Radius of sphere=l.O] 

1/> y h 

goo -------------- 2.30341 3.23607 

85 --------------- 2.04742 2.66947 

80 --------------- 1.83239 2.28117 

75 --------------- 1.64620 2.00000 

70 --------------- 1.481:31 1.78829 

65 --------------- 1.33270 1.62427 

60 --------------- 1.19683 1.49448 
55 --------------- 1.07113 1.39016 

50 --------------- .95364 1.30541 

45 --------------- .84284 1.23607 

40 --------------- .73754 1.17918 
35 --------------- .63674 1.13257 

30 --------------- .53962 1.09464 

25 --------------- .44547 1.06418 

20 --------------- .35369 1.04030 
15 --------------- .26373 1.02234 
10 --------------- .17510 1.00983 
5 --------------- .08734 1.00244 
0 --------------- .00000 1.00000 

X ---------------- 0. 017 453 ().. 0 
- >.., 

0
) 

Note: x, y = rectangular coordinates. 
<!J = geodetic latitude. 

(1..0 -1..0°)= geodetic longitude, measured east from origin in degrees. 
h = scale factor along meridian. 
k = scale factor along parallel. 
w = maximum angular deformation, degrees. 

k 

Infinite 
11.47371 

5.75877 
3.86370 
2.92380 
2.36620 
2.00000 
1.74345 
1.55572 
1.41421 
1.30541 
1.22077 
1.15470 
1.10338 
1.06418 
1.03528 
1.01543 
1.00382 
1.00000 

w 

180.00° 
77.00 
51.26 
37.06 
27.89 
21.43 
16.64 
12.95 
10.04 

7.71 
5.82 
4.30 
3.06 
2.07 
1.30 

.72 

.32 

.08 

.00 

Origin of coordinates at intersection of Equator with 1..0 , X axis increases east, Y axis increases north. For southern 
(negative) <!J, reverse sign of y. 
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12. EQUIDISTANT CYLINDRICAL PROJECTION 

SUMMARY 

• Cylindrical. 
• Neither equal-area nor conformal. 
• Meridians and parallels are equidistant straight lines, intersecting at right 

angles. 
• Poles shown as lines. 
• Used for world or regional maps. 
• Very simple construction. 
• Used only in spherical form. 
• Presented by Eratosthenes (B.C.) or Marinus (A.D. 100). 

HISTORY AND FEATURES 

While the Equidistant Cylindrical projection has received limited use by the 
USGS and generally has limited value, it is probably the simplest of all map 
projections to construct and one of the oldest. The meridians and parallels are all 
equidistant straight parallel lines, the two sets crossing at right angles. 

The projection originated probably with Eratosthenes (275?-195? B.C.), the 
scientist and geographer noted for his fairly accurate measure of the size of the 
Earth. Claudius Ptolemy credited Marinus of Tyre with the invention about 
A.D. 100 stating that, while Marin us had previously evaluated existing projections, 
the latter had chosen "a manner of representing the distances which gives the 
worst results of all." Only the parallel of Rhodes (lat. 36°N.) was made true to 
scale on the world map, which meant that the meridians were spaced at about 
four-fifths of the spacing of the parallels for the same degree interval (Keuning, 
1955, p. 13). 

Ptolemy approved the use of the projection for maps of smaller areas, however, 
with spacing of meridians to provide correct scale along the central parallel. All 
the Greek manuscript maps for the Geographia, dating from the 13th century, use 
the Ptolemy modification. It was used for some maps until the 18th century, but is 
now used primarily for a few maps on which distortion is considered less impor
tant than the ease of displaying special information. The projection is given a 
variety of names such as Equidistant Cylindrical, Rectangular, La Carte 
Parallelogrammatique, Die Rechteckige Plattkarte, and Equirectangular (Steers, 
1970, p. 135-136). It was called the projection of Marin us by N ordenskiOld 
(1889). 

If the Equator is made the standard parallel, true to scale and free of distortion, 
the meridians are spaced at the same distances as the parallels, and the graticule 
appears square. This form is often called the Plate Carree or the Simple Cylin
drical projection. 

The USGS uses the Equidistant Cylindrical projection for index maps of the 
conterminous United States, with insets of Alaska, Hawaii, and various islands 
on the same projection. One is entitled "Topographic Mapping Status and Progress 
of Operations (71/2- and 15-minute series)," at an approximate scale of 1:5,000,000. 
Another shows the status of intermediate-scale quadrangle mapping. Neither the 
scale nor the projection is marked, to avoid implying that the maps are suitable 
for normal geographic information. Meridian spacing is about four-fifths of the 
spacing of parallels, by coincidence the same as that chosen by Marinus. The 
Alaska inset is shown at about half the scale and with a change in spacing ratios. 
Individual States are shown by the USGS on other index maps using the same 
projection and spacing ratio to indicate the status of aerial photography. 



12. EQUIDISTANT CYLINDRICAL PROJECTION 

The projection was chosen largely for ease in computerized plotting. While the 
boundaries on the base map may be as difficult to plot on this projection as on 
the others, the base map needs to be prepared only once. Overlays of digital 
information, which may then be printed in straight lines, may be easily updated 
without the use of cartographic and photographic skills. The 4:5 spacing ratio is 
a convenience based on computer line and character spacing and is not an attempt 
to achieve a particular standard parallel, which happens to fall near lat. 37° N. 

FORMULAS FOR THE SPHERE 

The formulas for rectangular coordinates are almost as simple to use as the 
geometric construction. Given R, A.0, <l>b A., and <1> for the forward solution, x andy 
are found thus: 

x = R (A.-A.0) cos <1>1 
y = R<!> 
h = 1 
k == cos <hlcos <1> 

(12-1) 
(12-2) 
(12-3) 
(12-4) 

The X axis coincides with the Equator, with x increasing easterly, while the Y 
axis follows the central meridian A.0 , y increasing northerly. It is necessary to 
adjust (A.- A.0), if it is beyond the range± 180°, by adding or subtracting 360°. The 
standard parallel is <f>1 (also -<!>1). For the inverse formulas, given R, A.0, <f>1, x, 
andy, to find <1> and A.: 

<I> = y!R 
A. == A.0 + xi(R cos <f>1) 

(12-5) 
(12-6) 

Numerical examples are omitted in the appendix, due to simplicity. It must be 
remembered, as usual, that angles above are given in radians. 
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13. CASSINI PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. 
• Central meridian, each meridian 90° from central meridian, and Equator are 

straight lines. 
• Other meridians and parallels are complex curves. 
• Scale is true along central meridian, and along lines perpendicular to central 

meridian. Scale is constant but not true along lines parallel to central meridian 
on spherical form, nearly so for ellipsoid. 

• Used for topographic mapping formerly in England and currently in a few other 
countries. 

• Devised by C. F. Cassini de Thury in 1745 for the survey of France. 

HISTORY 

Although the Cassini projection has been largely replaced by the Transverse 
Mercator, it is still in limited use outside the United States and was one of the 
major topographic mapping projections until the early 20th century. It was first 
developed by Cesar Franc;ois Cassini de Thury (1714-1784), grandson of Jean 
Dominique Cassini. The latter was an outstanding Italian-born astronomer who 
changed his given names from Giovanni Domenico after being hired in 1669 for 
astronomical research in Paris, and soon thereafter to begin the survey of France. 
Cassini de Thury was the third of four generations involved in this project, the 
first detailed survey of a nation. In 1745 he devised the projection which, with 
some modifications, still bears the family name and was used for official topo
graphic maps of France until its replacement by the Bonne projection in 1803. 

Instead of showing meridians and parallels (except for the central meridian), 
Cassini employed a system of squares with rectangular grid coordinates, the 
meridian through Paris serving as one axis. The scale along this central meridian 
was made correct according to the surveyed distance, thus approximately correct
ing for the ellipsoid (Craig, 1882, p. 80; Reignier, 1957, p. 98-99). Mathematical 
analysis by J. G. von Soldner in the early 19th century led to more accurate 
ellipsoidal formulas, and the name Cassini-Soldner is often used for the form used 
in topographic mapping. 

FEATURES 

The spherical form of the Cassini projection (fig. 19) bears the same relation to 
the Equidistant Cylindrical or Plate Carree projection that the spherical Trans
verse Mercator bears to the regular Mercator. Instead of having the straight 
meridians and parallels of the Equidistant Cylindrical, the Cassini has complex 
curves for each, except for the Equator, the central meridian, and each meridian 
90° away from the central meridian, all of which are straight. 

There is no distortion along the central meridian, if it is maintained at true 
scale, which is the usual case. If it is given a reduced scale factor, the lines of 
true scale are two straight lines on the map parallel to and equidistant from the 
central meridian. There is no distortion along them instead. This alternative is 
rare enough that it is ignored in the discussion and formulas below. 

By making a given point (such as Washington, D.C.) the pole on an oblique 
Equidistant Cylindrical projection, the bearing and distance from that point to 
any other on the Earth can be read directly as two rectangular coordinates 
(Botley, 1951). This provides the same information as the oblique Azimuthal 



FIGURE 19.-Cassini projection. A transverse Equidistant Cylindrical projection used for large-scale mapping in France, England, and several other countries. 
Largely replaced by conformal mapping. 
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Equidistant projection centered on the same point. The oblique cylindrical has the 
advantage of offering rectangular instead of polar coordinates, but the map is 
much more distorted near the chosen point. 

The scale is correct along the central meridian and also along any straight line 
perpendicular to the central meridian. It gradually increases in a direction parallel 
to the central meridian, as the distance from that meridian increases, but the 
scale is constant along any straight line on the map which is parallel to the central 
meridian. Therefore, the Cassini is more suitable for regions predominantly 
north-south in extent, such as Great Britain, than for regions extending in other 
directions. In this respect, it is also like the Transverse Mercator. The projection 
is neither equal-area nor conformal, but it has a compromise of both features. 

The ellipsoidal form is computed from series which are essentially modifica
tions of those for the ellipsoidal form of the Transverse Mercator and are suitable 
within only a few degrees to either side of the central meridian. The scale charac
teristics described above for the spherical form apply to the ellipsoidal form, ex
cept that the lines of constant scale paralleling the central meridian are not quite 
straight. 

USAGE 

There has been little usage of the spherical version of the Cassini, but the ellip
soidal Cassini-Soldner version was adopted by the Ordnance Survey for the official 
survey of Great Britain during the second half of the 19th century (Steers, 1970, 
p. 229). Many of these maps were prepared at a scale of 1:2,500. The Cassini
Soldner was also used for the detailed mapping of many German states during the 
same period. 

Beginning about 1920, the Ordnance Survey began to change to the Transverse 
Mercator because of the difficulty of measuring scale and direction on the Cassini. 
Nevertheless, there are several maps still in print which are based on the older 
projection in Great Britain, and the projection is used in a few other countries 
such as Cyprus, Czechoslovakia, Denmark, the Federal Republic of Germany, 
and Malaysia (Clifford J. Mugnier, personal comm., 1985). 

A system equivalent to an oblique Equidistant Cylindrical or oblique Cassini 
projection was used in early coordinate transformations for ERTS (now Landsat) 
satellite imagery, but it was changed in 1978 to the Hotine Oblique Mercator, and 
in 1982 to the Space Oblique Mercator projection. 

FORMULAS FOR THE SPHERE 

For the forward formulas, given R, <(10 , A-0, <j:l, and A, to find x and y: 

where 

x = R arcsin B 
y = R (arctan [tan <(~/cos (A.-A.o)J - ~o) 
h' = 11(1-B 2)I12 

B =cos <(I sin (A.-Ao) 

(13-1) 
(13-2) 
(13-3) 

(8-5) 

and A-0 is the central meridian. The origin of the coordinates is at (<(10 , A-0). The Y 
axis lies along the central meridian A0 , y increasing northerly, and the X axis is 
perpendicular, through <flo at A0, x increasing easterly. Equation (13-2) is similar 
to corresponding equation (8-3) for the spherical Transverse Mercator projection. 
The scale factoris h' in a direction parallel to the central meridian, while it is 1 in 
a direction perpendicular to this meridian. 

The inverse formulas for (~, A) in terms of (x, y): 

~ == arcsin [sin D cos (x!R)] 
A = A.0 + arctan [tan (x!R)!cos D) 

(13-4) 
(13-5) 
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where 
D = y/R + <l>o (13-6) 

with <l>o and D in radians. See p. 288 for numerical examples. 

FORMULAS FOR THE ELLIPSOID 

For the ellipsoidal form, a set of series approximations is given for use in a 
zone extending 3° to 4 o of longitude from the central meridian. Coordinate axes are 
the same as they are for the spherical formulas above. The formulas below are 
adapted from those provided by Clifford J. Mugnier (pers. commun., 1979; see also 
Clark and Clendinning, 1944). 

where 

X = N [A-TA316-(8-T+8C)TA51120] 
y = M- M 0 + N tan<!> [A2/2 + (5-T+6C)A4/24] 
s = 1 + x2 cos2 Az (1-e2 sin2 <!>)2/[2a2(1-e2 )] 

N = a/(1-e2 sin2 <!>)112 

T = tan2 <1> 
A = (A- A0 ) cos <!>, with A and Ao in radians 
C = e2 cos2 <j>/(1-e2

) 

M =a [(1-e2/4-3e4/64-5e6/256- ... ) <1> - (3e2/8 
+ 3e4/32 + 45e6/1024 + ... ) sin 2<1> + (15e4/256 
+ 45e6/1024 + ... ) sin 4<1> - (35e6/3072 + ... ) sin 6<1> + ... ] 

(13-7) 
(13-8) 
(13-9) 

(4-20) 
(8-13) 
(8-15) 
(8-14) 

(3-21) 

with <1> in radians. M is the true distance along the central meridian from the 
Equator to <j>. 

M 0 = M calculated for <!>0 , the latitude crossing the central meridian Ao at the 
origin of the x, y coordinates. The choice of <l>o does not affect the shape of the 
projection. 

s = the scale factor at an azimuth Az east of north for a given <1> and x. 
For the inverse formulas: 

<!> = <!>1 - CN1 tan <l>l/Rl)(D2/2-(1 + 3T1) D
4/24] 

A. = "-o + [D-T1D
313 + (1 + 3T1) T1D

5/15]/cos <1>1 
(13-10) 
(13-11) 

where <1> 1 is the "footpoint latitude" or the latitude at the central meridian which 
has the same y coordinate as that of the point (<!>, A). 
It may be found as follows: 

<!>1 = 1-L1 + (3el/2-27e3/32 + ... ) sin 21-1-1 + (21e12/16 
- 55el4/32 + ... ) sin 4j.L1 + (151e1

3/96 + ... ) sin 61-1-1 
+ (1097e1

4/512 - ... ) sin 8j.L1 + . . . (3-26) 
where 

e1 = [1- (1-e2) 112]/[1 + (1-e2)112] 

1-L1 = M l/[a(1-e2/4-3e4/64-5e6/256- ... )] 
M1=Mo+Y 

(3-24) 
(7-19) 

(13-12) 

with M0 calculated from equation (3-21) for the given <j>0 • For improved compu
tational efficiency using series (3-26), see p. 19. 

From <!>1, other terms below are calculated for use in equations (13-10) and 
(13-11). (If <!>1 = ± 7J/2, <1> = ± 90°, taking the sign of y, while A is indeterminate, 
and may be called A0.) 

T1 = tan2 <1> 1 

N 1 = a/(1-e2 sin2 <!>1)1'2 

R 1 =a (1-e2)/(1-e2 sin2 <!> 1)312 

D = x!N1 

(8-22) 
(8-23) 
(8-24) 

(13-13) 
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CONIC MAP PROJECTIONS 

CONIC MAP PROJECTIONS 

Cylindrical projections are used primarily for complete world maps, or for maps 
along narrow strips of a great circle arc, such as the Equator, a meridian, or an 
oblique great circle. To show a region for which the greatest extent is from east to 
west in the temperate zones, conic projections are usually preferable to cylindri
cal projections. 

Normal conic projections are distinguished by the use of arcs of concentric 
circles for parallels oflatitude and equally spaced straight radii of these circles for 
meridians. The angles between the meridians on the map are smaller than the 
actual differences in longitude. The circular arcs may or may not be equally 
spaced, depending on the projection. The Polyconic projection and oblique conic 
projections have characteristics different from these. 

The name "conic" originates from the fact that the more elementary conic 
projections may be derived by placing a cone on the top of a globe representing 
the Earth, the apex or tip in line with the axis of the globe, and the sides of the 
cone touching or tangent to the globe along a specified "standard" latitude which 
is true to scale and without distortion (see fig. 1). Meridians are drawn on the 
cone from the apex to the points at which the corresponding meridians on the 
globe cross the standard parallel. Other parallels are then drawn as arcs centered 
on the apex in a manner depending on the projection. If the cone is cut along one 
meridian and unrolled, a conic projection results. A secant cone results if the cone 
cuts the globe at two specified parallels. Meridians and parallels can be marked on 
the secant cone somewhat as above, but this will not result in any of the common 
conic projections with two standard parallels. They are derived from various 
desired scale relationships instead, and the spacing of the meridians as well as the 
parallels is not the same as the projection onto a secant cone. 

There are three important classes of conic projections: the equidistant (or simple), 
the conformal, and the equal-area. The Equidistant Conic, with parallels equidis
tantly spaced, originated in a rudimentary form with Claudius Ptolemy. It eventu
ally developed into commonly used present-day forms which have one or two 
standard parallels selected for the area being shown. It is neither conformal nor 
equal-area, but north-south scale along all meridians is correct, and the projection 
can be a satisfactory compromise for errors in shape, scale, and area, especially 
when the map covers a small area. It is primarily used in the spherical form, 
although the ellipsoidal form is available and useful. The USGS uses the Equidistant 
Conic in an approximate form for a map of Alaska, identified as a "Modified 
Transverse Mercator" projection, and also in the limiting equatorial form: the 
Equidistant Cylindrical. Both are described earlier. 

The Lambert Conformal Conic projection with two standard parallels is used 
frequently for large- and small-scale maps. The parallels are more closely spaced 
near the center of the map. The Lambert has also been used slightly in the oblique 
form. The Albers Equal-Area Conic with two standard parallels is used for sec
tional maps of the U.S. and for maps of the conterminous United States. The 
Albers parallels are spaced more closely near the north and south edges of the 
map. There are some conic projections, such as perspective conics, which do not 
fall into any of these three categories, but they are rarely used. 

The useful conic projections may be geometrically constructed only in a limited 
sense, using polar coordinates which must be calculated. After a location is chosen, 
usually off the final map, for the center of the circular arcs which will represent 
parallels of latitude, meridians are constructed as straight lines radiating from 
this center and spaced from each other at an angle equal to the product of the cone 
constant times the difference in longitude. For example, if a 10° graticule is planned, 
and the cone constant is 0.65, the meridian lines are spaced at 10° times 0.65 or 6.5°. 
Each parallel of latitude may then be drawn as a circular arc with a radius 
previously calculated from formulas for the particular conic projection. 
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14. ALBERS EQUAL-AREA CONIC PROJECTION 

SUMMARY 

• Conic. 
• Equal-Area. 
• Parallels are unequally spaced arcs of concentric circles, more closely spaced at 

the north and south edges of the map. 
• Meridians are equally spaced radii of the same circles, cutting parallels at right 

angles. 
• There is no distortion in scale or shape along two standard parallels, normally, 

or along just one. 
• Poles are arcs of circles. 
• Used for equal-area maps of regions with predominant east-west expanse, 

especially the conterminous United States. 
• Presented by Albers in 1805. 

HISTORY 

One of the most commonly used projections for maps of the conterminous 
United States is the equal-area form of the conic projection, using two standard 
parallels. This projection was first presented by Heinrich Christian Albers 
(1773-1833), a native of Luneburg, Germany, in a German periodical of 1805 
(Albers, 1805; Bonacker and Anliker, 1930). The Albers projection was used for a 
German map of Europe in 1817, but it was promoted for maps of the United 
States in the early part of the 20th century by Oscar S. Adams of the Coast 
and Geodetic Survey as "an equal-area representation that is as good as any other 
and in many respects superior to all others" (Adams, 1927, p. 1). 

FEATURES AND USAGE 

The Albers is the projection exclusively used by the USGS for sectional maps of 
all 50 States of the United States in the National Atlas of 1970, and for other 
U.S. maps at scales of 1:2,500,000 and smaller. The latter maps include the base 
maps of the United States issued in 1961, 1967, and 1972, the Tectonic Map of the 
United States (1962), and the Geologic Map of the United States (1974), all at 
1:2,500,000. The USGS has also prepared a U.S. base map at 1:3,168,000 
(1 inch= 50 miles). 

Like other normal conics, the Albers Equal-Area Conic projection (fig. 20) has 
concentric arcs of circles for parallels and equally spaced radii as meridians. The 
parallels are not equally spaced, but they are farthest apart in the latitudes 
between the standard parallels and closer together to the north and south. The 
pole is not the center of the circles, but is normally an arc itself. 

If the pole is taken as one of the two standard parallels, the Albers formulas 
reduce to a limiting form of the projection called Lambert's Equal-Area Conic 
(not discussed here, and not to be confused with his Conformal Conic, to be 
discussed later). If the pole is the only standard parallel, the Albers formulas 
simplify to provide the polar aspect of the Lambert Azimuthal Equal-Area 
(discussed later). In both of these limiting cases, the pole is a point. If the Equa
tor is the one standard parallel, the projection becomes Lambert's Cylindrical 
Equal-Area (discussed earlier), but the formulas must be modified. None of these 
extreme cases applies to the normal use of the Albers, with standard parallels in 
the temperate zones, such as usage for the United States. 

Scale along the parallels is too small between the standard parallels and too 
large beyond them. The scale along the meridians is just the opposite, and in fact 
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FIGURE 20.-Albers Equal-Area Conic projection, with standard parallels 20° and 60° N. This illustra
tion includes all of North America to show the change in spacing of the parallels. When used for 
maps of the 48 conterminous States standard parallels are 29.5° and 45.5° N. 

the scale factor along meridians is the reciprocal of the scale factor along parallels, 
to maintain equal area. An important characteristic of all normal conic projections 
is that scale is constant along any given parallel. 

To map a given region, standard parallels should be selected to minimize varia
tions in scale. Not only are standard parallels correct in scale along the parallel; 
they are correct in every direction. Thus, there is no angular distortion, and 
conformality exists along these standard parallels, even on an equal-area projection. 
They may be on opposite sides of, but not equidistant from, the Equator. Deetz 
and Adams (1934, p. 79, 91) recommended in general that standard parallels be 
placed one-sixth ofthe displayed length of the central meridian from the northern 
and southern limits of the map. Rinks (1912, p. 87) suggested one-seventh instead 
of one-sixth. Others have suggested selecting standard parallels of conics so that 
the maximum scale error (1 minus the scale factor) in the region between them is 
equal and opposite in sign to the error at the upper and lower parallels, or so that 
the scale factor at the middle parallel is the reciprocal of that at the limiting 
parallels. Tsinger in 1916 and Kavrayskiy in 1934 chose standard parallels so that 
least-square errors in linear scale were minimal for the actual land or country 
being displayed on the map. This involved weighting each latitude in accordance 
with the land it contains (Maling, 1960, p. 263-266). 

The standard parallels chosen by Adams for Albers maps of the conterminous 
United States are lats. 29.5° and 45.5°N. These parallels provide "for a scale error 
slightly less than 1 per cent in the center of the map, with a maximum of 1% per 
cent along the northern and southern borders" (Deetz and Adams, 1934, p. 91). 
For maps of Alaska, the chosen standard parallels are lats. 55° and 65°N., and for 
Hawaii, lats. 8° and l8°N. In the latter case, both parallels are south of the 
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islands, but they were chosen to include maps of the more southerly Canal Zone 
and especially the Philippine Islands. These parallels apply to all maps prepared 
by the USGS on the Albers projection, originally using Adams's published tables 
of coordinates for the Clarke 1866 ellipsoid (Adams, 1927). 

Without measuring the spacing of parallels along a meridian, it is almost impos
sible to distinguish an unlabeled Albers map of the United States from other conic 
forms. It is only when the projection is extended considerably north and south, 
well beyond the standard parallels, that the difference is apparent without scaling. 

Since meridians intersect parallels at right angles, it may at first seem that 
there is no angular distortion. However, scale variations along the meridians 
cause some angular distortion for any angle other than that between the meridian 
and parallel, except at the standard parallels. 

FORMULAS FOR THE SPHERE 

The Albers Equal-Area Conic projection may be constructed with only one 
standard parallel, but it is nearly always used with two. The forward formulas for 
the sphere are as follows, to obtain rectangular or polar coordinates, given R, <l>r. 
<!>2 , <!>0 , A.0 , <!>, and A. (see p. 291 for numerical examples): 

where 

p = R(C-2n sin <j>)112/n 
e = n(A. -A.o) 

X = p sin 6 
y =Po-P cos 6 

Po = R(C-2n sin <1>0 )112/n 
C = cos2 <!>1 + 2n sin <1> 1 

n = (sin <!>1 + sin <!>2)/2 
<!>0 , A.0 =the latitude and longitude, respectively, for the origin 

of the rectangular coordinates. 
<1>1> <!>2 = standard parallels. 

(14-1) 
(14-2) 

(14-3) 
(14-4) 

(14-3a) 
(14-5) 
(14-6) 

TheY axis lies along the central meridian A.0 , y increasing northerly. The X axis 
intersects perpendicularly at <J>0 , x increasing easterly. If (A.- A.0) exceeds the 
range ±180°, 360° should be added or subtracted to place it within the range. 
Constants n, C, and p0 apply to the entire map, and thus need to be calculated 
only once. If only one standard parallel <!>1 is desired (or if <!>1 = <!>2), n =sin <J>1• 

By contrast, a geometrically secant cone requires a cone constant n of sin [( <1> 1 + 
<1>2)/2], slightly but distinctly different from equation (14-6). If the projection is 
designed primarily for the Northern Hemisphere, nand pare positive. For the 
Southern Hemisphere, they are negative. The scale along the meridians, using 
equation (4-4), 

h = cos <J>I(C-2n sin <J>)112 (14-7) 

If equation (4-5) is used, k will be found to be the reciprocal of h, satisfying 
the requirement for an equal-area projection when meridians and parallels in
tersect at right angles. The maximum angular deformation may be calculated 
from equation (4-9). It may be seen from equation (14-7), and indeed from equa-
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tions (4-4) and (4-5), that distortion is strictly a function of latitude, and not of 
longitude. This is true of any regular conic projection. 

For the inverse formulas for the sphere, given R, <l>t. <1>2 , <1>0 , >..0 , x, and y: 
n, C and p0 are calculated from equations (14-6), (14-5), and (14-3a), respec
tively. Then, 

where 

<1> =arcsin \[C-(pn/R)2]/(2n)j 
A = A0 +6/n 

P = [x2 + (po-y)2]rl2 
6 =arctan [x/(p0 -y)] 

(14-8) 
(14-9) 

(14-10) 
(14-11) 

Note: to use the ATAN2 Fortran function, if n is negative, the signs of x, y, 
and p0 (given a negative sign by equation (14-3a)) must be reversed before in
serting them in equation (14-11). 

FORMULAS FOR THE ELLIPSOID 

The formulas displayed by Adams and most other writers describing the ellip
soidal form include series, but the equations may be expressed in closed forms 
which are suitable for programming, and involve no numerical integration or iter
ation in the forward form. Nearly all published maps of the United States based 
on the Albers use the ellipsoidal form because of the use of tables for the original 
base maps. (Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93-99; Snyder, 
1979a, p. 71). Given a, e, <1> 1, <1>2 , <1>0 , A0 , <1>, and A (see p. 292 for numerical 
examples): 

where 

x = p sin 6 
y = p0-p cos 6 

p = a(C-nq)It2fn 
6 = n(A-A0 ) 

p0 = a(C-nq0) 112/n 
C = m12 +nq1 
n = (m/-m/)l(q2-ql) 

m =cos <j>/(1-e2 sin2<j>)112 
q = (1-e2)\sin <l>/(1-e2 sin2<j>) - [11(2e)] 

ln[(1-e sin <1>)/(1 + e sin <l>)]j 

(14-1) 
(14-2) 

(14-12) 
(14-4) 

(14-12a) 
(14-13) 
(14-14) 
(14-15) 

(3-12) 

with the same subscripts 1, 2, or none applied to m and <I> in equation (14-15), 
and 0, 1, 2, or none applied to q and <1> in equation (3-12), as required by equa
tions (14-12), (14-12a), (14-13), (14-14), and (14-17). As with the spherical 
case, p and n are negative, if the projection is centered in the Southern Hemi
sphere. For the scale factor, modifying (4-25): 

k = pn/am 
= (C-nq)112/m 

h = llk 

(14-16) 
(14-17) 
(14-18) 

While many ellipsoidal equations apply to the sphere if e is made zero, equation 
(3-12) becomes indeterminate. Actually, if e = 0, q = 2 sin <1>. If <1> 1 = <1> 2 , equation 
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(14-14) is indeterminate regardless of e, but n = sin <)>1 • The axes and limita
tions on (A.- A.0 ) are the same as those stated for the spherical formulas. Here, too, 
constants n, C, and Po need to be determined just once for the entire map. 

For the inverse formulas for the ellipsoid, given a, e, <)>1 , <)>2 , <)>0 , A.0 , x, and y: 
n, C, and Po are calculated from equations (14-14), (14-13), and (14-12a); 
respectively. Then, 

<!>=<!>+ --- +-n (I-e
2 

sin
2 

<)>)
2 t q sin <j> 1 1 ( 1-e sin <~>)] 

2 cos <j> 1-e2 1-e2 sin2 <!> 2e 1 + e sin <j> 

where 

q = (C-p2n 21a2)1n 
p = [x2+(po-y)2]vz 

8 =arctan [x/(p0 -y)] 

(3-16) 

(14-9) 

(14-19) 
(14-10) 
(14-11) 

To use the Fortran ATAN2 function, if n is negative, the signs of x, y, and Po 
must be reversed before insertion into equation (14-11). Equation (3-16) in
volves iteration by first trying <!> = arcsin (q/2) on the right side, calculating <j> on 
the left side, substituting this new <j> on the right side, etc., until the change in 
<j> is negligible. If 

q = :t/1-[(1-e2)/2e] In [(1-e)/(1+e)]j (14-20) 

iteration does not converge, but <j> = ±90°, taking the sign of q. 
Instead of the iteration, a series may be used for the inverse ellipsoidal 

formulas: 

<!> = f3 + (e2/3+31e4/180+517e6/5040+ ... )sin2f3 + (23e4/360 
+ 251e6/3780 + ... ) sin 4f3 + (761e6/45360 + ... ) sin 6f3 + ... (3-18) 

where f3, the authalic latitude, adapting equations (3-11) and (3-12), is found 
thus: 

f3 = arcsin (q/j1-[(1-e2 )/2e] In [(1-e)/(1 + e)]j) (14-21) 

but q is still found from equation (14-19). Equations (14-9), (14-10), and 
(14-11) also apply unchanged. For improved computational efficiency using the 
series, seep. 19. 

Polar coordinates for the Albers Equal-Area Conic are given for both the 
spherical and ellipsoidal forms, using standard parallels of lat. 29.5° and 45.5° N. 
(table 15). A graticule extended to the North Pole is shown in figure 20. 

To convert coordinates measured on an existing map, the user may choose any 
meridian for A.0 and therefore for the Y axis, and any latitude for <)>0 • The X 
axis then is placed perpendicular to the Y axis at <)>0 • 
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TABLE 15.-Albers Equal-Area Conic projection: Polar coordinates 

[Standard parallels: 29.5" and 45.5" N) 

Projection for sghere (R = 6,370,997 m) Projection for Clarke 1866 ellipsoid 
(n• .6028370) {a=6,378,206.4 m} {n=0.6029035} 

Lat. p h k p h k 

52° --- 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863 
51 ---- 6,801,923 .97779 1.02271 6,822,266 .97788 1.02263 
50 ---- 6,910,941 .98296 1.01733 6,931,335 .98303 1.01727 
49 ---- 7,020,505 .98760 1.01255 7,040,929 .98765 1.01251 
48 ---- 7,130,555 .99173 1.00834 7,150,989 .99177 1.00830 
47 ---- 7,241,038 .99538 1.00464 7,261,460 .99540 1.00462 
46 ---- 7,351,901 .99857 1.00143 7,372,290 .99858 1.00143 
45.5 -- 7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000 
45 ---- 7,463,094 1.00132 .99868 7,483,429 1.00132 .99869 
44 ---- 7,574,570 1.00365 .99636 7,594,829 1.00364 .99637 
43 ---- 7,686,282 1.00558 .99445 7,706,445 1.00556 .99447 
42 ---- 7,798,186 1.00713 .99292 7,818,233 1.00710 .99295 
41 ---- 7,910,244 1.00832 .99175 7,930,153 1.00828 .99178 
40 ---- 8,022,413 1.00915 .99093 8,042,164 1.00911 .99097 
39 ---- 8,134,656 1.00965 .99044 8,154,230 1.00961 .99048 
38 ---- 8,246,937 1.00983 .99027 8,266,313 1.00978 .99031 
37 ---- 8,359,220 1.00970 .99040 8,378,379 1.00965 .99044 
36 ---- 8,471,472 1.00927 .99082 8,490,394 1.00923 .99086 
35 ---- 8,583,660 1.00855 .99152 8,602,328 1.00852 .99155 
34 ---- 8,695,753 1.00757 .99249 8,714,149 1.00753 .99252 
33 ---- 8,807,723 1.00632 .99372 8,825,828 1.00629 .99375 
32 ---- 8,919,539 1.00481 .99521 8,937,337 1.00479 .99523 
31 ---- 9,031,175 1.00306 .99694 9,048,649 1.00305 .99696 
30 ---- 9,142,602 1.00108 .99892 9,159,737 1.00107 .99893 
29.5 -- 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000 
29 ---- 9,253,796 .99887 1.00114 9,270,575 .99887 1.00113 
28 ---- 9,364,731 .99643 1.00358 9,381,141 .99645 1.00357 
27 ---- 9,475,383 .99378 1.00626 9,491,411 .99381 1.00623 
26 ---- 9,585,731 .99093 1.00915 9,601,361 .99097 1.00911 
25 ---- 9,695,749 .98787 1.01227 9,710,969 .98793 1.01222 
24 ---- 9,805,417 .98463 1.01561 9,820,216 .98470 1.01554 
23 ---- 9,914,713 .98119 1.01917 9,929,080 .98128 1.01908 
22 ____ 10,023,616 .97757 1.02294 10,037,541 .97768 1.02283 

Note: p = radius of latitude circle, meters. 
h = scale factor along meridians. 
k = scale factor along parallels. 

R =assumed radius of sphere. 
a = assumed semimajor axis of ellipsoid. 
n = cone constant, or ratio of angle between meridians on map to true angle. 
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15. LAMBERT CONFORMAL CONIC PROJECTION 

SUMMARY 

• Conic. 
• Conformal. 
• Parallels are unequally spaced arcs of concentric circles, more closely spaced 

near the center of the map. 
• Meridians are equally spaced radii of the same circles, thereby cutting parallels 

at right angles. 
• Scale is true along two standard parallels, normally, or along just one. 
• Pole in same hemisphere as standard parallels is a point; other pole is at infinity. 
• Used for maps of countries and regions with predominant east-west expanse. 
• Presented by Lambert in 1772. 

HISTORY 

The Lambert Conformal Conic projection (fig. 21) was almost completely over
looked between its introduction and its revival by the U.S. Coast and Geodetic 
Survey (Deetz, 1918b), although France had introduced an approximate version, 
calling it "Lambert," for battle maps of the First World War (Mugnier, 1983). It 
was the first new projection which Johann Heinrich Lambert presented in his 
Beitrage (Lambert, 1772), the publication which contained his Transverse Merca
tor described previously. In some atlases, particularly British, the Lambert Con
formal Conic is called the "Conical Orthomorphic" projection. 

FIGURE 21.-Lambert Conformal Conic projection, with standard parallels 20° and 60° N. North 
America is illustrated here to show the change in spacing of the parallels. When used for maps of 
the conterminous United States or individual States, standard parallels are 33° and 45° N. 



15. LAMBERT CONFORMAL CONIC PROJECTION 

Lambert developed the regular Conformal Conic as the oblique aspect of a 
family containing the previously known polar Stereographic and regular Mercator 
projections. As he stated, 

Stereographic representations of the spherical surface, as well as Mercator's nautical charts, have the 
peculiarity that all angles maintain the sizes that they have on the surface of the globe. This yields 
the greatest similarity that any plane figure can have with one drawn on the surface of a sphere. The 
question has not been asked whether this property occurs only in the two methods of representation 
mentioned or whether these two representations, so different in appearances, can be made to approach 
each other through intermediate stages. * * * if there are stages intermediate to these two represen
tations, they must be sought by allowing the angle of intersection of the meridians to be arbitrarily 
larger or smaller than its value on the surface of the sphere. This is the way in which I shall now pro
ceed (Lambert, 1772, p. 28, translation by Tobler). 

Lambert then developed the mathematics for both the spherical and ellipsoidal 
forms for two standard parallels and included a small map of Europe as an exam
ple (Lambert, 1772, p. 28-38, 87-89). 

FEATURES 

Many of the comments concerning the appearance of the Albers and the selec
tion of its standard parallels apply to the Lambert Conformal Conic when an area 
the size of the conterminous United States or smaller is considered. As stated 
before, the spacing of the parallels must be measured to distinguish among the 
various conic projections for such an area. If the projection is extended toward 
either pole and the Equator, as on a map of North America, the differences be
come more obvious. Although meridians are equally spaced radii of the concentric 
circular arcs representing parallels oflatitude, the parallels become further apart 
as the distance from the central parallels increases. Conformality fails at each 
pole, as in the case of the regular Mercator. The pole in the same hemisphere as 
the standard parallels is shown on the Lambert Conformal Conic as a point. The 
other pole is at infinity. Straight lines between points approximate great circle 
arcs for maps of moderate coverage, but only the Gnomonic projection rigorously 
has this feature and then only for the sphere. 

Two parallels may be made standard or true to scale, as well as conformal. It is 
also possible to have just one standard parallel. Since there is no angular distor
tion at any parallel (except at the poles), it is possible to change the standard 
parallels to just one, or to another pair, just by changing the scale applied to the 
existing map and calculating a pair of standard parallels fitting the new scale. This 
is not true of the Albers, on which only the original standard parallels are free 
from angular distortion. 

If the standard parallels are symmetrical about the Equator, the regular Mer
cator results (although formulas must be revised). If the only standard parallel is 
a pole, the polar Stereographic results. 

The scale is too small between the standard parallels and too large beyond 
them. This applies to the scale along meridians, as well as along parallels, or in 
any other direction, since they are equal at any given point. Thus, in the State 
Plane Coordinate Systems (SPCS) for States using the Lambert, the choice of 
standard parallels has the effect of reducing the scale of the central parallel by 
an amount which cannot be expressed simply in exact form, while the scale for the 
central meridian of a map using the Transverse Mercator is normally reduced by 
a simple fraction. The scale is constant along any given parallel. While it equals 
the nominal scale at the standard parallels, it actually changes most slowly in a 
north-south direction at a parallel nearly halfway between the two standard 
parallels. 

USAGE 

' 

It was only a couple of decades after the Coast and Geodetic Survey began 
publishing tables for the Lambert Conformal Conic projection (Deetz, 1918a, 
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1918b) that the projection was adopted officially for the SPCS for States of pre
dominantly east-west expanse. The prototype was the North Carolina Coordinate 
System, established in 1933. Within a year or so, similar systems were devised 
for many other States, while a Transverse Mercator system was prepared for the 
remaining States. One or more zones is involved in the system for each State (see 
table 8) (Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used for 
the Aleutian Islands of Alaska, Long Island in New York, and northwestern 
Florida, although the Transverse Mercator (and Oblique Mercator in one case) is 
used for the rest of each of these States. 

The Lambert Conformal Conic is used for the 1:1,000,000-scale regional world 
aeronautical charts, the 1:500,000-scale sectional aeronautical charts, and 
1:500,000-scale State base maps (all48 contiguous States4 have the same standard 
parallels of lat. 33° and 45° N., and thus match). Also cast on the Lambert are most 
of the 1:24,000-scale 71!2-minute quadrangles prepared after 1957 which lie in zones 
for which the Lambert is the base for the SPCS. In the latter case, the standard 
parallels for the zone are used, rather than parameters designed for the individual 
quadrangles. Thus, all quadrangles for a given zone may be mosaicked exactly. 
(The projection used previously was the Polyconic, and some recent quadrangles 
are being produced to the Universal Transverse Mercator projection.) 

The Lambert Conformal Conic has also been adopted as the official topographic 
projection for some other countries. It appears in The National Atlas (USGS, 
1970, p. 116) for a map of hurricane patterns in the North Atlantic, and the Lam
bert is used by the USGS for a map of the United States showing all 50 States 
in their true relative positions. The latter map is at scales of both 1:6,000,000 
and 1:10,000,000, with standard parallels 37° and 65° N. 

In 1962, the projection for the International Map of the World at a scale of 
1:1,000,000 was changed from a modified Polyconic to the Lambert Conformal 
Conic between lats. 84° N. and 80° S. The polar Stereographic projection is used in 
the remaining areas. The sheets are generally 6° oflongitude wide by 4° oflatitude 
high. The standard parallels are placed at one-sixth and five-sixths of the latitude 
spacing for each zone of 4° latitude, and the reference ellipsoid is the International 
(United Nations, 1963, p. 9-27). This specification has been subsequently used 
by the USGS in constructing several maps for the IMW series. 

Perhaps the most recent new topographic use for the Lambert Conformal Conic 
projection by the USGS is for middle latitudes of the 1:1,000,000-scale geologic 
series of the Moon and for some of the maps of Mercury, Mars, and Jupiter's 
satellites (see table 6). 

FORMULAS FOR THE SPHERE 

For the projection as normally used, with two standard parallels, the equations 
for the sphere may be written as follows: Given R, <!>1 , <!>2 , <j>0 , A0 , <j>, and A (see 
p. 295 for numerical examples): 

where 

x=psine 
y =p0 -pcose 

p = RF!tann (7r/4 + <j>/2) 
6 = n(A-Ao) 
Po = RF!tann (7r/4 + <Po/2) 

(14-1) 
(14-2) 

(15-1) 
(14-4) 

(15-1a) 

4For Hawaii, the standard parallels are lats. 20• 40' and 23• 20' N.; the corresponding base map was not prepared 
for Alaska. 



15. LAMBERT CONFORMAL CONIC PROJECTION 

F =cos <1> 1 tann ('TT/4 + <h/2)/n (15-2) 
n = ln (cos <!> 1/cos <!>2)/ln[tan ('TT/4 + <!>2/2)/tan ('TT/4 + <!>1/2)] (15-3) 

<!>0 , l\.0 = the latitude and longitude for the origin of the rectangular coordinates. 
<l>t. <!>2 = standard parallels. 

The Y axis lies along the central meridian l\.0 , y increasing northerly; the X axis 
intersects perpendicularly at <!>0 , x increasing easterly. If (ll. -l\.0) exceeds the 
range:±: 180°, 360° should be added or subtracted. Constants n, F, and p0 need to 
be determined only once for the entire map. 

If only one standard parallel <!>1 is desired, equation (15-3) is indeterminate, 
but n=sin <!>1. The scale along meridians or parallels, using equations (4-4) or 
(4-5), 

(15-4) 

The maximum angular deformation w = 0, since the projection is conformal. As 
with the other regular conics, k is strictly a function of latitude. For a projection 
centered in the Southern Hemisphere, n and p are negative. 

For the inverse formulas for the sphere, given R, <1> 11 <!>2 , <!>0 , l\.0 , x, andy: n, F, 
and p0 are calculated from equations (15-3), (15-2), and (15-1a), respectively. 
Then, 

<!> = 2 arctan (RF!p) 11n-'Tl'f2 (15-5) 
ll. = 0/n + l\.0 (14-9) 

where 

p = ±[x2 + (p0 -y)2]112 , taking the sign of n (14-10) 
0 =arctan [x/(po-y)] (14-11) 

The Fortran ATAN2 function does not apply to equation (15-5), but when it is 
used for equation (14-11), and n is negative, the signs of x, y, and Po (negative 
from equation (15-1a)) must be reversed before insertion into the equation. If 
p = 0, equation (15-5) involves division by zero, but<!> is± 90°, taking the sign of n. 

The standard parallels normally used for maps of the conterminous United 
States are lats. 33° and 45° N., which give approximately the least overall error 
within those boundaries. The ellipsoidal form is used for such maps, based on the 
Clarke 1866 ellipsoid (Adams, 1918). 

The standard parallels of 33° and 45° were selected by the USGS because of the 
existing tables by Adams (1918), but Adams chose them to provide a maximum 
scale error between latitudes 30.5° and 47.5° of one-half of 1 percent. A maximum 
scale error of 2.5 percent occurs in southernmost Florida (Deetz and Adams, 
1934, p. 80). Other standard parallels would reduce the maximum scale error for 
the United States, but at the expense of accuracy in the center of the map. 

FORMULAS FOR THE ELLIPSOID 

The ellipsoidal formulas are essential when applying the Lambert Conformal 
Conic to mapping at a scale of 1:100,000 or larger and important at scales of 
1:5,000,000. Given a, e, <!> 11 <!>2, <!>0 , l\.0 , <!>, and ll. (seep. 296 for numerical examples): 

X = p sin 0 
y = p0 - p cos 0 

(14-1) 
(14-2) 
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where 

or 
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k = pn!(am) 
= mltnJ(mtln) 

p = aFtn 
e = n(l\-A.o) 
Po =aFton 
n = (ln m 1 -ln m2)/(ln t1 -ln t2 ) 

m =cos <J>/(1-e2 sin2 <J>)II2 

t =tan (-rr/4-<j>/2)/[(1-e sin <J>)/(1 + e sin <J>)]ei2 

= ~(1 - s~n <!>) (1 + e s~n <J> )e] 112 

~ 1 + sm <P 1 - e sm <!> 

F = m 1/(nt1 n) 

(14-16) 
(15-6) 

(15-7) 
(14-4) 

(15-7a) 
(15-8) 

(14-15) 
(15-9) 

(15-9a) 

(15-10) 

with the same subscripts 1, 2, or none applied to m and <!> in equation (14-15), 
and 0, 1, 2, or none applied tot and<!> in equation (15-9), as required by equations 
(15-6), (15-7), and (15-8). As with other conics, a negative n and p result for 
projections centered in the Southern Hemisphere. If<!> = ± 90°, pis zero for the 
same sign as nand infinite for the opposite sign. If <!>1 = <!>2 , for the Lambert with 
a single standard parallel, equation (15-8) is indeterminate, but n =sin <J> 1. Origin 
and orientation of axes for x and y are the same as those for the spherical form. 
Constants n, F, and p0 may be determined just once for the entire map. 

When the above equations for the ellipsoidal form are used, they give values 
of n and p slightly different from those in the accepted tables of coordinates for a 
map of the United States, according to the Lambert Conformal Conic projection. 
The discrepancy is 35-50 min the radius and 0.0000035 inn. The rectangular 
coordinates are correspondingly affected. The discrepancy is less significant when 
it is realized that the radius is measured to the pole, and that the distance from 
the 50th parallel to the 25th parallel on the map at full scale is only 12 m out of 
2,800,000 or 0.0004 percent. For calculating convenience 60 years ago, the tables 
were, in effect, calculated using instead of equation (15-9), 

t=tan (1TI4-<!>g12) (15-9b) 

where <!>g is the geocentric latitude, or, as shown earlier, 

(3-28) 

In conventional terminology, the t of equation (15-9) is usually written as 
tan V2Z, where Z is the colatitude of the conformal latitude x (see equation 
(3-1)). 

For the existing tables, then, <!>g, the geocentric latitude, was used for con
venience in place of x, the conformal latitude (Adams, 1918, p. 6-9, 34). A com
parison of series equations (3-3) and (3-30), or of the corresponding columns in 
table 3, shows that the two auxiliary latitudes x and <!>g are numerically very 
nearly the same. 

There may be much smaller discrepancies found between coordinates as calcu
lated on modern computers and those listed in tables for the SPCS. This is due 
to the slightly reduced (but sufficient) accuracy of the desk calculators of 30-40 
years ago and the adaptation of formulas to be more easily utilized by them. To 
obtain SPCS coordinates, the appropriate "false easting" is added to x after cal
culation using (14-1). 
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The inverse formulas for ellipsoidal coordinates, given a, e, <!>I, 4>2 , 4>0 , A.0 , <!>, 
and A.: n, F, and p0 are calculated from equations (15-8), (15-10), (15-7a), 
respectively. Then, 

where 

4> = TI/2-2 arctan (t[(1-e sin Q>)/(1 + e sin Q>W2] 

t = (p!aF)lln 

p = ±[x2 + (p0 -yl]112 , taking the sign of n. 
A. = 61n+A.0 

e =arctan [x/(p0 -y)] 

(7-9) 

(15-11) 
(14-10) 
(14-9) 

(14-11) 

As with the spherical formulas, the Fortran ATAN2 function does not apply to 
equation (7 -9), but for equation (14-11), if n is negative, the signs of x, y, and 
Po must be reversed. 

Equation (7 -9) involves rapidly converging iteration: Calculate t from (15-11). 
Then, assuming an initial trial 4> equal to (TI/2-2 arctan t) in the right side of 
equation (7-9), calculate 4> on the left side. Substitute the calculated 4> into the 
right side, calculate a new 4>, etc., until 4> does not change significantly from the 
preceding trial value of Q>. 

To avoid iteration, series (3-5) may be used with (7 -13) in place of (7 -9): 

4> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + ... ) sin 2x 
+ (7e4/48 + 29e6/240 + 811e8/11520 + ... ) 

sin 4x + (7e6/120 + 81e8/1120 + ... ) sin 6x 
+ (4279e8/161280 + ... ) sin 8x + ... 

where 

x = TI/2-2 arctan t 

For improved computational efficiency using the series, seep. 19. 

(3-5) 

(7-13) 

If rectangular coordinates for maps based on the tables using geocentric lati
tude are to be converted to latitude and longitude, the inverse formulas are the 
same as those above, except that equation (15-9b) is used instead of (15-9) for 
calculations leadington, F, and p0 , and equation (7 -9), or (3-5) and (7 -13), is 
replaced with the following which does not involve iteration: 

(15-13) 

where 

4>g = TI /2-2 arctan t (15-14) 

and t is calculated from equation (15-11). 
Polar coordinates for the Lambert Conformal Conic are given for both the 

spherical and ellipsoidal forms, using standard parallels of33° and 45° N. (table 16). 
The data based on the geocentric latitude are given for comparison. A graticule 
extended to the North Pole is shown in figure 21. 

To convert from tabular rectangular coordinates to 4> and A., it is necessary to 
subtract any "false easting" from x and "false northing" from y before inserting 
x andy into the inverse formulas. To convert coordinates measured on an existing 
Lambert Conformal Conic map (or other regular conic projection), the user may 
choose any meridian for A.0 and therefore for theY axis, and any latitude for 4>0 . 

The X axis then is placed perpendicular to the Y axis at 4>0 . 
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TABLE 16.-Lambert Conformal Conic projection: Polar coordinates 

Lat. 

52° 

51 -======================== 50 

::========================= 

!i ==============~~========= 44 -------------------------
43 -------------------------
42 -------------------------
41 -------------------------

:~========================= 38 -------------------------
37 -------------------------

~~========================= 
ii ========================= 
i~ ========================= 
28 ========================= 
~~ ======================= 25 -------------------------
24 -------------------------23 _______________________ __ 

22 -------------------------

[Standard parallels: 33" and 45• N] 

Projection for sphere (R = 6,370,997 m) 
{n::: ~.630j 777) 

p 

6,359,534 
6,472,954 
6,585,914 
6,698,458 
6,810,631 
6,922,475 
7,034,030 
7,145,336 
7,256,432 
7,367,355 
7,478,142 
7,588,828 
7,699,449 
7,810,038 
7,920,631 
8,031,259 
8,141,957 
8,252,757 
8,363,692 
8,474,793 
8,586,092 
8,697,622 
8,809,415 
8,921,502 
9,033,915 
9,146,686 
9,259,848 
9,373,433 
9,487,474 
9,602,003 
9,717,054 

k 

1.02222 
1.01787 
1.01394 
1.01040 
1.00725 
1.00448 
1.00206 
1.00000 

.99828 

.99689 

.99582 

.99508 

.99464 

.99452 

.99470 

.99517 

.99594 

.99700 

.99836 
1.00000 
1.00193 
1.00415 
1.00665 
1.00944 
1.01252 
1.01589 
1.01954 
1.02349 
1.02774 
1.03228 
1.03712 

kl 

1.04494 
1.03606 
1.02807 
1.02091 
1.01456 
1.00898 
1.00413 
1.00000 

.99656 

.99379 

.99167 

.99018 

.98932 

.98907 

.98942 

.99036 

.99190 

.99402 

.99672 
1.00000 
1.00386 
1.00831 
L01335 
1.01897 
1.02520 
1.03203 
1.03947 
1.04754 
1.05625 
1.06560 
1.07563 

1 Based on rigorous equations using conformal latitude. 
2 Based on geocentric latitude as given in Adams (1918, p. 34) and Deetz and Adams (1934, p. 84). 
Notes: p = radius of latitude circles, meters. 

k = scale factor (linear). 

Projection for Clarke 1866 elliEsoid {a=6,378,206.4 m~ 
Conformal lat. 1 Geocentric lat.1 

~n=0.6304965} (n= 0.6305000) 
p k kl p 

6,379,530 1.02215 1.04480 
6,493,008 1.01781 1.03595 6,492,973 
6,606,007 1.01389 1.02798 6,605,970 
6,718,571 1.01037 1.02084 6,718,537 
6,830,746 1.00723 1.01451 6,830,708 
6,942,573 1.00446 1.00894 6,942,534 
7,054,092 1.00206 1.0041'2 7,054,052 
7,165,344 1.00000 1.00000 7,165,303 
7,276,367 .99828 .99657 7,276,330 
7,387,198 .99690 .99381 7,387,158 
7,497,873 .99584 .99170 7,497,833 
7,608,429 .99510 .99022 7,608,384 
7,718,900 .99467 .98936 7,718,857 
7,829,321 .99454 .98911 7,829,278 
7,939,726 .99472 .98946 7,939,680 
8,050,148 .99519 .99040 8,050,107 
8,160,619 .99596 .99193 8,160,581 
8,271,174 .99702 .99404 8,271,129 
8,381,843 .99836 .99673 8,381,798 
8,492,660 1.00000 1.00000 8,492,614 
8,603,656 1.00192 1.00385 8,603,610 
8,714,863 1.00413 1.00827 8,714,820 
8,826,313 1.00662 1.01328 8,826,267 
8,938,038 1.00940 1.01888 8,937,986 
9,050,070 1.01246 1.02507 9,050,021 
9,162,440 1.01581 1.03186 9,162,396 
9,275,181 1.01944 1.03927 9,275,132 
9,388,326 1.02337 1.04729 9,388,277 
9,501,906 1.02759 1.05595 9,501,859 
9,615,955 1.03211 1.06525 9,615,911 
9,730,506 1.03692 1.07521 9,730,456 

k? = scale factor (areal). 
a = assumed semimajor axis of ellipsoid. 
R = assumed radius of sphere. 
n = cone constant, or ratio of angle between meridians on map to true angle. 
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16. EQUIDISTANT CONIC PROJECTION 

16. EQUIDISTANT CONIC PROJECTION 

SUMMARY 

• Conic. 
• Equidistant. 
• Parallels, including poles, are arcs of concentric circles, equally spaced for the 

sphere, at true spacing for the ellipsoid. 
• Meridians are equally spaced radii of the same circles, thereby cutting parallels 

at right angles. 
• Scale is true along all meridians and along one or two standard parallels. 
• Used for maps of small countries and regions and of larger areas with predomi

nant east-west expanse. 
• Rudimentary form developed by Claudius Ptolemy about A.D. 150. 

HISTORY 

The simplest kind of conic projection is the Equidistant Conic, often called 
Simple Conic, or just Conic projection. It is the projection most likely to be found 
in atlases for maps of small countries, with its equally spaced straight meridians 
and equally spaced circular parallels. A rudimentary version was described by the 
astronomer and geographer Claudius Ptolemy about A.D. 150. Probably born in 
Greece about A.D. 90, he spent most of his life in or near Alexandria, Egypt, and 
died about A.D. 168. His greatest works were the Almagest, describing his 
scientific theories, and the Geographia, which dwelt on mapmaking. These were 
revived in the 15th century as the most authoritative existing standards. 

In developing this projection, Ptolemy did not discuss cones, and a cone would 
not properly fit his specifications, but he said (Geographia, Book 1, ch. 20): 

When we cast a glance upon the middle of the northern quarter of the globe in which the greatest part 
ofthe oikumene [or ecumene, or inhabited world] lies, then the meridians give the impression of being 
straight lines if we turn the globe thus that the meridians successively come out of their sideward 
situation right before the spectator, so that the eye comes in their plane. The parallels give clearly the 
impression of arcs of circles which turn their convex side to the south (Keuning, 1955, p. 9). 

Ptolemy's conic projection extends from latitudes approximating 63°N. to 16°S. 
Although meridians north of the Equator fan out as straight radii from the center 
of the circular parallels, they break at the Equator to connect with straight lines 
to points along the southernmost parallel which are the same distance apart as 
corresponding points at 16°N. · 

Johannes R uysch (? -1533) modified this approach to continue meridians as 
straight radii below the Equator in a world map of 1508, and Gerardus Mercator 
made other modifications in the mid-16th century. The Equidistant Conic with 
two standard parallels is credited to Joseph Nicolas De l'Isle (1688-1768), of an 
illustrious French mapmaking family. He used it for a map of Russia in 1745. 
There were differences in his approach, however, which resulted in meridians 
which are not radii of the circular arcs representing the circles. 

Several Scot (Murdoch), Swiss (Euler), English (Everett), and Russian 
(Vitkovskiy, Kavrayskiy, and others) mathematicians published papers between 
1758 and 1934 describing means of selecting the two standard parallels so that 
distortion is minimized using various criteria. Each of them used the same basic 
conic projection with concentric circular parallels and straight meridians for radii 
(Snyder, 1978a). The name of one ofthem, V. V. Kavrayskiy (or Kavraisky), has 
been mistakenly applied in some U.S. literature to the basic projection, but his 
contribution did not occur until 1934. 
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112 MAP PROJECTIONS-A WORKING MANUAL 

FEATURES 

The Equidistant Conic projection (fig. 22) is neither conformal (like the Lam
bert Conformal Conic) nor equal-area (like the Albers), but it serves as a compro
mise between them. The Lambert parallels are more widely spaced away from 
the central parallel, and the Albers parallels become closer together. The paral
lels on the Equidistant Conic remain equally spaced on the spherical version (as 
they are on the sphere) and nearly so on the ellipsoidal version (with the same 
spacing as the distances along the meridians on the ellipsoid). 

As on other normal conics, the meridians are equally spaced radii of the concen
tric circular arcs which form the parallels. The meridians are spaced at equal 
angles which are less than the true angles between the meridians; the ratio is 
called the cone constant, as it is on other conic projections. The poles are normally 
also plotted as circular arcs. 

Either one or two parallels may be made standard or true to scale. There is no 
shape, area, or scale distortion along the standard parallels. While meridians are 
at correct scale everywhere, the scale along the parallels between the standard 
parallels (if there are two) is too small, and the scale along parallels beyond the 
standard parallel(s) is too great. 

If the one standard parallel is the Equator, the Equidistant Conic projection 
becomes the Plate Carn~e form of the Equidistant Cylindrical, but the formulas 
must be changed. If the two standard parallels are symmetrical about the Equator, 
the Equirectangular results. If the standard parallel is the pole, the Azimuthal 
Equidistant projection is obtained. 

FIGURE 22.-Equidistant Conic projection, with standard parallels 20° and 60° N. All of North Amer
ica is included to show that parallels remain equidistant. Compare figures 20 and 21. 
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USAGE 

The Equidistant Conic projection is commonly used in the spherical form in 
atlases for maps of small countries. Its only use by the USGS has been in an 
approximate ellipsoidal form for Alaska Maps "B" and "E," but the projection 
name applied is "Modified Transverse Mercator" (see p. 63), due to the original 
manner of construction. The formulas for the ellipsoidal version were apparently 
first published in Snyder (1978a), although there may be several de facto usages 
of the ellipsoidal form such as the above. For example, the New Mexico Planning 
Survey in effect devised such a projection in 1936 for the mapping of that State, 
calling it a "Modified Conic Projection" (Thomas E. Henderson, pers. comm., 
1985). 

FORMULAS FOR THE SPHERE 

For the Equidistant Conic projection with two standard parallels, given R, <!> 1, 

<!>2 , <!>0 , X-0 , <!>, and X., to find x and y (see p. 298 for numerical examples): 

where 

x =psine 
y = p0 -p cos 0 

p = R (G-<!>) 
e = n (X.-X.o) 
Po = R (G-<J>o) 
G = (cos <!>1)/n + <!>1 
n =(cos <!>1-cos <!>z)/(<f>z-<1>1) 

(14-1) 
(14-2) 

(16-1) 
(14-4) 
(16-2) 
(16-3) 
(16-4) 

<!>0 , X.0 = the latitude and longitude for the origin of the rectangular coordinates. 
<!>1, <!>2 = standard parallels. 

The Y axis lies along the central meridian X-0 , y increasing northerly; the X axis 
intersects perpendicularly at <!>0 , x increasing easterly. If (X.- X.0) exceeds the 
range ±180°, 360° should be added or subtracted. Constants n, G, and p0 need 
to be determined only once for the entire map. 

If only one standard parallel <!> 1 is desired, equation (16-4) is indeterminate, 
but n = sin <f>1. The scale h along meridians is 1.0. Along parallels, using equation 
(4-5), the scale is 

k = (G-<j>)n/cos <!> (16-5) 

The maximum angular deformation may be calculated from equation (4-9). As on 
other regular conics, distortion is only a function of latitude. 

For the inverse formulas for the sphere, given R, <I> I> <!>2 , <f>0 , X-0 , x, andy, to find 
<!> and X.: n, G, and p0 are calculated from equations (16-4), (16-3), and (16-2), 
respectively. Then, 

where 

<!> = G - p!R 
X. = X.0 + 0/n 

p = ±[x2 +(p0 -y)2] 112 ,takingthesignofn 
e =arctan [x/(po-y)] 

(16-6) 
(14-9) 

(14-10) 
(14-11) 
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To use the ATAN2 function, if n is negative, the signs of x, y, and p0 (given a 
negative sign by equation (I6-2)) must be reversed before inserting them in 
equation (14-Il). 

FORMULAS FOR THE ELLIPSOID 

For mapping of regions smaller than the United States at scales greater than 
I:5,000,000, using the Equidistant Conic projection, the ellipsoidal formulas should 
be considered. Given a, e, <!>1. <!>2 , <!>0 , A0 , <!>, and A, to find x and y (see p. 299 
for numerical examples): 

where 

p =a G-M 
e = n (A-A0) 

Po =a G-M0 

n = a(m1-m2)1(Mz-Mt) 
m =cos <!>/(I-e2 sin2 <!>)112 
G = m 1/n + M1/a 

x = p sine 
y = p0 -p cos 8 
k = pnl(am) 

= (G-M/a)nlm 

M =a [(1-e2/4-3e4/64-5e6/256- ... )<!> 
- (3e2/8 + 3e4/32 + 45e6/I024 + ... ) sin 2<!> 
+ (I5e4/256 + 45e6/1024 + ... ) sin 4<1> 
- (35e6/3072+ ... ) sin 6<1> + ... ] 

(I4-I) 
(14-2) 

(I4-I6) 
(16-7) 

(16-8) 
(I4-4) 
(I6-9) 

(16-10) 
(14-I5) 
(16-11) 

(3-21) 

with the same subscripts I, 2, or none applied tom and <1> in equation (14-I5), and 
0, I, 2, or none applied to M and <1> in equation (3-2I). For improved computa
tional efficiency using the series, seep. 19. As with other conics, a negative nand 
p result for projections centered in the Southern Hemisphere. If <1> 1 = <!>2 , for the 
Equidistant Conic with a single standard parallel, equation (16-10) is indetermi
nate, but n = sin <j>1• Origin and orientation of axes for x andy are the same as 
those for the spherical form. Constants n, G, and Po may be determined just once 
for the entire map. 

For the inverse formulas for the ellipsoid, given a, e, <1>1> <!>2 , <!>0 , Ao, x, andy, to 
find <I> and .\: n, G, and Po are calculated from equations (16-10), (16-11), and 
(I6-9), respectively. Then 

<I> = f.L + (3et/2-27et3/32+ ... ) sin 2f.L + (21e1
2/16-55e1

4/32+ ... ) 
sin4f.L + (15Ie1

3/96- ... )sin6f.l + (I097e1
4/5I2- ... )sin8f.L+ ... (3-26) 

where 

e1 = [1 - (1-e2
) 112]/(I + (1-e2)112] 

f.l = M![a(l-e2!4-3e4/64-5e6!256- ... )] 
M=aG-p 
p = ± [x2 +(p0 -y?]112, taking the sign of n 
A = Ao + 8/n 
e =arctan [xl(p0 -y)] 

(3-24) 
(7-I9) 

(I6-12) 
(14-10) 
(I4-9) 

(14-11) 

To use the ATAN2 function, if n is negative, the signs of x, y, and p0 , must be 
reversed before inserting them in equation (I4-11). For improved computational 
efficiency using the series (3-26), seep. 19. 
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Polar coordinates for the Equidistant Conic projection for a map of the United 
States, assuming standard parallels of lat. 29.5° and 45. 5°N., are listed in table 17 
for both the spherical and ellipsoidal forms. A graticule extended to the North 
Pole is shown in figure 22. 

To convert coordinates measured on a.n existing Equidistant Conic map, the 
user may choose any meridian for Ao and therefore for the Y axis, and any latitude 
for <!>0• The X axis then is placed perpendicular to the Y axis at <!>0 . 

TABLE 17.-Equidistant Conic projection: Polar coordinates 

[Standard parallels: 29.5', 45.5'N] 

Projection for sphere (R: 6,370,997 m) Projection for Clarke 1866 ellipsoid 
(n = 0.6067854) (a = 6,378,206.4 m) (n : 0.6068355) 

Lat. p k p k 

52° 6,636,493 1.02665 6,656,864 1.02656 
51 6,747,688 1.02120 6,768,123 1.02113 
50 6,858,883 1.01628 6,879,362 1.01622 
49 6,970,078 1.01186 6,990,581 1.01182 
48 7,081,272 1.00792 7,101,781 1.00790 
47 7,192,467 1.00444 7,212,961 1.00442 
46 7,303,662 1.00138 7,324,122 1.00137 
45.5 7,359,260 1.00000 7,379,695 1.00000 
45 7,414,857 0.99872 7,435,263 0.99873 
44 7,526,052 .99646 7,546,384 .99648 
43 7,637,247 .99457 7,657,485 .99460 
42 7,748,442 .99304 7,768,566 .99307 
41 7,859,637 .99186 7,879,628 .99189 
40 7,970,831 .99101 7,990,671 .99105 
39 8,082,026 .99048 8,101,694 .99052 
38 8,193,221 .99026 8,212,697 .99030 
37 8,304,416 .99035 8,323,682 .99039 
36 8,415,611 .99073 8,434,648 .99077 
35 8,526,806 .99140 8,545,594 .99144 
34 8,638,001 .99235 8,656,523 .99239 
33 8,749,196 .99358 8, 767,433 .99361 
32 8,860,390 .99508 8,878,325 .99511 
31 8,971,585 .99685 8,989,199 .99687 
30 9,082,780 .99889 9,100,056 .99889 
29.5 9,138,378 1.00000 9,155,478 1.00000 
29 9,193,975 1.00118 9,210,896 1.00117 
28 9,305,170 1.00373 9,321,720 1.00371 
27 9,416,365 1.00654 9,432,527 1.00651 
26 9,527,560 1.00960 9,543,318 1.00955 
25 9,638,755 1.01291 9,654,093 1.01285 
24 9,749,949 1.01648 9,764,854 1.01640 
23 9,861,144 1.02030 9,875,600 1.02020 
22 9,972,339 1.02437 9,986,332 1.02425 

Note: p : radius of latitude circles, meters. 
h :scale factor along meridians : 1.0. 
k : scale factor along parallels. 
R : assumed radius of sphere. 
a :assumed semimajor axis of ellipsoid. 
n :cone constant, or ratio of angle between meridians on map to true angle. 
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17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION 

SUMMARY 

• Two oblique conic projections, side-by-side, but with poles 104° apart. 
• Conformal. 
• Meridians and parallels are complex curves, intersecting at right angles. 
• Scale is true along two standard transformed parallels on each conic projection, 

neither of these lines following any geographical meridian or parallel. 
• Very small deviation from conformality, where the two conic projections join. 
• Specially developed for a map of the Americas. 
• Used only in spherical form. 
• Presented by Miller and Briesemeister in 1941. 

HISTORY 

A "tailor-made" projection is one designed for a certain geographical area. 
0. M. Miller used the term for some projections which he developed for the Amer
can Geographical Society (AGS) or for their clients. The Bipolar Oblique Conic 
Conformal projection, developed with William A. Briesemeister, was presented 
in 1941 and designed specifically for a map of North and South America con
structed in several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941). 

It is an adaptation ofthe Lambert Conformal Conic projection to minimize scale 
error over th~ two continents by accommodating the fact that North America 
tends to curve toward the east as one proceeds from north to south, while South 
America tends to curve in the opposite direction. Because of the relatively small 
scale of the map, the Earth was treated as a sphere. To construct the map, a great 
circle arc 104° long was selected to cut through Central America from southwest to 
northeast, beginning at lat. 20° S. and long. 110° W. and terminating at lat. 45° N. 
and the resulting longitude of about 19°59'36" W. 

The former point is used as the pole and as the center of transformed parallels 
of latitude for an Oblique Conformal Conic projection with two standard parallels 
(at polar distances of 31 o and 73°) for all the land in the Americas southeast of the 
104° great circle arc. The latter point serves as the pole and center of parallels for 
an identical projection for all land northwest of the same arc. The inner and outer 
standard parallels of the northwest portion of the map, thus, are tangent to the 
outer and inner standard parallels, respectively, of the southeast portion, touch
ing at the dividing line (104°-31 o = 73°). 

The scale of the map was then increased by about 3. 5 percent, so that the linear 
scale error along the central parallels (at a polar distance of 52°, halfway between 
31 o and 73°) is equal and opposite in sign ( -3.5 percent) to the scale error along the 
two standard parallels (now +3.5 percent) which are at the normal map limits. 
Under these conditions, transformed parallels at polar distances of about 36.34° 
and 66.58° are true to scale and are actually the standard transformed parallels. 

The use of the Oblique Conformal Conic projection was not original with Miller 
and Briesemeister. The concept involves the shifting of the graticule of meridians 
and parallels for the regular Lambert Conformal Conic so that the pole of the 
projection is no longer at the pole of the Earth. This is the same principle as the 
transformation for the Oblique Mercator projection. The bipolar concept is unique, 
however, and it has apparently not been used for any other maps. 

FEATURES AND USAGE 

The Geological Survey has used the North American portion of the map for the 
Geologic Map (1965), the Basement Map (1967), the Geothermal Map, and the 
Metallogenic Map, all retaining the original scale of 1:5,000,000. The Tectonic 
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Map of North America (1969) is generally based on the Bipolar Oblique Conic 
Conformal, but there are modifications near the edges. An oblique conic projec
tion about a single transformed pole would suffice for either one of the continents 
alone, but the AGS map served as an available base map at an appropriate scale. 
In 1979, the USGS decided to replace this projection with the Transverse Merca
tor for a map of North America. 

The projection is conformal, and each of the two conic projections has all the 
characteristics of the Lambert Conformal Conic projection, except for the impor
tant difference in location of the pole, and a very narrow band near the center. 
While meridians and parallels on the oblique projection intersect at right angles 
because the map is conformal, the parallels are not arcs of circles, and the meridi
ans are not straight, except for the peripheral meridian from each transformed 
pole to the nearest normal pole. 

The scale is constant along each circular arc centered on the transformed pole 
for the conic projection of the particular portion of the map. Thus, the two lines at 
a scale factor of 1.035, that is, both pairs of the official standard transformed 
parallels, are mapped as circular arcs forming the letter "S." The 104° great circle 
arc separating the two oblique conic projections is a straight line on the map, and 
all other straight lines radiating from the poles for the respective conic projec
tions are transformed meridians and are therefore great circle routes. These 
straight lines are not normally shown on the finished map. 

At the juncture of the two conic projections, along the 104° axis, there is actually 
a slight mathematical discontinuity at every point except for the two points at 
which the transformed parallels of polar distance 31 o and 73° meet. If the conic 
projections are strictly followed, there is a maximum discrepancy of 1. 6 mm at the 
1:5,000,000 scale at the midpoint of this axis, halfway between the poles or between 
the intersections of the axis with the 31 o and 73° transformed parallels. In other 
words, a meridian approaching the axis from the south is shifted up to 1.6 mm 
along the axis as it crosses. Along the axis, but beyond the portion between the 
lines of true scale, the discrepancy increases markedly, until it is over 240 mm at 
the transformed poles. These latter areas are beyond the needed range of the map 
and are not shown, just as the polar areas of the regular Lambert Conformal 
Conic are normally omitted. This would not happen if the Oblique Equidistant 
Conic projection were used. 

The discontinuity was resolved by connecting the two arcs with a straight line 
tangent to both, a convenience which leaves the small intermediate area slightly 
nonconformal. This adjustment is included in the formulas below. 

FORMULAS FOR THE SPHERE 

The original map was prepared by the American Geographical Society, in an 
era when automatic plotters and easy computation of coordinates were not yet 
present. Map coordinates were determined by converting the geographical coordi
nates of a given graticule intersection to the transformed latitude and longitude 
based on the poles of the projection, then to polar coordinates according to the 
conformal projection, and finally to rectangular coordinates relative to the selected 
origin. 

The following formulas combine these steps in a form which may be programmed 
for the computer. First, various constants are calculated from the above 
parameters, applying to the entire map. Since only one map is involved, the 
numerical values are inserted in formulas, except where the numbers are tran
scendental and are referred to by symbols. 

If the southwest pole is at point A, the northeast pole is at point B, and the 
center point on the axis is C, 
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A.8 = -110° + arccos([cos 104°-sin( -20°)sin45°)/ 
[cos(-20°) cos 45°]] (17 -1) 

= -19°59'36" long., the longitude of B (negative is west long.) 
n =(In sin 31°-ln sin 73°)/[ln tan (31°/2)-ln tan (73°/2)] (17-2) 

= 0.63056, the cone constant for both conic projections 

F0 =R sin 31°/[n tann(3n2)] (17-3) 
= 1.83376 R, where R is the radius of the globe at the scale of the map. 

For the 1:5,000,000 map, R was taken as 6,371,221 m, the radius of a 
sphere having a volume equal to that of the International ellipsoid. 

k0 =21[1+nF0 tann 26°/(R sin 52°)] (17-4) 
= 1. 03462, the scale factor by which the coordinates are multiplied to balance 

the errors 
F=koF'o (17-5) 

= 1.89725 R, a convenient constant 
AzAB =arccos ([cos ( -20°) sin 45°-sin ( -20°) cos 45° cos 

(A.
8 

+ 110°)]/sin 104°] (17 -6) 
= 46.78203°, the azimuth east of north of B from A 

Az8 A =arccos ([cos 45° sin ( -20°)-sin 45° cos ( -20°) cos 
(A.

8
+110°)]/sin 104°] (17-7) 

= 104.42834°, the azimuth west of north of A from B 
T= tann (31°/2) +tann(73°/2) (17-8) 

= 1.27247, a convenient constant 
Pc= lf#T (17-9) 

= 1.20709 R, the radius of the center point of the axis from either pole 
zc=2 arctan (T!2) 11n (17-10) 

= 52.03888°, the polar distance of the center point from either pole 

Note that zc would be exactly 52°, if there were no discontinuity at the axis. The 
values of ~c• A.c, and Azc are calculated as if no adjustment were made at the axis 
due to the discontinuity. Their use is completely arbitrary and only affects posi
tions of the arbitrary X and Y axes, not the map itself. The adjustment is included 
in formulas for a given point. 

~c =arcsin [sin ( -20°) cos Zc +cos ( -20°) sin zccos Az AB] 
= 17°16'28" N. lat., the latitude of the center point, on the 

southern-cone side of the axis 

(17-11) 

A.c =arcsin (sin zcsin Az AJcos ~c)-110° (17 -12) 
= -73°00'27" long., the longitude of the center point, on the 

southern-cone side of the axis 
Azc =arcsin [cos ( -20°) sin AzAJcos <l>c] (17 -13) 

= 45.81997°, the azimuth east of north of the axis at the center point, relative 
to meridian A.c on the southern-cone side of the axis 

The remaining equations are given in the order used, for calculating rectangu
lar coordinates for various values of latitude ~ and longitude A. (measured east 
from Greenwich, or with a minus sign for the western values used here). There 
are some conditional transfers and adjustments which would apply only if a map 
extending well beyond the regions of interest were to be plotted; these are omit
ted to avoid unnecessary complication. It must be established first whether point 
(<!>,A.) is north or south of the axis, to determine which conic projection is involved. 
With these formulas, it is done by comparing the azimuth of point(<!>, A.) with the 
azimuth of the axis, all as viewed from B (see p. 301 for numerical examples): 

z8 =arccos [sin 45° sin <!>+cos 45o cos <I> cos (A.8 -A.)] 
=polar distance of(~, A.) from pole B 

(17-14) 
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Az8 ==arctan [sin (>..8 -A.)/[cos 45o tan <!>-sin 45° cos (>..8 -A.)]j 
=azimuth of (<f>, A.) west of north, viewed from B 

(17-15) 

If Az8 is greater than Az8 A (from equation (17-7)), go to equation (17-23). 
Otherwise proceed to equation (17 -16) for the projection from pole B. 

p8 =F tanntl2z8 

k = p8 ni(R sin z8 ) 

=scale factor at point(<!>, >..), disregarding 
small adjustment near axis 

a= arccos [[tannt/2z8 +tannlf2(104°-z8 )]/T) 

If In (Az8 A -Az8 )1 is less than a, 

If the above expression is equal to or greater than a, 

Then 

x'=p8 ' sin [n (Az8A-Az8 )] 

y' = p8 ' cos [n (Az8A -Az8 )]-pc 

(17-16) 
(17-17) 

(17-18) 

(17-19) 

(17-20) 

(17-21) 
(17-22) 

using constants from equations (17-2), (17-3), (17-7), and (17-9) for rectangu
lar coordinates relative to the axis. To change to nonskewed rectangular 
coordinates, go to equations (17-32) and (17-33). The following formulas give 
coordinates for the projection from pole A. 

z == A 

AzA = 

arccos [sin ( -20°) sin <f> +cos ( -20°) cos <f> cos (A.+ 110°)] 
polar distance of (<f>, A.) from pole A 
arctan [sin (A.+ 110°)/(cos ( -20°) tan <j>-sin ( -20°) 

cos (A.+ 110°)]) 
= azimuth of (<f>, A.) east of north, viewed from A 

F tanni!zzA 
pAn/R sin zA =scale factor at point (<f>, A.) 
arccos [[tannt/zz A+ tannlfz(104°- z A)]!T] 

pA' = pjcos [a+n (AzA8 -AzA)] 

If the above expression is equal to or greater than a, 

Then 

x' = pA' sin [n (AzA8 -AzA)] 
y' = -pA' cos [n (AzAB-Az)]+Pc 
x = -x' cos Azc -y' sin Azc 
y = -y' cos Azc + x' sin Azc 

(17-23) 

(17-24) 

(17-25) 
(17-26) 
(17-27) 

(17-28) 

(17 -29) 

(17-30) 
(17-31) 
(17-32) 
(17-33) 

where the center point at (<f>0 A.c) is approximately the origin of (x, y) coordinates, 
the Y axis increasing due north and the X axis due east from the origin. (The 
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meridian and parallel actually crossing the origin are shifted by about 3' of arc, 
due to the adjustment at the axis, but their actual values do not affect the 
calculations here.) 

For the inverse formulas for the Bipolar Oblique Conic Conformal, the con
stants for the map must first be calculated from equations (17-1)-(17-13). 
Given x andy coordinates based on the above axes, they are then converted to the 
skew coordinates: 

x' = -x cos Azc + y sin Azc 
y' = -x sin Azc-y cos Azc 

(17-34) 
(17-35) 

If x' is equal to or greater than zero, go to equation (17 -36). If x' is negative, 
go to equation (17 -45). 

Let 

Ps = Ps' 

Ps' = [x'2+(pc+y')2]vz 
Az8 ' = arctan [x' /(pc + y')] 

z
8 

= 2 arctan (p8 /F) 11n 

ex= arccos ([tannllzz8 + tannlf2(104°-Z8 )]1T] 

(17-36) 
(17-37) 

(17 -38) 
(17-39) 
(17-40) 

If 1Az8 '1 is equal to or greater than ex, go to equation (17-42). If 1Az8 '1 is less 
than ex, calculate 

(17-41) 

and use this value to recalculate equations (17-39), (17-40), and (17-41), repeat
ing until p8 found in (17 -41) changes by less than a predetermined convergence. 
Then, 

Using Az8 and the final value of z8 , 

<!>=arcsin (sin 45° cos z8 +cos 45° sin z8 cos Az8 ) 

A.= A.8 -arctan (sin AzJ[cos 45°/tan z8 -sin 45° cos Az8 ]] 

The remaining equations are for the southern cone only (negative x'): 

Let 

PA = PA
1 

zA = 2 arctan (pA/F) 11n 

a= arccos ([tannVzzA +tann¥2(104°-ZA)]IT] 

(17-42) 

(17-43) 
(17-44) 

(17-45) 
(17-46) 

(17-47) 
(17-48) 
(17-49) 

If IAzA'I is equal to or greater than ex, go to equation (17-51). If IAzA'i is less 
than a, calculate 

(17-50) 
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FIGURE 23.-Bipolar Oblique Conic Conformal projection used for various geologic maps. The Ameri
can Geographical Society, under 0. M. Miller, prepared the base map used by the USGS. (Pre
pared by Tau Rho Alpha.) 

and use this value to recalculate equations (17-48), (17-49), and (17-50), repeat
ing until pA found in equation (17-50) changes by less than a predetermined 
convergence. Then, 

Using Az A and the final value of z A' 

<1> = arcsin [sin (-20°) cos z A + cos 20° sin z A cos Az A] 
X. = arctan [sin Az AI[ cos (-20°)/tan z A 

-sin (-20°) cos AzA]j-noo 

(17-51) 

(17 -52) 

(17-53) 

Equations (17-17) or (17-26) may be used for calculating k after <1> and X. are 
determined. 

A table of rectangular coordinates is given in table 18, based on a radius R of 
1.0, while a graticule is shown in figure 23. 
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TABLE lB.-Bipolar Oblique Conic Conformal projection: Rectangular coordinates ~ 

[R=1.0. y coordinates in parentheses below x coordinates. Solid line separates the portions fonned from the two transfonned poles. Origin at approximately lat. 17"15' N., long. 73"02' W., with Yaxis due north at that point only] 

Lat. W. Long. 170° 160° 150° 140° 130° 120° 110° 100° 

900 -------- -0.14576 
(1.24309) 

80 --------- - .31273 -0.30608 -0.29464 -0.27876 -0.25892 -0.23569 -0.20973 -0.18175 
(1.21904) (1.19057) (1.16367) (1.13914) (1.11769) (1.09992) (1.08634) (1.07737) 

70 --------- - .48092 - .46705 - .44372 - .41182 - .37243 - .32673 - .27593 - .22126 
(1.19421) (1.13725) (1.08381) (1.03535) ( .99311) ( .95806) ( .93098) ( .91246) 

60 --------- - .65416 - .63138 - .59444 - .54518 - .48559 - .41763 - .34310 - .26359 
(1.16623) (1.07999) (1.00006) ( .92849) ( .86677) ( .81589) ( .77644) ( .74880) 

50 --------- - .83656 - .80200 - .74851 - .67943 - .59806 - .50739 - .40985 - .30732 
(1.13260) (1.01551) ( .90886) ( .81512) ( .73570) ( .67112) ( .62133) ( .58603) :s: 

40 --------- -- -- -- - .81523 - .70964 - .59515 - .47485 -- .35078 ?; 
( .69140) ( .59654) ( .52100) ( .46360) ( .42294) '"0 

30 --------- - .81990 - .67999 - .53678 - .39231 ::e -- -- -- -- 8 
( .44545) ( .36240) ( .30074) ( .25766} trl 

20 --------- - .76061 - .59421 - .43026 Ci -- -- -- -- -- >-3 -( .12988) ( .08782) ( .19177) 0 z 
10 --------- -- -- -- -- -- - .83496 - .64522 - .46280 r ( .00499} (- .05222) (- .08930) 
0 --------- beyond arbitrary map limits -- -- -- -- - .68704 - .48758 ~ 

(- .24918) (- .27670) 0 ::e 
- 10 --------- -- -- -- -- -- -- - .72338 - .50751* ~ -(- .47150) (- .48360 z 

C) 

- 20 --------- -- -- -- -- -- -- - .86567 * - .48812 :s: 
(- .84124. (- .73406) > z 

- 30 --------- - .55209 - .38781 c:: -- -- -- -- -- -- > 
( -1.10271) (- .96476) t"' 

- 40 --------- -- -- -- -- -- -- - .37784 - .26583 
( -1.24800) (-1.14111) 

- 50 --------- -- -- -- -- -- -- - .23054 - .14798 
( -1.37082) ( -1.28862) 

- 60 --------- -- -- -~ -- -- -- - .09524 - .03499 
(-1.48363) ( -1.42268) 

- 70 --------- beyond arbitrary map limits -- -- -- -- .03504 .07542 
( -1.59227) ( -1.55124) 

- 80 --------- -- -- -- -- -- -- .16491 .18569 
( -1.70055) ( -1.67949) 

- 90 --------- -- -- -- -- -- -- .29823 
( -1.81171) 

*Adjustment to x and y made for discontinuity near axis of conic projections. 



TABLE lB.-Bipolar Oblique Conic Confonnal projection: Rectangular coordinates-Continued 

Lat. W. Long. 90° goo 70° 60° 50° 40° 30° 20° 100 

goo ------------------ -0.14576 
(1.24309) 

80 ------------------- - .15254 -0.12293 -0.09378 -0.06599 -0.04047 -0.01809 0.00033 0.01411 0.02275 
(1.07330) (1.07432) (1.08048) (1.09170) (1.10774) (1.12816) (1.15236) (1.17955) (1.20877) 

70 ------------------- - .16395 - .10525 .04651 .01074 .06470 .11317 .15365 .18369 .20152 
( .90301) ( .90303) ( .91292) ( .93301) ( .96349) (1.00421) (1.05436) (1.11215) (1.17478) 

60 ------------------- - .18043 - .09477 - .00767 .07976 .16594 .24806 .32065 .37468 .40201 
( .73324) ( .73013) ( .74005) ( . 76403) ( .80369) ( .86133) ( .93920) (1.03623) (1.14388) 

.... 
:-'1 

50 ------------------- - .20109 - .09192 .01990 .13461 .25295 .37631 .50548 .62083 .64638 t:J:I -( .56481) ( .55749) ( .56421) ( .58582) ( .62443) ( .68480) ( .77907) ( .93836 (1.13342) '"0 
0 

40 ------------------- - .22411 - .09519 .03637 .17183 .31377 . 46682 • .64259 • t"' -- -- > 
( .39765) ( .38660) ( .38903) ( .40460) ( .43354 ( .47595) ( .54614) -- -- :::d 

0 

30 ------------------- - .24741 - .10203 .04468 .19431 .34922 .51120 .68326 -- -- t:J:I 
t"' 

( .23065) ( .21759) ( .21675) ( .22664) ( .24602) ( .27522) ( .31537) -- -- -.0 

20 ------------------- - .26899 - .10979 .04816. .20770 .37167 .54280 .72518 c:: -- -- trl 
( .06192) ( .04921) ( .04683 ( .05280) ( .06603) ( .08551) ( .11131) -- -- 0 

0 

10 ------------------- - .28689 - .11634 • .05000 .21614 .38494 .56021 .74645 -- -- z -(- .11090) (- .12083) (- .12223) (- .11773) (- .10970) (- .09944) (- .08790) -- 0 --
0 

0 ------------------- - .29905. - .11920 .05292 .22166 .39129 .56601 .75029 -- -- 0 

(- .29059) (- .29390) (- .29122) (- .28661) (- .28234) (- .28009) (- .28151) z -- -- ~ 

- .29984 - .11376 .05921 .22626 
0 

-10 ------------------- .39254 .56225 .73941 -- -- :::d 

(- .48267) (- .47202) (- .46189) (- .45503) (- .45295) (- .45710) (- .46938) ~ -- -- > 
-20 ------------------- - .27575 - .09495 .07161 .23171 .39016 .55057 .71601 t"' -- -- '"0 

(- .68590) (- .65440) (- .63424) (- .62366) (- .62240) (- .63119) (- .65175) -- -- :::d 

-30 ------------------- - .21865 - .05954 .09194 .23925 .38524 .53215 .68181 -- -- 8 
trl 

(- .88430) (- .83575) (- .80677) (- .79252) (- .79127) (- .80304) (- .82907) -- -- 0 ..., 
-40 ------------------- - .13981 - .00990 .12002 .24931 .37838 .50784 .63813 -- -- -0 

( -1.06299) ( -1.01016) (- .97740) (- .96122) (- .95992) (- .97320) ( -1.00184) -- -- z 
-50 ------------------- - .05346 .04829 .15387 .26134 .36964 .47806 .58591 

(-1.22345) (-1.17590) (-1.14498) (-1.12947) (-1.12858) (-1.14214) (-1.17057) 
- 60 ------------------- .03430 .11029 .19081 .27404 .35849 .44283 .52574 

( -1.37283) ( -1.33514) ( -1.31002) ( -1.29749) ( -1.29753) ( -1.31019) ( -1.33568) 
- 70 ------------------- .12196 .17341 .22844 .28571 .34391 .40173 .45785 beyond 

(-1.51739) (-1.49156) (-1.47435) (-1.46615) (-1.46721) (-1.47764) (-1.49748) arbitrary 
- 80 ------------------- .20970 .23631 .26481 .29445 .32443 .35394 .38215 map limits 

( -1.66218) ( -1.64908) ( -1.64057) ( -1.63693) ( -1.63831) ( -1.64474) ( -1.65615) 

-90 ------------------- .29823 
(- 1.81171) 

*Adjustment to :~: and y made for discontinuity near axis of conic projections. 1-' 
I':) 
Cl:l 
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18. POLYCONIC PROJECTION 

SUMMARY 

• Neither conformal nor equal-area. 
• Parallels of latitude (except for Equator) are arcs of circles, but are not 

concentric. 
• Central meridian and Equator are straight lines; all other meridians are 

complex curves. 
• Scale is true along each parallel and along the central meridian, but no parallel 

is "standard." 
• Free of distortion only along the central meridian. 
• Used almost exclusively in slightly modified form for large-scale mapping in the 

United States until the 1950's. 
• Was apparently originated about 1820 by Hassler. 

HISTORY 

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 24) began to promote the 
Polyconic projection, which was to become a standard for much of the official 
mapping of the United States (Deetz and Adams, 1934, p. 58-60). 

Born in Switzerland in 1770, Hassler arrived in the United States in 1805 and 
was hired 2 years later as the first head of the Survey of the Coast. He was forced 
to wait until 1811 for funds and equipment, meanwhile teaching to maintain 
income. After funds were granted, he spent 4 years in Europe securing equipment. 
Surveying began in 1816, but Congress, dissatisfied with the progress, took the 
Survey from his control in 1818. The work only foundered. It was returned to 
Hassler, now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a 
result of exposure after a fall, trying to save his instruments in a severe wind and 
hailstorm, but he had firmly established what later became the U.S. Coast and 
Geodetic Survey (Wraight and Roberts, 1957) and is now the National Ocean 
Service. 

The Polyconic projection, usually called the American Polyconic in Europe, 
achieved its name because the curvature of the circular arc for each parallel on the 
map is the same as it would be following the unrolling of a cone which had been 
wrapped around the globe tangent to the particular parallel of latitude, with the 
parallel traced onto the cone. Thus, there are many ("poly-") cones involved, 
rather than the single cone of each regular conic projection. As Hassler himself 
described the principles, "(t]his distribution of the projection, in an assemblage of 
sections of surfaces of successive cones, tangents to or cutting a regular succes
sion of parallels, and upon regularly changing central meridians, appeared to me 
the only one applicable to the coast of the United States" (Hassler, 1825, 
p. 407-408). 

The term "polyconic" is also applied generically by some writers to other 
projections on which parallels are shown as circular arcs. Most commonly, the 
term applies to the specific projection described here. 

FEATURES 

The Polyconic projection (fig. 25) is neither equal-area nor conformal. Along the 
central meridian, however, it is both distortion free and true to scale. Each 
parallel is true to scale, but the meridians are lengthened by various amounts to 
cross each par:Wel at the correct position along the parallel, so that no parallel is 
standard in the sense of having conformality (or correct angles), except at the 
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FIGURE 24.-Ferdinand Rudolph Hassler (1770-1843), first Superintendent of the U.S. Coast Survey 
and presumed inventor of the Polyconic projection. As a result of his promotion of its use, it 
became the projection exclusively used for USGS topographic quadrangles for about 70 years. 

central meridian. Near the central meridian, which is the case with 7%-miriute 
quadrangles, distortion is extremely small. The Polyconic projection is universal 
in that tables of rectangular coordinates may be used for any Polyconic projection 
of the same ellipsoid by merely applying the proper scale and central meridian. 
U.S. Coast and Geodetic Survey Special Publication No. 5 (1900) replaced tables 
published in 1884 and was often reprinted because of the universality of the 
projection (the Clarke 1866 is the reference ellipsoid). Polyconic quadrangle maps 
prepared to the same scale and for the same central meridian and ellipsoid will fit 
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FIGURE 25.-North America on a Polyconic projection grid, central meridian long. 100° W., using a 
10° interval. The parallels are arcs of circles which are not concentric, but have radii equal to the 
radius of curvature of the parallel at the Earth's surface. The meridians are complex curves formed 
by connecting points marked off along the parallels at their true distances. Used by the USGS 
for topographic quadrangle maps. 

exactly from north to south. Since they are drawn in practice with straight 
meridians, they also fit east to west, but discrepancies will accumulate ifmosaick
ing is attempted in both directions. 

The parallels are all circular arcs, with the centers of the arcs lying along an 
extension of the straight central meridian, but these arcs are not concentric. 
Instead, as noted earlier, the radius of each arc is that of the circle developed 
from a cone tangent to the sphere or ellipsoid at the latitude. For the sphere, each 
parallel has a radius proportional to the cotangent of the latitude. For the ellipsoid, 
the radius is slightly different. The Equator is a straight line in either case. Along 
the central meridian, the parallels are spaced at their true intervals. For the 
sphere, they are therefore equidistant. Each parallel is marked off for meridians 
equidistantly and true to scale. The points so marked are connected by the curved 
meridians. 

USAGE 

As geodetic and coastal surveying began in earnest during the 19th century, 
the Polyconic projection became a standard, especially for quadrangles. Most 
coastal charts produced by the Coast Survey and its successor during the 19th 
century were based on one or more variations of the Polyconic projection 
(Shalowitz, 1964, p. 138-141). The name of the projection appears on a later 
reprint of one of the first published USGS topographic quadrangles, which 
appeared in 1886. In 1904, the USGS published tables of rectangular coordinates 
extracted from an 1884 Coast and Geodetic Survey report. They were called 
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"coordinates of curvature," but were actually coordinates for the Polyconic 
projection, although the latter term was not used (Gannett, 1904, p. 37 -48). 

As a 1928 USGS bulletin of topographic instructions stated (Beaman, 1928, 
p. 163): 

The topographic engineer needs a projection which is simple in construction, which can be used to 
represent small areas on any part of the globe, and which, for each small area to which it is applied, 
preserves shapes, areas, distances, and azimuths in their true relation to the surface of the earth. The 
polyconic projection meets all these needs and was adopted for the standard topographic map of the 
United States, in which the 1 o quadrangle is the largest unit * * * and the 15' quadrangle is the average 
unit. * * * Misuse of this projection in attempts to spread it over large areas-that is, to construct a 
single map of a large area-has developed serious errors and gross exaggeration of details. For 
example, the polyconic projection is not at all suitable for a single-sheet map of the United States or of 
a large State, although it has been so employed. 

When coordinate plotters and published tables for the State Plane Coordinate 
System (SPCS) became available in the late 1950's, the USGS ceased using the 
Poly conic for new maps, in favor of the Transverse Mercator or Lambert Confor
mal Conic projections used with the SPCS for the area involved. Some of the 
quadrangles prepared on one or the other of these projections have continued to 
carry the Polyconic designation, however. 

The Polyconic projection was also used for the Progressive Military Grid for 
military mapping of the United States. There were seven zones, A-G, with 
central meridians every go west from long. 73° W. (zone A), each zone having an 
origin at lat. 40°30' N. on the central meridian with coordinates x = 1,000,000 
yards, y = 2,000,000 yards (Deetz and Adams, 1934, p. 87 -90). Some USGS quad
rangles of the 1930's and 1940's display tick marks according to this grid in yards, 
and many quadrangles then prepared by the Army Map Service and sold by the 
USGS show a complete grid pattern. This grid was incorporated intact into the 
World Polyconic Grid (WPG) until both were superseded by the Universal Trans
verse Mercator grid (Mugnier, 1983). 

While quadrangles based on the Polyconic provide low-distortion mapping of 
the local areas, the inability to mosaic these quadrangles in all directions without 
gaps makes them less satisfactory for a larger region. Quadrangles based on the 
SPCS may be mosaicked over an entire zone, at the expense of increased distortion. 

For an individual quadrangle 71/z or 15 minutes of latitude or longitude on a 
side, the distance of the quadrangle from the central meridian of a Transverse 
Mercator zone or from the standard parallels of a Lambert Conformal Conic zone 
of the SPCS has much more effect than the type of projection upon the variation 
in measurement of distances on quadrangles based on the various projections. If 
the central meridians or standard parallels of the SPCS zones fall ori the 
quadrangle, a change of projection from Polyconic to Transverse Mercator or 
Lambert Conformal Conic results in a difference of less than 0.001 mm in the 
measurement of the 700-800 mm diagonals of a 71/2-minute quadrangle. If the 
quadrangle is near the edge of a zone, the discrepancy between measurements of 
diagonals on two maps of the same quadrangle, one using the Transverse Merca
tor or Lambert Conformal Conic projection and the other using the Polyconic, can 
reach about 0.05 mm. These differences are exceeded by variations in expansion 
and contraction of paper maps, so that these mathematical discrepancies apply 
only to comparisons of stable-base maps. 

Actually, the central meridian of a 7%-minute Polyconic quadrangle may lie 
along the edge of the map, since 15-minute quadrangles were frequently cut and 
enlarged to achieve the less extensive coverage. This has a negligible effect upon 
the map geometry. 

Before the Lambert became the projection for the 1:500,000 State base map 
series, a modified form of the Polyconic was used, but the details are unclear. The 
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Polyconic was used for the base maps of Alaska until1972. It has also been used 
for maps of the United States; but, as stated above, the distortion is excessive at 
the east and west coasts, and most current maps are drawn to either the Lambert 
or Albers Conic projections. There are several other modified Polyconic projections, 
in use or devised, including the Rectangular Polyconic and Bousfield's modifica
tion used for northern Canada (Haines, 1981). The best known is that used for the 
International Map of the World, described on p. 131. 

GEOMETRIC CONSTRUCTION 

Because of the simplicity of construction using universal tables with which the 
central meridian and each parallel may be marked off at true distances, the 
Polyconic projection was favored long after theoretically better projections became 
known in geodetic circles. 

The Polyconic projection must be constructed with curved meridians and paral
lels if it is used for single-sheet maps of areas with east-west extent of several 
degrees. Then, however, the inherent distortion is excessive, and a different 
projection should be considered. For accurate topographic work, the coverage 
must remain so small that the meridians and parallels may ironically but satisfac
torily be drawn as straight-line segments. Official USGS instructions of 1928 
declared that 

* * * in actual practice on projections of small quadrangles, the parallels are not drawn as arcs of 
circles, but their intersections with the meridians are plotted from the computed x and y values, and 
the sections of the parallels between adjacent meridians are drawn as straight lines. In polyconic 
projections of quadrangles of 1 o or smaller meridians may be drawn as straight lines, and in large-scale 
projections of small quadrangles in low latitudes both meridians and parallels may be drawn as 
straight lines. For example, the curvature of the parallels of a projection of a 15' quadrangle on a scale 
of 1:48,000 in latitudes from oo to 30° is so small that it can not be plotted, and for a 7W quadrangle on a 
scale of 1:31,680 or larger the curvature can not be plotted at any latitude (Beaman, 1928, p. 167). 

This instruction is essentially repeated in the 1964 edition (USGS, 1964, p. 12-13). 
The formulas given below are based on curved meridians. 

FORMULAS FOR THE SPHERE 

The principles stated above lead to the following forward formulas for rectangu
lar coordinates for the spherical form of the Polyconic projection, using radians 
(see p. 303 for numerical examples): 

If <P is 0, 

If <P is not 0, 

X =R(A.-'/1..0 ) 

Y = -R<Po 

E = (A.- A.0) sin <P 
x = R cot <P sin E 
y = R[<J>-<Po + cot <P (1-cos E)] 

(7-1) 
(18-1) 

(18-2) 
(18-3) 
(18-4) 

where <Po is an arbitrary latitude (frequently the Equator) chosen for the origin of 
the rectangular coordinates at its intersection with A.0 , the central meridian. As 
with other conics and the Transverse Mercator, the Y axis coincides with the 
central meridian, y increasing northerly, and the X axis intersects perpendicu
larly at <j>0 , x increasing easterly. If (A.- A.0) exceeds the range ± 180°, 360° must be 
added or subtracted to place it within the range. For the scale factor h along the 
meridians (Adams, 1919, p. 144-147): 
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h::::: (1- cos2 q, cos E)/(sin2 q, cos D) (18-5) 

where 

D=arctan [(E-sin E)/(sec2 q,-cos E)] (18-6) 

If <Vis 0, this is indeterminate, but his then [1 +(A.- 11.0 )
2/2]. In all cases, the scale 

factor k along any parallel is 1.0. 
The inverse formulas for the sphere are given here in the form of a Newton

Raphson approximation, which converges to any desired accuracy after several 
iterations, except that if \A.-11.0 1 >90°, a rarely used range, this iteration does not 
converge, and if y = - R<V0 , it is indeterminate. In the latter case, however, 

q, :::::0 
A = x!R+Ao 

Otherwise, if y =f= - R<P0 , calculations are made in this order: 

A =<Po + y!R 
B = x2/R2 +A2 

Using an initial value of <Pn =A, <Pn+ 1 is found from equation (18-9), 

cVn+ 1 = cVn -[A(<Pn tan cVn + 1)-<Pn -V2(cVn2 +B) tan <Pn]l 
((<f>n-A)/tan <Pn-11 

(7-5) 

(18-7) 
(18-8) 

(18-9) 

The new trial value of <Pn+ 1 is successively substituted in place of <Pn, until <Pn+ 1 
differs from <Pn by less than a predetermined convergence limit. Then <P = <Pn + 1 as 
finally determined. 

A::::: [arcsin (x tan <f>/R))/sin <P + Ao (18-10) 

If q, = ±90°, equation (18-10) is indeterminate, but A may be given any value, such 
as A0• 

FORMULAS FOR THE ELLIPSOID 

The forward formulas for the ellipsoidal form of the Polyconic projection are 
only a little more complicated than those for the sphere. These formulas are 
theoretically exact. They are adapted from formulas given by the Coast and 
Geodetic Survey (1946, p. 4) (see p. 304 for numerical examples): 

If q, is zero: 

If q, is not zero: 

where 

x = a(A-Ao) 
y = -Mo 

E = (A-A0) sin q, 
x = N cot q, sin E 
y = M-M0 +N cot <P (1-cos E) 

M = a[(l-e2/4-3e4/64-5e6/256- ... ) <t>-(3e2/8 + 3e4/32 + 45e6/1024 
+ .... )sin 2<t>+(15e4/256+45e6/1024+ ... ) sin 4<V-(35e6/3072 
+ ... )sin 6<V+ ... ] 

N = a/(1-e2 sin2<t>)112 

(7-6) 
(18-11) 

(18-2) 
(18-12) 
(18-13) 

(3-21) 
(4-20) 
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and M0 is found from equation (3-21) by using <l>o for <l> and M0 forM, with 
<Po the latitude of the origin of rectangular coordinates at its intersection with 
central meridian }..0 • See the spherical formulas for the orientation of axes. The 
value of(}..- >..0) must be adjusted by adding or subtracting 360° if necessary to fall 
within the range of ±180°. For scale factor h along the meridians (k = 1.0 along 
the parallels): 

If <j> is zero, 

If <j> is not zero (Adams, 1919, p. 144-146), 

where 

D =arctan (CE-sin E)/[sec2 <j>-cos E-e2 sin2 <f>/(1-e2 sin2 <j>)]j 
M' = 1-e2/4-3e4/64-5e6/256- ... -2 (3e2/8 + 3e4132 + 45e6/1024 

+ ... ) cos 2<j> + 4 (15e4/256 + 45e6/1024 + ... ) cos 4<j>-6 
(35e6

/ 3072 + ... ) cos 64> + .... 

For improved computational efficiency using this series, seep. 19. 

(18-14) 

(18-15) 

(18-16) 

(18-17) 

As with the inverse spherical formulas, the inverse ellipsoidal formulas are 
given in a Newton-Raphson form, converging to any desired degree of accuracy 
after several iterations. As before, if lA.- A.01>90°, this iteration does not converge, 
but the projection should not be used in that range in any case. The formulas 
may be calculated in the following order, given a, e, <j>0 , >..0 , x, and y. First 
M0 is calculated from equation (3-21) above, as in the forward case, with <Po 
for <j> and M0 forM. 

If y= -M0 , the iteration is not applicable, but 

<l> = 0 
A. = xla+>-..0 

If y =I= - M 0 , the calculation is as follows: 

A = (M0 +y)la 
B = x 2/a2 +A2 

Using an initial value of <Pn =A, the following calculations are made: 

(7-12) 

(18-18) 
(18-19) 

(18-20) 

Then Mn and Mn' are found from equations (3-21) and (18-17) above, using 
<Pn for <j>, Mn forM, and Mn' forM'. Let Ma=Mn/a. 

<Pn+ 1 =<Pn-[A(CMa + 1)-Ma-Yz(Ma2 +B)C]I[e2 sin 2<Pn (Ma 2 +B-2AMa)l 
4C+(A-Ma) (CMn'-2/sin 2<J>n)-Mn'] (18-21) 

Each value of <Pn+ 1 is substituted in place of <Pn, and C, Mn, Mn', and <Pn+ 1 are 
recalculated from equations (18-20), (3-21), (18-17), and (18-21), respectively. 
This process is repeated until <Pn + 1 varies from <Pn by less than a predetermined 
convergence value. Then <j> equals the final <Pn + 1. 

A.= [arcsin (xC!a)]lsin <l> + }..0 (18-22) 
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using the C calculated for the last <l>n from equation (18-20). If <1> = ±90°, A. is in
determinate, but may be given any value. 

Table 19 lists rectangular coordinates for a band 3° on either side of the central 
meridian for the ellipsoid extending from lat. 23° to 50° N. Figure 25 shows the 
graticule applied to a map of North America. 

MODIFIED POL YCONIC FOR THE INTERNATIONAL MAP OF THE WORLD 

A modified Polyconic projection was devised by Lallemand of France and in 
1909 adopted by the International Map Committee (IMC) in London as the basis 
for the 1:1,000,000-scale International Map of the World (IMW) series. Used for 
sheets 6° oflongitude by 4° of latitude between lats. 60° N. and 60° S., 12° oflongi
tude by 4° oflatitude between lats. 60° and 76° N. or S., and 24°by 4° between lats. 76° 
and 84° N. or S., the projection differs from the ordinary Poly conic in two principal 
features: All meridians are straight, and there are two meridians (2° east and west 
of the central meridian on sheets between lats. 60° N. & S.) that are made true to 
scale. Between lats. 60° & 76° N. and S., the meridians 4 o east and west are true to 
scale, and between 76° & 84°, the true-scale meridians are 8° from the central 
meridian (United Nations, 1963, p. 22-23; Lallemand, 1911, p. 559). 

The top and bottom parallels of each sheet are nonconcentric circular arcs 
constructed with radii of N cot<!>, where N = al(1-e2 sin2 <!>)112• These radii are the 
same as the radii on the regular Polyconic for the ellipsoid, and the arcs of these 
two parallels are marked off true to scale for the straight meridians. The two 
parallels, however, are spaced from each other according to the true scale along 
the two standard meridians, not according to the scale along the central meridian, 
which is slightly reduced. The approximately 440 mm true length of the central 
meridian at the map scale is thereby reduced by 0.270 to 0.076 mm, depending on 
the latitude of the sheet. Other parallels of lat. <1> are circular arcs with radii N cot 
<!>, intersecting the meridians which are true to scale at the correct points. The 
parallels strike other meridians at geometrically fixed locations which slightly 
deviate from the true scale on meridians as well as parallels. 

With this modified Polyconic, as with USGS quadrangles based on the rectified 
Polyconic, adjacent sheets exactly fit together not only north to south, but east to 
west. There is still a gap when mosaicking in all directions, in that there is a gap 
between each diagonal sheet and either one or the other adjacent sheet. 

In 1962, a U.N. conference on the IMW adopted the Lambert Conformal Conic 
and Polar Stereographic projections to replace the modified Polyconic (United 
Nations, 1963, p. 9-10). The USGS has prepared a number of sheets for the IMW 
series over the years according to the projection officially in use at the time. 

FORMULAS FOR THE IMW MODIFIED POL YCONIC 

Since the projection was designed solely for this series, the formulas below are 
based on the ellipsoid. They were derived in 1982 (Snyder, 1982b). The following 
symbols are used in these formulas: 

a = semimajor axis on the given reference ellipsoid 
C = distance on the map of latitude <1> from latitude <1> 11 measured along the 

central meridian of longitude A.0 

C 2 = distance on the map of latitude <!>2 from latitude <!>1, measured along the 
central meridian of longitude A.0 

e = eccentricity of the given reference ellipsoid 
M = distance on the ellipsoid along any meridian from the Equator to <1> 

M 2 = ditto for <1>2 

M 1 = ditto for <1>1 
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TABLE 19.-Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid 

[y coordinates in parentheses under x coordinates. Italic indicates h] 

Long.>.. oo 10 20 go 

Lat.l/> 

50° --------- 0 71,696 143,379 215,037 
(5,540,628) (5,541,107) (5,542,545) (5,544,941) 

1.000000 1.000063 1.000252 1.000568 

49 ---------- 0 73,172 146,331 219,465 
(5,429,409) (5,429,890) (5,431,336) (5,433,745) 

1.000000 1.000066 1.000269 1.000592 

48 ---------- 0 74,626 149,239 223,827 
(5,318,209) (5,318,693) (5,320,144) (5,322,564) 

1.000000 1.000068 1.000274 1.000616 

4 7 ---------- 0 76,056 152,100 228,119 
(5,207,028) (5,207,514) (5,208,970) (5,211,397) 

1.000000 1.000071 1.000284 1.000640 

46 ---------- 0 77,464 154,915 . 232,342 
(5,095,868) (5,096,354) (5,097,813) (5,100,244) 

1.000000 1.000074 1.000295 1.000664 

45 ---------- 0 78,847 157,682 236,493 
(4,984,727) (4,985,214) (4,986,673) (4,989,106) 

1.000000 1.000076 1.000806 1.000688 

44 ---------- 0 80,207 160,401 240,572 
(4,873,606) (4,874,092) (4,875,551) (4,877,982) 

1.000000 1.000079 1.000916 1.000712 

43° --------- 0 81,541 163,071 244,578 
(4, 762,505) (4, 762,990) (4, 764,446) (4, 766,872) 

1.000000 1.000082 1.000927 1.000796 

42 ---------- 0 82,851 165,691 248,508 
(4,651,423) (4,651,907) (4,653,358) (4,655,777) 

1.000000 1.000084 1.000998 1.000760 
41 __________ 0 84,136 168,260 252,363 

(4,540,361) (4,540,843) (4,542,288) (4,544,696) 
1.000000 1.000087 1.000948 1.000784 

40 ---------- 0 85,394 170,778 256,140 
(4,429,319) (4,429,798) (4,431,235) (4,433,630) 

1.000000 1.000090 1.000959 1.000808 

39 ---------- 0 86,627 173,243 259,839 
(4,318,296) (4,318,772) (4,320,199) (4,322,577) 

1.000000 1.000092 1.000969 1.000881 

38 ---------- 0 87,833 175,656 263,458 
(4,207,292) (4,207,764) (4,209,180) (4,211,539) 

1.000000 1.000095 1.000980 1.000855 

37 ---------- 0 89,012 178,015 266,997 
(4,096,308) (4,096, 775) ( 4, 098, 178) (4,100,515) 

1.000000 1.000098 1.000990 1.000878 

36 ---------- 0 90,164 180,319 270,455 
(3,985,342) (3,985,805) (3,987,192) (3,989,504) 

1.000000 1.000100 1.000400 1.000901 
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TABLE 19.-Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid-Continued 

Long.). oo 10 20 go 

Lat.</> 

35 ---------- 0 91,289 182,568 273,830 
(3,874,395) (3,874,852) (3,876,223) (3,878,507) 

1.000000 1.000103 1.000411 1.000924 

34 ---------- 0 92,385 184,762 277,121 
(3,763,467) (3,763,918) (3,765,270) (3,767,524) 

1.000000 1.000105 1.000421 1.000946 

33 ---------- 0 93,454 186,899 280,328 
(3,652,557) (3,653,001) (3,654,333) (3,656,554) 

1.000000 1.000108 1.000491 1.000969 

32 ---------- 0 94,494 188,980 283,449 
(3,541,665) (3,542,102) (3,543,413) (3,545,597) 

1.000000 1.000110 1.000440 1.000991 

31 ---------- 0 95,505 191,002 286,484 
(3,430, 790) (3,431,220) (3,432,507) (3,434,653) 

1.000000 1.000112 1.000450 1.001012 

30 ---------- 0 96,487 192,967 289,432 
(3,319,933) (3,320,354) (3,321,617) (3,323, 722) 

1.000000 1.000115 1.000459 1.001099 

29 ---------- 0 97,440 194,872 292,291 
(3,209,093) (3,209,506) (3,210,742) (3,212,803) 

1.000000 1.000117 1.000468 1.001054 

28 ---------- 0 98,363 196,719 295,062 
(3,098,270) (3,098,673) (3,099,882) (3,101,897) 

1.000000 1.000119 1.000477 1.001074 

27° --------- 0 99,256 198,505 297,742 
(2,987,463) (2,987,856) (2,989,036) (2,991,002) 

1.000000 1.000122 1.000486 1.001094 

26 ---------- 0 100,119 200,231 300,332 
(2,876,672) (2,877,055) (2,878,204) (2,880,119) 

1.000000 1.000124 1.000495 1.001119 

25 --------~- 0 100,951 201,896 302,831 
(2,765,896) (2,766,269) (2,767,386) (2,769,247) 

1.000000 1.000126 1.000503 1.001192 

24 ---------- 0 101,753 203,500 305,237 
(2,655,136) (2,655,497) (2,656,580) (2,658,386) 

1.000000 1.000128 1.000511 1.001150 

23 ---------- 0 102,523 205,042 307,551 
(2,544,390) (2,544,739) (2,545, 788) (2,547,536) 

1.000000 1.000130 1.000519 1.001168 

Note: x, y ; rectangular coordinates, meters; origin at <1>=0, J\;0. Y axis increasing north. 
h = scale factor along meridian. 
k ; scale factor along parallel = 1.0. 
l\ = longitude east of central meridian. For longitude west of central meridian reverse sign of x. 
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R = radius of circular arc for latitude <1> as shown on map 
R2 = ditto for <1>2 

R 1 =ditto for <1>1 

(x, y) =rectangular coordinates, with the origin at the intersection of <f>1 with 
· A0 , the y axis coinciding with the meridian of longitude A0 , y increasing 
northerly, and the x axis perpendicular, x increasing easterly 

A = longitude of any meridian (east longitude is positive) 
A0 = longitude of central meridian 
A1 =longitude of true-to-scale meridian east of the central meridian, 2° 

more than Ao for most quadrangles 
<1> =any geodetic (or geographic) latitude on the quadrangle map 
<1>2 = geodetic latitude of the northernmost parallel of a given quadrangle 

map (north latitude is positive) 
<1> 1 = geodetic latitude. of the southernmost parallel of the quadrangle map 

Care must be taken to use radians wherever angles are used without trigonomet
ric functions. 

The following constants apply to the entire map, given a, e, <1> 1, <1>2 , A1, and A0 : 

Xn =Rn sin Fn 
Yt = R1 (1-cos F 1) 

T2 = R2 (1-cos F2) 

where n = 1 and 2, and 

Rn =a cot <l>n1(1-e2 sin2 <l>n)112 

F n =(At- Ao) sin <l>n 

(18-23) 
(18-24) 
(18-25) 

(18-26) 
(18-27) 

with subscripts as required above, but if <l>n = 0, Rn is infinite and equations 
(18-23) and (18-24) are indeterminate, but y1 = 0, T2 = 0, and 

Also for the entire map, 

where 

Y2 = [(M2-Mt)2 - (x2-xt)2]112 + Yt 
C2 = Y2- Tz 
P = (M2Yt-MtY2)1(Mz-MI) 
Q = (y2-yl)/(M2-Mt) 
P' = (M2xt-MtXz)I(M2 -Mt) 
Q' = (xz-xl)!(Mz-Ml) 

Mn =a [(1-e2/4-3e4/64-5e6/256- ... ) cl>n 

(18-23a) 

(18-28) 
(18-29) 
(18-30) 
(18-31) 
(18-32) 
(18-33) 

- (3e2/8 + 3e4/32 + 45e6/1024 + ... ) sin 2<f>n 
+ (15e4/256+45e6/1024+ ... ) sin 4<1>n 
- (35e6/3072 + ... ) sin 6c:!>n + ... ] (3-21) 

with subscripts as required above. 
The following values are calculated for each point, given <1> and A; to find x andy: 

Xa = P' + Q' M 
Ya =P + QM 
C = Ya - R ± (R2-xa 2)112 

(18-34) 
(18-35) 
(18-36) 
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where the ±takes the same sign as <j>. If<!> = 0, equation (18-36) is indeterminate, 
but C = 0. M and R are found from (3-21) and (18-26), respectively, omitting 
subscripts n. Then 

Xb 

Yb 
Xc 

Yc 

but if <!>2 = 0, 

Xb 

Yb 

or if <!>1 = 0, 

Xc 

Yc 

Then 

D 
B 
X 

y 

= R 2 sin [(A.- A.0) sin <!>2] 

= C2 + R2 (1 - cos [(A.-A.0) sin <l>2JJ 
= R 1 sin [(A.-A.o) sin <l>d 
= R1 ! 1 - cos [(A.-X.0) sin <!>1]) 

=a (l..-l..o) 

=C2 

=a (A-Ao) 

=0 

= (xb-Xc)l(yb-Yc) 

= Xc + D (C +R-ye) 
= (B ± D [R2 (1 +D2)-B2]1'2)!(1 +D2) 
= C + R ± (R2-x2)112 

(18-37) 
(18-38) 
(18-39) 
(18-40) 

(18-37a) 
(18-38a) 

(18-39a) 
(18-40a) 

(18-41) 
(18-42) 
(18-43) 
(18-44) 

where the ±in (18-43) and (18-44) takes the sign opposite that of <j>. If <1> = 0, B 
and R are infinite, but 

(18-45) 
(18-46) 

For the inverse formulas for the IMW Modified Polyconic, given a, e, <1>2, <!>1 , 

Xb A.0 , x and y, to find <!> and X: 
Step 1: Constants are calculated: Xt, x2, Yl, Mt. M2, Y2, c2, P, Q, P'' and Q' 

from above equations (18-23) through (18-33) and (3-21). 
Step 2: A first trial (<\>, X), called (<!>t

1
, At

1
) are calculated: 

<l>tl = <!>2 
At

1 
= [x!(a cos <l>t)J + Ao 

(18-47) 
(18-48) 

Step 3: The first test values of (x, y), called (Xt
1

, Yt
1
), are calculated from C<!>t

1
, Xt), 

using the latter as (<\>, A) in equations (18-34) through (18-46). 
Step 4: Test values (Xt

1
, Yt) are used with the given (x, y) to adjust (<\>1,, At1), to 

provide second trial values of (<!>t:?, At
2
): 

<l>t
2 

= [(<l>t1-<l>l) (y-yc)I(Yt1 -yc)] + <!>1 
At:? = ((At1-Ao)X/Xt1] + Ao 

(18-49) 
(18-50) 

Step 5: Step 3 is repeated, but using (<l>tz, Xtz) as(<\>, A) to obtain (Xtz, Yt
2
). Step 4 is 

then repeated, replacing subscripts (t1, t2) with (t2, t3), respectively. Steps 3 
and 4 are repeated, changing subscripts, until the final (Xtn• Ytn) vary from 
(x, y), respectively, by an acceptable total absolute error, such as 1 meter 
(0.001 mm at map scale). 
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TABLE 20.-Modified Polyconic projection for IMW: 
Rectangular coordinates for the International ellipsoid 

Latitude Longitude difference (ll - l\0) 

oo ±10 ±20 

Rectangular coordinates (±x, y) meters 
40° 0.0 85395.9 170781.1 

443829.1 444308.8 445745.8 
39 0.0 86588.8 173167.1 

332842.0 333317.3 334743.2 
38 0.0 87781.4 175552.7 

221874.6 222345.9 223759.9 
37 0.0 88973.9 177937.9 

110927.3 111394.4 112795.5 
36 0.0 90166.1 180322.7 

0.0 462.5 1850.0 

Scale factors (h, k) 
40° 0.999641 0.999730 1.000000 

1.000000 1.000000 1.000000 
39 0.999631 0.999723 1.000000 

0.999541 0.999541 0.999540 
38 0.999620 0.999715 1.000000 

0.999394 0.999393 0.999393 
37 0.999610 0.999707 1.000000 

0.999549 0.999549 0.999549 
36 0.999599 0.999699 1.000000 

1.000000 1.000000 1.000000 

Rectangular coordinates (±x, y) meters 
oo ±20 ±40 

68° 0.0 83632.8 167177.9 
445868.7 447222.2 451281.3 

67 0.0 87188.5 174287.0 
334374.6 335774.8 339974.0 

66 0.0 90743.7 181395.1 
222898.0 224344.1 228680.9 

65 0.0 94298.3 188502.3 
111439.6 112930.7 117402.4 

64 0.0 97852.4 195608.5 
0.0 1535.1 6139.0 

Scale factors (h, k) 
68° 0.999657 0.999743 1.000000 

1.000000 1.000000 1.000000 
67 0.999627 0.999720 1.000000 

0.999533 0.999532 0.999531 
66 0.999596 0.999697 1.000000 

0.999394 0.999393 0.999391 
65 0.999564 0.999673 1.000000 

0.999557 0.999556 0.999555 
64 0.999530 0.999647 1.000000 

1.000000 1.000000 1.000000 

Note: l\0 is longitude of the central meridian of quadrangle, east being positive. 
ll is longitude. 
h is scale factor along meridian. 
k is scale factor along parallel. 

±30 

256144.8 
44&140.6 
259724.5 
337119.6 
263303.7 
226116.3 
266882.3 
115130.6 
270460.3 

4162.2 

1.000449 
1.000000 
1.000462 
0.999540 
1.000474 
0.999392 
1.000488 
0.999548 
1.000501 
1.000000 

±60 

250548.0 
458041.7 
261205.5 
346967.9 
271862.0 
235904.0 
282517.5 
124850.3 
293172.1 

13807.1 

1.000429 
1.000000 
1.000466 
0.999528 
1.000504 
0.999387 
1.000545 
0.999552 
1.000587 
1.000000 

Origin of rectangular coordinates occurs at minimum latitude and central meridian, y increasing northerly, x 
increasing easterly and taking the sign of (ll -'lo.0). 

Table applies to any quadrangle with the same latitude range. 
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}..I 
z 

3 go 

N. Lat. 

(W.) Long. 

FIGURE 26.-Typical IMW quadrangle graticule-modified Polyconic projection drawn to scale. Para
llels are nonconcentric circular arcs; meridians are straight. Lines of true scale are shown heavy. 
Standard projection for the International Map of the World Series (1:1,000,000-scale) until1962. 

Table 20 provides samples of rectangular coordinates calculated for each degree 
of typical mid-latitude and far-northern quadrangles. In addition, scale factors h 
(along the meridian) and k (along the parallel) are shown for the same graticules. 
The scale factors were calculated by comparing rectangular coordinates O.OJO of 
latitude apart at constant longitude with the true distances, for h, and a similar 
change in longitude at constant latitude, for k, rather than analytically. The linear 
scale error is seen to change less than about 0.06 percent throughout the 
quadrangle; the scale factor along any given parallel is almost constant, while a 
given meridian varies up to 0.015 percent in scale. The table is based on the 
International ellipsoid or spheroid, although the skeletal tables showing rectangular 
coordinates of parallels <)>1 and <)>2 and published in earlier technical papers are 
based on an ellipsoid with a semimajor axis of 6378.24 km and semiminor axis of 
6356.56 km. Figure 26 illustrates a typical graticule. 
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19. BONNE PROJECTION 

SUMMARY 

• Pseudoconical. 
• Central meridian is a straight line. Other meridians are complex curves. 
• Parallels are concentric circular arcs, but the poles are points. 
• Scale is true along the central meridian and along all parallels. 
• No distortion along the central meridian and along the standard parallel. 
• Used for atlas maps of continents and for topographic mapping of some countries. 
• Sinusoidal projection is equatorial limiting form of Bonne projection. 
• Used considerably by Bonne in mid-18th century, but developed by others 

during the early 16th century. 

HISTORY 

The name of Rigobert Bonne (1727-1795), a French geographer, is almost 
universally applied to an equal-area projection which has been used for both 
large- and small-scale mapping during the past 450 years. During the late 19th 
and early 20th centuries, the most conspicuous use of the Bonne projection was 
for maps of continents in atlases. 

The Italian Bernardus Sylvanus' world map of 1511 closely approaches the 
Bonne projection, since its meridians are almost equally spaced along the equidis
tant and concentric circular parallels. De l'Isle and Coronelli used the Bonne 
principle for maps of about 1700. Bonne used th~ projection most notably for a 
1752 maritime atlas of the coast of France (Reignier, 1957, p. 164). Continental 
maps of Europe and Asia appeared on this projection by 1763, and the ellipsoidal 
version replaced the Cassini projection for French topographic mapping begin
ning in 1803. 

For maps of continents, the Bonne was preceded by its polar limiting form, a 
cordiform (heart-shaped) world map devised by Johannes Stabius and given wider 
notice by Johannes Werner about 1514. The Werner projection, as it is usually 
called, was used in the late 16th century for maps of Asia and Africa by Mercator 
and Abraham Ortelius, but the "Bonne" projection has less distortion because its 
projection center is at the center of the region being mapped instead of at the 
pole. Eventually the Werner projection was made obsolete by the Bonne. 

FEATURES AND USAGE 

Like the Equidistant Conic with one standard parallel, the Bonne projection 
(fig. 27) has concentric circular arcs for parallels of latitude. They are equally 
spaced on the spherical form and spaced in proportion to the true distance along a 
meridian on the ellipsoidal form. The chosen standard parallel is given its true 
curvature on the map by making the radius of its circular arc equal to the distance 
between the parallel and the apex of a cone tangent at the parallel. 

Unlike the parallels on the Equidistant Conic and other regular conic projections, 
but like those on the Polyconic, each parallel is marked off for meridians at the 
true spacings on either the spherical or ellipsoidal versions, beginning at the 
straight central meridian. The individual meridians are then shown as complex 
curves connecting these points. This results in an equal-area projection with true 
scale along the central meridian and along each parallel, whether spherical or 
ellipsoidal. The central meridian and the standard parallel are free of local angular 
and shape distortion as well. The shape distortion increases away from either 
line, and meridians do not intersect parallels at right angles elsewhere, as they do 
on regular conic projections. 



19. BONNE PROJECTION 

FIGURE 27 .-Bonne projection with central parallel at lat. 40° N. Called a pseudoconic projection, this 
is equal-area and has no distortion along central meridian or central parallel. Popular in atlases 
for maps of continents until mid-20th century. 

The combination of curved meridians and concentric circular arcs for parallels 
has led to the classification of "pseudoconic" for the Bonne projection and for the 
polar limiting case, the Werner projection, on which the North Pole is the eql\iva
lent of the standard parallel. The limiting case with the Equator as the standard 
parallel is the Sinusoidal, a "pseudocylindrical" projection to be discussed later; 
the formulas must be changed in this case since the parallels of latitude are 
straight. Modifications to the Bonne projection, in some cases resulting in non
equal-area projections, were presented by Nell of Germany in 1890 and by Solov'ev 
of the Soviet Union in the 1940's (Maling, 1960, p. 295-296). 

Many atlases of the 19th and early 20th centuries utilized the Bonne projection 
to show North America, Europe, Asia, and Australia, while the Sinusoidal (as the 
equatorial Bonne) was used for South America and Africa. The Lambert Azi
muthal Equal-Area projection is now generally used by Rand McNally & Co. and 
Hammond Inc. for maps of continents, while the National Geographic Society 
prefers its own Chamberlin Trimetric projection for this purpose. 

Large-scale use of the Bonne projection for topographic mapping, originally 
introduced by France, is current chiefly in portions of France, Ireland, Morocco, 
and some countries in the eastern Mediterranean area (Clifford J. Mugnier, writ
ten commun., 1985). 

FORMULAS FOR THE SPHERE 

The principles stated above lead to the following forward formulas for rectangu
lar coordinates of the spherical form of the Bonne projection, given R, <h, )1.0 , <j>, 
and )1., and using radians in equation (19-1), 
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p = R (cot <1>1 + <h -<j>) 
E = R (A.- >..0) (cos Q>)/p 
x = p sinE 
y = R cot $ 1 - p cos E 

(19-1) 
(19-2) 
(19-3) 
(lg-4) 

where $1 is the chosen standard parallel. The Y axis coincides with >..0 , the central 
meridian, y increasing north, and the X axis is perpendicular at (<I> I> A.0), x increas
ing east. If(A.-A-0) exceeds the range ±180°, 360° must be added or subtracted to 
place it within range. If <1>1 = goo, the Werner projection results, but if Q> is also goo, 
equation (19-2) is indeterminate, and x andy are both zero. 

The inverse formulas for the sphere, given R, $ 1, A.0 , x, andy, to find (Q>, A.): 

p = ±[x2 + (R cot <j>1 - y)2] 112, taking the sign of <!> 1 

<l> = cot <!>1 + <!>1 - p/R 
>.. = A.0 + p ( arctan [x!(R cot <j>1 - y)]j!(R cos Q>) 

(19-5) 
(19-6) 
(19-7) 

using the Q> determined from (19-6). If Q> = ±90°, (19-7) is indeterminate, but A 
may be given any value, such as A.0 • When using the Fortran ATAN2 function 
for equation (19-7), and $ 1 is negative, the signs of x and (R cot $ 1 -y) must 
be reversed before insertion into the equation. 

FORMULAS FOR THE ELLIPSOID 

For the forward formulas, given a, e, <l>v A.0 , <j>, and A., to find x and y, the 
following are calculated in order: 

m =cos <j>/(1-e2 sin2 <j>)II2 
M = a[(1-e2/4-3e4164-5e6/256- . ... ) 4> 

-(3e2/8+3e4/32+45e6/1024+ ... ) sin 2<1> 
+ (15e4/256 + 45e6/1024 + ... ) sin 44> 
- (35e6 /3072 + . . . ) sin 64> + . . . ] 

p = am1/sin cf>1 +M1-M 
E = am(>..-A0)/p 
x = p sinE 
y = am1/sin <1>1 - p cos E 

(14-15) 

(3-21) 
(19-8) 
(19-9) 

(19-10) 
(19-11) 

where 4>1 is the chosen central parallel, and m 1 and M1 are found from (14-15) 
and (3-21), respectively, by using <!>1 instead of <J>. Axes are the same as those 
for the spherical form. If both 4> and <1>1 are at the same pole, equation (19-9) 
is indeterminate, but x and y are both zero. 

For the inverse formulas for the ellipsoid, given a, e, <l>t. >..0 , x and y, to find 
4> and A, first m 1 and M 1 are calculated as in the forward case from equations 
(14-15) and (3-21) above. The following are then calculated in order: 

p = ±[x2 + (am1/sin <f>cyl]112 , taking the sign of <1>1 
M = am1/sin <f>1 +M1-P 
J..l = M![a(1-e214-3e4/64-5e6!256- . .. )] 
el = [1-(1-e2)112]/[1+(1-e2)112] 
<!> = J.L+(3e1/2-27e1

3/32+ ... ) sin 2J.L+(21e1
2/16 

-55e1
4/32+ ... ) sin 4J.L+(151e1

3/96- ... ) sin 6J.L 
+(1097e1

4/512-... ) sin 8J.L+ ... 

From (14-15), m is calculated for <!>, then 

>.. = l\.0 + p(arctan[x/(am1/sin 4>1 -y)]jl(am) 

(19-12) 
(19-13) 
(7-19) 
(3-24) 

(3-26) 

(19-14) 

When using the Fortran ATAN2 function for equation (19-14), and $ 1 is negative, 
the signs of x and (am1/sin <1>1 - y) must be reversed before insertion into the 
equation. If <l> = ±90°, (19-14) is indeterminate, but A. may be given any value, such 
as l\.0 • 
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AZIMUTHAL AND RELATED MAP PROJECTIONS 

A third very important group of map projections, some of which have been 
known for 2,000 years, consists of five major azimuthal (or zenithal) projections 
and various less-common forms. While cylindrical and conic projections are related 
to cylinders and cones wrapped around the globe representing the Earth, the 
azimuthal projections are formed onto a plane which is usually tangent to the 
globe at either pole, the Equator, or any intermediate point. These variations are 
called the polar, equatorial (or meridian or meridional), and oblique (or horizon) 
aspects, respectively. Some azimuthals are true perspective projections; others 
are not. Although perspective cylindrical and conic projections are much less used 
than those which are not perspective, the perspective azimuthals are frequently 
used and have valuable properties. Complications arise when the ellipsoid is 
involved, but it is used only in special applications that are discussed below. 

As stated earlier, azimuthal projections are characterized by the fact that the 
direction, or azimuth, from the center of the projection to every other point on the 
map is shown correctly. In addition, on the spherical forms, all great circles 
passing through the center of the projection are shown as straight lines. Therefore, 
the shortest route from this center to any other point is shown as a straight line. 
This fact made some of these projections especially popular for maps as flight and 
radio transmission became commonplace. 

The five principal azimuthals are as follows: 
1. Orthographic. A true perspective, in which the Earth is projected from an 

infinite distance onto a plane. The map looks like a globe, thus stressing the 
roundness of the Earth. 

2. Stereographic. A true perspective in the spherical form, with the point of 
perspective on the surface of the sphere at a point exactly opposite the point 
of tangency for the plane, or opposite the center of the projection, even if the 
plane is secant. This projection is conformal for sphere or ellipsoid, but the 
ellipsoidal form is not truly perspective. 

3. Gnomonic. A true perspective, with the Earth projected from the center onto 
the tangent plane. All great circles, not merely those passing through the 
center, are shown as straight lines on the spherical form. 

4. Lambert Azimuthal Equal-Area. Not a true perspective. Areas are cor
rect, and the overall scale variation is less than that found on the major 
perspective azimuthals. 

5. Azimuthal Equidistant. Not a true perspective. Distances from the center 
of the projection to any other point are shown correctly. Overall scale varia
tion is moderate compared to the perspective azimuthals. 

A sixth azimuthal projection of increasing interest in the space age is the general 
Vertical Perspective (resembling the Orthographic), projecting the Earth from 
any point in space, such as a satellite, onto a tangent or secant plant. It is used 
primarily in derivations and pictorial representations. 

As a group, the azimuthals have unique esthetic qualities while remaining 
functional. There is a unity and roundness of the Earth on each (except perhaps 
the Gnomonic) which is not as apparent on cylindrical and conic projections. 

The simplest forms of the azimuthal projections are the polar aspects, in which 
all meridians are shown as straight lines radiating at their true angles from the 
center, while parallels of latitude are circles, concentric about the pole. The 
difference is in the spacing of the parallels. Table 21 lists for the five principal 
azimuthals the radius of every 10° of latitude on a sphere of radius 1.0 unit, 
centered on the North Pole. Scale factors and maximum angular deformation are 
also shown. The distortion is the same for the oblique and equatorial aspects at 
the same angular distance from the center of the projection, except that h and k 
are along and perpendicular to, respectively, radii from the center, not necessar
ily along meridians or parallels. 
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TABLE 21.-Comparison of major azimuthal projections: Radius, scale factors, maximum angular 
distortion for projection of sphere with radius 1. 0, North Polar aspect 

Lat. 

90° ----------------------------80 ____________________________ _ 
70 ____________________________ _ 
60 ____________________________ _ 
50 ____________________________ _ 
40 _______ _: ____________________ _ 
30 ____________________________ _ 
20 ____________________________ _ 
10 ____________________________ _ 

0 ----------------------------
-10 -----------------------------
- 20 -----------------------------
- 30 -----------------------------

Radius 

0.00000 
.17365 
.34202 
.50000 
.64279 
.76604 
.86603 
.93969 
.98481 

1.00000 

Orthographic 
h k 

1.00000 
.98481 
.93969 
.86603 
.76604 
.64279 
.50000 
.34202 
.17365 
.00000 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

"' 
0.000° 

.877 
3.563 
8.234 

15.23 
25.12 
38.94 
58.72 
89.51 

180.0 

- 40 ----------------------------- (beyond limits of map) 
-50 -----------------------------
- 60 -----------------------------
-70 ------------------------------
- 80 -----------------------------
- 90 -----------------------------

Lat. 

90° -----------------------------------80 ___________________________________ _ 
70 ___________________________________ _ 
60 ___________________________________ _ 
50 ___________________________________ _ 
40 ___________________________________ _ 
30 ___________________________________ _ 
20 ___________________________________ _ 
10 ___________________________________ _ 
o ___________________________________ _ 

- 10 ------------------------------------
- 20 ------------------------------------
- 30 ------------------------------------
- 40 ------------------------------------
- 50 ------------------------------------
- 60 ------------------------------------
- 70 -------------------------------------80 ___________________________________ _ 

- 90 ------------------------------------

Stereographic 
Radius k• 

0.00000 
.17498 
.35263 
.53590 
.72794 
.93262 

1.15470 
1.40042 
1.67820 
2.00000 
2.38351 
2.85630 
3.46410 
4.28901 
5.49495 
7.46410 

11.3426 
22.8601 

00 

1.00000 
1.00765 
1.03109 
1.07180 
1.13247 
1.21744 
1.33333 
1.49029 
1.70409 
2.00000 
2.42028 
3.03961 
4.00000 
5.59891 
8.54863 

14.9282 
33.1634 

131.646 
00 

There are two principal drawbacks to the azimuthals. First, they are more 
difficult to construct than the cylindricals and the conics, except for the polar 
aspects. This drawback was more applicable, however, in the days before comput
ers and plotters, but it is still more difficult to prepare a map having complex 
curves between plotted coordinates than it is to draw the entire graticule with 
circles and straight lines. Nevertheless, an increased use of azimuthal projections 
in atlases and for other published maps may be expected. 

Secondly, most azimuthal maps do not have standard parallels or standard 
meridians. Each map has only one standard point: the center (except for the 
Stereographic, which may have a standard circle). Thus, the azimuthals are suit
able for minimizing distortion in a somewhat circular region such as Antarctica, 
but not for an area with predominant length in one direction. 
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TABLE 21.-Comparison of major azimuthal projections: Radius, scale factors, maximum angular 
distortion for projection of sphere with rndius 1.0, North Polar aspect-Continu~d 

Lat. 
Radius 

90° ------------------------ 0.00000 
80 ------------------------- .17633 
70 ------------------------- .36397 
60 ------------------------- .57735 50 _____________________ _.:___ .83910 

40------------------------- 1.19175 
30 ------------------------- 1. 73205 
20 ------------------------- 2. 7 4 7 48 
10------------------------- 5.67128 
0 ------------------------- 00 

-10-------------------------
- 20 -------------------------
- 30 -------------------------

Gnomonic 
h k 

1.00000 1.00000 
1.03109 1.01543 
1.13247 1.06418 
1.33333 1.15470 
1.70409 1.30541 
2.42028 1.55572 
4.00000 2.00000 
8.54863 2.92380 
33.1634 5.75877 

00 00 

-40 ------------------------- (beyond limits of map) 
-50 -------------------------
- 60 -------------------------
- 70 -------------------------
- 80 -------------------------
- 90 --------------------------

w 

0.000° 
.877 

3.563 
8.234 

15.23 
25.12 
38.94 
58.72 
89.51 

Lat. 
Lambert Azimuthal Equal-Area 

90° ----------------------
80 -----------------------
70 -----------------------
60 -----------------------
50 -----------------------
40 -----------------------
30 -----------------------
20 -----------------------
10 -----------------------
0 ----------------------

-10 -----------------------
-20 -----------------------
-30 -----------------------
-40 -----------------------
-50 -----------------------
-60 -----------------------
-70 -----------------------
-80 -----------------------
-90 -----------------------

Radius h k 

0.00000 
.17431 
.34730 
.51764 
.68404 
.84524 

1.00000 
1.14715 
1.28558 
1.41421 
1.53209 
1.63830 
1.73205 
1.81262 
1.87939 
1.93185 
1.96962 
1.99239 
2.00000 

1.00000 
.99619 
.98481 
.96593 
.93969 
.90631 
.86603 
.81915 
.76604 
.70711 
.64279 
.57358 
.50000 
.42262 
.J4202 
.25882 
.17365 
.08716 
.00000 

1.00000 
1.00382 
1.01543 
1.03528 
1.06418 
1.10338 
1.15470 
1.22077 
1.30541 
1.41421 
1.55572 
1.74345 
2.00000 
2.36620 
2.92380 
3.86370 
5.75877 

11.4737 
00 

w 

0.000° 
.437 

1.754 
3.972 
7.123 

11.25 
16.43 
22.71 
30.19 
38.94 
49.07 
60.65 
73.74 
88.36 

104.5 
122.0 
140.6 
160.1 
180.0 
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TABLE 21.-Comparison of major azimuthal projections: Radius, scale factors, maximum angular 
distortion for projection of sphere with radius 1. 0, North Polar aspect 

Lat. 

90° ----------------------
80 -----------------------
70 -----------------------
60 -----------------------
60 -----------------------
40 -----------------------
30 -----------------------
20 -----------------------
10 -----------------------
0 ----------------------

-10 -----------------------
-20 -----------------------
-30 -----------------------
-40 -----------------------
-50 -------·----------------
-60 -----------------------
-70 -----------------------
-80 -----------------------
-90 -----------------------

Radius 

0.00000 
.17453 
.34907 
.52360 
.69813 
.87266 

1.04720 
1.22173 
1.39626 
1.57080 
1.74533 
1.91986 
2.09440 
2.26893 
2.44346 
2.61799 
2.79253 
2.96706 
3.14159 

Radius = radius of circle slwwing given latitude. 

w = maximum angular deformation. 
h = scale factor along meridian of longitude. 
k = scale factor along parallel of latitude. 

• For Stereographic, h = k and w = 0. 

Azimuthal Equidistant 
h k 

1.0 1.00000 
1.0 1.00510 
1.0 1.02060 
1.0 1.04720 
1.0 1.08610 
1.0 1.13918 
1.0 1.20920 
1.0 1.30014 
1.0 1.41780 
1.0 1.57080 
1.0 1.77225 
1.0 2.04307 
1.0 2.41840 
1.0 2.96188 
1.0 3.80135 
1.0 5.23599 
1.0 8.16480 
1.0 17.0866 
1.0 00 

w 

0.000° 
.291 

1.168 
2.642 
4.731 
7.461 

10.87 
15.00 
19.90 
25.66 
32.35 
40.09 
49.03 
59.36 
71.39 
85.57 

102.8 
125.6 
180.0 
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20. ORTHOGRAPHIC PROJECTION 

SUMMARY 

• Azimuthal. 
• All meridians and parallels are ellipses, circles, or straight lines. 
• Neither conformal nor equal-area. 
• Closely resembles a globe in appearance, since it is a perspective projection 

from infinite distance. 
• Only one hemisphere can be shown at a time. 
• Much distortion near the edge of the hemisphere shown. 
• No distortion at the center only. 
• Directions from the center are true. 
• Radial scale factor decreases as distance increases from the center. 
• Scale in the direction of the lines of latitude is true in the polar aspect. 
• Used chiefly for pictorial views. 
• Used only in the spherical form. 
• Known by Egyptians and Greeks 2,000 years ago. 

HISTORY 

To the layman, the best known perspective azimuthal projection is the 
Orthographic, although it is the least useful for measurements. While its distor
tion in shape and area is quite severe near the edges, and only one hemisphere 
may be shown on a single map, the eye is much more willing to forgive this 
distortion than to forgive that of the Mercator projection because the Ortho
graphic projection makes the map look very much like a globe appears, especially 
in the oblique aspect. 

The Egyptians were probably aware of the Orthographic projection, and 
Hipparchus of Greece (2nd century B.C.) used the equatorial aspect for astronomi
cal calculations. Its early name was "analemma," a name also used by Ptolemy, 
but it was replaced by "orthographic" in 1613 by Fran<;ois d' Aiguillon of Antwerp. 
While it was also used by Indians and Arabs for astronomical purposes, it is not 
known to have been used for world maps older than 16th-century works by 
Albrecht Durer (1471-1528), the German artist and cartographer, who prepared 
polar and equatorial versions (Keuning, 1955, p. 6). 

FEATURES 

The point of perspective for the Orthographic projection is at an infinite distance, 
so that the meridians and parallels are projected onto the tangent plane with 
projection lines. All meridians and parallels are shown as ellipses, circles, or 
straight lines. 

As on all polar azimuthal projections, the meridians of the polar Orthographic 
projection appear as straight lines radiating from the pole at their true angles, 
while the parallels of latitude are complete circles centered about the pole. On the 
Orthographic, the parallels are spaced most widely near the pole, and the spacing 
decreases to zero at the Equator, which is the circle marking the edge of the map 
(figs. 28, 29A). As a result, the land shapes near the pole are prominent, while 
lands near the Equator are compressed so that they can hardly be recognized. In 
spite of the fact that the scale along the meridians varies from the correct value at 
the pole to zero at the Equator, the scale along every parallel is true. 

The equatorial aspect of the Orthographic projection has as its center some 
point on the Earth's Equator. Here, all the parallels of latitude including the 
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FIGURE 28.-Geometric projection of the parallels of the polar Orthographic projection. 

Equator are seen edge-on; thus, they appear as straight parallel lines (fig. 29B). 
The meridians, which are shaped like circles on the sphere, are projected onto the 
map at various inclinations to the lines of perspective. The central meridian, seen 
edge-on, is a straight line. The meridian 90° from the central meridian is shown as 
a circle marking the limit of the equatorial aspect. This circle is equidistantly 
marked with parallels of latitude. Other meridians are ellipses of eccentricities 
ranging from zero (the bounding circle) to 1.0 (the central meridian). 

The oblique Orthographic projection, with its center somewhere between the 
Equator and a pole, gives the classic globelike appearance; and in fact an oblique 
view, with its center near but not on the Equator or pole, is often preferred to the 
equatorial or polar aspect for pictorial purposes. On the oblique Orthographic, the 
only straight line is the central meridian, if it is actually portrayed. AI\ parallels of 
latitude are ellipses with the same eccentricity (fig. 29C). Some of these ellipses 
are shown completely and some only partially, while some cannot be shown at all. 
All other meridians are also ellipses of varying eccentricities. No meridian appears 
as a circle on the oblique aspect. 

The intersection of any given meridian and parallel is shown on an Ortho
graphic projection at the same distance from the central meridian, regardless of 
whether the aspect is oblique, polar, or equatorial, provided the same central 
meridian and the same scale are maintained. Scale and distortion, as on all azi
muthal projections, change only with the distance from the center. The center of 
projection has no distortion, but the outer regions are compressed, even though 
the scale is true along all circles drawn about the center. (These circles are not 
"standard" lines because the scale is true only in the direction followed by the 
line.) 

USAGE 

The Orthographic projection seldom appears in atlases, except as a globe in 
relief without meridians and parallels. When it does appear, it provides a striking 
view. Richard Edes Harrison has used the Orthographic for several maps in an 
atlas of the 1940's partially based on this projection. Frank Debenham (1958) used 
photograph~d relief globes extensively in The Global Atlas, and Rand McNally 
has done likewise in their world atlases since 1960. The USGS has used it occasion
ally as a frontispiece or end map (USGS, 1970; Thompson, 1979), but it also 
provided a base for definitive maps of voyages of discovery across the North 
Atlantic (USGS, 1970, p. 133). 

It became especially popular during the Second World War when there was 
stress on the global nature of the conflict. With some space flights of the 1960's, 
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FIGURE 29.-0rthographic projection. (A) Polar aspect. (B) Equatorial aspect, approximately the view of the Moon, 
Mars, and other outer planets as seen from the Earth. (C) Oblique aspect, centered at lat. 40° N., giving the classic 
globelike view. 
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FIGURE 30.-Geometric construction of polar, equatorial, and oblique Orthographic projections. 

the first photographs of the Earth from space renewed consciousness of the 
Orthographic concept. 

GEOMETRIC CONSTRUCTION 

The three aspects of the Orthographic projection may be graphically constructed 
with an adaptation of the draftsman's technique shown by Raisz (1962, p. 180). 
Referring to figure 30, circle A is drawn for the polar aspect, with meridians 
marked at true angles. Perpendiculars are dropped from the intersections of the 
outer circle with the meridians onto the horizontal meridian EE. This determines 
the radii of the parallels of latitude, which may then be drawn about the center. 

For the equatorial aspect, circle C is drawn with the same radius as A, circle B 
is drawn like half of circle A, and the outer circle of Cis equidistantly marked to 
locate intersections of parallels with that circle. Parallels of latitude are drawn as 
straight lines, with the Equator midway. Parallels are shown tilted merely for 
use with oblique projection circleD. Points at intersections of parallels with other 
meridians of B are then projected onto the corresponding parallels of latitude on 
C, and the new points connected for the meridians of C. By tilting graticule C at 
an angle <!> 1 equal to the central latitude of the desired oblique aspect, the corre
sponding points of circles A and C may be projected vertically and horizontally, 
respectively, onto circleD to provide intersections for meridians and parallels. 

FORMULAS FOR THE SPHERE 

To understand the mathematical concept of the Orthographic projection, it is 
helpful to think in terms of polar coordinates p and 8: 

p =R sin c 
8 = 1r-Az= 180°-Az 

(20-1) 
(20-2) 
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'where c is the angular distance of the given point from the center of projection. 
Az is the azimuth east of north, and e is the polar coordinate east of south. The 
distance from the center of a point on an Orthographic map projection is thus 
proportional to the sine of the angular distance from the center on the sphere. 
Applying equations (5-3), (5-4), and (5-4a) for great circle distance c and azi
muth Az in terms of latitude and longitude, and equations for rectangular coordi
nates in terms of polar coordinates, the equations for rectangular coordinates for 
the oblique Orthographic projection reduce to the following, given R, <!>1> Ao, Q>, 
and A (see p. 311 for numerical examples): 

x == R cos <1> sin (A-A0) 

y = R[cos<j>1 sin Q>-sin<\>1 cos <I> cos (A-A0)] 

h' ==cos c 
= sin <\>1 sin <I>+ cos <\> 1 cos <1> cos (A- A0) 

k' = 1.0 

(20-3) 
(20-4) 

(20-5) 

where <\> 1 and Ao are the latitude and longitude, respectively, of the center point 
and origin of the projection, h' is the scale factor along a line radiating from the 
center, and k' is the scale factor in a direction perpendicular to a line radiating 
from the center. The Y axis coincides with the central meridian X-0 , y increasing 
northerly. All the parallels are ellipses of eccentricity cos Q>1 . The limit of the map 
is a circle of radius R. 

For the north polar Orthographic, letting <\>1 =90°, xis still found from (20-3), 
but 

In polar coordinates, 

y = -R cos<\> cos (A-A0) 

h =sin <1> 

p = R cos<!> 
e = A-A0 

(20-6) 
(20-7) 

(20-8) 
(20-9) 

For the south polar Orthographic, with <1>1 = -90°, x does not change, but 

y = R cos<\> cos (A-A0) 

h = -sin <1> 

For polar coordinates, pis found from (20-8), but 

(20-10) 
(20-11) 

(20-12) 

For the equatorial Orthographic, letting <1>1 = 0, x still does not change from 
(20-3), but 

· y =R sin <1> (20-13) 

In automatically computing a general set of coordinates for a complete Ortho
graphic map, the distance c from the center should be calculated for each intersec
tion of latitude and longitude to determine whether it exceeds 90° and therefore 
whether the point is beyond the range of the map. More directly, using equation 
(5-3), 

cos c =sin <\>1 sin <1> +cos <\> 1 cos <1> cos (A.- A0 ) (5-3) 

if cos cis zero or positive, the point is to be plotted. If cos cis negative, the point 
is not to be plotted. 
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For the inverse formulas for the sphere, to find <!> and X., given R, <!>1> '11.0 , x, 
andy: 

<!>=arcsin [cos c sin <!>I+ (y sin c cos <I>I/p)] (20-14) 

Ifp = 0, equations(20-14)through(20-17)areindeterminate, but<!>= <PI and 'A= 
'11.0• If <!>1 is not ±90°, 

X.= '11.0 +arctan [x sin c/(p cos <!>1 cos c-y sin <!>I sin c)] (20-15) 

X.= A.0 +arctan [x!( -y)] (20-16) 

A.= A.0 +arctan (x!y) (20-17) 

Note that, while the ratio [x/( -y)] in (20-16) is numerically the same as ( -xly), 

the necessary quadrant adjustment is different when using the Fortran ATAN2 
function or its equivalent. 

In equations (20-14) and (20-15), 

P = (xz + yz)112 

c = arcsin (p/R) 
(20-18) 
(20-19) 

Simplification for inverse equations for the polar and equatorial aspects is obtained 
by giving <!>1 values of ±90° and oo, respectively. They are not given in detail here. 

Tables 22 and 23 list rectangular coordinates for the equatorial and oblique 
aspects, respectively, for a 10° graticule with a sphere of radius R = 1.0. For the 
oblique example <!> 1 = 40°. 
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TABLE 22.-0rthographic projection: Rectangular coordinates for equatorial aspect 

Long. oo 10° 20° 30° 40° 
Lat. y X 

90° --- 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 ---- .9848 .0000 .0302 .0594 .0868 .1116 
70 ---- .9397 .0000 .0594 .1170 .1710 .2198 
60 ---- .8660 .0000 .0868 .1710 .2500 .3214 
50 ---- .7660 .0000 .1116 .2198 .3214 .4132 
40 ---- .6428 .0000 .1330 .2620 .3830 .4924 
30 ---- .5000 .0000 .1504 .2962 .4330 .5567 
20 ---- .3420 .0000 .1632 .3214 .4698 .6040 
10 ---- .1736 .0000 .1710 .3368 .4924 .6330 
0 ---- .0000 .0000 .1736 .3420 .5000 .6428 

Long. 50° 60° 70° 80° 90° 
Lat. X 

90° --- 0.0000 0.0000 0.0000 0.0000 0.0000 
80 ---- .1330 .1504 .1632 .1710 .1736 
70 ---- .2620 .2962 .3214 .3368 .3420 
60 ---- .3830 .4330 .4698 .4924 .5000 
50 ---- .49.24 .5567 .6040 .6330 .6428 
40 ---- .5868 .6634 .7198 .7544 .7660 
30 ---- .6634 .7500 .8138 .8529 .8660 
20 ---- .7198 .8138 .8830 .9254 .9397 
10 ---- .7544 .8529 .9254 .9698 .9848 
0 ---- .7660 .8660 .9397 .9848 1.0000 

Radius of sphere = 1. 0 
Origin: (x, y) = 0 at Oat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical. 
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TABLE 23.-0rthographic projection: Rectangular coordinates for oblique aspect centered at lat. 
4()o N. 

[The circle bounding the hemisphere map has the same coordinates as the ll=90" circle on the equatorial Orthographic projection. 
The radius of the sphere= 1.0. y coordinate in parentheses under x coordinate] 

~ 
oo 100 20° 30° 40° 

. 
goo ------------ 0.0000 0.0000 0.0000 0.0000 0.0000 

( .7660) ( .7660) ( .7660) ( .7660) ( .7660) 
80 ------------ .0000 .0302 .o5g4 .0868 .1116 

.6428) ( .6445) .64g5) .6577) .6689) 
70 ------------ .0000 .o5g4 .1170 .1710 .21g8 

.5000) ( .5033) .5133) .5295) .5514) 
60 ------------ .0000 .0868 .1710 .2500 .3214 

.3420) ( .3469) .3614) .3851) .4172) 
50 ------------ .0000 .1116 .2198 .3214 .4132 

.1736) ( .17g9) .1986) .2290) .2703) 
40 ------------ .0000 .1330 .2620 .3830 .4g24 

.0000) ( .0075) .0297) .0660) .1152) 
30 ------------ .0000 .1504 .2962 .4330 .5567 

(- .1736) ( -.1652) ( -.1401) (- .0991) (- .0434) 
20 ------------ .0000 .1632 .3214 .4698 .6040 

(- .3420) (-.3328) (- .3056) (- .2611) (- .2007) 
10 ------------ .0000 .1710 .3368 .4924 .6330 

( -.5000) (- .4904) ( -.4618) (- .4152) (- .351g) 
0 ------------ .0000 .1736 .3420 .5000 .6428 

(-.6428) (-.6330) ( -.6040) (- .5567) (- .4g24) 
-10 ------------ .0000 .1710 .3368 .4g24 .6330 

(-.7660) (- .7564) (- .7279) (- .6812) (- .6179) 
-20 ------------ .0000 .1632 .3214 .4698 .6040 

(- .8660) (-.8568) ( -.8296) (- .7851) (- .7247) 
-30 ------------ .0000 .1504 .2g62 .4330 .5567 

(- ,g3g7) (- .9312) ( __ go61) (- .8651) (- .8og5) 
-40 ------------ .0000 .1330 .2620 .3830 .4924 

(- ,g848) (- .9773) (- .9551) (- .9188) ( -.8696) 
-50 ------------ .0000 

( -1.0000) 

Origin: (x, y) = 0 at (lat., long.)= (40°, 0). Y axis increases north. Coordinates shown for central meridian (A= 0) and 
meridians east of central meridian. For meridians west (negative), reverse signs of meridians and of x. 

~ 100° 110° 120° 130° 140° 
Lat. 

goo -------------- 0.0000 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) ( .7660) 

80 --------------- .1710 .1632 .1504 .1330 .1116 
.7738) .7926) .8102) .8262) .83g9) 

70 --------------- .3368 .3214 .2962 .2620 .2198 
.7580) .7950) .82g8) .8612) .8883) 

60 --------------- .4924 .46g8 .4330 .3830 .3214 
.7192) .7733) .8241) .8700) .9096) 

50 --------------- .6330 .6040 .5567 .4924 .4132 
.6586) .7281) .7g34) .8524) _go33) 

40 --------------- .7544 .71g8 .6634 .5868 
.577g) .6608) ( .7386) .8089) 

30 --------------- .852g .8138 
.47g7) .5734) 

20 --------------- ,g254 
.3669) 
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TABLE 23.-0rthographic projection: Rectangular coordinates for oblique aspect centered at lat. 
40° N.-Continued 

~ 50° 60° 70° 80° 90° 
. 

90° ------------ 0.0000 0.0000 0.0000 0.0000 0.0000 
( .7660} ( .7660) ( .7660) ( .7660) ( .7660) 

80 ------------ .1330 .1504 .1632 .1710 .1736 
( .6827) .6986) ( .7162) .7350) .7544) 

70 ------------ .2620 .2962 .3214 .3368 .3420 
.5785) .6099) .6447) .6817) .7198) 

60 ------------ .3830 .4330 .4698 .4924 .5000 
.4568) .5027) .5535) .6076) .6634) 

50 -----·------- .4924 .5567 .6040 .6330 .6428 
( .3212) .3802) .4455) .5151) .5868) 

40 ------------ .5868 .6634 .7198 .7544 .7660 
( .1759) .2462) .3240) .4069) .4924) 

30 ------------ .6634 .7500 .8138 .8529 .8660 
( .0252) .1047) .1926) .2864) .3830) 

20 ------------ .7198 .8138 .8830 .9254 .9397 
( -.1263) (- .0400) .0554) .1571) .2620) 

10 ------------ .7544 .8529 .9254 .9698 .9848 
(- .2739) (- .1835) (- .0835) .0231) ( .1330) 

0 ------------ .7660 .8660 .9397 .9848 1.0000 
(- .4132) (- .3214) (- .2198) (- .1116) ( .0000) 

-10 ------------ .7544 .8529 .9254 .9698 
(- .5399) (- .4495) (- .3495) (- .2429) 

-20 ------------ .7198 .8138 .8830 
(- .6503) (- .5640) (- .4686) 

-30 ------------ .6634 .7500 
(- .7408) (- .6614) 

-40 ------------

~ 150° 160° 170° 180° 
. 

90° -------------- 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) 

80 --------------- .0868 .0594 .6302 .0000 
( .8511) ( .8593) ( .8643) ( .8660) 

70 --------------- .1710 .1170 .0594 .0000 

60 ---------------

( .9102) 
.2500 

( .9264) 
.1710 

( .9364) 
.0868 

( .9397) 
.0000 

( .9417) ( .9654) ( .9799) ( .9848) 

50 --------------- .3214 .2198 .1116 .0000 

40 ---------------

( .9446) ( .9751) ( .9937) (1.0000) 
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21. STEREOGRAPHIC PROJECTION 

SUMMARY 

• Azimuthal. 
• Conformal. 
• The central meridian and a particular parallel (if shown) are straight lines. 
• All meridians on the polar aspect and the Equator on the equatorial aspect are 

straight lines. 
• All other meridians and parallels are shown as arcs of circles. 
• A perspective projection for the sphere. 
• Directions from the center of the projection are true (except on ellipsoidal 

oblique and equatorial aspects). 
• Scale increases away from the center of the projection. 
• Point opposite the center of the projection cannot be plotted. 
• Used for polar maps and miscellaneous special maps. 
• Apparently invented by Hipparchus (2nd century B.C.). 

HISTORY 

The Stereographic projection was probably known in its polar form to the 
Egyptians, while Hipparchus was apparently the first Greek to use it. He is 
generally considered its inventor. Ptolemy referred to it as "Planisphaerum," a 
name used into the 16th century. The name "Stereographic" was assigned to it by 
Fran~ois d' Aiguillon in 1613. The polar Stereographic was exclusively used for 
star maps until perhaps 1507, when the earliest-known use for a map of the world 
was made by Walther Ludd (Gaultier Lud) of St. Die, Lorraine. 

The oblique aspect was used by Theon of Alexandria in the fourth century for 
maps of the sky, but it was not proposed for geographical maps until Stabius and 
Werner discussed it together with their cordiform (heart-shaped) projections in 
the early 16th century. The earliest-known world maps were included in a 1583 
atlas by Jacques de Vaulx (c. 1555-97). The two hemispheres were centered on 
Paris and its opposite point, respectively. 

The equatorial Stereographic originated with the Arabs, and was used by the 
Arab astronomer Ibn-el-Zarkali (1029-87) of Toledo for an astrolabe. It became a 
basis for world maps in the early 16th century, with the earliest-known examples 
by Jean Roze (or Rotz), a Norman, in 1542. After Rumold (the son of Gerardus) 
Mercator's use of the equatorial Stereographic for the world maps of the atlas of 
1595, it became very popular among cartographers (Keuning, 1955, p. 7-9; 
Nordenskiold, 1889, p. 90, 92-93). 

FEATURES 

Like the Orthographic, the Stereographic projection is a true perspective in its 
spherical form. It is the only known true perspective projection of any kind that is 
also conformal. Its point of projection is on the surface of the sphere at a point just 
opposite the point of tangency of the plane or the center point of the projection 
(fig. 31). Thus, if the North Pole is the center of the map, the projection is from 
the South Pole. All of one hemisphere can be comfortably shown, but it is impossi
ble to show both hemispheres in their entirety from one center. The point on the 
sphere opposite the center of the map projects at an infinite distance in the plane 
of the map. 
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FIGURE 31.-Geometric projection of the polar Stereographic projection. 
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The polar aspect somewhat resembles other polar azimuthals, with straight 
radiating meridians and concentric circles for parallels (fig. 32A). The parallels 
are spaced at increasingly wide distances, the farther the latitude is from the pole 
(the Orthographic has the opposite feature). 

In the equatorial and oblique aspects, the distinctive appearance of the Stereo
graphic becomes more evident: All meridians and parallels, except for two, are 
shown as circles, and the meridians intersect the parallels at right angles (figs. 
32B, C). The central meridian is shown straight, as is the parallel of the same 
numerical value, but opposite in sign to the central parallel. For example, if lat. 
40° N. is the central parallel, then lat. 40° S. is shown as a straight line. For the 
equatorial aspect with lat. oo as the central parallel, the Equator, which is of 
course also its own negative counterpart, is shown straight. (For the polar aspect, 
this has no meaning since the opposite pole cannot be shown.) Circles for parallels 
are centered along the central meridian; circles for meridians are centered along 
the straight parallel. The meridian 90° from the central meridian on the equatorial 
aspect is shown as a circle bounding the hemisphere. This circle is centered on the 
projection center and is equidistantly marked for parallels of latitude. 

As an azimuthal projection, directions from the center are shown correctly in 
the spherical form. In the ellipsoidal form, only the polar aspect is truly azimuthal, 
but it is not perspective, in order to retain conformality. The oblique and equato
rial aspects of the ellipsoidal Stereographic, in order to be conformal, are neither 
azimuthal nor perspective. As with other azimuthal projections, there is no distor
tion at the center, which may be made the "standard point" true to scale in all 
directions. Because of the conformality of the projection, a Stereographic map 
may be given, instead of a "standard point," a "standard circle" (or "standard 
parallel" in the polar aspect) with an appropriate radius from the center, balanc
ing the scale error throughout the map. (On the ellipsoidal oblique or equatorial 
aspects, the lines of constant scale are not perfect circles.) This cannot be done 
with non-conformal azimuthal projections. The Stereographic may also be modi
fied to produce oval and irregular lines of true scale (see p. 203 ). 

USAGE 

The oblique aspect of the Stereographic projection has been recently used in 
the spherical form by the USGS for circular maps of portions of the Moon, Mars, 
and Mercury, generally centered on a basin. The USGS is currently using the 
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FIGuRE 32.-Stereographic projection. (A) Polar aspect; the most common scientific projection for polar 
areas of Earth, Moon, and the planets, since it is conformal. (B) Equatorial aspect; often used in the 16th 
and 17th centuries for maps of hemispheres. (C) Oblique aspect; centered on lat. 40° N. The Stereo
graphic is the only geometric projection of the sphere which is conformal. 
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spherical oblique aspect to prepare 1:10,000,000-scale maps of Hydrocarbon Prov
inces for three continents after a least-squares analysis of over 100 points on each 
continent to determine optimum parameters for a common conformal projection. 
For Europe, the central scale factor is 0.976 at a central point of lat. 55°N. and 
long. 20°E. For Africa, these parameters are0.941, 5° N., and20° E. For Asia, they 
are 0.939, 45° N., and 105° E., respectively. 

The USGS has most often used the Stereographic in the polar aspect and 
ellipsoidal form for maps of Antarctica. For 1:500,000 sketch maps, the standard 
parallel is 71° S.; for its 1:250,000-scale series between 80° and the South Pole, the 
standard parallel is 80°14' S. The Universal Transverse Mercator (UTM) grid 
employs the UPS (Universal Polar Stereographic) projection from the North Pole 
to lat. 84° N., and from the South Pole to lat. 80° S. For the UPS, the scale at each 
pole is reduced to 0. 994, resulting in a standard parallel of 81 °06' 52.3" N. or S. 
The UPS central meridian (as defined for A.0 on p. ix ) is the Greenwich meridian, 
with false eastings and northings of 2,000,000 mat each pole. 

In 1962, a United Nations conference changed the polar portion of the Interna
tional Map of the World (at a scale of 1:1,000,000) from a modified Polyconic to the 
polar Stereographic. This has consequently affected IMW sheets drawn by the 
USGS. North oflat. 84° N. or south of lat. 80° S., it is used "with scale matching 
that ofthe Modified Polyconic Projection or the Lambert Conformal Conic Projec
tion at Latitudes 84° N. and 80° S." (United Nations, 1963, p. 10). The reference 
ellipsoid for all these polar Stereographic projections is the International of 1924. 

The Astrogeology Center of the Geological Survey at Flagstaff, Ariz., has been 
using the polar Stereo graphic for the mapping of polar areas of every planet and 
satellite for which there is sufficient information in this region (see table 6). 

The USGS is preparing a geologic map of the Arctic regions, using as a base an 
American Geographical Society map of the Arctic at a scale of 1:5,000,000. Drawn 
to the Stereographic projection, the map is based on a sphere having a radius 
which gives it the same volume as the International ellipsoid, and lat. 71 o N. is 
made the standard parallel. 

FORMULAS FOR THE SPHERE 

Mathematically, a point at a given angular distance from the chosen center 
point on the sphere is plotted on the Stereographic projection at a distance from 
the center proportional to the trigonometric tangent of half that angular distance, 
and at its true azimuth, or, if the central scale factor is 1, 

p=2RtanVzc 
0 == TI-Az = 180°-Az 
k=sec2 V2c 

(21-1) 
(20-2) 

(21-1a) 

where c is the angular distance from the center, Az is the azimuth east of north 
(see equations (5-3) through (5-4b)), and e is the polar coordinate east of south. 
Combining with standard equations, the formulas for rectangular coordinates of 
the oblique Stereographic projection are found to be as follows, given R, k0 , <1> 1 , 

A.0 , <1>, and A. (see p. 312 for numerical examples): 

x == Rk cos <1> sin (A.- X.0 ) 

y = Rk [cos <1> 1 sin <!>-sin <1> 1 cos <I> cos (A.-A.0)] 

where 

k = 2kof[1 +sin <1> 1 sin <I>+ cos <1> 1 cos <I> cos (A.- A.0)] 

(21-2) 
(21-3) 

(21-4) 

and (<!>1 , A.0) are the latitude and longitude of the center, which is also the origin. 
Since this is a conformal projection, k is the scale factor in all directions, based on 
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TABLE 24.-Stereographic projection: Rectangular coordinates for equatorial aspect (sphere) 

[One hemisphere; y coordinate in parentheses under x coordinate] 

~ 
oo 100 20° 30° 40° 

. 

goo -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(2.00000) (2.00000) (2.00000) (2.00000) (2.00000) 

80 --------------- .00000 .05150 .10212 .15095 .19703 
(1.67820) (1.68198) (1.69331) (1.71214) (1.73837) 

70 --------------- .00000 .08885 .17705 .26386 .34841 
(1.40042) (1.40586) (1.42227) (1.44992) (1.48921) 

60 --------------- .00000 .11635 .23269 .34892 .46477 
(1.15470) (1.16058) (1.17839) (1.20868) (1.25237) 

50 --------------- .00000 .13670 .27412 .41292 .55371 
( .93262) ( .93819) ( .95515) ( .98421) (1.02659) 

40 --------------- .00000 .15164 .30468 .46053 .62062 
( .72794) ( .73277) ( .74749) ( .77285) ( .81016) 

30 --------------- .00000 .16233 .32661 .49487 .66931 
( .53590) ( .53970) ( .55133) ( .57143) ( .60117) 

20 --------------- .00000 .16950 .34136 .51808 .70241 
( .35265) ( .35527) ( .36327) ( .37713) ( .39773) 

10 --------------- .00000 .17363 .34987 .53150 .72164 
( .17498) ( .17631) ( .18037) ( .18744) ( .19796) 

0 --------------- .00000 .17498 .35265 .53590 .72794 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

a central scale factor of k0 , normally 1.0, but which may be reduced. The Y axis 
coincides with the central meridian }..0 , y increasing northerly and x, easterly. 

If <1> = - <)> 1, and A = Ao ± 180°, the point cannot be plotted. Geometrically, it is the 
point from which projection takes place. 

For the north poiar Stereographic, with <)> 1 = 90°, these simplify to 

x = 2R k0 tan (-rr/4-<)>/2) sin (A-A0) 

y = -2R k0 tan ('rr/4-<j>/2) cos (A- Ao) 
k = 2kof(1 +sin <I>) 
p = 2R k0 tan (1T/4-<)>/2) 
e = A-Ao 

For the south polar Stereographic with <)>1 = -90°, 

x = 2R k0 tan ( 1T/4 + <)>/2) sin (A- Ao) 
y = 2R k0 tan ( 7r/4 + <j>/2) cos (A- Ao) 
k = 2k0/(1-sin <)>) 
p = 2R k0 tan ( 7r/4 + <j>/2) 
a= 7r-A+A0 

For the equatorial aspect, letting <)>1 =0, xis found from (21-2), but 

y=Rksin<j> 
k = 2 ko/(1 +cos <I> cos (A- A0)] 

(21-5) 
(21-6) 
(21-7) 
(21-8) 
(20-9) 

(21-9) 
(21-10) 
(21-11) 
(21-12) 
(20-12) 

(21-13) 
(21-14) 

For the inverse formulas for the sphere, given R, k0 , <Pt. A0, x, and y: 

<I>= arcsin [cos c sin <)>1 + (y sin c cos <)>tfp)] (20-14) 
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TABLE 24.-Stereographic projection: Rectangular coordinates for equatorial aspect (sphere)-Con-
tinued 

~ 50° 60° 70° 80° 90° 
0 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(2.00000) (2.00000) (2.00000) (2.00000) (2.00000) 

80 --------------- .23933 .27674 .30806 .33201 .34730 
(1.77184) (1.81227) (1.85920) (1.91196) (1.96962) 

70 --------------- .42957 .50588 .57547 .63588 .68404 
(1.54067) (1.60493) (1.68256) (1.77402) (1.87939) 

60 --------------- .57972 .69282 .80246 .90613 1.00000 
(1.31078) (1.38564) (1.47911) (1.59368) (1.73205) 

50 --------------- .69688 .84255 .99033 1.13892 1.28558 
(1.08415) (1.15945) (1.25597) (1.37825) (1.53209) 

40 --------------- .78641 .95937 1.14080 1.33167 1.53209 
( .86141) ( .92954) (1.01868) (1.13464) (1.28558) 

30 --------------- .85235 1.04675 1.25567 1.48275 1.73205 
( .64240) ( .69783) ( .77149) ( .86928) (1.00000) 

20 --------------- .89755 1.10732 1.33650 1.59119 1.87939 
( .42645) ( .46538) ( .51767) ( .58808) ( .68404) 

10 --------------- .92394 1.14295 1.38450 1.65643 1.96962 
( .21267) ( .23271) ( .25979) ( .29658) ( .34730) 

0 --------------- .93262 1.15470 1.40042 1.67820 2.00000 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere= 1.0. 
Origin: (x, y)=O at (lat., long.)=O. Y :i.xi.s increases north. Other quadrants of hemisphere are symmetrical. 

If p = 0, equations (20-14) through (20-17) are indeterminate, but q:. = 4>1 and 
A=Ao. 

If 4>1 is not ±90°: 

A= Ao +arctan [x sin c/(p cos 4>1 cos c-y sin 4>1 sin c)] 

ll.=i..0 +arctan [xl(-y)] 

A= Ao +arctan (xly) 

In equations (20-14) and (20-15), 

P = (x2 + y2)112 

c = 2 arctan [p/(2Rk0)] 

(20-15) 

(20-16) 

(20-17) 

(20-18) 
(21-15) 

The similarity of formulas for Orthographic, Stereographic, and other azimuth
als may be noted. The equations fork' (k for the Stereographic, k' = 1.0 for the 
Orthographic) and the inverse c are the only differences in forward or inverse 
formulas for the sphere. The formulas are repeated for convenience, unless shown 
only a few lines earlier. 

Table 24 lists rectangular coordinates for the equatorial aspect for a 10° grati
cule with a sphere of radius R = 1.0. 

Following are equations for the centers and radii of the circles representing the 
meridians and parallels of the oblique Stereographic in the spherical form: 
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Circles for meridians: 

Centers: 

Radii: 

x = -2R kof[cos cp1 tan (A.-A-0)] 

y = -2R k 0 tan cfJ1 
p = 2R kof[cos cp1 sin (A.-A-0)] 

Circles for parallels of latitude: 

Centers: 

Radii: 

x=O 
y = 2R k0 cos cp1/(sin cp1 +sin cp) 
p = 2R k0 cos <)>/(sin cp1 +sin cp) 

(21-16) 
(21-17) 
(21-18) 

(21-19) 
(21-20) 

Reduction to the polar and equatorial aspects may be made by letting <)> 1 = ±90° or 
oo, respectively. 

To use a "standard circle" for the spherical Stereographic projection, such that 
the scale error is a minimum (based on least squares) over the apparent area of 
the map, the circle has an angular distance c from the center, where 

c = 2 arccos (1/k)112 

k = tan2 ((3/2)/( -ln cos2 ((3/2) ) 
(21-21) 
(21-22) 

and (3 is the great circle distance of the circular limit of the region being mapped 
stereographically. The calculation is only slightly different if minimum error is 
based on the true area of the map: 

k = -ln cos2 ((3/2)/sin2 ((3/2) (21-23) 

In either case, c of the standard circle is approximately 131/2. 

FORMULAS FOR THE ELLIPSOID 

As noted above, the ellipsoidal forms of the Stereographic projection are 
nonperspective, in order to preserve conformality. The oblique and equatorial 
aspects are also slightly nonazimuthal for the same reason. The formulas result 
from replacing geodetic latitude cp in the spherical equations with conformal lati
tude x (see equation (3-1)), followed by a small adjustment to the scale at the 
center of projection (Thomas, 1952, p. 14-15, 128-139). The general forward 
formulas for the oblique aspect are as follows; given a, e, k0 , <1> 11 A.0 , cp, and A. (see 
p. 313 for numerical examples): 

where 

or 

x = A cos x sin (A.- A.o) 
y =A [cos x1 sin x-sin X1 cos X cos (A.-A-0)] 

k =A cos xl(am) 

A = 2 a k0mtl[cos x1 [1 +sin X1 sin X 

(21-24) 
(21-25) 
(21-26) 

+cos x1 cos x cos (A. -A.0)]j (21-27) 
x = 2 arctan (tan (1T/4+cp/2)[(1-e sin cp)/(1+e sin <!>)]ei2) 

-1T/2 (3-1) 

~(1 + sin <li~(1- e sin <l>)eJ 112 = 2 arctan 
1 -sin <P 1 + e sin <!>. . 

- 1T/2 (3-1a) 

m = cos cp/(1-e2 sin2 cp)I/2 (14-15) 
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and x1 and m 1 are x and m, respectively, calculated using <!>t. the central latitude, 
in place of<!>, while k 0 is the scale factor at the center (normally 1.0). The origin of 
x and y coordinates occurs at the center (<\>1 , A.0), the Y axis coinciding with the 
central meridian A.0 , and y increasing northerly and x, easterly. The scale factor is 
actually k0 along a near-circle passing through the origin, except for polar and 
equatorial aspects, where it occurs only at the central point. The radius of this 
near-circle is almost 0.4° at midlatitudes, and its center is along the central meridian, 
approaching the Equator from <!>1. The scale factor at the center of the circle is 
within 0.00001less than k0 • 

In the equatorial aspect, with the substitution of <\> 1 = 0 (therefore x1 = 0), xis 
still found from (21-24) and k from (21-26), but 

y =A sin x 
A= 2akof[1 + cos x cos (A.-A.0)] 

(21-28) 
(21-29) 

For the north polar aspect, substitution of <1> 1 = 90° (therefore x1 = 90°) into equa
tions (21-27) and (14-15) leads to an indeterminate A. To avoid this problem, 
the polar equations may take the form 

where 

or 

x = p sin (A.-A.o) 
y =- p cos (A.-A.0) 

k = p/(a m) 

p = 2 ak0 t/[(1 + e)<l+e) (1-e)(l-el]l/2 
t =tan ('TT/4-<!>/2)/[(1-e sin<!>)/(1 + esin<\>)]•12 

= [ (1-s~n<!> ) ( 1+es~n<l> )e]l/2 
1 + sm <1> 1-e sm <1> 

(21-30) 
(21-31) 
(21-32) 

(21-33) 
(15-9) 

(15-9a) 

Equation (21-33) applies only if true scale or known scale factor k0 is to occur at 
.the pole. For true scale along the circle representing latitude <l>c, 

(21-34) 

Then the scale at the pole is 

kp = (112) me [(1+e)(l+el (1-e)<l-el]Ii2/(a tc) (21-35) 

In equations (21-34) and (21-35), me and tc are found from equations (14-15) 
and (15-9), respectively, substituting <l>c in place of<\>. 

For the south polar aspect, the equations for the north polar aspect may be 
used, but the signs of x, y, <l>c, <\>, A., and A.0 must be reversed to be used in the 
equations. 

For the inverse formulas for the ellipsoid, the oblique and equatorial aspects 
(where <\>1 is not ±90°) may be solved as follows, given a, e, k0 , <l>t. A.0 , x, and y: 

where 

<1> = 2 arctan [tan ( 7T/4 + x/2)[(1 + e sin <!>)1(1-e sin <\>)]•12) 
- 'TT/2 

A.= A.0 +arctan [x sin cef(p cos x1 cos ce-Y sin x1 sin Ce)] 

x =arcsin [cos Ce sin x 1 + (y sin Ce cos x1/p)] 

(3-4) 
(21-36) 

(21-37) 
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but if p = 0, x=xr and A=A0 • 

P = (x2 + y2)r12 

Ce = 2 arctan [p cos x1/(2 a k 0 m1)] 

(20-18) 
(21-38) 

and m1 is found from equation (14-15) above, using <!> 1 in place of <)>. Equation 
(3-4) involves iteration, using x as the first trial<!> in the right-hand side, solving 
for a new trial <!> on the left side, substituting into the right side, etc., until <!> 
changes by less than a preset convergence (such as 10-9 radians). Conformal lati
tude x1 is found from (3-1), using <!>1 for <)>. The factor Ce is not the true angular 
distance, as it is in the spherical case, but it is a convenient expression similar in 
nature to c, used to find <!> and A. 

To avoid the iteration of (3-4), this series may be used instead: 

<!> = x + (e212 + 5e4/24 + e6/12 + 13e8/360 + ... ) sin 2x 
+ (7e4/48 + 29e6/240 + 811e8/11520 + ... ) 
sin 4x + (7e6/120 + 81e8/1120 + ... ) 
sin 6x + (4279e8/161280 + ... ) sin 8x + ... (3-5) 

For improved computational efficiency using this series, seep. 19. 
The inverse equations for the north polar ellipsoidal Stereographic are as fol

lows; given a, e, <!>c, k0 (if <!>c = 90°), Ao, x, and y: 

<!> = rr/2-2 arctan !t[(1-e sin <)>)/(1 + e sin <!>)]•'2) 
A= Ao + arctan [xl(-y)] 

(7-9) 
(20-16) 

Equation (7-9) for<!> also involves iteration. For the first trial, (rr/2-2 arctan t) 
is substituted for tf> in the right side, and the procedure for solving equation (3-4) 
just above is followed: 

If <!>c (the latitude of true scale) is 90°, 

t = p[(l + e)(l+e) (1-e)CI-eJ)112/(2a k0 ) (21-39) 

If <!>c is not 90°, 

(21-40) 

In either case, 

(20-18) 

and tc and me are found from equations (15-9) and (14-15), respectively, listed 
with the forward equations, using <!>c in place of <)>. Scale factor k is found from 
equation (21-26) or (21-32) above, for the <!>found from equation (3-4), (3-5), 
or (7-9), depending on the aspect. 

To avoid iteration, series (3-5) above may be used in place of (7-9), where 

x = 1r12-2 arctan t (7-13) 

Inverse equations for the south polar aspect are the same as those for the north 
polar aspect, but the signs of x, y, Ao, tf>c, <!>, and A must be reversed. 

Polar coordinates for the ellipsoidal form ofthe polar Stereographic are given in 
table 25, using the International ellipsoid and a central scale factor of 1.0. 

To convert coordinates measured on an existing Stereographic map (or other 
azimuthal map projection), the user may choose any meridian for Ao on the polar 
aspect, but only the original meridian and parallel may be used for Ao and 4>1, re
spectively, on other aspects. 
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TABLE 25.-Ellipsoidal polar Stereographic projection: Polar coordinates 

[International ellipsoid; central scale factor ; 1.0] 

Latitude 

90° -------------------------------89 _______________________________ _ 

88 ----.----------------------------
87 --------------------------------86 _______________________________ _ 
85 _______________________________ _ 
84 _______________________________ _ 
83 _______________________________ _ 
82 _______________________________ _ 

Sl --------------------------------
80--------------------------------79 _______________________________ _ 
78 _______________________________ _ 

77 --------------------------------76 _______________________________ _ 

75 --------------------------------74 _______________________________ _ 
73 _______________________________ _ 
72 _______________________________ _ 
71 _______________________________ _ 
70 _______________________________ _ 
69 _______________________________ _ 
68 _______________________________ _ 

67 ------------------------------~-66 _______________________________ _ 
65 _______________________________ _ 
64 _______________________________ _ 
63 _______________________________ _ 
62 _______________________________ _ 
61 _______________________________ _ 
60 _______________________________ _ 

Radius, meters 

0.0 
111,702.7 
223,421.7 
335,173.4 
446,974.1 
558,840.1 
670,788.1 
782,834.3 
894,995.4 

1,007,287.9 
1,119,728.7 
1,232,334.4 
1,345,122.0 
1,458,108.4 
1,571,310.9 
1,684,746.8 
1,798,433.4 
1,912,388.4 
2,026,629.5 
2,141,174.8 
2,256,042.3 
2,371,250.5 
2,486,818.0 
2,602,763.6 
2,719,106.4 
2,835,865.8 
2,953,061.4 
3,070,713.2 
3,188,841.4 
3,307 ,466. 7 
3,426,609.9 

k, scale factor 

1.000000 
1.000076 
1.000305 
1.000686 
1.001219 
1.001906 
1.002746 
1.003741 
1.004889 
1.006193 
1.007653 
1.009270 
1.011045 
1.012979 
1.015073 
1.017328 
1.019746 
1.022329 
1.025077 
1.027993 
1.031078 
1.034335 
1.037765 
1.041370 
1.045154 
1.049117 
1.053264 
1.057595 
1.062115 
1.066826 
1.071732 
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22. GNOMONIC PROJECTION 

SUMMARY 

• Azimuthal and perspective. 
• All meridians and the Equator are straight lines. 
• All parallels except the Equator and poles are ellipses, parabolas, or 

hyperbolas. 
• Neither conformal nor equal-area. 
• All great circles are shown as straight lines. 
• Less than one hemisphere may be shown around a given center. 
• No distortion at the center only. 
• Distortion and scale rapidly increase away from the center. 
• Directions from the center are true. 
• Used only in the spherical form. 
• Known by Greeks 2,000 years ago. 

HISTORY 

The Gnomonic is the perspective projection of the globe from the center onto a 
plane tangent to the surface. It was used by Thales (636?-546?B.C.) of Miletus 
for star maps. Called "horologium" (sundial or clock) in early times, it was given 
the name "gnomonic" in the 19th century. It has also been called the Gnomic and 
the Central projection. The name Gnomonic is derived from the fact that the 
meridians radiate from the pole (or are spaced, on the equatorial aspect) just as 
the corresponding hour markings on a sundial for the same central latitude. The 
gnomon of the sundial is the elevated straightedge pointed toward the pole and 
casting its shadow on the various hour markings as the sun moves across the sky. 

FEATURES AND USAGE 

The outstanding (and only useful) feature of the Gnomonic projection results 
from the fact that each great-circle arc, the shortest distance between any two 
points on the surface of a sphere, lies in a plane passing through the center of 
the globe. Therefore, all great-circle arcs project as straight lines on this projec
tion. The scale is badly distorted along such a plotted great circle, but the route 
is precise for the sphere. 

Because the projection is from the center of the globe (fig. 33), it is impossible 
to show even a full hemisphere with the Gnomonic. Thus, if either pole is the 
point of tangency and center (the polar aspect), the Equator cannot be shown. 
Except at the center, the distortion of shape, area, and scale on the Gnomonic 
projection is so great that it has seldom been used for atlas maps. Historical 
exceptions are several sets of star maps from the late 18th century and terrestrial 
maps of 1803. These maps were plotted with the sphere projected onto the six 
faces of a tangent cube. The globe has also been projected from the mid-16th to 

' ..... ..... ..... 
' 

' \ \ 
' \ I 

..._ ' ' ' I / / ----- ........ ,,,// ------ -. ........ '1' //~----
-------- ----'--------=-----=------=---'-------- ----

Equator 

FIGURE 33.-Geometric projection of the parallels of the polar Gnomonic projection. 
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the mid-20th centuries, using the Gnomonic projection as well as others, onto the 
faces of other polyhedra. Generally, the projection: is used for plotting great
circle paths, although the USGS has not used the projection for published maps. 

The meridians of the polar Gnomonic projection appear straight, as on other 
polar azimuthal projections, and parallels oflatitude are circles centered about the 
pole (fig. 34A). The parallels are closest near the pole, and their spacings increase 
away from the pole much more rapidly than they do on the polar Stereographic. 
The radii are proportional to the trigonometric tangent of the arc distance from 
the pole. 

On the equatorial aspect, meridians are straight parallel lines perpendicular to 
the Equator, which is also straight (fig. 34B). The meridians are closest near the 
central meridian, and the spacing is rapidly increased away from it, the distance 
from center in proportion to the tangent of the difference in longitude. The 
parallels other than the Equator are all hyperbolic arcs, symmetrical about the 
Equator. 

Since meridians are great-circle paths, they are also plotted straight on the 
oblique aspect of the Gnomonic, but they intersect at the pole (fig. 34C). They 
are not spaced at equal angles. The Equator is a straight line perpendicular to the 
central meridian. If the central latitude is north of the Equator, its colatitude (90° 
minus the latitude) is shown as a parabolic arc, more northern latitudes are 
ellipses, and more southern latitudes are hyperbolas. If the central latitude is 
south of the Equator, opposite signs apply. 

Various graphical constructions have been published, but they are not de
scribed here because of the ease of plotting or calculating coordinates by com
puter, and because they do not add significantly to the understanding of this 
projection. 

FORMULAS FOR THE SPHERE 

A point at a given angular distance from the chosen center point on the sphere 
is plotted on the Gnomonic projection at a distance from the center proportional 
to the trigonometric tangent of that angular distance, and at its true azimuth, or 

p =R tan c (22-1) 
e = 7T- Az = 180°- Az (20-2) 
h' = 1/cos2 c (22-2) 
k' = 1/cos c (22-3) 

where c is the angular distance of the given point from the center of projection. 
Az is the azimuth east of north, and e is the polar coordinate east of south. The 
term k' is the scale factor in a direction perpendicular to the radius from the cen
ter of the map, not along the parallel except on the polar aspect. The scale factor 
h' is measured in the direction of the radius. Combining with standard equations, 
the formulas for rectangular coordinates of the oblique Gnomonic projection are 
as follows, given R, <h, Ao, <!>, and A, to find x and y (see p.319 for numerical 
examples): 

x = Rk' cos<!> sin (A-A0 ) 

y = Rk' [cos <1> 1 sin <P-sin <!> 1 cos <1> cos (A -A0)) 

where k' is found from (22-3) above, 

cos c = sin <1> 1 sin <I> + cos <1> 1 cos <1> cos (A- A-0) 

(22-4) 
(22-5) 

(5-3) 

and (<!>1 , A0 ) are latitude and longitude of the projection center and origin. The Y 
axis coincides with the central meridian A0 , y increasing northerly. The meridians 
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FIGURE 34.-Gnomonic projection, range 60• from center. (A) Polar aspect. (B) Equatorial aspect. (C) 
Oblique aspect, centered at lat. 40° N. All great-circle paths are straight Jines on these maps. 



22. GNOMONIC PROJECTION 

are straight lines, but the parallels are conic sections for which the eccentricity = 
(cos <j> 1/sin <j>). (If the eccentricity is zero, for <j>1 = ±goo, they are circles. If the 
eccentricity is less than 1, they are ellipses; if equal to 1, a parabola; if greater 
than 1, a hyperbolic arc.) 

For the north polar Gnomonic, letting <1>1 = goo, 

x = R cot <l> sin (X.-A-0) 

y = - R cot <l> cos (X.- X-0) 

In polar coordinates, 

p = R cot <t> 

6 =A.- A.o 

For the south polar Gnomonic, with <j>1 = -goo, 

x = - R cot <l> sin (A.- A.0) 

y = R cot <l> cos (A.-A-0 ) 

In polar coordinates, 

p = -R cot <l> 
6 =1r-X.+A.0 

For the equatorial Gnomonic, letting <1>1 = 0, 

x = R tan (A.- A.0 ) 

y = R tan <j>/cos (A.- A.0) 

(22-6) 
(22-7) 

(22-8) 
(22-9) 

(22-10) 
(22-11) 

(22-12) 
(22-13) 

(22-14) 
(22-15) 

In automatically computing a general set of coordinates for a Gnomonic map, 
equation (5-3) above should be used to reject points equal to or greater than 
90° from the center. That is, if cos cis zero or negative, the point is to be rejected. 
If cos c is positive, it may or may not be plotted depending on the desired limits 
of the map. 

For the inverse formulas for the sphere, to find <t> and A., given R, <l>1> A-0 , x, andy: 

<t> = arcsin [cos c sin <l>1 + (y sin c cos <j>1/p)] (20-14) 

If p = 0, equations (20-14) through (20-17) are indeterminate, but <!> = <1>11 and 
A.= A.0 • If <!>1 is not ± goo, 

A. = A.0 + arctan [x sin c/(p cos <1> 1 cos c - y sin <!>1 sin c)] (20-15) 

If <!>1 is 90°, 

A. = :>..0 + arctan [xi( -y)] 

A. = A.0 + arctan (x/y) 

In equations (20-14) and (20-15), 

P = (x2 + y2)112 

c = arctan (p/R) 

(20-16) 

(20-17) 

(20-18) 
(22-16) 

Table 26lists rectangular coordinates for the equatorial aspect for a 10° graticule 
with a sphere of radius R = 1.0. 
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TABLE 26.-Gnomonic projection: Rectangular coordinates for equatorial aspect 

Long. oo 100 200 30° 40° 500 60° 70° 80° 
X 0.0000 0.1763 0.3640 0.5774 0.8391 1.1918 1.7321 2.7475 5.6713 

Lat. y 

80° 5.6713 5.7588 6.0353 6.5486 7.4033 8.8229 11.3426 16.5817 32.6596 
70 2.7475 2.7899 2.9238 3.1725 3.5866 4.2743 5.4950 8.0331 15.8221 
60 1. 7321 1. 7588 1.8432 2.0000 2.2610 2.6946 3.4641 5.0642 9.9745 
50 1.1918 1.2101 1.2682 1.3761 1.5557 1.8540 2.3835 3.4845 6.8630 
40 0.8391 0.8520 0.8930 0.9689 1.0954 1.3054 1.6782 2.4534 4.8322 
30 .5774 .5863 .6144 .6667 0.7537 0.8982 1.1547 1.6881 3.3248 
20 .3640 .3696 .3873 .4203 .4751 .5662 0.7279 1.0642 2.0960 
10 .1763 .1790 .1876 .2036 .2302 .2743 .3527 0.5155 1.0154 
0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0.0000 

Radius of sphere = 1.0. 
Origin: (x,y) = 0 at (lat., long.)= 0. Yaxis increases north. Other quadrants of hemisphere are symmetrical. 90th 

meridian or pole cannot be shown. 
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23. GENERAL PERSPECTIVE PROJECTION 

SUMMARY 

• Often used to show the Earth or other planets and satellites as seen from space. 
• Orthographic, Stereographic, and Gnomonic projections are special forms of 

the Vertical Perspective. 
• Vertical Perspective projections are azimuthal; Tilted Perspectives are not. 
• Central meridian and a particular parallel (if shown) are straight lines. 
• Other meridians and parallels are usually arcs of circles or ellipses, but some 

may be parabolas or hyperbolas. 
• Neither conformal (unless Stereographic) nor equal-area. 
• If the point of perspective is above the sphere or ellipsoid, less than one hemi

sphere may be shown, unless the view is from infinity (Orthographic). If 
below center of globe or beyond the far surface, more than one hemisphere 
may be shown. 

• No distortion at the center if a Vertical Perspective is projected onto a tangent 
plane. Considerable distortion near the projection limit. 

• Directions from the center are true on the Vertical Perspective for the sphere 
and for the polar ellipsoidal form. 

• Known by Greeks and Egyptians 2,000 years ago in limiting forms. 

HISTORY AND USAGE 

Whenever the Earth is photographed from space, the camera records the view 
as a perspective projection. If the camera precisely faces the center of the Earth, 
the projection is Vertical Perspective. Otherwise, a Tilted Perspective projection 
is obtained. Perspective views have also served other purposes. 

With the complication of plotting coordinates for general perspective projec
tions, there was little known interest in them until the 18th century, except for 
the well-known special cases of the Orthographic, Stereographic, and Gnomonic 
projections, which are perspective from infinity, the opposite surface, and the 
center of the sphere, respectively. 

In 1701, the French mathematician Philippe De la Hire (1640-1718) found that 
if the point of perspective is placed 1. 71 times the radius of the globe from the 
center in a direction opposite that of the plane of projection, the Equator on the 
polar Vertical Perspective projection has exactly twice the radius of the 45th 
parallel. The other parallels are not quite proportionally spaced, but this repre
sented a use of geometric projection to achieve low distortion. Several other 
scientists, such as Antoine Parent in 1702 and various mathematicians of the late 
19th century, extended this approach to obtain low-distortion projections which 
meet other criteria. 

Of special interest was British geodesist A.R. Clarke's use of least squares to 
obtain in 1862 the Vertical Perspective projection with minimum error for the 
portion of the Earth bounded by a given spherical circle. He determined parame
ters for several continental areas, and he also presented the "Twilight" projection, 
with a bounding circle 108° from the center and centered to show much of the land 
mass of the Earth in one map. All these low- and minimum-error perspective 
projections were based on "far-side" points of perspective, and they were pro
jected onto a secant plane to reduce overall error (Close and Clarke, 1911, p. 
655-656; Snyder, 1985a). 

Space exploration beginning in 1957led to a renewed interest in the perspective 
projection, although Richard Edes Harrison had used several perspective views 
in a World War II atlas of 1944. Now the concern was for the pictorial view from 
space, not for minimal distortion. Albert L. Nowicki of the U.S. Army Map Serv
ice presented the AMS Lunar Projection, which is a far-side Vertical Perspec-
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Point of perspective 
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FIGURE 35.-Geometric projection of the parallels of the polar Perspective projections, Vertical and 
Tilted. Distance of point of perspective from center of Earth may be varied, as may the angle of 
tilt. For "far-side" projection, "point of perspective" would be shown below Equator and usually 
below South Pole on this drawing. 

tive based on a perspective center about 1.54 times the radius from the center, 
to show somewhat more than one hemisphere of the Moon. This recognized the 
fact that more than half the Moon is seen from the Earth over a period of time. 
Nowicki called this a "modified Stereographic" projection (Nowicki, 1962). This 
name has been applied elsewhere to "far-side" Vertical Perspectives, none of 
which are conformal; it is applied later in this book to complex-algebra modifica
tions of the Stereographic which are conformal but not perspective. 

The Tilted Perspective projection is more complicated to compute, but since it 
has been the projection used in effect for most space photographs, such as those 
from the manned Gemini and Apollo space missions, it has been analyzed in recent 
literature. 

Weather maps issued by the U.S. National Weather Service have regularly 
been based on a Vertical Perspective projection as seen from geosynchronous 
satellites near the Equatorial plane and 42,000 km from the Earth's center. The 
USGS has not used the Perspective projection to date for published maps. 

FEATURES 

The general Perspective projection (excepting the three common forms) should 
be considered primarily as a basis for a view of the Earth from space. The various 
historical studies described above and leading to low-error azimuthal projections 
have little practical value, since nonperspective azimuthal projections, like the 
Azimuthal Equidistant, may be used instead. 

It is therefore of little interest to compute distortion at various locations on the 
map. There is no distortion at the center of projection with the Vertical Perspec
tive onto a tangent plane (figs. 35 and 36), but there is shape, area, and scale 
distortion almost everywhere else on perspective maps (except that the Stereo
graphic is conformal). The rapidity with which distortion increases varies with the 
location of the point of perspective and with the tilt of the plane to the line con
necting this point with the center of the Earth (figs. 35 and 37). For the Vertical 
Perspective, this plane is perpendicular to this line. 
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FIGURE 36.-Vertical Perspective projection. (A) Polar aspect, from 2,000 km above the Earth's surface. (B) 
Equatorial aspect, from geosynchronous satellite, 35,800 km above the Earth's surface. (C) Oblique 
aspect, centered at lat. 40° N., from 2,000 km above the Earth's surface. 
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FIGURE 37.-Tilted Perspective projection. Eastern seaboard viewed from a point about 160 km 
above Newburgh, N.Y. Parameters using symbols in text: <J>1 = 41 o 30' N. lat., >..0 = 74° 00' W. 
long., w = 55°, -y = 210°, P = 1.025. 1° graticule. 

While the equations listed below are generally suitable for "far-side" Perspec
tive projections (from below the surface), using negative distances to the points 
of perspective, the features are described for "near-side" Perspectives. For many 
perspective maps, one parallel of latitude is shown as a straight line (on the equa
torial Orthographic aspect, all are straight). Its location is computed from formu
las given below. The central meridian is also straight, as are all meridians on 
vertical polar aspects. Parallels of latitude on vertical polar aspects are concen
tric circles. Nearly all other meridians and parallels are elliptical arcs, except that 
certain angles of tilt may cause some meridians and parallels to be shown as pa
rabolas or hyperbolas. 
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The horizon or limit of the map is outlined by one of the conic sections, depend
ing on the angle of tilt and the location of the point of perspective. For the sphere, 
if there is no tilt, the outline is a circle. It is an ellipse, parabola, or hyperbola if 
the cosine of the tilt angle is greater than, equal to, or less than, respectively, the 
radius of the sphere divided by the distance from its center to the point of 
perspective. 

For pictorial and small-scale usage, the spherical equations are adequate. For 
special large-scale applications, such as Landsat returned-beam-vidicon (RBV) 
and Space Shuttle Large-Format-Camera images and photographs, the ellipsoidal 
equations are necessary. The formulas are given below for several possible 
alternatives. 

FORMULAS FOR THE SPHERE 

VERTICAL PERSPECTIVE PROJECTION 

A point at a given angular distance c from the center, and at an azimuth Az east 
of north is plotted in accordance with the following polar coordinates (e is meas
ured east of south): 

p = R(P-1) sin c/(P-cos c) 

6 = 'TT - Az = 180° - Az 
h' = (P-1) (P cos c-1)/(P-cos d 
k' = (P-1)/(P-cos c) 

(23-1) 
(20-2) 
(23-2) 
(23-3) 

P is the distance of the point of perspective from the center of the Earth, divided 
by the radius R of the Earth as a sphere. It is positive in the direction of the cen
ter of the projection (for the "view from space") and negative in the opposite direc
tion (for a far-side perspective such as those by Clarke and Nowicki (above), or 
the Stereographic, for which P = -1). In terms of the height H of the point of 
perspective above the surface, P = H/R + 1, or H = R(P-1). The term k' is the 
scale factor in a direction perpendicular to the radius from the center of the map, 
not along the parallel, except in the polar aspect. The scale factor h' is measured 
in the direction of the radius. 

Combining with standard equations, the formulas for rectangular coordinates 
of the oblique Vertical Perspective projection are as follows, given R, P, <h, ~0, <f>, 
and ~. to find x and y (see p, 320 for numerical examples): 

x = R k' cos <1> sin(~ -~0) 
y = R k' [cos <1>1 sin <I> - sin <\>1 cos <!> cos (~- ~0)] 

where k' is found from (23-3) above, 

cos c = sin <1>1 sin <I> + cos <!>I cos <!> cos (~- ~0) 

(22-4) 
(22-5) 

(5-3) 

and (<!>1, ~0) are latitude and longitude of the projection center and origin. The Y 
axis coincides with the central meridian ~0 , y increasing northerly. The map limit 
is a circle of radius R[(P -1)/(P + 1)]112• Meridians and parallels are generally ellipti
cal arcs, but the central meridian and the latitude whose sine equals P sin <!>I are 
straight lines. For automatic plotting, equation (5-3) should be used to reject 
points for which cos c is less than liP. These are beyond the range of the map, 
regardless of whether P is positive or negative. 

Because of the number of other equations below, the simplified equations for 
polar and equatorial aspects are not given here. They may be obtained by enter
ing the appropriate values of <1> 1 in equations (22-4), (22-5), and (5-3). Table 27 
shows rectangular coordinates for a hemisphere as seen from a geosynchronous 
satellite. 
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TABLE 27.-Vertical Perspective projection: Rectangular coordinates 
for equatorial aspect from geosynchronous satellite 

[y coordinate in parentheses under x coordinate] 

Long. oo 10° 20° 30° 40° 50° 60' 70° goo 
Lat. 

80° 0.0000 0.0263 0.0517 
( .8586) ( .8582) ( .8572) 

70 .0000 .0531 .1044 0.1520 0.1943 0.2301 0.2581 
( .8412) ( .8405) ( .8385) ( .8351) ( .8306) . ( .8251) ( .8189) 

60 .0000 .0796 .1563 .2271 .2896 .3418 .3820 0.4094 
( . 7953) ( . 7943) ( . 7914) ( . 7867) ( . 7804) ( . 7727) ( . 7641) ( . 7547) 

50 .0000 .1048 .2054 .2979 .3789 .4458 .4967 .5304 
( . 7203) ( . 7191) ( . 7156) ( . 7100) ( . 7026) ( .6936) ( .6835) ( .6727) 

40 .0000 .1275 .2496 .3614 .4587 .5382 .5978 .6363 
( .6171) ( .6159) ( .6123) ( .6065) ( .5988) ( .5895) ( .5792) ( .5682) 

30 .0000 .1465 .2867 .4146 .5252 .6149 .6813 .7232 
( .4884) ( .4872) ( .4840) ( .4787) ( .4717) ( .4634) ( .4542) ( .4444) 

20 .0000 .1610 .3148 .4548 .5753 .6725 .7436 .7879 0.8055 
( .3384) ( .3375) ( .3350) ( .3311) ( .3258) ( .3195) ( .3125) ( .3052) ( .2977) 

10 .0000 .1701 .3324 .4798 .6065 .7082 .7822 .8277 .8452 
( .1732) ( .1727) ( .1714) ( .1692) ( .1664) ( .1630) ( .1593) ( .1553) ( .1513) 

0 .0000 .1732 .3384 .4884 .6171 .7203 .7953 .8412 .8586 
( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0200) ( .0000) 

Radius of sphere = 1.0. Radius of bounding circle = 0.8588. Point of perspective is P = 6.62 radii from center (35,800 km above Earth's surface). See fig. 368. 
Origin: (x, y) = 0 at (lat., long.) = 0. Yaxis increases north. Other quadrants of hemisphere are symmetrical. Dashes indicate invisible graticule intersections. Poles 
and 90th meridians are also invisible. 
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For the inverse formulas for the Vertical Perspective pro)ection of the sphere, 
given R, P, <f>1, ~0, x, andy, to find<!> and k 

<1> = arcsin [cos c sin <1> 1 + (y sin c cos <!> 1/p)] (20-14) 

If p = 0, equations (20-14) through (20-17) are indeterminate, but <!> = <1> 1 and 
~=~o· 

~ = ~0 + arctan [x sin c/(p cos <1> 1 cos c-'-y sin <!>1 sin c)] 

In equations (20-14) and (20-15), 

P = (x2 + y2)rtz 

c =arcsin [[P-(1-p2(P + 1)/(R2(P-1)))112)/ 

[R(P-1)/p + p/(R(P-1))]) 

(20-15) 

(20-18) 

(23-4) 

In (23-4), if Pis negative and pis greater than R(P-1)/P, c must be subtracted 
from 180° to place it in the proper quadrant. 

TILTED PERSPECTIVE PROJECTION 

The following equations are used in conjunction with the equations above for 
the Vertical Perspective. While they may be combined, it is easier to follow and 
more practical to program separately these equations to follow (for forward) or 
precede (for inverse) those above. For the forward equations, given R, P, <!> 11 ~0 , 

w, -y, <!>, and ~. (x,y) is first calculated from equations (5-3), (23-3), (22-4), and 
(22-5) in order, then 

where 

Xt = (x cos 'Y - y sin -y) cos w/A 
Yt = (y cos 'Y + x sin "t)IA 

A = [Cy cos 'Y + x sin "f) sin w!Hj + cos w 
H =R(P-1) 

(23-5) 
(23-6) 

(23-7) 
(23-8) 

'Y is the azimuth east of north of the Y axis, the most upward-tilted axis of the 
plane of projection relative to the tangent plane, and w is the upward angle of tilt, 
or the angle between the Yt axis and the tangent plane. The Xt axis lies at the 
intersection of the tangent and tilted planes. The rectangular coordinates (Xt, Yt) 
lie in the tilted plane, with the origin at (<f>1 , ~0) and the Yt axis oriented at azimuth 
'Y rather than due north (see fig. 38). 

Restated in terms of a camera in space, the camera is placed at a distance RP 
from the center of the Earth, perpendicularly over point (<f>1, ~0). The camera is 
horizontally turned to face 'Y clockwise from north, and then tilted (90°-w) down
ward from horizontal, "horizontal" meaning parallel to a plane tangent to the 
sphere at (<!> 11 ~0). The photograph is then taken, placing points (<f>, ~)in positions 
(Xt, Yt), based on a scale reduction in R. The straight meridian and parallel of the 
Vertical Perspective are also straight on the Tilted form. 

If the tilted plane is perpendicular to the line connecting the point of perspec
tive and the horizon, w = arcsin (liP). Points for which cos c (equation (5-3)) is 
less than (liP) are beyond the map limits, as on the Vertical Perspective, but the 
map limit is now a conic section of eccentricity equal to sin w/(l-1/P2) 112• This limit 
may be plotted by inserting the (x,y) coordinates of the circle representing the 
Vertical Perspective map limit into equations (23-5) through (23 -7) for final 
plotting coordinates (xt, Yt), after stating the original equations for the circle in 
parametric form, 

175 



176 MAP PROJECTIONS-A WORKING MANUAL 

Tilted plane 

y 
axis 

FIGURE 38.-Coordinate system for Tilted Perspective projection. The north (N) arrow lies in the 
vertical plane for the equatorial or oblique aspect. See figure 35 for projection of points onto 
these planes. 

x = R[(P-1)/(P + 1)]112 sin e 
y =R[(P-1)/(P+1)]112 cos e 

in which e is given successive values from oo to 360°. 

(23-9) 
(23-10) 

For the inverse equations for the Tilted Perspective projection of the sphere, 
given R, P, <PI> l\.0 , w, "/, Xt and Yt, first His calculated from (23-8), and (x,y) are 
calculated from these equations: 

M = Hxti(H -yt sin w) 
Q = Hyt cos wi(H -yt sin w) 
x = M cos 'Y + Q sin 'Y 
y = Q cos 'Y - M sin 'Y 

(23-11) 
(23-12) 
(23-13) 
(23-14) 

Then these values of (x,y) are inserted in equations (20-14) through (20-18) and 
(23-4) for inversing the Vertical Perspective, to obtain (cp, ll.). 

It is also possible to use projective constants K 1 - K11 for the sphere as well as 
the ellipsoid in equations below, but this is not often done for the sphere. If de
sired, the formulas below may be used for the sphere if the eccentricity is made 
zero. 

FORMULAS FOR THE ELLIPSOID 

VERTICAL PERSPECTIVE PROJECTION 

Because of the increased number of equations, they are given in the order of 
use. Given a, e2

, P, cp1, l\.0 , h0 , cp, ll., and h, to find x and y (For numerical 
examples see p. 323 ): 



23. GENERAL PERSPECTIVE PROJECTION 

N = a/(1-e2 sin2 <!>)112 

N1 = a/(1-e2 sin2 <!>1)112 

C = [(N +h)/a] cos <1> 

S = \[N(l-e2
) + h]!a) sin <1> 

~U = <1>1 - arcsin [N1e
2 sin <1>1 cos <!>APa)] 

H = Pa cos <l>glcos <1>1 - N1 - h0 

K =HI[P cos (<!>1 -<l>g)- S sin <1> 1 - C cos <1>1 cos (A.-A.0)] 

x =KG sin (A.->..o) 
y =K[P sin (<!>1-<l>g) + S cos <1>1 - C sin <1> 1 cos (>..-A.0)] 

(4-20) 
(8-23) 

(23-15) 
(23-16) 
(23-17) 
(23-18) 
(23-19) 

(23-19a) 
(23-20) 

where P = the distance of the point of perspective from the center of the Earth, 
divided by a, the semimajor axis. 

H = the height of the point of perspective in a direction perpendicular to the 
surface of the ellipsoid at nadir point (<I>I> A.0), but measured from the height h0 of 
the nadir above the ellipsoid, not above sea level. 

<l>g = the geocentric latitude of the point of perspective, measured as the angle 
between the direct line from the center to this point, and the equatorial plane, not 
as the geocentric latitude corresponding to <!>1. 

h = the height of(<!>, A.) above .the ellipsoid. The use of h makes these formulas 
more general, but for most plotting of graticules it would be zero. 

If H is given rather than P, the latter may be computed as follows: 

P = (cos <1> 1/cos <I> g) (H + N 1 + h0 )/a (23-21) 

Since <l>g is calculated from Pin equation (23-17), iteration is involved, with <!>1 

as the first trial value of <l>g· The comments following the forward formulas for the 
sphere apply approximately here. The straight parallel is the latitude <1> whose 
sine equals Pa sin <!>gi[N(1-e2

) + h], if h is a constant, such as zero. This is an 
iterative calculation with successive substitution of<!>, starting with <1> 1 as a trial. 
The central meridian A.0 is also straight. 

For the inverse formulas for the Vertical Perspective projection of the ellip
soid, given a, e2

, P, <1>11 >..0 , h0 , h, x, andy, to find<!>, A.: 
Equations (23-17) and (23-18) are used to compute <l>g and H (or (23-21) to 

compute P if H is given), then 

B =P cos (<!>1 -<l>g) 
D = P sin (<1>1-<l>g) 
L = 1-e2 cos2 <1> 1 

G = 1-e2 sin2 <!>1 

J = 2e2 sin <1>1 cos <!>1 
u = - 2BLH - 2DGy + BJy + DHJ 
v = L~ + Gy2 

- HJy + (1-e2)x2 

(23-22) 
(23-23) 
(23-24) 
(23-25) 
(23-26) 
(23-27) 
(23-28) 

If his zero, E = 1 in the next equation (23-29). If his not zero, use a first trial 
E=l. 
Then, 

t = P 2 (1-e2 cos2 <l>g) - E (1-e2) 

K' = [- u + (u2 -4tv)112]12t 
X = a[(B-H!K') cos <1> 1 - (y!K'-D) sin <!>1] 

Y = ax!K' 
S = (y!K'-D) cos <!>1 + (B-HIK') sin <1> 1 

A. = A-0 + arctan (Y/X) 

(23-29) 
(23-30) 
(23-31) 
(23-32) 
(23-33) 
(23-34) 

If his not zero, <1> may be initially estimated at arcsin S to calculate a trial <1> from 
equation (23-35) and then E from (23-36). Equations (23-29) through (23-36) 
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are iterated using the latest values of <f>, E, and h (based on the height above the 
ellipsoid at the trial <f>, A.) until <1> changes by a negligible amount. 

<f> =arcsin (S/[(1-e2)/(1-e2 sin2 <f>)112 + h!a]) (23-35) 
E = [1/(1-e2 sin2 <f>) 112 + h!a]2

- e2 sin2 
<1> [11(1-e2 sin2 <f>)- h2/(a2-a2e2)] (23-36) 

If his zero, no iteration or previous estimate for <f> is necessary, and <f> may be 
found as follows: 

(23-37) 

TILTED PERSPECTIVE PROJECTION USING "CAMERA" PARAMETERS 

Given a, e2
, P, <1> 1 , A.0 , h0 , w, -y, <1>, A., and h, to find xt and Yt, first (x, y) are 

calculated from (23-15) through (23-20), then (xt, Yt) from (23-5) through (23-7), 
but (23-8) is not used. Definitions following each of these sets of formulas apply, 
but the limits (horizons) of the map do not precisely follow the spherical formulas 
given. The ellipsoidal form is unnecessarily complicated to extend to the map 
limits in any case. 

For the corresponding inverse formulas, given a, e2, P, <f>1, A.0 , h0, w, -y, h, Xt and 
Yt, to find <1> and A., first (x, y) are calculated using (23-11) through (23-14), then 
(<f>, A.) are calculated from (23-17), (23-18), and (23-22) through (23-37). 

TILTED PERSPECTIVE PROJECTION UsiNG PROJECTIVE EQUATIONS 

When a photograph or other plane image is obtained from space, projective 
equations with 11 constants may be used to find the rectangular coordinates of 
any point of known latitude, longitude, and height above the ellipsoid, in the plane 
ofthe image, instead of directly using the orientation ofthe camera or sensor. The 
3-dimensional rectangular coordinates of a point on or off the Earth's surface can 
be found from the following equations, taking the semimajor axis a of the Earth 
as 1.0: 

X= C cos A. 
Y = C sin A. 
Z =S 

(23-38) 
(23-39) 
(23-40) 

where C and S are found from equations (23 -15) and (23 -16) respectively, the X 
and Y axis lie in the Earth's equatorial plane, with the X axis intersecting the 
prime meridian (A. = 0), and the Z axis coincides with the Earth's polar axis. The 
values of X, Y, and Z increase from the origin at the center of the Earth toward A. = 
0, A. = 90°, and the North Pole, respectively, but they are dimensionless in the 
above equations. 

The projective equations are as follows, 

x' t = (K1X + K 2Y + K 3Z + K4)1(Ksl{ + K6Y + K1Z + 1) 
Yt' = (Kg){+ K 9Y + K1oZ + Kn)I(Ksl{ + K6Y + K1Z + 1) 

(23-41) 
(23-42) 

where (xt', Y/) are coordinates in the tilted plane, but relative to any pair of 
perpendicular axes and any origin, rather than those of (xt, Yt) as described 
following (23-8). Constants in the denominators are dimensionless, but those in 
the numerators are in the same units as (xt', Y/). 

The 11 constants Kn may be determined either from points on the "space 
photograph" or from the parameters of the "camera." Although least squares and 
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other corrections are used in determining these constants in analytical photogram
metry for highest precision, the approach given here is confined to the use of 
measurements which are assumed to the precise. The reader is referred to other 
texts for the least-squares approach. 

To determine K1 - K11 from six widely spaced identified points on the image, 
equations (23-41) and (23-42) may be transposed as follows: 

XK1 + YK2 + ZK3 + K4 - Xt'XK5-xt'YK6-xt'ZK7 
+ OK8 + OK9 + OK10 + OK11 = Xt' (23-43) 

OK1 + OK2 + OKa + OK4- Yt'XK5-Yt'YK6-Yt'ZK7 
+ XK8 + YK9 + ZK10 + Kn = Yt' (23-44) 

Using a separate pair of these two equations for each of the six points, and omitting 
one of the twelve equations, the equations are suitable for solution as eleven 
simultaneous equations with eleven unknowns (K 1- K 11), using standard pro
grams. A less satisfactory but usable procedure involving only seven simultaneous 
equations is detailed in Snyder (1981c, p. 158). 

To determine K 1 - K 11 from parameters of the projection, first H is found from 
(23-18), then 

U P[sin(~c~g) cos 'Y sin w + cos (~1 -~g) cos w] 
F (sin ~1 sin A.0 cos 'Y - cos A.0 sin "{)IU 
V (sin ~1 sin A.0 sin 'Y + cos A.0 cos "{) cos w/U 
M = (sin ~1 cos A.0 sin 'Y - sin A.0 cos "{) cos w!U 
N (sin ~1 cos A.0 cos 'Y + sin A.0 sin "{)IU 
W (-sin 'Y cos w cos e - cos 'Y sin e)/U 
T (-sin 'Y cos w sin e + cos 'Y cos e)/U 
K 5 -N sin w - cos ~1 cos A.0 cos w/U 
K 6 -F sin w - cos ~1 sin A.0 cos w/U 
K 7 (cos ~1 cos 'Y sin w - sin ~1 cos w)IU 
K 1 H (M cos e + N sin e) + K 5x0 

K 2 H(V cos e + F sin e) + K 6x0 

K 3 HW cos ~1 + K7x0 

K4 HWP sin (~ 1 -~g) + xo 
K8 H (M sin e-N cos e) + K 5y 0 

K 9 H (V sin e-F cos e) + K 6yo 
K 10 HT cos ~1 + K7Yo 
K11 HTP sin (~1-~g) + Yo 

where, to review the meanings of previously defined symbols, 

(23-45) 
(23-46) 
(23-47) 
(23-48) 
(23-49) 
(23-50) 
(23-51) 
(23-52) 
(23-53) 
(23-54) 
(23-55) 
(23-56) 
(23-57) 
(23-58) 
(23-59) 
(23-60) 
(23-61) 
(23-62) 

latitude and longitude of the projection center and origin 
geocentric latitude of the point of perspective, found from equa
tion (23-17) 

w 
p 

azimuth east of north of the Yt axis, or the most upward-tilted 
axis of the plane of projection 
upward angle of tilt 
distance from the center of the Earth to the point of perspective, 
divided by a, the semimajor axis. 

New symbols are as follows: 

e clockwise angle through which the (Xt, Yt) axes are rotated for 
the arbitrary axes (Xt', Yt') used for the constants K1 - K11. This 
may be made zero to retain the (Xt, Yt) axes. 
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(xo, y0 ) = offsets of the (Xt, Yt) axes to establish a different origin for the 
(Xt', Yt') axes. They may also be set at zero to retain the (Xt, 
Yt) axes. 

The two sets of axes are related as follows: 

Xt' 

Yt' 
Xt cos e - Yt sin e + Xo 

Yt cos e + Xt sin e + Yo 
(23-62a) 
(23-62b) 

For inverse computations using projective constants, given K1-K11 , Xt', and 
Yt', to find <1> and A, the following are calculated in order: 

Al = Xt'K5-Kl 
A2 = Xt'K6-K2 
A3 = Xt'K7-K3 

A4 = K4-xt' 
A5 = Yt'K5-Ks 
A6 = Yt'K6-K9 
A7 = Yt'K7-K10 
As = Ku-Yt' 
A9 = A1As-A4A5 
Aw = A1A7-AsA5 
A 11 = A 2A 5-A1A 6 
A 12 = A 2A 7-A3A 6 
A 13 = A 2A 8 -A4A 6 

A14 = A102 + Au21(1-e2) + A 1/ 

A15 = A0lo + A12A1a 
Al6 = A92-EAu2+Ala2 

(23-63) 
(23-64) 
(23-65) 
(23-66) 
(23-67) 
(23-68) 
(23-69) 
(23-70) 
(23-71) 
(23-72) 
(23-73) 
(23-74) 
(23-75) 
(23-76) 
(23-77) 
(23-78) 

where E is found from (23-36) if his not zero, orE = 1 if his zero. Then 

(23-79) 

and <1> is found from (23-35) if h is not zero, or (23-37) if his zero, taking one 
sign in (23-79) for the latitude desired, and the opposite sign for the latitude 
hidden from view at the same coordinates. The same sign applies throughout the 
map, once it is determined for a point for which the latitude is obviously right or 
wrong. 

(23-80) 

In this case the ATAN2 function is not used, but 180° must be added to or sub
tracted from A if the denominator has the same sign as A 11 • 

If h is not zero, E is initially assumed to be 1. After trial values of <1> and A are 
determined above, an h suitable for that point may be used with the new <1> in 
calculating E; then A 16 , S, <1> and A are recalculated. Iteration continues until the 
change in the calculated <!> is negligible. 

If his zero, since E = 1 and (23-37) is explicit in <!>, no iteration is required. 
Finally, to compute "camera" parameters from given constants K 1-K11 

(Bender, ca. 1970, p. 26-27), given a, e2, and an assumed h0 , first the following 
three simultaneous equations are solved for X 0 , Y0 , and Z 0 , the space coordinates 
of the point of perspective divided by a (see description of axes following (23-40)): 

K 1X 0 + K2Y0 + K3Z 0 = -K4 
KsXo + K9Yo + K10Zo = -Ku 
K~o + K6Yo + K7Zo = -1 

(23-81) 
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Then the coordinates (xp, Yp) of the principal point of the "space photograph" 
are found as the point where a perpendicular dropped from the point of perspec
tive strikes the plane of the map: 

Xp = CK1K5 + KzK6 + K3K7)/(K5
2 + Kl + K72

) 

Yp = (K~s + K~9 + K7K 10)/(K5 
2 + K 6 

2 + K 7 
2

) 

(23-82) 
(23-83) 

The parameters reviewed after equation (23-62) are then found as follows (except 
that <l>g is an intermediate latitude described after (23-20)): 

A.0 = arctan (Y o/X0) 

P = (Xo2 + Yl + Zo2)tn. 
<f>u = arcsin (ZofP) 
4>1 = <l>g + arcsin (e2 sin 4>1 cos <f>1/[P(l- e2 sin2 <f> 1)h]j 

(23-84) 
(23-85) 
(23-86) 
(23-87) 

which is solved for <Pt. with <l>g as the first approximation for 4>1 , and iterating with 
successive substitution. 

(23-88) 

using for h0 the height at C<Pt. X.0). The forward equations (23-15), (23-16), and 
(23-38) through (23-40) are now used to calculate X, Y, and Z for (<f>ll A.0, h0). 
Substituting these values and K1- K11 into (23-41) and (23-42), x0 is found as 
Xt', and y0 as Yt'. Then 

w = arcsin [[(x0 -xp)2 + (yp-y0)2]hfH) 
e = arctan [(x0 -xp)!(yp-Yo)] 

(23-89) 
(23-90) 

Then, (xt', Yt') are calculated for (<f>1 + 0.02°, A.0) from (23-41) and (23-42) and 
the necessary preceding equations, in order to obtain the direction of the Yt axis, 
and from this value of (xt', Yt') are calculated 

Xt = (Xt'-xo) cos 6 + (yt'-yo) sin 6 
Yt = (Yt' -yo) cos 6 - (Xt'-xo) sin 6 
"' = - arctan [xti(Yt cos w)] 

(23-91) 
(23-92) 
(23-93) 
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24. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION 

SUMMARY 

• Azimuthal. 
• Equal-Area. 
• All meridians in the polar aspect, the central meridian in other aspects, and the 

Equator in the equatorial aspect are straight lines. 
• The outer meridian of a hemisphere in the equatorial aspect (for the sphere) 

and the parallels in the polar aspect (sphere or ellipsoid) are circles. 
• All other meridians and parallels are complex curves. 
• Not a perspective projection. 
• Scale decreases radially as the distance increases from the center, the only 

point without distortion. 
• Scale increases in the direction perpendicular to radii as the distance increases 

from the center. 
• Directions from the center are true for the sphere and the polar ellipsoidal 

forms. 
• Point opposite the center is shown as a circle surrounding the map (for the 

sphere). 
• Used for maps of continents and hemispheres. 
• Presented by Lambert in 1772. 

HISTORY 

The last major projection presented by Johann Heinrich Lambert in his 1772 
Beitrage was his azimuthal equal-area projection (Lambert, 1772, p. 75-78). His 
name is usually applied to the projection in modern references, but it is oc
casionally called merely the Azimuthal (or Zenithal)' Equal-Area projection. Not 
only is it equal-area, with, of course, the azimuthal property showing true direc
tions from the center of the projection, but its scale at a given distance from the 
center varies less from the scale at the center than the scale of any of the other 
major azimuthals (see table 21). 

Lambert discussed the polar and equatorial aspects of the Azimuthal Equal
Area projection, but the oblique aspect is just as popular now. The polar aspect 
was apparently independently derived by Lorgna in Italy in 1789, and the 
latter was called the originator in a publication a century later (USC&GS, 1882, 
p. 290). G. A. Ginzburg proposed two modifications of the general Lambert Azi
muthal projection in 1949 to reduce the angular distortion at the expense of creat
ing a slight distortion in area (Maling, 1960, p. 206). A common modification was 
devised by Ernst Hammer in 1892 and is called the Hammer or Hammer-Aitoff 
projection. It consists of halving the vertical coordinates of the equatorial aspect 
of one hemisphere and doubling the values of the meridians from center. It re
tains equality of area, but it is no longer azimuthal. 

FEATURES 

The Lambert Azimuthal Equal-Area projection is not a perspective projection. 
It may be called a "synthetic" azimuthal in that it was derived for the specific pur
pose of maintaining equal area. The ellipsoidal form maintains equal area, but it is 
not quite azimuthal except in the polar aspect, so the name for the general ellip
soidal form is a slight misnomer, although it looks like the spherical azimuthal 
form and has most of its other characteristics. 

The polar aspect (fig. 39A), like that of the Orthographic and Stereographic, 
has circles for parallels of latitude, all centered about the North or South Pole, 
and straight equally spaced radii of these circles for meridians. The difference is, 
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FIGURE 39.-Lambert Azimuthal Equal-Area projection. (A) Polar aspect showing one hemisphere; the 
entire globe may be included in a circle of 1.41 times the diameter of the Equator. (B) Equatorial aspect; 
frequently used in atlases for maps of the Eastern and Western hemispheres. (C) Oblique aspect; 
centered on lat. 40° N. 
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once again, in the spacing of the parallels. For the Lambert, the spacing between 
the parallels gradually decreases with increasing distance from the pole. The 
opposite pole, not visible on either the Orthographic or Stereographic, may be shown 
on the Lambert as a large circle surrounding the map, almost half again as far as 
the Equator from the center. Normally, the projection is not shown beyond one 
hemisphere (or beyond the Equator in the polar aspect). 

The equatorial aspect (fig. 39B) has, like the other azimuthals, a straight Equa
tor and straight central meridian, with a circle representing the 90th meridian 
east and west of the central meridian. Unlike those for the Orthographic and 
Stereographic, the remaining meridians and parallels are uncommon complex 
curves. The chief visual distinguishing characteristic is that the spacing of the 
meridians near the 90th meridian and Jf the parallels near the poles is about 0. 7 
of the spacing at the center of the projection, or moderately less to the eye. 
The parallels of latitude look considerably like circular arcs, except near the 90th 
meridians, where they exhibit a noticeable turn toward the nearest pole. 

The oblique aspect (fig. 39C) of the Lambert Azimuthal Equal-Area resembles 
the Orthographic to some extent, until it is seen that crowding is far less pro
nounced as the distance from the center increases. Aside from the straight central 
meridian, all meridians and parallels are complex curves, not ellipses. 

In both the equatorial and oblique aspects, the point opposite the center may be 
shown as a circle surrounding the map, corresponding to the opposite pole in the 
polar aspect. Except for the advantage of showing the entire Earth in an equal
area projection from one point, the distortion is so great beyond the inner hemi
sphere that for world maps the Earth should be shown as two separate hemispheri
cal maps, the second map centered on the point opposite the center of the first 
map. 

USAGE 

The spherical form in all three aspects of the Lambert Azimuthal Equal-Area 
projection has appeared in recent commercial atlases for Eastern and Western 
Hemispheres (replacing the long-used Globular projection) and for maps of oceans 
and most of the continents and polar regions. 

The polar aspect appears in the National Atlas (USGS, 1970, p. 148-149) for 
maps delineating north and south polar expeditions, at a scale of 1:39,000,000. 
It is used at a scale of 1:20,000,000 for the Arctic Region as an inset on the 1978 
USGS Map of Prospective Hydrocarbon Provinces of the World. 

The USGS has prepared six base maps of the Pacific Ocean on the spherical 
form of the Lambert Azimuthal Equal-Area. Four sections, at 1:10,000,000, have 
centers at 35° N., 150° E.; 35° N., 135° W.; 35° S., 135° E.; and 40° S., 100°W. The 
Pacific-Antarctic region, at a scale of 1:8,300,000, is centered at 20° S. and 165° W., 
while a Pacific Basin map at 1:17,100,000 is centered at the Equator and 160° W. 
(The last two maps were originally erroneously labeled with scales that are too 
small.) The base maps have been used for individual geographic, geologic, tec
tonic, minerals, and energy maps. The USGS has also cooperated with the Na
tional Geographic Society in revising maps of the entire Moon drawn to the spheri
cal form of the equatorial Lambert Azimuthal Equal-Area. 

GEOMETRIC CONSTRUCTION 

The polar aspect (for the sphere) may be drawn with a simple geometric con
struction: In figure 40, if angle AOR is the latitude q, and P is the pole at the 
center, P A is the radius of that latitude on the polar map. The oblique and equa
torial aspects have no direct geometric construction. They may be prepared 
indirectly by using other azimuthal projections (Harrison, 1943), but it is now 
simpler to plot automatically or manually from rectangular coordinates which are 
generated by a relatively simple computer program. The formulas are given 
below. 
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FIGURE 40.-Geometric construction of polar Lambert Azimuthal Equal-Area projection. 

FORMULAS FOR THE SPHERE 

On the Lambert Azimuthal Equal-Area projection for the sphere, a point at a 
given angular distance from the center of projection is plotted at a distance from 
the center proportional to the sine of half that angular distance, and at its true 
azimuth, or 

p = 2 R sin (c/2) 
e = 'IT - Az = 180° - Az 

h' = cos (c/2) 
k' = sec (c/2) 

(24-1) 
(20-2) 

(24-1a) 
(24-1b) 

where cis the angular distance from the center, Az is the azimuth east of north 
(see equations (5-3) through (5-4b)), and e is the polar coordinate east of south. 
The term k' is the scale factor in a direction perpendicular to the radius from the 
center of the map, not along the parallel, except in the polar aspect. The scale 
factor h' in the direction of the radius equals l!k'. After combining with standard 
equations, the formulas for rectangular coordinates for the oblique Lambert Azi
muthal Equal-Area projection may be written as follows, given R, <Pt. ;\0 , <!>, 
and ;\: 

x = R k' cos <1> sin (;\- ;\0) 

y = R k' [cos <1> 1 sin <1> - sin <1> 1 cos <1> cos (;\- ho)] 

where 

k' j2/[l + sin <1> 1 sin <1> + cos <1> 1 cos <I> cos (;\- ;\0)]jvz 

(22-4) 
(22-5) 

(24-2) 
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and (<f>I, A.0) are latitude and longitude of the projection center and origin. The Y 
axis coincides with the central meridian A0 , y increasing northerly. For the point 
opposite the center, at latitude -<j>1 and longitude A.0 ± 180°, these formulas give 
indeterminates. This point, if the map is to cover the entire sphere, is plotted 
as a circle of radius 2R. 

For the north polar Lambert Azimuthal Equal-Area, with <j>1 = 90°, since k' is k 
for the polar aspect, these formulas simplify to the following (see p. 332 for nu
merical examples): 

x = 2R sin (-rr/4-<j>/2) sin (A.-A.0 ) 

y = -2R sin (TI/4-<j>/2) cos (A.-A.0 ) 

k = sec ( TI/4-<j>/2) 
h = 1/k = COS (TI/4-<j>/2) 

or, using polar coordinates, 

or 

p = 2R sin (TI/4-<j>/2) 
e = A.-A.o 

For the south polar aspect, with <j>1 = -90°, 

x = 2R cos (TI/4-<j>/2) sin (A.-A.0) 

y = 2R cos (TI/4-<j>/2) cos (A-A.0 ) 

k = 1/sin (TI/4-<j>/2) 
h =sin (TI/4-<j>/2) 

p = 2R cos ( 7T/4-<j>/2) 
e = 1r- A + Ao 

(24-3) 
(24-4) 
(24-5) 
(24-6) 

(24-7) 
(20-9) 

(24-8) 
(24-9) 

(24-10) 
(24-11) 

(24-12) 
(20-12) 

For the equatorial aspect, letting <j>1 = 0, x is found from (22-4), but 

y = Rk' sin <j> (24-13) 

and 

k' = j2/[1 + cos <f> cos (A. - A.0)]j112 (24-14) 

The maximum angular deformation w for any of these aspects, derived from 
equations (4-7) through (4-9), and from the fact that h' = Ilk' for equal-area 
maps: 

sin (w/2) = (k' 2 -1)/(1 + k' 2
) (24-15) 

For the inverse formulas for the sphere, given R, <j>1, A0 , x, and y: 

<!> = arcsin [cos c sin <!>1 + (y sin c cos <j>1/p)] (20-14) 

If p = 0, equations (20-14) through (20-17) are indeterminate, but <j> = <j>1 and 
A=Ao. 

A = A0 + arctan [x sin c/(p cos <1> 1 cos c - y sin <!>1 sin c)] (20-15) 
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J\0 + arctan [x!( -y)] 

J\ = J\0 + arctan (x!y) 

In equations (20-14) and (20-15), 

P = (xz + yz)v2 

c = 2 arcsin [p/(2R)] 

(20-16) 

(20-17) 

(20-18) 
(24-16) 

It may again be noted that several of the above forward and inverse equations 
apply to the other azimuthals. 

Table 28 lists rectangular coordinates for the equatorial aspect for a 10° graticule 
with a sphere of radius R = 1.0. 

FORMULAS FOR THE ELLIPSOID 

As noted above, the ellipsoidal oblique aspect of the Lambert Azimuthal Equal
Area projection is slightly nonazimuthal in order to preserve equality of area. To 
date, the USGS has not used the ellipsoidal form in any aspect. The formulas 
are analogous to the spherical equations, but involve replacing the geodetic lati
tude <!>with authalic latitude (3 (see equation (3-11)). In order to achieve correct 
scale in all directions at the center of projection, that is, to make the center a 
"standard point," a slight adjustment using Dis also necessary. The general for
ward formulas for the oblique aspect are as follows, given a, e, <!>t. J\0 , <!>, and J\ 

(see p. 333 for numerical examples): 

where 

x = B D cos [3 sin (A. -X.0 ) 

y = (BID) [cos (3 1 sin (3 - sin (3 1 cos (3 cos (A.- A.0)] 

B = Rq(2/[1 + sin (3 1 sin (3 + cos (3 1 cos (3 cos (J\- A.0)]jv2 

D = a m 11(Rq cos (3 1) 

Rq = a (qp/2)112 
13 = arcsin (qlqp) 
q = (1-e2) (sin <f>/(1-e2 sin2 <!>) - [11(2 e)] ln 

[(1-e sin <f>)/(1 + e sin <!>)]] 
m =cos <f>/(1-e2 sin2 <f>)l/2 

(24-17) 
(24-18) 

(24-19) 
(24-20) 
(3-13) 
(3-11) 

(3-12) 
(14-15) 

and (3 1 is found from (3-11), using q1 for q, while q1 and Qp are found from (3-12) 
using <!> 1 and 90°, respectively, for<!>, and m 1 is found from (14-15), calculated for 
<f>1. The origin occurs at C<!>t. X.0), the Y axis coinciding with the central meridian 
X.0 , and y increasing northerly. For the equatorial aspect, the equations simplify 
as follows: 

x = a cos [3 sin (J\- >..0)(2/[1 + cos [3 cos (X.- X.0)])112 
y = (R/!a) sin 13 (2/[1 + cos [3 cos (J\- >..0)])112 

(24-21) 
(24-22) 

For the polar aspects, Dis indeterminate using equations above, but the follow
ing equations may be used instead. For the north polar aspect, <!> 1 = 90°, 
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TABLE 28.-Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial 
aspect (sphere) 

[One hemisphere; y coordinate in parentheses under x coordinate] 

~ 
oo 10° 20° 30° 40° 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.41421) (1.41421) (1.41421) (1.41421) (1.41421) 

80 --------------- .00000 .03941 .07788 .11448 .14830 
(1.28558) (1.28702) (1.29135) (1.29851) (1.30842) 

70 --------------- .00000 .07264 .14391 .21242 .27676 
(1.14715) (1.14938) (1.15607) (1.16725) (1.18296) 

60 --------------- .00000 .10051 .19948 .29535 .38649 
(1.00000) (1.00254) (1.01021) (1.02311) (1.04143) 

50 --------------- .00000 .12353 .24549 .36430 .47831 
( .84524) ( .84776) ( .85539) ( .86830) ( .88680) 

40 --------------- .00000 .14203 .28254 .41999 .55281 
( .68404) ( .68631) ( .69317) ( .70483) ( .72164) 

30 --------------- .00000 .15624 .31103 .46291 .61040 
( .51764) ( .51947) ( .52504) ( .53452) ( .54826) 

20 --------------- .00000 .16631 .33123 .49337 .65136 
( .34730) ( .34858) ( .35248) ( .35915) ( .36883) 

10 --------------- .00000 .17231 .34329 .51158 .67588 
( .17431) ( .17497) ( .17698) ( .18041) ( .18540) 

0 --------------- .00000 .17431 .34730 .51764 .68404 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere= 1.0. 
Origin: (x, y)=O at (lat., Iong.)=O. Y axis increases north. Other quadrants of hemisphere are symmetrical. 

where 

x = p sin (A.- A-0) 

y = -p cos (A.-A-0) 

k = p/(a m) 

(21-30) 
(21-31) 
(21-32) 

(24-23) 

and qp and q are found from (3-12) as before and m from (14-15) above. Since 
the meridians and parallels intersect at right angles, and this is an equal-area 
projection, h = 1/k. 

For the south polar aspect, (<h = -90°), equations (21-30) and (21-32) remain 
the same, but 

y = p cos (A.-Ao) (24-24) 

and 

p = a(qp + q)112 (24-25) 

For the inverse formulas for the ellipsoid, the oblique and equatorial aspects 
(where <!>1 is not ±90°) may be solved as follows, given a, e, <l>I> A-0 , x, and y. 

<!> = <!> + (1-e
2 

sin
2 

<j>)
2 

[ q _ sin <!> + __!_ In (1-e sin <l>)1l 
2 cos <!> 1-e2 1-e2 sin2 <!> 2e 1 + e sin <j> ~ 

A = Ao + arctan [x sin c8 /(D p cos 131 cos Ce - D 2y sin 13 1 sin Ce)] 

where 

q = qp [cos Ce sin 13 1 + (Dy sin Ce cos 13h)] 

(3-16) 

(24-26) 

(24-27) 
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TABLE 28.-Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial 
aspect (sphere)-Continued 

~ 50° 60° 70° 

. 

goo -------------- 0.00000 0.00000 0.00000 
(1.41421) (1.41421) (1.41421) 

80 --------------- .17843 .20400 .22420 
(1.320g6) (1.335g4) (1.35313) 

70 --------------- .33548 .38709 .43006 
(1.20323) (1.22806) (1.25741) 

60 --------------- .47122 .54772 .61403 
(1.06544) (1.09545) (1.13179) 

50 --------------- .58579 .68485 .77342 
( .91132) ( .94244) ( .98088) 

40 --------------- .67933 .79778 .90620 
( .74411) ( .77298) ( .80919) 

30 --------------- .75197 .88604 1.01087 
( .56674) ( .59069) ( .62108) 

20 --------------- .80380 .94928 1.08635 
( .38191) ( .39896) ( .42078) 

10 --------------- .83488 .98731 1.13192 
( .19217) ( .20102) ( .21240) 

0 --------------- .84524 LOOOOO 1.14715 
( .00000) ( .00000) ( .00000) 

but if p = 0, then q = Qp sin ~1 , and A.- A.0 • 

P = [(x!D)z + (Dy)z]1t2 

Ce = 2 arcsin (p/2 Rq) 

80° 

0.00000 
(1.41421) 

.23828 
(1.3721g) 

.46280 
(1.29114) 

.66797 
(1.17481) 

.84909 
(1.02752) 
1.00231 

( .85401) 
1.12454 

( .65927) 
1.21347 

( .44848) 
1.26747 

( .22694) 
1.28558 

( .00000) 

goo 

0.00000 
(1.41421) 

.24558 
(1.39273) 

.48369 
(1.32893) 

.70711 
(1.22474) 

.90904 
{1.08335) 
1.08335 

( .90904) 
1.22474 

( .70711) 
1.32893 

( .48369) 
1.39273 

( .24558) 
1.41421 

( .00000) 

(24-28~ 
(24-29) 

and D, Rq, Qp, and ~ 1 are found from equations (24-20), (3-13), (3-12), (3-11), 
and (14-15), as in the forward equations above. The factor Ce is not the true 
angular distance, as c is in the spherical case, but it is a convenient number 
similar in nature to c, used to find <1> and A.. Equation (3-16) requires iteration by 
successive substitution, using arcsin (q/2) as the first trial <1> on the right side, 
calculating <1> on the left side, substituting this new <1> on the right side, etc., until 
the change in <1> is negligible. If, in equation (24-27), 

q = ±(1-[(1-e2)/(2 e)] In [(1-e)/(1 + e)]j (14-20) 

the iteration does not converge, but <1> = ±90°, taking the sign of q. 
To avoid the iteration, equations (3-16), (24-27), and (14-20) may be re

placed with the series 

<1> = ~ + (e2/3 + 3le4/180 + 517e6/5040 + ... ) sin 213 
+ (23e4/360 + 251e6/3780 + ... ) sin 4~ + (761e6/45360 + ... ) 

sin 613 + . . . (3-18) 

where 13, the authalic latitude, is found thus: 

13 = arcsin [cos Ce sin 13 1 + (Dy sin Ce cos ~/p)] (24-30) 

Equations (24-26), (24-28), and (24-29) still apply. In (24-30), if p = 0, 13 = 

131· For improved computational efficiency using this series, see p. 19. 
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TABLE 29.-Ellipsoidal polar Lambert Azimuthal Equal-Area projection (International ellipsoid) 

Latitude 

90° --------------------89 ____________________ _ 

88 ---------------------
87 ---------------------
86 ---------------------
85 ---------------------
84 ---------------------
83 ---------------------
82 ---------------------
81 ---------------------
80 ---------------------
79 ---------------------
78 ---------------------
77 ---------------------
76---------------------
75---------------------
7 4 ---------------------
73 ---------------------
72 ---------------------71 ____________________ _ 

70 ---------------------

h =scale factor along meridian. 
k =scale factor along parallel. 

Radius, meters 

0.0 
111,698.4 
223,387.7 
335,058.5 
446,701.8 
558,308.3 
669,868.8 
781,374.2 
892,815.4 

1,004,183.1 
1,115,468.3 
1,226,661.9 
1,337,754.7 
1,448, 737.6 
1,559,601. 7 
1,670,337.9 
1,780,937.2 
1,891,390.6 
2,001,689.2 
2,111,824.0 
2,221, 786.2 

h 

1.000000 
.999962 
.999848 
.999657 
.999391 
.999048 
.998630 
.998135 
.997564 
.996918 
.996195 
.995397 
.994522 
.993573 
.992547 
.991446 
.990270 
.989018 
.987691 
.986289 
.984812 

k 

1.000000 
1.000038 
1.000152 
1.000343 
1.000610 
1.000953 
1.001372 
1.001869 
1.002442 
1.003092 
1.003820 
1.004625 
1.005508 
1.006469 
1.007509 
1.008628 
1.009826 
1.011104 
1.012462 
1.013902 
1.015422 

The inverse formulas for the polar aspects involve relatively simple transforma
tions of above equations (21-30), (21-31), and (24-23), except that <!> is found 
from the iterative equation (3-16), listed just above, in which q is calculated as 
follows: 

(24-31) 

taking the sign of <!>I· The series (3-18) may be used instead for <J>, where 

f3 = ± arcsin (1-p2/[a2[1-((1-e2 )/(2 e)) In ((1-e)/(1 +e))]]) (24-32) 

taking the sign of <l>I· In any case, 

(20-18) 

while 

A = A0 + arctan [xl( -y)] (20-16) 

for the north polar case, and 

A = A0 + arctan (x!y) (20-17) 

for the south polar case. 
Table 29 lists polar coordinates for the ellipsoidal polar aspect of the Lambert 

Azimuthal Equal-Area, using the International ellipsoid. 
To convert coordinates measured on an existing Lambert Azimuthal Equal

Area map (or other azimuthal map projection), the user may choose any meridian 
for A0 on the polar aspect, but only the original meridian and parallel may be used 
for A0 and <!>I, respectively, on other aspects. 



25. AZIMUTHAL EQUIDISTANT PROJECTION 

25. AZIMUTHAL EQUIDISTANT PROJECTION 

SUMMARY 

• Azimuthal. 
• Distances measured from the center are true. 
• Distances not measured along radii from the center are not correct. 
• The center of projection is the only point without distortion. 
• Directions from the center are true (except on some oblique and equatorial 

ellipsoidal forms). 
• Neither equal-area nor conformal. 
• All meridians on the polar aspect, the central meridian on other aspects, and 

the Equator on the equatorial aspect are straight lines. 
• Parallels on the polar projection are circles spaced at true intervals (equidistant 

for the sphere). 
• The outer meridian of a hemisphere on the equatorial aspect (for the sphere) is 

a circle. 
• All other meridians and parallels are complex curves. 
• Not a perspective projection. 
• Point opposite the center is shown as a circle (for the sphere) surrounding 

the map. 
• Used in the polar aspect for world maps and maps of polar hemispheres. 
• Used in the oblique aspect for atlas maps of continents and world maps for avia

tion and radio use. 
• Known for many centuries in the polar aspect. 

HISTORY 

While the Orthographic is probably the most familiar azimuthal projection, the 
Azimuthal Equidistant, especially in its polar form, has found its way into many 
atlases with the coming of the air age for maps of the Northern and Southern 
Hemispheres or for world maps. The simplicity of the polar aspect for the sphere, 
with equally spaced meridians and equidistant concentric circles for parallels of 
latitude, has made it easier to understand than most other projections. The pri
mary feature, showing distances and directions correctly from one point on the 
Earth's surface, is also easily accepted. In addition, its linear scale distortion is 
moderate and falls between that of equal-area and conformal projections. 

Like the Orthographic, Stereographic, and Gnomonic projections, the Azimuthal 
Equidistant was apparently used centuries before the 15th-century surge in scien
tific mapmaking. It is believed that Egyptians used the polar aspect for star 
charts, but the oldest existing celestial map on the projection was prepared in 
1426 by Conrad of Dyffenbach. It was also used in principle for small areas by 
mariners from earliest times in order to chart coasts, using distances and direc
tions obtained at sea. 

The first clear examples of the use of the Azimuthal Equidistant for polar maps 
of the Earth are those included by Gerard us Mercator as insets on his 1569 world 
map, which introduced his famous cylindrical projection. As Northern and South
ern Hemispheres, the projection appeared in a manuscript of about 1510 by the 
Swiss Henricus Loritus, usually called Glareanus (1488-1563), and by several 
others in the next few decades (Keuning, 1955, p. 4-5). Guillaume Postel is given 
credit in France for its origin, although he did not use it until 1581. Antonio 
Cagnoli even gave the projection his name as originator in 1799 (Deetz and 
Adams, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt developed ellipsoidal 
versions of the oblique aspect which are used by the French and the Greeks for 
coastal or topographic mapping. 
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Two projections with similar names are called the Two-Point Azimuthal and the 
Two-Point Equidistant projections. Both were developed about 1920 independ
ently by Maurer (1919) of Germany and Close (1921) of England. The first pro
jection (rarely used) is geometrically a tilting of the Gnomonic projection to pro
vide true azimuths from either of two chosen points instead of from just one. Like 
the Gnomonic; it shows all great circle arcs as straight lines and is limited to one 
hemisphere. The Two-Point Equidistant has received moderate use and interest, 
and shows true distances, but not true azimuths, from either of two chosen points 
to any other point on the map, which may be extended to show the entire world 
(Close, 1934). 

The Chamberlin Trimetric projection is an approximate "three-point equidis
tant" projection, constructed so that distances from three chosen points to any 
other point on the map are approximately correct. The latter distances cannot be 
exactly true, but the projection is a compromise which the National Geographic 
Society uses as a standard projection for maps of most continents. This projection 
was geometrically constructed by the Society, of which Wellman Chamberlin 
(1908-76) was chief cartographer for many years. 

An ellipsoidal adaptation of the Two-Point Equidistant was made by Jay K. 
Donald of American Telephone and Telegraph Company in 1956 to develop a grid 
still used by the Bell Telephone system for establishing the distance component of 
long distance rates. Still another approach is Bamford's modification of the Azi
muthal Equidistant, in which the usual circles of constant scale factor perpen
dicular to the radius from the center are made ovals to give a better average scale 
factor on a map with a rectangular border (Lewis and Campbell, 1951, p. 7, 
12-15). 

FEATURES 

The Azimuthal Equidistant projection, like the Lambert Azimuthal Equal
Area, is not a perspective projection, but in the spherical form, and in some of the 
ellipsoidal forms, it has the azimuthal characteristic that all directions or azimuths 
are correct when measured from the center of the projection. As its special 
feature, all distances are at true scale when measured between this center and 
any other point on the map. 

The polar aspect (fig. 41A), like other polar azimuthals, has circles for parallels 
oflatitude, all centered about the North or South Pole, and equally spaced radii of 
these circles for meridians. The parallels are, however, spaced equidistantly on 
the spherical form (or according to actual parallel spacings on the ellipsoid). A 
world map can extend to the opposite pole, but distortion becomes infinite. Even 
though the map is finite, the point for the opposite pole is shown as a circle twice 
the radius of the mapped Equator, thus giving an infinite scale factor along that 
circle. Likewise, the countries of the outer hemisphere are visibly increasingly 
distorted as the distance from the center increases, while the inner hemisphere 
has little enough distortion to appear rather satisfactory to the eye, although the 
east-west scale along the Equator is almost 60 percent greater than the scale at 
the center. 

As on other azimuthals, there is no distortion at the center of the projection 
and, as on azimuthals other than the Stereographic, the scale cannot be reduced 
at the center to provide a standard circle of no distortion elsewhere. It is possible 
to use an average scale over the map involved to minimize variations in scale error 
in any direction, but this defeats the main purpose of the projection, that of provid
ing true distance from the center. Therefore, the scale at the projection center 
should be used for any Azimuthal Equidistant map. 

The equatorial aspect (fig. 41B) is least used of the three Azimuthal Equidis
tant aspects, primarily because there are no cities along the Equator from which 
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FIGURE 41.-Azimuthal Equidistant projection. (A) Polar aspect extending to the South Pole; commonly 
used in atlases for polar maps. (B) Equatorial aspect. (C) Oblique aspect centered on lat. 40° N. Distance 
from the center is true to scale. 
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distances in all directions have been of much interest to map users. Its potential 
use as a map of the Eastern or Western Hemisphere was usually supplanted first 
by the equatorial Stereographic projection, later by the Globular projection (both 
graticules drawn entirely with arcs of circles and straight lines), and now by the 
equatorial Lambert Azimuthal Equal-Area. 

For the equatorial Azimuthal Equidistant projection of the sphere, the only 
straight lines are the central meridian and the Equator. The outer circle for one 
hemisphere (the meridian 90° east and west of the central meridian) is equidis
tantly marked off for the parallels, as it is on other azimuthals. The other merid
ians and parallels are complex curves constructed to maintain the correct dis
tances and azimuths from the center. The parallels cross the central meridian at 
their true equidistant spacings, and the meridians cross the Equator equidis
tantly. The map can be extended, like the polar aspect, to include a much-distorted 
second hemisphere on the same center. 

The oblique Azimuthal Equidistant projection (fig. 41C) rather resembles the 
oblique Lambert Azimuthal Equal-Area when confined to the inner hemisphere 
centered on any chosen point between Equator and pole. Except for the straight 
central meridian, the graticule consists of complex curves, positioned to maintain 
true distance and azimuth from the center. When the outer hemisphere is included, 
the difference between the Equidistant and the Lambert becomes more pro
nounced, and while distortion is as extreme as in other aspects, the distances and 
directions of the features from the center now outweigh the distortion for many 
applications. 

USAGE 

The polar aspect of the Azimuthal Equidistant has regularly appeared in com
mercial atlases issued during the past century as the most common projection for 
maps of the north and south polar areas. It is used for polar insets on Van der 
Grinten-projection world maps published by the National Geographic Society and 
used as base maps (including the insets) by USGS. The polar Azimuthal Equidis
tant projection is also normally used when a hemisphere or complete sphere 
centered on the North or South Pole is to be shown. The oblique aspect has been 
used for maps of the world centered on important cities or sites and occasionally 
for maps of continents. Nearly all these maps use the spherical form of the 
projection. 

The USGS has used the Azimuthal Equidistant projection in both spherical and 
ellipsoidal form. An oblique spherical version of the Earth centered at lat. 40° N., 
long. 100° W., appears in the National Atlas (USGS, 1970, p. 329). At a scale of 
1:175,000,000, it does not show meridians and parallels, but shows circles at 
1,000-mile intervals from the center. The ellipsoidal oblique aspect is used for the 
plane coordinate projection system in approximate form for Guam and in nearly 
rigorous form for islands in Micronesia. 

GEOMETRIC CONSTRUCTION 

The polar Azimuthal Equidistant is among the easiest projections to construct 
geometrically, since the parallels of latitude are equally spaced in the spherical 
case and the meridians are drawn at their true angles. There are no direct geomet
ric constructions for the oblique and equatorial aspects. Like the Lambert Azi
muthal Equal-Area, they may be prepared indirectly by using other azimuthal 
projections (Harrison, 1943), but automatic computer plotting or manual plotting 
of calculated rectangular coordinates is the most suitable means now available. 
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FORMULAS FOR THE SPHERE 

On the Azimuthal Equidistant projection for the sphere, a given point is plotted 
at a distance from the center of the map proportional to the distance on the sphere 
and at its true azimuth, or 

p=R c 
e = 1r - Az = 180° - Az 

(25-1) 
(20-2) 

where c is the angular distance from the center, Az is the azimuth east of north 
(see equations (5-3) through (5-4b)), and e is the polar coordinate east of south. 
Fork' and h', see equation (25-2) and the statement below. Combining various 
equations, the rectangular coordinates for the oblique Azimuthal Equidistant 
projection are found as follows, given R, <!> 1 , X.0 , <j>, and X. (seep. 337 for numerical 
examples): 

x = R k' cos <!> sin (A.- X.0) 

y = R k' [cos <1> 1 sin<!> - sin <1> 1 cos <I> cos (X.- X.0)] 

where 

k' = c/sin c 
cos c = sin <1>1 sin <!> + cos <1>1 cos <I> cos (X.- X.0) 

(22-4) 
(22-5) 

(25-2) 
(5-3) 

and (<!>1 , X.0) are latitude and longitude of the center of projection and origin. The 
Y axis coincides with the central meridian X.0 , and y increases northerly. If cos c = 
1, equation(25-2)isindeterminate, butk' = 1, andx =y=O. Ifcosc = -1, the point 
opposite the center ( -<!>1 , X.0 ± 180°) is indicated; it is plotted as a circle of radius 
1rR. The term k' is the scale factor in a direction perpendicular to the radius from 
the center of the map, not along the parallel, except in the polar aspect. The 
scale factor h' in the direction of the radius is 1.0. 

For the north polar aspect, with <1> 1 = 90°, 

x =R(1TI2-<j>) sin (X.-X.o) 
y =- R (1T/2-<j>) cos (X.-X.o) 
k =(1f/2-<j>)/cos<f> 
h = 1.0 
p = R(1r/2-<j>) 
e =X. - X.o 

For the south polar aspect, with <1>1 

x =R(1TI2+<!>) sin (X.-X.0) 

y = R ( 1r/2 + <f>) cos (X.- X.0) 

k = ( 1r/2 + <1> )/cos <1> 

h = 1.0 
p =R(1T/2+<!>) 
8=1r-X.+X.o 

(25-3) 
(25-4) 
(25-5) 

(25-6) 
(20-9) 

(25-7) 
(25-8) 
(25-9) 

(25-10) 
(20-12) 

For the equatorial aspect, with <1> 1 = 0, xis found from (22-4) and k' from (25-2), 
but 

y = R k' sin <1> (25-11) 
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TABLE 30.-Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect 
(sphere) 

[One hemisphere; R=l. y coordinates in parentheses under x coordinates] 

~ 
oo 100 20° goo 40° 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .00000 .04281 .08469 .12469 .16188 
(1.39626) (1.39829) (1.40434) (1.41435) (1.42823) 

70 ---------------
.00000 .07741 .15362 .22740 .29744 

(1.22173) (1.22481) (1.23407) (1.24956) (1.27137) 

60 --------------- .00000 .10534 .20955 .31145 .40976 
(1.04720) (1.05068) (1.06119) (1.07891) (1.10415) 

50 --------------- .00000 .12765 .25441 .37931 .50127 
( .87266) ( .87609) ( .88647) ( .90408) ( .92938) 

40 --------------- .00000 .14511 .28959 .43276 .57386 
( .69813) ( .70119) ( .71046) ( .72626) ( .74912) 

30 --------------- .00000 .15822 .31607 .47314 .62896 
( .52360) ( .52606) ( .53355) ( .54634) ( .56493) 

20 --------------- .00000 .16736 .33454 .50137 .66'162 
( .34907) ( .35079) ( .35601) ( .36497) ( .37803) 

10 --------------- .00000 .17275 .34546 .51807 .69054 
( .17453) ( .17541) ( .17810) ( .18270) ( .18943) 

0 --------------- .00000 .17453 .34907 .52360 .69813 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

and 

cos c = cos <!> cos (A- Ao) (25-12) 

The maximum angular deformation w for any of these aspects, using equations 
(4-7) through (4-9), since h' = 1.0: 

sin %w (k' -1)/(k' + 1) 
(c-sin c)!(c +sin c) 

For the inverse formulas for the sphere, given R, <PI, }1.0, x, andy: 

<!> = arcsin [cos c sin <!> 1 + (y sin c cos <!> 1/p)] 

(25-13) 
(25-14) 

(20-14) 

If p = 0, equations (20-14) through (20-17) are indeterminate, but<!> = <!>1 and 
A = A0 • 

If <!> 1 is not ±90°: 

A = Ao + arctan [x sin c/(p cos <PI cos c-y sin <!>1 sin c)] (20-15) 

If <!> 1 is 90°: 

A = Ao + arctan [xi( -y)] 

If <PI is -90°: 

A = Ao + arctan (x!y) 

In equations (20-14) and (20-15), 

(20-16) 

(20-17) 

(20-18) 
(25-15) 
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TABLE 30.-Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect 
(sphere)-Continued 

~ 50° 60° 70° 80° goo 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .19529 .22399 .24706 .26358 .27277 
(1.44581) (1.46686) (1.49104) (1.51792) (1.54693) 

70 --------------- .36234 .42056 .47039 .50997 .53724 
(1.29957) (1.33423) (1.37533) (1.42273) (1.47607) 

60 --------------- .50301 .58948 .66711 .73343 .78540 
(1.13733) (1.17896) (1.22963) (1.28993) (1.36035) 

50 --------------- .61904 .73106 .83535 .92935 1.00969 
( .96306) (1.00602) (1.05942) (1.12464) (1.20330) 

40 --------------- .71195 .84583 .97392 1.09409 1.20330 
( .77984) ( .81953) ( .86967) ( .93221) (1.00969) 

30 --------------- .78296 .93436 1.08215 1.22487 1.36035 
( .59010) ( .62291) ( .66488) ( .71809) ( .78540) 

20 --------------- .83301 .99719 1.15965 1.31964 1.47607 
( .39579) ( .41910) ( .44916) ( .48772) ( .53724) 

10 --------------- .86278 1.03472 1.20620 1.37704 1.54693 
( .19859) ( .21067) ( .22634) ( .24656) ( .27277) 

0 --------------- .87266 1.04720 1.22173 1.39626 1.57080 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere= 1.0. 
Origin: (x, y)=O at (lat., long.)=O. Y axis increases north. Other quadrants of hemisphere are symmetrical. 

Except for (25-15), the above inverse formulas are the same as those for the 
other azimuthals, and (25-2) is the only change from previous azimuthals among 
the general (oblique) formulas (22-4) through (5-3) for the forward calculations 
as listed above. 

Table 30 shows rectangular coordinates for the equatorial aspect for a 10° grati
cule with a sphere of radius R = 1.0. 

FORMULAS FOR THE ELLIPSOID 

The formulas for the polar aspect of the ellipsoidal Azimuthal Equidistant pro
jection are relatively simple and are theoretically accurate for a map of the entire 
world. However, such a use is unnecessary because the errors of the sphere 
versus the ellipsoid become insignificant when compared to the basic errors of 
projection. The polar form is truly azimuthal as well as equidistant. Given a, e, <l>ll 
X.0 , <!>,and X., for the north polar aspect, <1> 1 = goo (seep. 338 for numerical examples): 

x = p sin (A.-A.o) 
y -p cos (X.-X.0) 

k pl(a m) 

where 

(21-30) 
(21-31) 
(21-32) 

p = Mp-M (25-16) 
M = a [(1-e2/4-3e4/64-5e6/256- ... )<!>-(3e2/8 + 3e4/32 

+ 45e6/1024 + ... ) sin 2 <1> + (15e4/256 + 45e6/1024 + ... ) 
sin 4 <1> - (35e6/3072 + ... ) sin 6 <1> + ... ] (3-21) 

with Mp the value of M for a <1> of goo, 
and m = cos <!>/(1-e2 sin2 <1>) 112 (14-15) 
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TABLE 31.-Ellipsoidal Azimuthal Equidistant projection (International ellipsoid)-Polar Aspect 

Latitude 

90° --------------------
89 ---------------------
88 ---------------------
87 ---------------------
86 ---------------------
85 ---------------------
84 ---------------------
83 ---------------------
82 ---------------------81 ____________________ _ 

80 ---------------------
79 ---------------------
78 ---------------------
77 ---------------------
76 ---------------------
75 ---------------------
7 4 ---------------------
73 ---------------------
72 ---------------------71 ____________________ _ 

70 ---------------------

h =scale factor along meridian. 
k ~scale factor along paralleL 

Radius, meters 

0.0 
111,699.8 
223,399.0 
335,096.8 
446,792.5 
558,485.4 
670,175.0 
781,860.4 
893,541.0 

1,005,216.2 
1,116,885.2 
1,228,547.5 
1,340,202.4 
1,451,849.2 
1,563,487.4 
1,675,116.3 
1,786,735.3 
1,898,343.8 
2,009,941.3 
2,121,527.1 
2,233,100.9 

h 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

For improved computational efficiency using this series, seep. 19. 

k 

1.000000 
1.000051 
1.000203 
1.000457 
1.000813 
1.001270 
1.001830 
1.002492 
1.003256 
1.004124 
1.005095 
1.006169 
1.007348 
1.008631 
1.010019 
1.011513 
1.013113 
1.014821 
1.016636 
1.018560 
1.020594 

For the south polar aspect, the equations for the north polar aspect apply, 
except that equations (21-31) and (25-16) become 

y = p cos (A.- A.0) 

p =Mp + M 
(24-23) 
(25-17) 

The origin falls at the pole in either case, and the Y axis follows the central 
meridian A.0 . For the north polar aspect, A.0 is shown below the pole, andy increases 
along A.0 toward the pole. For the south polar aspect, A.0 is shown above the pole, 
and y increases along A.0 away from the pole. 

Table 31 lists polar coordinates for the ellipsoidal aspect of the Azimuthal 
Equidistant, using the International ellipsoid. 

For the oblique and equatorial aspects of the ellipsoidal Azimuthal Equidistant, 
both nearly rigorous and approximate sets of formulas have been derived. For 
mapping of Guam, the National Geodetic Survey and the USGS use an approxima
tion to the ellipsoidal oblique Azimuthal Equidistant called the "Guam projection." 
It is described by Claire (1968, p. 52-53) as follows (changing his symbols to 
match those in this publication): 

The plane coordinates of the geodetic stations on Guam were obtained by first computing the 
geodetic distances [cl and azimuths [Az] of all points from the origin by inverse computations. The 
coordinates were then computed by the equations: [x = c sin Az andy = c cos Az]. This really gives a 
true azimuthal equidistant projection. The equations given here are simpler, however, than those for 
a geodetic inverse computation, and the resulting coordinates computed using them will not be 
significantly different from those computed rigidly by inverse computation. This is the reason it is 
called an approximate azimuthal equidistant projection. 

The formulas for the Guam projection are equivalent to the following: 

x =a (A.-A.0) cos <f>/(1-e2 sin2 <f>)112 
y = M - M 1 + x2 tan <P (1-e2 sin2 <f>) 112/(2a) 

(25-18) 
(25-19) 
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where M and M 1 are found from equation (3-21) for <j> and <j>1. Actually, the 
original formulas are given in terms of seconds of rectifying latitude and geodetic 
'latitude and longitude, but they may be written as above. The x coordinate is thus 
taken as the distance along the parallel, and y is the distance along the central 
meridian .>..0 with adjustment for curvature of the parallel. The origin occurs at (<j>1 , 

A.0), the Y axis coincides with the central meridian, and y increases northerly. 
For Guam, <j> 1 = 13°28'20.87887"N.lat. and .>..0 = 144°44'55.50254"E.long., with 

50,000 madded to both x andy to eliminate negative numbers. The Clarke 1866 
ellipsoid is used. The above formulas provide coordinates within 5 mm at full scale 
of those using ellipsoidal Polyconic formulas (p. 129) for the region of Guam. 

A more complicated and more accurate approach to the oblique ellipsoidal 
Azimuthal Equidistant projection is used for plane coordinates of various individ
ual islands of Micronesia. In this form, the true distance and azimuth of any point 
on the island or in· nearby waters are measured from the origin chosen for the 
island and along the normal section or plane containing the perpendicular to the 
surface of the ellipsoid at the origin. This is not exactly the same as the shortest 
or geodesic distance between the points, but the difference is negligible (Bomford, 
1971, p. 125). This distance and azimuth are plotted on the map. The projection is, 
therefore, equidistant and azimuthal with respect to the center and appears to 
satisfy all the requirements for an ellipsoidal Azimuthal Equidistant projection, 
although it is described as a "modified" form. The origin is assigned large-enough 
values of x and y to prevent negative readings. 

The formulas for calculation of this distance and azimuth have been published in 
various forms, depending on the maximum distance involved. The projection 
system for Micronesia makes use of "Clarke's best formula" and Robbins' inverse 
of this. These are considered suitable for lines up to 800 km in length. The 
formulas below, rearranged slightly from Robbins' formulas as given in Bomford 
(1971, p. 136-137), are extended to produce rectangular coordinates. No itera
tion is required. They are listed in the order of use, given a central point at lat. <j>1, 

long . .>..0, coordinates x 0 and y 0 of the central point, the Y axis along the central 
meridian .>..0 , y increasing northerly, ellipsoidal parameters a and e, and<!> and A.. 

To find x and y: 

N 1 a/(1-e2 sin2 <j> 1) 112 

N al(1-e2 sin2 <!>)112 

\jJ arctan [(1-e2
) tan <!> + e2N 1 sin <hi(N cos <j>)] 

Az =.arctan (sin (A.- .>..0)/[cos <!>1 tan \jJ - sin <!>1 cos (A.- A.0)]j 

(4-20a) 
(4-20) 

(25-20) 
(25-21) 

The ATAN2 Fortran function should be used with equation (25-21), but it is 
not applicable to (25-20). 

If sin Az = 0, 

8 = ± arcsin (cos <j>1 sin \jJ - sin <!>1 cos t\J) 

taking the sign of cos Az. 
If sin Az =I= 0, 

8 = arcsin [sin (A.- A.0) cos \jJ/sin Az] 

In either case, 

G 
H 
c 

e sin <f>1/(1-e2
) 112 

e cos <!>1 cos Az/(1-e2) 112 

N 1 8[1-s
2~(1-H2)/6 + (s3/8)GH(1-2H2) 

+ (s4/120)[~(4-7~)-3G2(1-7~)] - (85/48)GHj 

(25-22) 

(25-22a) 

(25-23) 
(25-24) 

(25-25) 
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TABLE 32.-Plane coordinate systems for Micronesia: Clarke 1866 ellipsoid 

f., Xo 
Group Islands Station at Origin LatN. Long E. 

Caroline Islands -------- y~ Yap Secor 9°32'48.898" 138°10'07.084" 
P au Arakabesan Is. 7°21'04.3996" 134 °27'01.6015" 
Po nape Distad (USEik 6°57'54.2725" 158°12'33.4772" 
Truk Atoll Truk Secor 1 7 ° 27'22.3600" 151 °50'17.8530" 

Mariana Islands -------- Saipan Saipan 15°11'05.6830" 145 ° 44'29.9720" 
Rota Astro 14 °07'58.8608" 145 ° 08'03.2275" 

Marshall Islands -------- Majuro Atoll Dalap 7°05'14.0" 171 °22'34.5" 

x0 , Yo= rectangular coordinates of center of projection. 
4>1, A.,= geodetic coordinates of center of projection. 

Meters 
Xo 

39,987.92 
50,000.00 
80,122.82 
60,000.00 
28,657.52 

5,000.00 
85,000.00 

Yo 

60,022.98 
150,000.00 
80,747.24 
70,000.00 
67,199.99 

5,000.00 
40,000.00 

~ 
0 
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~ e 
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25. AZIMUTHAL EQUIDISTANT PROJECTION 

c cos Az + x0 

c cos Az + Yo 

where c is the geodesic distance, and Az is azimuth east of north. 

(25-26) 
(25-27) 

Table 32 shows the parameters for the various islands mapped with this 
projection. 

Inverse formulas for the polar ellipsoidal aspect, given a, e, <!>t. A0 , x, and y: 

<!> = f.l + (3e1/2 - 27 e1
3/32 + ... ) sin 2,..._ + (21 e1

2/16 - 55 e1
4/32 + ... ) sin 

4JJ-+(151e1
3/96- ... )sin6J.L+(1097e1

4/512- ... )sin8JJ.+ (3-26) 

where 

and 

e1 =[1- (1-e2
) 112]/[1 + (1-e2

) 112] 

,..._ = Ml[a (1-e2/4-3e4/64-5e6/256- ... )] 
M = Mp - p for the north polar case, 

M = p - Mp for the south polar case. 

(3-24) 
(7-19) 

(25-28) 

(25-29) 

For improved computational efficiency using series (3-26) seep. 19. Equation 
(3-21), listed with the forward equations, is used tofindMp for<!> = 90°. For either 
case, 

(20-18) 

For longitude, for the north polar case, 

A = A0 + arctan [x/( -y)] (20-16) 

For the south polar case, 

A = A0 + arctan (xly) (20-17) 

Inverse formulas for the Guam projection (Claire, 1968, p. 53) involve an itera
tion of two equations, which may be rearranged and rewritten in the following 
form consistent with the above formulas. Given a, e, <!>t. A0 , x, and y, M 1 is 
calculated for <!> 1 from (3-21), given with forward equations. (If false northings 
and eastings are included in x and y, they must be subtracted first.) 

Then, first assuming <!> = <!>t. 

(25-30) 

Using this M, ,..._is calculated from (7-19) and inserted into the right side of 
(3-26) to solve for a new<!> on the left side. This is inserted into (25-30), a new M 
is found, and it is resubstituted into (7 -19), ,..._into (3-26), etc., until<!> on the left 
side of (3-26) changes by less than a chosen convergence figure, for a final <f>. 
Then 

A = Ao + x (l-e2 sin2 <f>)112/(a cos <f>) (25-31) 

The inverse Guam formulas arbitrarily stop at three iterations, which are suffi
cient for the small area. 
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202 MAP PROJECTIONS-A WORKING MANUAL 

For the Micronesia version of the ellipsoidal Azimuthal Equidistant projection, 
the inverse formulas given below are "Clarke's best formula," as given in Bamford 
(1971, p. 133) and do not involve iteration. They have also been rearranged to 
begin with rectangular coordinates, but they are also suitable for finding latitude 
and longitude accurately for a point at any given distance c (up to about 800 km) 
and azimuth Az (east of north) from the center, if equations (25-32) and (25-33) 
are deleted. In order of use, given a, e, central point at lat. <!>1 , long. A.0 , rectangu
lar coordinates of center x0 , y0 , and x and y for another point, to find <!> and A.: 

c [(x-xo)2 + (y - Yo)2]112 (25-32) 
Az arctan [(x-x0 )1(y-yo)] (25-33) 
Nl a/(1-e2 sin2 <j>1)112 (4-20a) 
A - e2 cos2 <!>1 cos2 Az/(1- e2

) (25-34) 
B 3e2 (1-A) sin <!>1 cos <!>1 cos Azl(1-e2) (25-35) 
D == c!N1 (25-36) 
E D- A (1 +A)D3/6 - B(1 +3A)D4!24 (25-37) 
F 1 - AE212 - BE3!6 (25-38) 
ljJ == arcsin (sin <!>1 cos E + cos <!>1 sin E cos Az) (25-39) 
A. A.0 + arcsin (sin Az sinE/cos ljl) (25-40) 

<l> == arctan [(1-e2F sin <j>1/sin ljl) tan ljl/(1-e2
)] (25-41) 

The ATAN2 function of Fortran, or equivalent, should be used in equation (25-33), 
but not (25-41). 

To convert coordinates measured on an existing Azimuthal Equidistant map (or 
other azimuthal map projection), the user may choose any meridian for A.0 on the 
polar aspect, but only the original meridian and parallel may be used for A.0 and <!>1 , 

respectively, on other aspects. 



26. MODIFIED-STEREOGRAPHIC CONFORMAL PROJECTIONS 

26. MODIFIED-STEREOGRAPHIC CONFORMAL PROJECTIONS 

SUMMARY 

• Modified azimuthal. 
• Conformal. 
• All meridians and parallels are normally complex curves, although some may 

be straight under some conditions. 
• Scale is true along irregular lines, but map is usually designed to minimize scale 

variation throughout a selected region. 
• Map is normally not symmetrical about any axis or point. 
• Used for maps of continents in the Eastern Hemisphere, for the Pacific Ocean, 

and for maps of Alaska and the 50 United States. 
• Specific forms devised by Miller, Lee, and Snyder, 1950-84. 

HISTORY AND USAGE 

Two short mathematical formulas, taken as a pair, absolutely define the confor
mal transformation of one surface onto another surface. These formulas (see 
p. 27) are called the Cauchy-Riemann equations, after two 19th-century math
ematicians who added rigorous analysis to principles developed in the middle of the 
18th century by physicist D'Alembert. Much later, Driencourt and Laborde (1932, 
vol. 14, p. 242) presented a fairly simple series (equation (26-4) below without 
the R), involving complex algebra (with imaginary numbers), that fully satisfies 
the Cauchy-Riemann equations and permits the formation of an endless number 
of new conformal map projections when certain constants are changed. 

The advantage of this series is that lines of constant scale may be made to 
follow one of a variety of patterns, instead of following the great or small circles of 
the common conformal projections. The disadvantage is that the length of the 
series and the computations become increasingly lengthy as the irregularity of 
the lines of constant scale increases, but this problem has decreased with the 
development of computers. 

Laborde (1928; Reignier, 1957, p. 130) applied this transformation to the map
ping of Madagascar, starting with the Oblique Mercator projection and applying 
the complex equation up to the third-order or cubic terms. Miller (1953) used the 
same order of complex equation, but began with an oblique Stereographic 
projection. His resulting map of Europe and Africa has oval lines of constant scale 
(fig. 42); this projection is called the Miller Oblated (or Prolated) Stereographic. 
He subsequently (Miller, 1955) prepared similar projections for Asia and 
Australasia, each precisely conformal, but he linked them with nonconformal 
"fill-in" projections to provide a continuous map (in several sheets) of the land 
masses of the Eastern Hemisphere. 

Lee (1974) designed a map of the Pacific Ocean, also using an oblique Stereo
graphic with a third-order complex polynomial. The third-order polynomials used 
by Laborde, Miller, and Lee make relatively moderate computational demands, 
because several of the coefficients are zero, and the complex algebra can be 
readily simplified to equations without imaginary numbers. Recently Reilly (1973) 
and the writer (Snyder, 1984a, 1985a) have used much higher-order complex 
equations, but modern computers can readily handle them. Reilly used sixth
order coefficients with the regular Mercator for the new official New Zealand 
Map Grid, while the writer, beginning with oblique Stereographic projections, 
used sixth-order coefficients for a map of Alaska and tenth-order for a map of the 
50 United States (figs. 43, 44). For these sixth- and tenth-order equations, only 
one coefficient is zero, but the other coefficients were computed using least squares. 
The projection for Alaska was used in 1985 by Alvaro F. Espinosa of the USGS to 
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204 MAP PROJECTIONS-A WORKING MANUAL 

FIGURE 42.-Miller Oblated Stereographic projection of Europe and Africa, showing oval lines of 
constant scale. Center of projection lat. 18° N., long. 200 E. 

depict earthquake information for that State. The "Modified Transverse Mercator" 
projection is still being used by the USGS for most maps of Alaska. 

In addition, the writer (Snyder, 1984b) used oblique Stereographics as bases 
with third- to fifth-order equations, most coefficients remaining zero, to surround 
maps with lines of constant scale which are nearly regular polygons or rectangles 
(fig. 45). This minimizes error within a map as conventionally published. 

FEATURES 

The common feature linking the endless possibilities of map projections dis
cussed in this chapter is the fact that they are perfectly conformal regardless of 
the order of the complex-algebra transformation, and regardless of the initial 
projection, provided it is also conformal. 

Chebyshev (1856) stated that a region may be best shown conformally if the 
sum of the squares of the scale errors (scale factors minus 1) over the region is a 
minimum. He further declared that this results if the region is bounded by a line 
of constant scale. This was proven later. Thus the Stereographic is suitable for 
regions approximately circular in shape, but regions bounded by ovals, regular 
polygons, or rectangles may be mapped with nearly minimum error by suitably 
altering the Stereographic with the complex-algebra transformation. 

If the region is irregular, such as Alaska, the region of interest may be divided 
into small elements, and the coefficients may be calculated using least squares to 
minimize the scale variation for the region shown. The resulting coefficients for 



26. MODIFIED-STEREOGRAPHIC CONFORMAL PROJECTIONS 

FIGURE 43.---GS-50 projection, with lines of constant scale factor superimposed. All 50 States, including islands and 
passages between Alaska, Hawaii, and the conterminous 48 States are shown with scale factors ranging only from 
1.02 to 0.98. 

FIGURE 44.-Modified-Stereographic Conformal projection of Alaska, with lines of constant scale superimposed. Scale 
factors for Alaska range from 0.997 to 1.003, one-fourth the range for a corresponding conic projection. 
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206 MAP PROJECTIONS-A WORKING MANUAL 

FIGURE 45.-Modified-Stereographic Conformal projection of 48 United States, bounded by a near
rectangle of constant scale. Three lines of constant scale are superimposed. Region bounded by 
near-rectangle has minimum error. 

the selected projections are given below, but the formulas for least-squares sum
mation are not included here because they are lengthy and are only needed to 
devise new projections. For them the reader may refer to Snyder (1984a, 1984b, 
1985a). 

The reduction of scale variation by using this complex-algebra transformation 
makes the ellipsoidal form even more important. This form is also simpler in these 
cases than for the Transverse Mercator and some other projections, because the 
lines of true scale normally do not follow a selected meridian, parallel, or other 
easily identifiable line in any case. Therefore, use of the conformal latitude in 
place of the geographic latitude is sufficient for the ellipsoidal form. This merely 
slightly shifts the lines of constant scale from one set of arbitrary locations to 
another. The coefficients have somewhat different values, however. 

The meridians and parallels of the Modified-Stereographic projections are gen
erally curved, and there is usually no symmetry about any point or line. There are 
limitations to these transformations. Most of them can only be used within a 
limited range, depending on the number and values of coefficients. As the dis
tance from the projection center increases, the meridians, parallels, and shore
lines begin to exhibit loops, overlapping, and other undesirable curves. A world 
map using the GS50 (50-State) projection is almost illegible, with meridians and 
parallels intertwined like wild vines. 

Within the intended range of the map, the Modified-Stereographic projections 
can reduce the range of scale variation considerably when compared with stand
ard conformal projections. The tenth-order complex-algebra modification used 
for the 50-State projection has a scale range of only ±2 percent (or 4 percent 
overall) for all 50 States placed in their relative geographical positions, including 
all islands, adjacent waters, water channels connecting Alaska, Hawaii, and the 
other 48 States, and nearby Canada and Mexico (fig. 43). A Lambert Conformal 
Conic projection previously used with standard parallels 37° and 65° N. to show the 
50 States has a scale range of + 12 to -3 percent (or 15 percent overall). The 
sixth-order modification for the Alaska map, called the Modified-Stereographic 
Conformal projection, has a range of ±0.3 percent (or 0.6 percent overall) for 
Alaska itself, while a Lambert Conformal Conic with standard parallels 55° and 65° 
N. ranges from + 2.0 to -0.4 percent, or 2.4 percent overall. 
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The bounding of regions by ovals, near-regular polygons, or near-rectangles of 
constant scale results in improvement of scale variation by amounts depending on 
the size and shape of the boundary. The improvement in mean scale error is about 
15 to 20 percent using a near-square instead of the circle of the base Stereo
graphic projection. Using a Modified-Stereographic bounded by a near-rectangle 
instead of an oblique Mercator projection provides a mean improvement of up to 
30 percent in some cases, but only 5 to 10 percent in cases involving a long narrow 
region. For fig. 45, the range of scale is ± 1.1 percent (or 2.2 percent overall) 
within the 48 States, while the Lambert Conformal Conic normally used has a 
range of + 2.4 to -0.6 percent (or 3.0 percent overall). 

The improvement for the region in question is made at the expense of scale 
preservation outside the region. The regular conic projections maintain the same 
scale range around the entire world between the same latitude limits, even though 
most of that region is not shown on the regional maps described above. 

FORMULAS FOR THE SPHERE 

The Modified-Stereographic conformal projections which have a scale range of 
more than 5 percent, such as regions bounded by rectangles 80° by 40° in spherical 
degrees, may satisfactorily be computed for the sphere instead of the ellipsoid. As 
stated above, development of coefficients is not shown here. For the calculation of 
final rectangular coordinates, given R, <Pt> A.0 , A 1 through Am, B 1 through Bm, 
<!>, and A., and to find x andy (seep. 344 for numerical examples): 

k' = 2/[1 + sin <!>1 sin <!> + cos <!> 1 cos <!> cos (A. - A-0)] 

x' = k' cos<!> sin (A.-A.0) 

y' = k' [cos <!> 1 sin <!> - sin <!> 1 cos <!> cos (A.- A-0)] 
m 

x + iy = R ! (Aj + iBj) (x' + iy')i 
J=l 

k = I i j (Aj+iBj) (x' +iy')i- 1 ,. k' 
J=l 

(26-1) 
(26-2) 
(26-3) 

(26-4) 

(26-5) 

where k' is the scale factor on the base Stereographic map, (x', y') are rectangu
lar coordinates for a globe of radius 1 on the base map, (x, y) are rectangular 
coordinates on the final map, k is the scale factor on the final map, (<!>t> A.0) are the 
central latitude and longitude of the projection, (<!>, A.) are the latitude and longi
tude of the point to be plotted, R is the radius of the sphere, (Aj, Bj) are the 
coefficients for j = 1 to j = m, the order of the equation, and i 2 is -1. Equations 
(26-1) through (26-3) are similar to the forward equations listed under the 
regular Stereographic projection, but there are slight differences. The formulas 
for this projection as published in Snyder (1984a, 1985a) introduceR (and a for the 
ellipsoid) at the wrong points, although answers are correct. 

For the practical computation of equations (26-4) and (26-5), Knuth's (1969) 
algorithm is recommended instead of them. Let 

r == 2x'; s' == (x')2 + (y')2
; Yo = 0; Yf = AJ + iBJ; a1 = Ym; 

b1 Ym-1; C1 = mgm; d1 = (m-1) Ym-1; aj = bj-1 + raj-1; 
bj Ym-j- s'aj-1; Cj = dj-1 + rcj-1; dj = (m-j)gm-j- s'cj-1 (26-6) 

After j is given the value of successive integers from 2 to m for aj and bj and 2 to 
(m-1) for Cj and dj, then 
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208 MAP PROJECTIONS-A WORKING MANUAL 

X + iy = R [(x' +iy') am + bm] 
F 2 + iF1 = (x'+iy')Cm-1 + dm-1 

k = <Fl+F1
2

) 112 k' 

(26-7) 
(26-8) 
(26-9) 

For the Modified-Stereographic Conformal projections with ovals, near-regular 
polygons, or near-rectangles as bounding lines of constant scale, since there are 
only two or three non-zero coefficients, plus a possible rotation, equations (26-4) 
and (26-5) may be simplified to avoid a need for the use ofi or Knuth's algorithm. 
The above formulas are more general, however, once they are programmed. For 
the simplified forms, the reader is referred to Miller (1953) and Snyder (1984b). If 
k is not being calculated in the above formulas, the four equations of (26-6) which 
include cord, as well as (26-8) and (26-9), may be omitted. For constants, see 
table 33. 

For inverse equations, given R, <1> 11 Ao, A 1 through Am, B1 through Bm, x, and 
y, to find <1> and A, first a Newton-Raphson iteration may be used as follows to find 
(x', y'): 

.1 (x'+iy') =- f(x'+iy')I(F2 +iF1) (26-10) 

where 

m 

f(x'+iy') = _l (Aj+iBj)(x'+iy')i-(x+iy)IR 
;~1 

(26-11) 

m 

Fz + iF1 = l j (A-+iB-) (x' +iy')j-l 
j~l J J 

(26-12) 

and the first trial value of x' is (x/R) and of y' is (y!R). The Knuth algorithm is 
equally suitable here, using all of the equations in (26-6), assigning j values 
which are described following those equations, and replacing equations (26-11) 
and (26-12) with (26-13) and (26-8), respectively. 

f(x' + iy') = (x' + iy')am + bm - (x + iy)IR (26-13) 

After the trial values of (x', y') are adjusted with (26-10) until the change in 
each is negligible (3-4 iterations are normally enough), the final (x', y') is con
verted to (<f>, A) without iteration as follows: 

P = [(x')z + (y')Zptz 

c = 2 arctan (p/2) 
<1> =arcsin [cos c sin <1> 1 + (y' sin c cos <1>1/p)] 
A = Ao + arctan [x' sin c/(p cos <1> 1 cos c-y' sin <1> 1 sin c)] 

(26-14) 
(26-15) 
(26-16) 
(26-17) 

If p = 0, equations (26-16) and (26-17) are indeterminate, but <I>= <f>1 and A= A0 • 

FORMULAS FOR THE ELLIPSOID 

For higher precision maps taking greater advantage of the reduced scale varia
tion available with Modified-Stereographic Conformal projections, the ellipsoidal 
formulas should be used. Given a, e, <!>1> Ao, A 1 through Am, B1 through Bm, <!>, 
and A, to find x and y (special numerical examples are not given, but examples of 
the ellipsoidal Stereographic, p. 313, and of the spherical Modified-Stereographic 
p. 344, are sufficiently similar): 
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TABLE 33.-Modified-Stereographic Conformal projections: Coefficients for specific forms 

Taking the Earth as a sphere: 

Miller Oblated Stereographic projection for Europe and Africa (fig. 42): 

R = 6,371,221 mat full scale 
m =3 
<!>1 = 18°N. lat. 
A.0 = 20°E. long. as constructed (18° in Miller (1953)) 
AI = 0.924500 
A 3 = 0.019430 

A2 , B 1, B2 , B3 = 0 

Lee Oblated Stereographic projection for the Pacific Ocean: 

R = Not stated 
m =3 

<1> 1 = 10°8. lat. 
A-0 = 165°W. long. 
AI 0. 721316 . 
A 3 = -0.00881625 
B 3 = -0.00617325 

A2, B1, Bz =0 

GS50 projection for the 50 States (fig. 43; ellipsoidal formulas and constants should 
normally be used): 

R = 6,370,997 m at full scale 
m = 10 
<!>1 = 45°N. lat. 
A-0 = 120°W. long. 

A I 0. 9842990 
A2 0.0211642 
A 3 = -0.1036018 
A 4 = -0.0329095 
A 5 0.0499471 
A 6 0.0260460 
A 7 0.0007388 
A 8 0.0075848 
A 9 = -0.0216473 

A1o = -0.0225161 

=0 
0.0037608 

= -0.0575102 
= -0.0320119 

0.1223335 
0.0899805 

= -0.1435792 
= -0.1334108 

0.0776645 
0.0853673 

Modified-Stereographic Conformal projection for Alaska (fig. 44; ellipsoidal formulas 
and constants should normally be used): 

R = 6,370,997 m at full scale 
m =6 
<!>1 = 64°N. lat. 
A.0 = 152°W. long. 
AI 0.9972523 
A2 0.0052513 
A 3 0.0074606 
A 4 = -0.0153783 
As 0.0636871 
A 6 0.3660976 

B1 = 0 
B2 = -0.0041175 
B3 0.0048125 
B4 = -0.1968253 
B5 = -0.1408027 
B6 = -0.2937382 

Modified-Stereographic Conformal projection for United States bounded by near-rectangle 
(fig. 45): 

R = 6,370,997 mat full scale 
m =5 
<!>1 = 39°N. lat. 
Ao = 96°W. long. 

A1 = 0.98879 
A 3 = -0.050909 
As = 0.075528 

A2 , A4, B1, B2, B3, B 4 , B5 = 0 
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TABLE 33.-M odified-Stereographic Conformal projections: Coefficients for specific forms-Continued 

Taking the Earth as an ellipsoid: 

GS50 projection for the 50 States: 

a = 6,378,206.4 m at full scale (Clarke 1866 ellipsoid) 
e2 = 0.00676866 
m = 10 
<!>1 = 45°N. lat . 
.\0 = 120°W long. 

A1 = 0.9827497 B1 = 0 
A 2 = 0.0210669 B 2' = 0.0053804 
A 3 = -0.1031415 B3 = -0.0571664 
A 4 = -0.0323337 B 4 = -0.0322847 
A 5 = 0.0502303 B5 = 0.1211983 
A 6 = 0.0251805 B6 = 0.0895678 
A7 = -0.0012315 B7 = -0.1416121 
A 8 = 0.0072202 B8 = -0.1317091 
A 9 = -0.0194029 B 9 = 0.0759677 

A10 = -0.0210072 B 10 = 0.0834037 

Modified-Stereographic Conformal projection for Alaska: 

a = 6,378,206.4 m at full scale (Clarke 1866 ellipsoid) 
e2 = 0.00676866 
m =6 
<!>1 = 64°N. lat . 
.\0 = 152°W long. 
A 1 = 0.9945303 
A 2 = 0.0052083 
A 3 = 0.0072721 
A 4 = -0.0151089 
A 5 0.0642675 
A 6 = 0.3582802 

B1 = 0 
B 2 = -0.0027404 
B3 = 0.0048181 
B4 = -0.1932526 
B 5 = -0.1381226 
B 6 = -0.2884586 

x = 2 arctan (tan ('!T/4+4>/2)[(1-e sin <f>)/(1+e sin <f>)]e12)- 1T/2 
m = cos <f>/(l-e2 sin2 <(>)112 

s = 2/[1 + sin x1 sin x + cos x1 cos X cos (X.- X.o)J 
k' = s cos xlm 
x' = s cos x sin (X.- X.o) 
y' = s [cos x1 sin x - sin X1 cos X cos (X.- .\o)J 

(3-1) 
(14-15) 
(26-18) 
(26-19) 
(26-20) 
(26-21) 

where x1 is found as x (the conformal latitude) from equation (3-1) by substitut
ing 4>1 for <(>. The (x', y') thus found are converted to (x, y) with unchanged 
equations (26-4) and (26-5), or (26-6) through (26-9) as listed under spherical 
formulas with accompanying explanations, except that R in (26-4) or (26-7) is 
replaced with a, the semimajor axis of the ellipsoid of eccentricity e, and the 
constants used must be those for the ellipsoidal projection. 

For inverse equations, given a, e, 4>1, .\0 , A 1 through Am, B 1 through Em, x, and 
y, to find 4> and .\, the Newton-Raphson iteration of spherical equations (26-10) 
through (26-13) is used unchanged to find (x', y') except that R is replaced with 
a, and ellipsoidal constants must be used. After convergence, the final (x', y') is 
converted to (<f>, X.) without iteration. Equations (26-14), (26-15), and (3-1) are 
used to calculate p, c, and x1 as before. 
Then, 
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x == arcsin [cos c sin x1 + (y' sin c cos xh)] 
<1> == 2 arctan \tan (1T/4 + x/2)[(1 + e sin <l>)/(1-e sin <!>)]e/2] - 1r/2 
A == A0 + arctan [x' sin c/(p cos x1 cos c - y' sin x1 sin c)] 

(26-22) 
(3-4) 

(26-23) 

If p = 0, equations (26-22) and (26-23) are indeterminate, but x = xo and A= A0 • 

Equation (3-4), which should not use the ATAN2 function or equivalent, involves 
iteration by successive substitution, using x as the first trial <1> on the right side of 
the equation, calculating <1> on the left, using the new value of <1> on the right side, 
and so forth, until the change in <I> is negligible. Tables 34 and 35 list representa
tive rectangular coordinates for the ellipsoidal forms of the 50-State and Alaska 
projections, to be used in the above formulas. 
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TABLE 34.-GS50 projection for 50 States: Rectangular coordinates for Clarke 1866 ellipsoid 

[ y coordinate in parentheses below x coordinate; k (scale factor) in italics. Equatorial radius of ellipsoid, 
a = 1 unit; eccentricity is based on Clarke 1866 ellipsoid. Origin 45"N. lat., 120°W. long., Y axis north from origin] 

Longitude 

Latitude 165' 180' -165' -150' -135' -120' 

75° -0.29450 -0.26954 -0.22462 -0.16629 -0.09888 -0.02577 
(0.68122) (0.62252) (0.57777) (0.54832) (0.53514) (0.53917) 
0.96940 0.93350 0.94680 0.98600 1.04351 1.11926 

60 -0.56708 -0.47652 -0.37432 -0.25945 -0.13450 -0.00285 
(0.55579) (0.44931) (0.36467) (0.30448) (0.26964) (0.26061) 
1.11056 1.03320 0.99720 0.98684 0.99638 1.01989 

45 -0.78438 -0.65970 -0.51358 -0.35313 -0.18060 0.00000 
(0.40816) (0.25882) (0.14804) (0.06723) (0.01707) (0.00000) 
1.10999 1.01071 0.97599 0.96761 0.97461 0.98441 

30 -0.99437 -0.82970 -0.64556 -0.44699 -0.23176 -0.00042 
(0.18093) (0.05909) (-0.06996) (-0.16831) (-0.23587) (-0.26080) 
0.92437 0.99489 0.98110 0.97955 1.01526 1.02960 

15 -1.26654 -0.99879 -0.77655 -0.54614 -0.30348 0.00686 
(0.37724) (-0.17525) ( -0.29355) ( -0.40445) (-0.50718) ( -0.54997) 
5.35283 1.26758 1.02533 0.96750 1.17269 1.24078 

Longitude 

Latitude -105' -90' -75' -60' -45' 

75° 0.05019 0.12669 0.20199 0.27474 0.34149 
(0.56135) (0.60290) (0.66601) (0.75568) (0.88349) 
1.21874 1.35483 1.55468 1.87521 2.42649 

60 0.13189 0.26642 0.39828 0.52663 0.66111 
(0.27713) (0.31778) (0.37908) (0.45182) (0.50581) 
1.05301 1.09134 1.12313 1.11492 1.17353 

45 0.18215 0.35975 0.52792 0.68068 0.78758 
(0.01665) (0.06457) (0.14091) (0.24688) (0.42634) 
0.99055 0.99558 0.99806 1.02418 1.44787 

30 0.22878 0.44683 0.65324 0.83776 1.04409 
(-0.23806) (-0.17878) ( -0.08678) (0.03834) (0.00223) 

1.00249 0.99481 1.00384 0.87806 2.72764 
15 0.28360 0.53662 0.76638 1.12680 0.56142 

(-0.49621) (-0.43117) (-0.31713) (0.21682) (1.25008) 
1.00240 1.10194 0.84755 2.88781 16.99865 

TABLE 35.-Modified-Stereographic Conformal projection for Alaska: Rectangular coordinates for Clarke 1866 ellipsoid 

l y coordinate in parentheses beiow x coordinate; k (scale factor) in italics. Equatorial radius of ellipsoid, a = 1 unit; eccentricity is based on Clarke 1866 ellipsoid. Origin: 64° Lat., -152° Long., 
Y axis north from origin ) 

Longitude 

Latitude 170' 180' -170' -160' -150' -140' -130' 

75° -0.16211 -0.12311 -0.08081 -0.03641 0.00892 0.05402 0.09772 
(0.24589) (0.22161) (0.20445) (0.19469) (0.19248) (0.19786) (0.21074) 
1.01917 1.01147 1.00600 1.00306 1.00264 1.00459 1.00866 

70 -0.21520 -0.16271 -0.10647 -0.04782 0.01192 0.07140 0.12928 
(0.17360) (0.14228) (0.12028) (0.10779) (0.10494) (0.11178) (0.12827) 
1.03059 1.01497 1.00535 1.00062 0.99993 1.00304 1.01023 

65 -0.26675 -0.20094 -0.13124 -0.05888 0.01475 0.08813 0.15975 
(0.09941) (0.06222) (0.03605) (0.02112) (0.01767) (0.02578) (0.04536) 
1.03421 1.01364 1.00273 0.99805 0.99768 1.00108 1.00982 

60 -0.31591 -0.23765 -0.15521 -0.06968 -0.01744 0.10427 0.18895 
(0.02389) (-0.01813) (-0.04808) (-0.06536) ( -0.06946) (-0.06013) ( -0.03772) 
1.02672 1.00804 0.99991 0.99758 0.99834 1.00020 1.00527 

55 -0.36252 -0.27315 -0.17873 -0.08047 0.01999 0.12022 0.21725 
(-0.05185) (-0.09835) ( -0.13210) ( -0.15191) (-0.15683) (-0.14611) (-0.12045) 

1.00925 1.00166 0.99931 1.00127 1.00536 1.00467 0.99738 
50 -0.40740 -0.30816 -0.20222 -0.09163 0.02232 0.13669 0.24590 

(-0.12654) (-0.17828) (-0.21616) ( -0.23888) (-0.24516) (-0.23284) (-0.20230) 
0.98940 1.00073 1.00245 1.00955 1.02260 1.02237 0.99239 



SPACE MAP PROJECTIONS 

SPACE MAP PROJECTIONS 

One of the most recent developments in map projections has been that involving 
a time factor, relating a mapping satellite revolving in an orbit about a rotating 
Earth. With the advent of automated continuous mapping in the near future, the 
static projections previously available are not sufficient to provide the accuracy 
merited by the imagery, without frequent readjustment of projection parameters 
and discontinuity at each adjustment. Projections appropriate for such satellite 
mapping are much more complicated mathematically, but, once derived, can be 
handled by computer. 

Several such space map projections have been conceived, and all but one have 
been mathematically developed. The Space Oblique Mercator projection, suitable 
for mapping imagery from Landsat and other vertically scanning satellites, is 
described below, and is followed by a discussion of Satellite-Tracking projections. 
The Space Oblique Conformal Conic is a still more complex projection, currently 
only in conception, but for which mathematical development will be required if 
satellite side-looking imagery has been developed to an extent sufficient to en
courage its use. 
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27. SPACE OBLIQUE MERCATOR PROJECTION 

SUMMARY 

• Modified cylindrical projection with map surface defined by satellite orbit. 
• Designed especially for continuous mapping of satellite imagery. 
• Basically conformal, especially in region of satellite scanning. 
• Groundtrack of satellite, a curved line on the globe, is shown as a curved line 

on the map and is continuously true to scale as orbiting continues. 
• All meridians and parallels are curved lines, except meridian at each polar 

approach. 
• Recommended only for a relatively narrow band along the groundtrack. 
• Developed 1973-79 by Colvocoresses, Snyder, and Junkins. 

HISTORY 

The launching of an Earth-sensing satellite by the National Aeronautics and 
Space Administration in 1972 led to a new era of mapping on a continuous basis 
from space. This satellite, first called ERTS-1 and renamed Landsat 1 in 1975, 
was followed by two others, all of which circled the Earth in a nearly circular 
orbit inclined about 99° to the Equator and scanning a swath about 185 km (offi
cially 100 nautical miles) wide from an altitude of about 919.km. The fourth and 
fifth Landsat satellites involved circular orbits inclined about 98° and scanning 
from an altitude of about 705 km. 

Continuous mapping of this band required a new map projection. Although 
conformal mapping was desired, the normal choice, the Oblique Mercator projec
tion, is unsatisfactory for two reasons. First, the Earth is rotating at the same 
time the satellite is moving in an orbit which lies in a plane almost at a right angle 
to the plane of the Equator, with the double-motion effect producing a curved 
groundtrack, rather than one formed by the intersection of the Earth's surface 
with a plane passing through the center of the Earth. Second, the only available 
Oblique Mercator projections for the ellipsoid are for limited coverage near the 
chosen central point. 

What was needed was a map projection on which the groundtrack remained 
true-to-scale throughout its course. This course did not, in the case of Landsat 
1, 2, or 3, return to the same point for 251 revolutions. (For Landsat 4 and 5, the 
cycle is 233 revolutions.) It was also felt necessary that conformality be closely 
maintained within the range of the swath mapped by the satellite. 

Alden P. Colvocoresses of the Geological Survey was the first to realize not 
only that such a projection was needed, but also that it was mathematically feasi
ble. He defined it geometrically (Colvocoresses, 1974) and immediately began to 
appeal for the development of formulas. The following formulas resulted from the 
writer's response to Colvocoresses' appeal made at a geodetic conference at The 
Ohio State University in 1976. While the formulas were derived (1977-79) for 
Landsat, they are applicable to any satellite orbiting the Earth in a circular or 
elliptical orbit and at any inclination. Less complete formulas were also developed 
in 1977 by John L. Junkins, then of the University of Virginia. The following 
formulas are limited to nearly circular orbits. A complete derivation for orbits 
of any ellipticity is given by Snyder (1981b) and another summary by Snyder 
(1978b). 

FEATURES AND USAGE 

The Space Oblique Mercator (SOM) projection visually differs from the Oblique 
Mercator projection in that the central line (the groundtrack of the orbiting 
satellite) is slightly curved, rather than straight. For Landsat, this groundtrack 
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appears as a nearly sinusoidal curve crossing the X axis at an angle of about 8°. 
The scanlines, perpendicular to the orbit in space, are slightly skewed with 
respect to the perpendicular to the groundtrack when plotted on the sphere or 
ellipsoid. Due to Earth rotation, the scanlines on the Earth (or map) intersect the 
ground track at about 86° near the Equator, but at 90° when the ground track makes 
its closest approach to either pole. With the curved groundtrack, the scanlines 
generally are skewed with respect to the X and Y axes, inclined about 4° to 
the Y axis at the Equator, and not at all at the polar approaches. 

The orbit for Landsat 1, 2, and 3 intersected the plane of the Equator at an 
inclination of about 99°, measured as the angle between the direction of satellite 
revolution and the direction of Earth rotation. Thus the groundtrack reached 
limits of about lat. 81 a N. and S. (180° minus 99°). The 185-km swath scanned by 
Landsat, about 0.83° on either side of the ground track, led to complete coverage 
of the Earth from about lat. 82° N. to 82° S. in the course of the 251 revolutions. 
With a nominal altitude of about 919 km, the time of one revolution was 103.267 
minutes, and the orbit was designed to complete the 251 revolutions in exactly 
18 days. Landsat 4 and 5, launched in 1982 and 1984, respectively, scanned the 
same width, but with an orbit of different radius and inclination, as stated above. 

As on the normal Oblique Mercator, all meridians and parallels are curved lines, 
except for the meridian crossed by the groundtrack at each polar approach. While 
the straight meridians are 180° apart on the normal Oblique Mercator, they are 
about 167° apart on the SOM for Landsat 1, 2, and 3, since the Earth advanced 
about 26° in longitude for each revolution of the satellite. 

As developed, the SOMis not perfectly conformal for either the sphere or ellip
soid, although the error is negligible within the scanning range for either. Along 
the ground track, scale in the direction of the ground track is correct for sphere or 
ellipsoid, while conformality is correct for the sphere and within 0.0005 percent 
of correct for the ellipsoid. At 1 a away from the ground track, the Tissot Indicatrix 
(the ellipse of distortion) is flattened a maximum of 0.001 percent for the sphere 
and a maximum of0.006 percent for the ellipsoid (this would be zero if conformal). 
The scale 1 a away from the ground track averages 0. 015 percent greater than that 
at the ground track, a value which is fundamental to projection. As a result of the 
slight nonconformality, the scale 1° away from the groundtrack on the ellipsoid 
then varies from 0.012 to 0.018 percent more than the scale along the groundtrack. 

A prototype version of the SOM was used by NASA with a geometric analogy 
proposed by Colvocoresses (1974) while he was seeking the more rigorous mathe
matical development. This consisted basically of moving an obliquely tangent 
cylinder back and forth on the sphere so that a circle around it which would nor
mally be tangent shifted to follow the ground track. This is suitable near the Equa
tor but leads to errors of about 0.1 percent near the poles, even for the sphere. In 
1977, John B. Rowland of the USGS applied the Hotine Oblique Mercator (de
scribed previously) to Landsat 1, 2, and 3 orbits in five stationary zones, with 
smaller but significant errors (up to twice the scale variation of the SOM) result
ing from the fact that the groundtrack cannot follow the straight central line of 
the HOM. In addition, there are discontinuities at the zone changes. This was 
done to fill the void resulting from the lack of SOM formulas. 

For Landsat 4 and 5, the final SOM equations replaced the HOM for mapping. 
Figures 46 and 47 show the SOM extended to two orbits with a 30° graticule and 
for one-fourth of an orbit with a 10° graticule, respectively. The progressive ad
vance of meridians may be seen in figure 46. Both views are for Landsat 4 and 
5 constants. 

FORMULAS FOR THE SPHERE 

Both iteration and numerical integration are involved in the formulas as pre
sented for sphere or ellipsoid. The iteration is quite rapid (three to five iterations 
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FIGURE 46.-Two orbits of the Space Oblique Mercator projection, shown for Landsat 5, paths 15 (left) and 31. Designed for a narrow band along ground
track, which remains true to scale. Note the rotation of the Earth with successive orbits. Scan lines, extended 15° from groundtrack, are short 
lines nearly perpendicular to it. 
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FIGURE 47.-0ne quadrant of the Space Oblique Mercator projection for Landsat 5, path 15. An "enlargement" of part of figure 46 beginning at the North Pole. 
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required for ten-place accuracy), and the numerical integration is greatly simpli
fied by the use of rapidly converging Fourier series. The coefficients for the 
Fourier series may be calculated once for a given satellite orbit. [Some formulas 
below are slightly simplified from those first published (Snyder, 1978b).] 

For the forward equations, for the sphere and circular orbit, to find (x, y) for a 
given(<!>, A.), it is necessary to be given R, ,i, P 2, P 11 1..0 , <!>, and A., where 

R = radius of the globe at the scale of the map. 
i = angle of inclination between the plane of the Earth's Equator and the 

plane of the satellite orbit, measured counterclockwise from the Equa
tor to the orbital plane at the ascending node (99.092° for Landsat 1, 2, 
3; 98.20° for Landsat 4, 5). 

P 2 =time required for revolution of the satellite (103.267 min for Landsat 
1, 2, 3; 98.884 min. for Landsat 4, 5). 

P 1 = length of Earth's rotation with respect to the precessed ascending node. 
For Landsat, the satellite orbit is Sun-synchronous; that is, it is always 
the same with respect to the Sun, equating P 1 to the solar day (1,440 
min). The ascending node is the point on the satellite orbit at which 
the satellite crosses the Earth's equatorial plane in a northerly 
direction. 

1..0 = geodetic longitude of the ascending node at time t = 0. 
(<(>,A.)= geodetic latitude and longitude of point to be plotted on map. 

t = time elapsed since the satellite crossed the ascending node for the orbit 
considered to be the initial one. This may be the current orbit or any 
earlier one, as long as the proper 1..0 is used. 

First, various constants applying to the entire map for all the satellite's orbits 
should be calculated a single time (see p. 34 7 for numerical examples): 

B =(21 71') f 0.,12 [(H-S2)!(1 + S2
) 112]dA.' 

An =[4!(7rn)]fo.,12[(H-S2 )1(1 + S2
) 112] cos nA.' dA.' 

for n=2 and 4 only. 

Cn = [4(H + 1)/(7rn)Jf0 .,12 [S/(1 + S2
)

112
] cos nA.' dA.' 

for n= 1 and 3 only. 

(27-1) 
(27-2) 

(27-3) 

For calculating An, B, and Cw numerical integration using Simpson's rule is 
recommended, with go intervals in A.' (sufficient for ten-place accuracy). The terms 
shown are sufficient for seven-place accuracy, ample for the sphere. For HandS 
in equations (27 -1) through (27 -3): 

H = 1-(P2/P1) cos i 
S = (P2/P1) sin i cos A.' 

(27-4) 
(27-5) 

To find x and y, with the X axis passing through each ascending and descending 
node (wherever the groundtrack crosses the Equator), x increasing in the direc
tion of satellite motion, and the Y axis passing through the ascending node for 
time t=O: 

x!R =BA.' + A2 sin 2A.' + A 4 sin 41..' + ... 
-[S/(1 + S2

) 112] In tan (71'/4 + <P'/2) 
y!R =C1 sin A.' + C3 sin 31..' + ... 

+ [11(1 + S2
) 112] ln tan (71'/4 + <P'/2) 

(27-6) 

(27-7) 

where B, An, and Cn are constants calculated above, Sis calculated from (27-5) 
for each point, and 
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X.' = arctan (cos i tan At + sin i tan <j>/cos A.t) 
A.t = X.-X.o + CP2/P1) A.' 
<j>' = arcsin (cos i sin <j> - sin i cos <j> sin A.t) 
X.0 = 128.87° - (360°/251)p (Landsat 1, 2, 3 only) 

= 129.30° - (360°/233)p (Landsat 4, 5 only) 

(27-8) 
(27-9) 

(27-10) 
(27-11) 

(27 -11a) 

p = path number of Landsat orbit for which the ascending node occurs at 
time t = 0. This ascending node is prior to the start of the path, so that 
the path extends from 1/4 orbit past this node to 5

/ 4 orbit past it. 
A.' ="transformed longitude," the angular distance along the groundtrack, 

measured from the initial ascending node (t = 0), and directly propor
tional to t for a circular orbit, or X.' = 360° tl P 2 • 

A.t = a "satellite-apparent" longitude, the longitude relative to X.0 seen by the 
satellite if the Earth were stationary. 

<j>' ="transformed latitude," the angular distance from the groundtrack, 
positive to the left of the satellite as it proceeds along the orbit. 

Finding X.' from equations (27 -8) and (27 -9) involves iteration performed in 
the following manner: After selecting <j> and X., the X.' of the nearest polar ap
proach, A.p', is used as the first trial X.' on the right side of (27-9); At is calculated 
and substituted into (27-8) to find a new A.'. A quadrant adjustment (see below) 
is applied to X.', since the computer normally calculates arctan as an angle be
tween -90° and 90°, and this A.' is used as the next trial A.' in (27-9), etc., until X.' 
changes by less than a chosen convergence factor. The value of A.p' may be deter
mined as follows, for any number of revolutions: 

A.p' = goo x (4 N + 2 ± 1) (27-12) 

where N is the number of orbits completed at the last ascending node before the 
satellite passes the nearest pole, and the ± takes minus in the Northern Hemi
sphere and plus in the Southern (either for the Equator). Thus, if only the first 
path number past the ascending node is involved, A.p' is 90° for the first quadrant 
(North Pole to Equator), 270° for the second and third quadrants (Equator to 
South Pole to Equator), and 450° for the fourth quadrant (Equator toN orth Pole). 
For quadrant adjustment to X.' calculated from (27-8), the Fortran ATAN2 or 
its equivalent should not be used. Instead, X.' should be increased by A.p' minus 
the following factor: goo times sin A.p' times ± 1 (taking the sign of cos A.tp. where 
Atp =X.- A.0 + (P2/P 1)'Ap'). If cos Atp is zero, the final X.' is A.p'. Thus, the adder to the 
arctan is 0° for the quadrant between the ascending node and the start of the path, 
and 180°, 180°, 360°, and 360°, respectively, for the four quadrants oft he first path. 

The closed forms of equations (27- 6) and (27 -7) are as follows: 

x!R =fox.' [(H-82)/(1 + 82)112]dX.'-[8/(1 + 82)112] 

ln tan ('rr/4 + <j>' /2) (27 -6a) 
y!R =(H + 1) f 0 ''[8/(1 + 82

) 112]dX.' + [11(1 + 82
)112] 

ln tan (7T/4 + <j>'/2) (27-7a) 

Since these involve numerical integration for each point, the series forms, limit
ing numerical integration to once per satellite, are distinctly preferable. These 
are Fourier series, and equations (27-2) and (27-3) normally require integration 
from 0 to 27T, without the multiplier 4, but the symmetry of the circular orbit per
mits the simplification as shown for the nonzero coefficients. 

For inverse formulas for the sphere, given R, i, P 2 , P 1 , X.0 , x, andy, with <j> and 
'A required: Constants B, An, Cn, and 'A0 must be calculated from (27-1) through 
(27 -3) and (27 -11) just as they were for the forward equations. Then, 
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A. =arctan [(cos i sin A.'-sin i tan <!>')/cos A.']-(P2/P1)'A.' + A.0 

<1> =arcsin (cos i sin <!>' + sin i cos <!>' sin A.') 
(27-13) 
(27-14) 

-where the ATAN2 function of Fortran is useful for (27-13), except that it may be 
necessary to add or subtract 360° to place A. between long. 180° E. (+)and 180° W. 
(-),and 

A.' = [x!R + Sy!R-A2 sin 2 'A.'-A4 sin 4 A.'-S(C1 sin A.' + C3 sin 3 A.')]JB 
(27-15) 

ln tan(rr/4 + <f>'/2) = (1 + S2
) 112(y!R-C 1 sin 'A.'-C3 sin 3A.') (27-16) 

Equation (27 -15) is iterated by trying almost any A.' (preferably x!(BR)) in the 
right side, solving for A.' on the left and using the new A.' for the next trial, etc., 
until there is no significant change between successive trial values. Equation 
(27 -16) uses the final A.' calculated from (27 -15). 

The closed form of equation (27 -15) given below involves repeated numerical 
integration as well as iteration, making its use almost prohibitive: 

(x + Sy)IR = C' [(H-S2)1(l + S2)1'2]d'A.' 
+ S (H + 1) f 0~' [S/(1 + S2

) 112]d A.' (27-15a) 

The following closed form of (27 -16) requires the use of the last integral calcu
lated from (27 -15a): 

lntan('!T/4 + <f>'/2) = (1 + 8 2)112 /(y!R)-(H + 1)J0~'[S/(1 + S2)112]d'A.') (27-16a) 

The original published forms of these equations include several other Fourier co
efficient calculations which slightly save computer time when continuous mapping 
is involved. The resulting equations are more complicated, so they are omitted 
here for simplicity. The above equations are as accurate and only slightly less 
efficient. 

The values of coefficients for Landsat 1, 2, and 3 (P2 /P 1 = 18/251; i = 99.092°) are 
listed here as examples: 

A 2 = -0.0018820 
A 4 = 0.0000007 
B = 1.0075654142 for A.' in radians 

= 0.0175853339 for A.' in degrees 
cl = o.1421597 
c3 = -o.oooo296 

It is also of interest to determine values of<!>, A., or A.' along the groundtrack, 
given any one of the three (as well as P2 , P 11 i, and 'A.0 ). Given<!>, 

A.' =arcsin (sin <f>/sin i) 
A. =arctan [(cos i sin A.')/cos A.']-(P2/P1)'A.' + 'Ao 

(27-17) 
(27-18) 

If <1> is given for a descending part of the orbit (daylight on Landsat), subtract 
A.' from the A' of the nearest descending node (180°, 540°, ... ). If the orbit is 
ascending, add A' to the A.' of the nearest ascending node (0°, 360°, ... ). For a 
given path, only 180° and 360°, respectively, are involved. 

Given A., 

A' =arctan (tan 'At/cos i) 

'At = A-'Ao + CP2/Pt)A' 
<1> = arcsin (sin i sin A') 

(27 -19) 
(27-9) 

(27-20) 
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TABLE 36.-Scale factors for the spherical Space Oblique Mercator projection using Landsat 1, 2, 
and 3 constants 

>.: 
t/l'= 10 t/l'= -10 

k k wo m., k k wo m., 

0° ---- 1.000154 1.000151 0.0006 1.000152 1.000154 1.000151 0.0006 1.000152 
5 ----- 1.000153 1.000151 .0006 1.000151 1.000154 1.000151 .0006 1.000152 

10 ---- 1.000153 1.000151 .0006 1.000151 1.000155 1.000151 .0006 1.000153 
15 ----- 1.000153 1.000151 .0006 1.000150 1.000155 1.000151 .0006 1.000153 
20 ----- 1.000152 1.000151 .0006 l.OOOI50 1.000156 1.000151 .0006 1.000154 
25 ----- 1.000152 1.000151 .0006 1.000150 1.000156 1.000151 .0006 1.000154 
30 ----- 1.000152 1.000151 .0005 1.000149 1.000156 1.000151 .0005 1.000154 
35 ----- 1.000152 1.000150 .0005 1.000149 1.000156 1.000151 .0005 1.000154 
40 ----- 1.000152 1.000150 .0005 1.000150 1.000156 1.000151 .0005 1.000154 
45 ----- 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0005 1.000154 
50 ----- 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0004 1.000154 
55 ----- 1.000152 1.000150 .0004 1.000150 1.000155 1.000151 .0004 1.000154 
60 ----- 1.000153 1.000151 .0003 1.000151 1.000155 1.000151 .0003 1.000154 
65 ----- 1.000153 1.000151 .0003 1.000151 1.000155 1.000151 .0003 1.000153 
70 ----- 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 1.000153 
75 ----- 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 1.000153 
80 ----- 1.000153 1.000151 .0001 1.000152 1.000153 1.000152 .0001 1.000153 
85 ----- 1.000153 1.000152 .0001 1.000152 1.000153 1.000152 .0001 1.000152 
90 ----- 1.000152 1.000151 .0001 1.000152 1.000152 1.000152 .0000 1.000152 

Notes: A' =angular position along ground track, from ascending node. 
cj>' =angular distance away from groundtrack, positive in direction away from North Pole. 
h =scale factor along meridian of longitude. 
k = scale factor along parallel of latitude. 

w = inaximum angular deformation. 
m<l>' =scale factor along line of constant cj>'. 
m,_. =scale factor along line of constant ).'. 

=sec cj>', or 1.000152 at cj>' = 1 •. 
If cj>' = o·, h, k, and m<l>' = 1.0, while (&I= 0. 

Given A', equations (27 -18) and (27 -20) may be used for A and<!>, respectively. 
Equations (27-6) and (27-7), with<!>' =0, convert these values to x andy. Equa
tions (27 -19) and (27- 9) require joint iteration, using the same procedure as that 
for the pair of equations (27-8) and (27-9) given earlier. The A calculated from 
equation (27 -18) should have the same quadrant adjustment as that described 
for (27 -13). 

The formulas for scale factors h and k and maximum angular deformation w are 
so lengthy that they are not given here. They are available in Snyder (1981b). 
Table 36 lists these values as calculated for the spherical SOM using Landsat 
constants. Although calculated for Landsat 1, 2, and 3, they are almost identical 
for 4 and 5. 

FORMULAS FOR THE ELLIPSOID AND CIRCULAR ORBIT 

Since the SOM is intended to be used only for the mapping of relatively narrow 
strips, it is highly recommended that the ellipsoidal form be used to take advan
tage of the high accuracy of scale available, especially as the imagery is further 
developed and used for more precise measurement. In addition to the normal 
modifications to the above spherical formulas for ellipsoidal equivalents, an addi
tional element is introduced by the fact that Landsat is designed to scan vertically, 
rather than in a geocentric direction. Therefore, "pseudotransformed" latitude <!>" 
and longitude A" have been introduced. They relate to a geocentric groundtrack 
for an orbit in a plane through the center of the Earth. The regular transformed 
coordinates <!>' and A' are related to the actual vertical groundtrack. The two 
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groundtracks are only a maximum of0.008° apart, although a lengthwise displace
ment of 0.028° for a given position may occur. 

If the eccentricity of the ellipsoid is made zero, the formulas reduce to the 
spherical formulas above. These formulas vary slightly, but not significantly, 
from those published in Snyder (1978b, 1981b). In practice, the coordinates for 
each picture element (pixel) should not be calculated because of computer time 
required. Linear interpolation between occasional calculated points can be devel
oped with adequate accuracy. 

For the forward formulas, given a, e, i, P2 , P1o A.0 , R 0 , <1>, and A., find x andy. As 
with the spherical formulas, the X axis passes through each ascending and descend
ing node, x increasing in the direction of satellite motion, and the Y axis intersects 
perpendicularly at the ascending node for the time t = 0. Defining terms, 

a, e = semimajor axis and eccentricity of ellipsoid, respectively (as for other 
ellipsoidal projections). 

R 0 = radius of the circular orbit of the satellite. 
i, P2 , Pt. A.0 , <I>, A. are as defined for the spherical SOM formulas. For constants 

applying to the entire map (see p. 354 for numerical examples): 

B = (21-rr)J o-rri2[(HJ -Sz)!(.f2 + sz)ll2)dA." 
An = [4!(7rn)]J0 -rr12[(HJ-S2)!(.f2 + S2)112]cosnA."dA." 
Cn = [4!(7rn)]J0 -rr12[S(H +J)!(.f2 + 82)112] cos nA."dA." 
J = (1-e2)3 
W = [(1-e2 cos2 i)2/(1-e2)2]-1 
Q = e2 sin2 i/(1-e2) 
T = e2 sin2 i(2-e2)/(1-e2)2 

jn = (4/7T)J0 -rr12 <I>" sin nA.'dA.' 
mn = (4hr)J0 -rr12(A."-A.') sin nA.'dA.' 

(27-21) 
(27-22) 
(27-23) 
(27-24) 
(27-25) 
(27-26) 
(27-27) 
(27-28) 
(27-29) 

where <I>" and A." are determined in these last two equations for the groundtrack 
as functions of A.', from equations (27-43), (27-34), (27-35), and (27-36). 

To calculate An, B, and Cn, the following functions, varying with A.", are used: 

S = (P2/P1) sin i cos A." ((1 + T sin2 A.")/[(1 + W sin2 A.") 
(1 + Q sin2 A.")]ji/2 

H =~ 1 + Q sin
2 

A
11 J 112 

[ . 1 + w_ sin
2 

A
11 

] - (P2/P1) cos i 
1 + W sin2 A." (I + Q sin2 A."l 

(27-30) 

(27-31) 

These constants may be determined from numerical integration, using Simp
son's rule with go intervals. For circular orbits, An if n is odd, Cn if n is even, 
jn if n is even, and mn if n is odd are all zero. The above integration to 1r/2 
is suitable, due to symmetry, only for non-zero coefficients. Integration to 27T 
would be necessary to show that other coefficients are zero. 

To find x and y from <1> and A.: 

where 

xla = BA." + A2 sin 2A." + A 4 sin 4A." + . . . - [SI(.f2 + S2)Ii2] 
ln tan ( 7T/4 + <1>"/2) (27 -32) 

yla = C1 sin A." + C3 sin 3A." + ... + [JI(.f2 + S2
)112] 

In tan (7T/4 + <1>"/2) . (27-33) 

A." = arctan [cos i tanA.t + (1-e2) sin i tan <!>/cos A.t] 
A.t = A. -A.o + <PziP1) A." 

(27-34) 
(27-35) 
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<l>" = arcsin [[(1-e2
) cos i sin <J>-sin i cos <l> sin X.t]/ 

(1-e2 sin2 <j>)112) 
>...0 = 128.87° - (360°/251)p (Landsat 1, 2, 3 only) 

== 129.30° - (360°/233)p (Landsat 4, 5 only) 

(27-36) 
(27-37) 
(27-38) 

Equations (27-34) and (27-35) are iterated together as were (27-8) and 
(27 -9)o Equation (27 -30) is used to find S for the given A." in equations (27 -32) 
and (27-33). For improved computational efficiency using these and subsequent 
series, see p. 19 0 

The closed forms of equations (27-32) and (27-33) are given below, but the 
repeated numerical integration necessitates replacement by the series forms. 

xla = f 01-."[(HJ-S2)1(.f2 + S2) 112 ] d>..."-[SI(.f2+S2
) 112] 

ln tan ('IT I 4 + <l>" /2) 
yla = I o~-.TS(H + J)l(.f2 + S2

) 112] dX." + [JI(.f2 + S2
) 112] 

ln tan ( 'IT/4 + <l>" /2) 

(27-32a) 

(27-33a) 

While the above equations are sufficient for plotting a graticule according to the 
SOM projection, it is also desirable to relate these points to the true vertical 
groundtrack. To find <l>" and X." in terms of <l>' and X.', the shift between these two 
sets of coordinates is so small it is equivalent to an adjustment, requiring only 
small Fourier coefficients, and very lengthy calculations if they are not used. The 
use of Fourier series is therefore highly recommended, although the one-time cal
culation of coefficients is more difficult than the foregoing calculation of An, B, 
and Cn. 

<l>" 
X." 

= <l>' +j1 sin X.' +j3 sin 3>...' + . 0 0 

=X.' +m2 sin2X.' +m4 sin4X.' +. o o 
(27-39) 
(27-40) 

For a circular orbit, X.' is 2'1Tt/P2 , where t is the time from the initial ascending 
node. 

The equations for functions of the satellite groundtrack, both forward and in
verse, are given here, since some are used in calculating Jn and mn as well. In 
any case a, e, i, P 2 , Ph >...0 , and R0 must be given. For X.' and X., if <l> is given: 

= <?-arcsin [ae2 sin <l> cos <J>I[R0 (1-e2 sin2 <J>)li2J) 
= arcsin (sin <l>glsin i) 

(27-41) 
(27-42) 

where <l>g is the geocentric latitude of the point geocentrically under the satellite, 
not the geocentric latitude corresponding to the vertical groundtrack latitude <J>. 

>..=arctan [(cos i sin X.')/cos X.']-(P2/P1)X.' +X.0 

If X. of a point along the groundtrack is given, to find X.' and <J>, 

X.' = arctan (tan X.tfcos i) 

X.t = X.- X.o + <PziP 1) X.' 

(27-43) 

(27-19) 
(27-35) 

These two equations are iterated as a group, but the first trial A.' and the quadrant 
adjustments should follow the procedures listed for equation (27-8). 

<l> =arcsin (sin i sin X.')+ arcsin (ae_2 sin <l> cos <j>/ 
[R 0 (1-e2 sin2 <J>)112]) (27-44) 

Iteration is involved in (27-44), beginning with a trial <l> of arcsin (sin i sin X.'). 
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If A' of a point along the groundtrack is given, <t> is found from (27 -44), and 
(27 -43) provides A. Only (27 -44) requires iteration for these calculations. 

Inverse formulas for the ellipsoidal form of the SOM projection, with circular 
orbit, follow: Given' a, e, i, P 2 , PI> A0 , R 0 , x, andy, to find <t> and A, the general 
Fourier and other constants are first determined as described at the beginning of 
the forward equations. Then 

A=At-(Pz/Pl) A"+Ao (27-45) 

where 

At = arctan (V/cos A") 
V = ([1-sin2 <f>"/(1-e2)] cos i sin A"-sin i sin <t>" [(1+Q sin2 A") 

(1-sin2 <f>")-U sin2 <f>"] 112]/[1-sin2 <t>" (l+U)] 
U = e2 cos2 i/(1-e2) 

while A11 and 4>" are found from (27-51) and (27-52) below. 

If i = 0, equation (27 -49) is indeterminate, but 

(27-46) 

(27-47) 
(27-48) 

(27-49) 

(27-50) 

No iteration is involved in equations (27-45) through (27-50), and the ATAN2 
function of Fortran should be used with (27 -46), but not (27 -49), adding or sub
tracting 360° to or from A if necessary in (27 -45) to place it between longs. 180° E. 
and W. 

Iteration is required to find A" from x and y: 

A"=[xla+(SIJ)(yla)-A2 sin 2 A"-A4 sin 4 A11 

-(SIJ)(C 1 sin A"+ C3 sin 3 A")]IB (27-51) 

using equation (27 -30) and various constants. Iteration involves substitution of a 
trial A11 = x/a B in the right side, finding a new A" on the left side, etc. 

For 4>", the A11 just calculated is used in the following equation: 

ln tan (7r/4+<f>"/2)=(1+S2/.P)112 (yla-C1 sin A"-C3 sin 3 A") (27-52) 

The closed forms of equations (27-51) and (27-52) involve both iteration and 
repeated numerical integration and are impractical: 

xla + (SIJ)(yla) = fo).''[(HJ -82)/(.P + S2
) 112]dA" 

+ (SIJ) fox'TS(H +J)!(.P + S2
) 112]dA" 

ln tan ( 7T/4 + <f>"/2) = [1 + (SIJ)2
] 112(yla- f 0 X" [S(H + J)l 

(J2 + sz)ll2]dA"] 

(27-51a) 

(27-52a) 

For 4>' and A' in terms of <P" and A11
, the same Fourier series developed for 

equations (27-39) and (27-40) may be used with reversal of signs, since the cor
rection is so small. That is, 

<P' = <t>"-j1 sin A"-j3 sin 3 A"- ... 
A'= A"-m2 sin 2 A"-m4 sin 4 A"- ... 

(27-53) 
(27-54) 

Equations (27 -53) and (27 -54) are, of course, not the exact inverses of (27 -39) 
and (27 -40), although the correct coefficients may be derived by an analogous 
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numerical integration in terms of A.", rather than A.'. The inverse values of<!>' and 
A.' from (27-53) and (27-54) are within 0.000003° and 0.000009°, respectively, of 
the true inverses of (27 -39) and (27 -40) for the Landsat orbits. 

The following values of Fourier coefficients for the ellipsoidal SOM are listed 
for Landsat orbits, using the Clarke 1866 ellipsoid (a= 6,378,206.4 m and e2 = 

0.00676866) and a circular orbit: 

Landsat 1, 2, 3 Landsat 4, 5 

B= 1.005798138 1.004560314 for A." in radians 
0.0175544891 0.017532885 for >.." in degrees 

A2 = -0.0010979201 -0.0009425101 
A 4 = -0.0000012928 -0.0000012678 
A 6 = -0.0000000021 -0.0000000021 
C1= 0.1434409899 0.1375926735 
Ca= 0. 0000285091 0. 0000299489 
c5 = -o.oooooooo11 0. 0000000004 
R= 7,294,690 7,081,000 meters 
i= 99.092° 98.20° 

P2/P1 = 18/251 16/233 
jl = 0.00855567 0.00619893 for<!>" and<!>' in degrees 
j3 = 0.00081784 0.00061698 " 
j5 = -0.00000263 -0.00000308 " 

m2 = -0.02384005 -0.01901574 for >.." and >..' in degrees 
m4= 0.00010606 0.00011587 " 
m6= 0.00000019 0.00000024 

Additional Fourier constants have been developed in the published literature 
for other functions of circular orbits. They add to the complication of the equations, 
but not to the accuracy, and only slightly to continuous mapping efficiency. A 
further simplification from published formulas is the elimination of a function F, 
which nearly cancels out in the range involved in imaging. 

As in the spherical form of SOM, the formulas for scale factors hand k and 
maximum angular deformation ware too lengthy to include here, although they 
are given by Snyder (1981b). Table 37 presents these values for Landsat con
stants for the scanning range required. Values for Landsat 4 and 5 are nearly 
identical with those shown for 1, 2, and 3. 

FORMULAS FOR THE ELLIPSOID AND NONCIRCULAR ORBIT 

The following formulas accommodate a slight ellipticity in the satellite orbit. 
They provide a true-to-scale ground track for an orbit of any eccentricity, if the 
orbital motion follows Kepler's laws for two-bodied systems, but the areas scanned 
by the satellite as shown on the map are distorted beyond the accuracy desired if 
the eccentricity of the orbit exceeds about 0.05, well above the maximum reported 
eccentricity of Landsat orbits (about 0.002). For greater eccentricities, more 
complex formulas (Snyder, 1981b) are recommended. If the orbital eccentricity is 
made zero, these formulas readily reduce to those for a circular orbit. 

For the forward formulas, given a, e, i, P 2 , PI> >..0 , a', e', "'/,<!>,and>.., find x and 
y. Again, the X axis passes through each ascending and descending node, x 
increasing in the direction of satellite motion, and the Y axis intersects perpendic
ularly at the ascending node for the timet = 0. Defining terms, 

a', e' = semimajor axis and eccentricity of satellite orbit, respectively. 
"Y = longitude of the perigee relative to the ascending node. 

a and e are as defined for the ellipsoidal/circular formulas, and i, P 2 , PI> >..0 , <!>, 
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TABLE 37.-Scale factors for the ellipsoidal Space Oblique Mercator projection using Landsat 1, 2, 
and 3 constants 

}..W t/J" h k wo sin 1/z w 

oo -------------- 10 1.000154 1.000151 0.0006 0.000005 
0 1.000000 1.000000 .0000 .000000 

-1 1.000154 1.000151 .0006 .000005 

15 -~------------- 1 1.000161 1.000151 .0022 .000019 
0 1.000000 1.000000 .0001 .000000 

-1 1.000147 1.000151 .0011 .000010 

30 --------------- 1 1.000167 1.000150 .0033 .000029 
0 1.000000 1.000000 .0001 .000001 

-1 1.000142 1.000150 .0025 .000021 

45 --------------- 1 1.000172 1.000150 .0036 .000031 
0 .999999 1.000000 .0001 .000001 

-1 1.000138 1.000150 .0031 .000027 

60 --------------- 1 1.000174 1.000150 .0031 .000027 
0 .999999 1.000000 .0002 .000001 

-1 1.000136 1.000150 .0028 .000025 

75 --------------- 1 1.000174 1.000152 .0019 .000016 
0 .999999 1.000000 .0001 .000000 

-1 1.000135 1.000150 .0019 .000016 

90 --------------- 1 1.000170 1.000156 .0008 .000007 
0 .999999 1.000000 .0000 .000000 

-1 1.000133 1.000151 .0010 .000009 

Notes: >..'=angular position along geocentric groundtrack, from ascending node. 
<!>"=angular distance away from geocentric groundtrack, positive in direction away from North Pole. 
h =scale fador along meridian of longitude. 
k =scale factor along parallel of latitude. 
w =maximum angular deformation. 

sin \lz w =maximum variation of scale factors from true conformal values. 

and X. are as defined for the spherical SOM formulas. For constants applying to 
the entire map (a numerical example is not given for the non-circular orbit): 

Bl = [1/(21T)]J 0z,[(HJ -S2)/(J2 + S 2 )11z]dX." (27-55) 
B2 = [1/(211' )]J 0z,[S(H + J)!(J2 + S 2 )11z]dA." (27-56) 
An = [11(1'Tn)]J0z,[(HJ-S2)1(J2+S2

)112] cos nX."dA." (27-57) 
A'n = [1/(1Tn)]J0z,[(HJ-S2)/(.f2+S2)112] sin nX."dA." (27-58) 
Cn = [l!Crrn)]f0

2,[S(H +J)/(.f2+S2)112] cos nA."dA." (27-59) 
C'n = [11( 1'Tn)]f 02,[S(H + J)l(.f2 + 82)112] sin nA."dA." (27-60) 

J = (1-e2)3 (27-24) 
w = [(1-e2 cos2 i)2/(1-e2)2]-1 (27 -25) 
Q = e2 sin2 i/(1- e2

) (27-26) 
T = e2 sin2 i (2-e2)/(1-e2i (27-27) 

Hl = B 1/(B1
2 + B/)112 (27-61) 

sl = B 2/(B/+Bl)11z (27-62) 

Jn = (1!1T)fo2" <!>"sin nA.'dA.' (27-63) 

J'n = (1!1T)fo2" <!>"cos nA.'dA.' (27-64) 
mn = (111T)f02'"(X."-A.') sin nA.'dA.' (27 -65) 

m'n = (111r)J02'"(A"-X.') cos nA.'dX.' (27-66) 

where <!>" and A." are determined in these last four equations for the groundtrack 
as functions of A.', from equations (27 -69a), (27 -87), (27 -86), (27 -85), (27 -88), 
and (27-34), (27-74) through (27-76), and (27-36). 

To calculate An, A' n. Bn, Cn, and C' n• the following functions, varying with X.", 
are used: 

S = (P2/P 1)L' sin i cos X."(O + Tsin2 A.")/[(1 + W sin2 A.") 
(1 + Q sin2 A.")]j11z (27-67) 
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fl + Q sin2 }..." J 11{ 1 + W sin2 }..." , ·] 
H =u. + W sin2 }..." ~1 + Q sin2 >-.")2 - (P21P1)L cost 

L' = (1-e' cos E')2/(1-e'2)112 
E' = 2 arctan (tan [(>-."--y)/2] [(1-e')/(1 + e'))112) 

(27-67a) 

(27-68) 
(27-69) 

These constants may be determined from numerical integration, using Simp
son's rule with go intervals. Unlike the case for circular orbits, integration must 
occur through the 360° or 2'TT cycle, as indicated. Many more terms are needed than 
for circular orbits. 

To find x and y from 4> and A: 

where 

xla = x'H1 + y'S1 
y/a = y'H1 - x'S1 

(27-70) 
(27-71) 

n n n T2 2) 
x' =B >-." +I A sin n'!l."- I A'n cos n}..." + I A'n- [SI(J- +S )112 

1 n=l n n=l n=l 

ln tan ('TT/4 + 4>"/2) (27-72) 

y' = B2}..." + i Cn sin n}..." - i C' n cos n}..." + f C' n + [JI(.f2 + 8 2)112) 
n=l n=l n=l 

ln tan ('TT/4+4>"/2) 

}..." = arctan [cos i tan }...t + (1 - e2
) sin i tan <f>/cos }...t] 

}...t =}...- ll.o + <PziP1) (L+-y) 
L =E'- e' sinE' 

E' = 2 arctan (tan [(ll."--y)/2] [(1-e')/(1 + e')]112] 
4>" =arcsin ([(1-e2

) cos i sin 4> - sin i cos 4> sin }...t)/ 
(1-e2 sin2 4>)112) 

(27-73) 

(27-34) 
(27-74) 
(27-75) 
(27-76) 

(27-36) 

Function E' is called the "eccentric anomaly" along the orbit, and L is the 
"mean anomaly" or mean longitude of the satellite measured from perigee and 
directly proportional to time. 

Equations (27-34), (27-74) through (27-76), and (27-36) are solved by special 
iteration as described for equations (27 -8) and (27 -9) in the spherical formulas, 
except that >-." replaces }...', and each trial A." is placed in (27-76), from which 
E' is calculated, then L from (27-75), A.t from (27-74), and another trial A." 
from (27-34). This cycle is repeated until }..." changes by less than the selected 
convergence. The last value of }...t found is then used in (27-36) to find 4>". 

Equation (27-67) is used to findS for the given}..." in equations (27-72) and 
(27-73). 

The closed forms of equations (27 -72) and (27 -73) are (27-32a) and (27-33a), 
respectively, in which the repeated numerical integration necessitates replace
ment by the series forms. 

As in the case of the circular orbit, it is also desirable to relate these points 
to the true vertical groundtrack. To find 4>" and A." in terms of 4>' and }...', 
the following series are employed: 

4>" = 4>' + i jn sin n}\' + f jn' cos n}...' - f j'" 
n=l n=1 n=! 

n n n 
}..." = }...' +I mnsinnA.' +I m', cosnA.' -I m', 

n=! n=! n=! 

For }...' in terms of time t from the initial ascending node, 

}...' = 'Y + 2 arctan ([tan (E' /2)] [(1 + e')/(1-e')]Irz) 
E' = e' sinE' + L 0 + 2'TTtiP2 

(27-77) 

(27-78) 

(27-79) 
(27-80) 
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L 0 = E' 0 - e' sin E' 0 

E' 0 = -2 arctan !rtan (')'/2)] [(1-e')/(1 + e')]112) 
(27-81) 
(27-82) 

Equation (27 -80) requires iteration, converging rapidly by substituting an initial 
trial E' = L 0 + 27Tt/P2 in the right side, finding a new E' on the left, substituting 
it on the right, etc., until sufficient convergence occurs. 

The equations for functions of the satellite groundtrack, both forward and in
verse, are given here, since some are used in calculating jn and mn as well. In 
any case a, e, i, P 2 , P 11 l\0 , a', e', and 'Y must be given. For '/\' and A, if <)> 
is given: 

l\' = arcsin (sin <)>9/sin i) 
<l>g = <1> - arcsin !ae2 sin<)> cos <j>/[R0(1-e2 sin2 <)>)112]) 
R 0 =a' (1-e' cos E') 
E' = 2 arctan !tan [(A' -')')/2] [(1-e')/(1 + e')]112) 

(27-83) 
(27-84) 
(27-85) 

(27-69a) 

where <l>g is the geocentric latitude of the point geocentrically under the satellite, 
not the geocentric latitude corresponding to the vertical groundtrack latitude <j>, 
and R0 is the radius vector to the satellite from the center of the Earth. 

These equations are solved as a group by iteration, inserting a trial A' = arcsin 
(sin <j>/sin i) in (27-69a), solving (27-85), (27-84), and (27-83) for a new A', 
etc. Each trial A' must be adjusted for quadrant. If the satellite is traveling 
north, add 3600 times the number of orbits completed at the nearest ascending 
node (0, 1, 2, etc.). If traveling south, subtract A' from 360° times the number of 
orbits completed at the nearest descending node (1/2, 3/2, 5/2, etc.). For A, 

A = arctan[(cosisinA')/cosA']- (P2/P 1)(L + ')') + A0 

L = E' - e' sin E' 

using the A' and E' finally found just above. 
If A of a point along the groundtrack is given, to find A' and <j>, 

A' =arctan (tan At/cos i) 
At = A-Ao + (Pz/Pl)(L+')') 

(27-86) 
(27-87) 

(27 -19) 
(27-74) 

and Lis found from (27-87) and (27-69a) above. The four equations are iterated 
as a group, as above, but the first trial A' and the quadrant adjustments should 
follow the procedures listed for equation (27-8). 

<l> = arcsin (sin i sin A') + arcsin !ae2 sin <l> cos <)>/ 
[R 0(1-e2 sin2 <j>)112]j (27-88) 

where R0 is determined from (27 -85) and (27 -69a), using the A1 determined just 
above. Iteration is involved in (27-88), beginning with a trial <l> of arcsin (sin i 
sin A'). 

If A' of a point along the groundtrack is given, <l> is found from (27-88), (27-85), 
and (27-69a), while A is found from (27-86), (27-87), and (27-69a). Only (27-88) 
requires iteration for these calculations. 

Inverse formulas for the ellipsoidal form of the SOM projection, with an orbit 
of 0.05 eccentricity or less, follow: Given a, e, i, P2 , P 11 A0 , a', e', ')', x, andy, 
to find <)> and A, the general Fourier and other constants are first determined as· 
described at the beginning of the forward equations for noncircular orbits. Then 

(27-89) 
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where 

A.t = arctan (V/cos A.") 
V = ([1-sin2 <!>"/(1-e2)] cos i sin A." - sin i sin <!>" [(1 + Q sin2 A.") 

(1-sin2 <!>") - U sin2 <!>"]112j/[1-sin2 <!>" (1 + U)] 
U = e2 cos2 i/(1-e2) 

(27-46) 

(27-47) 
(27-48) 

while Lis found from (27-87), E' from (27-76), and A." and <!>"from (27-90) 
and (27-91) below. 

<!> = arctan j(tan A." cos At - cos i sin A.t)I[O-e2) sin i]) (27-49) 

If i = 0, equation (27-49) is indeterminate, but 

<!> = arcsin (sin <!>"/[(1-e2)2 + e2 sin2 c:p"]vz] (27-50) 

No iteration is involved in the above equations, and the AT AN2 function of 
Fortran should be used with (27-46), but not (27-49), adding or subtracting 
360° to or from A. if necessary in (27-89) to place it between longs. 180°E. and W. 

Iteration is required to find A." from x and y: 

A." = jx' + (S!J) y' - I [An + (S!J)Cn] sin n >-.." + I [A' n + (SIJ)C' nl 
n=l n=l 

cos n>-.." - I [A' n + (S!J)C' nJ)![B 1 + (SIJ)B2] (27-90) 
n~l 

using equations (27-67), (27-92), (27-93), and various constants. Iteration in
volves substitution of a trial A." = x' IB1 in the right side, finding a new A." on 
the left side, etc. 

For <!>", the A." just calculated is used in the following equation: 

ln tan (7T/4 + <P"/2) 

where 

n n 
= (1 + S2/J2)112(y'-B2 A." - 4 Cn sin n A." + 4 

n~! n~l 

C'n cos n A."- I C'n) 
n~l 

x' = (x!a) H 1 - (y!a)S 1 

y' = (y!a)H1 + (x!a)S 1 

(27-91) 

(27-92) 
(27 -:-93) 

The closed forms of equations (27 -90) and (27 -91) involve both iteration and 
repeated numerical integration and are impractical: 

x' + (SIJ)y' = Jox"[(HJ-S2)/(J2+S2)112]dA." 
+ (S!J)f ox"[S(H + J)!(P + S2)112]dA." 

ln tan (7T/4 + <l>"/2) = [1 + (S/J)2]v2jy'-g"[S(H +J)I 
(J2 + S2)1'2]dA.") 

(27-90a) 

(27-91a) 

For <!>' and A.' in terms of <!>" and A.", the same Fourier series developed for 
equations (27-77) and (27-78) may be used with reversal of signs, since the 
correction is so small. That is, 

""' = <!>" -I j sin n A." -I J., cos n A." + I J., 
't' n~l n n~l n n~i n 

n n n 
A.' =A."- 4 mn sin n >-.."- 4 m'n cos n A." + 4 m'n 

n=l n=l n=1 

(27-94) 

(27-95) 

As with the circular orbit, equations (27-94) and (27-95) are not the exact in
verses of (27-77) and (27-78), although the correct coefficients may be derived 
by an analogous numerical integration in terms of A.", rather than A.'. 
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28. SATELLITE-TRACKING PROJECTIONS 

SUMMARY 

• All groundtracks for satellites orbiting the Earth with the same orbital param-
eters are shown as straight lines on the map. 

• Cylindrical or conical form available. 
• Neither conformal nor equal-area. 
• All meridians are equally spaced straight lines, parallel on cylindrical form and 

converging to a common point on conical form. 
• All parallels are straight and parallel on cylindrical form and are concentric 

circular arcs on conical form. Parallels are unequally spaced. 
• Conformality occurs along two chosen parallels. Scale is correct along one of 

these parallels on the conical form and along both on the cylindrical form. 
• Developed 1977 by Snyder. 

HISTORY, FEATURES, AND USAGE 

The Landsat mapping system which inspired the development of the Space 
Oblique Mercator (SOM) projection also inspired the development of a simpler 
type of projection with a different purpose. While the SOM is used for low
distortion mapping of the strips scanned by the satellite, the Satellite-Tracking 
projections are designed solely to show the groundtracks for these or other satel
lites as straight lines, thus facilitating their plotting on a map. As a result, the 
other features of such maps are minimal, although they may be designed to reduce 
overall distortion in particular regions. 

The writer developed the formulas in 1977 after essentially completing the 
mathematical development of the formulas for the SOM. The formulas for the 
Satellite-Tracking projections, with derivations, were published later (Snyder, 
1981a). Arnold (1984) further analyzed the distortion. These formulas are confined 
to circular orbits and the spherical Earth. Because of the small-scale maps result
ing, the ellipsoidal forms are hardly justified. 

Charts of groundtracks have to date continued to employ the Lambert Con
formal Conic projection, on which the ground tracks are slightly curved .. The 
writer is not aware of any use of the new projection, except that a Chinese map 
of about 1982 claims this feature. 

The projections were developed in two basic forms, the cylindrical and the 
conic, with variations of features within the latter category. The cylindrical form 
(fig. 48) has straight parallel equidistant meridians and straight parallels of lati
tude which are perpendicular to the meridians. The parallels of latitude are in
creasingly spaced away from the Equator, and for Landsat orbits the spacing 
changes more rapidly than it does on the Mercator projection. The Equator or 
two parallels of latitude equidistant from the Equator may be made standard, 
without shape or scale distortion, as on several other cylindrical projections. 

The groundtracks for the various orbits are plotted on the cylindrical form as 
diagonal equidistant straight lines. The descending orbital groundtracks (north to 
south) are parallel to each other, and the ascending groundtracks (south to north) 
are parallel to each other but with a direction in mirror image to that of the 
descending lines. The ascending and descending groundtracks meet at the north
ern and southern tracking limits, lats. 80.9° N. and S. for Landsat 1, 2, and 3. The 
map projection does not extend closer to the poles, although the mapmaker can 
arbitrarily extend the map using any convenient projection. The extension does 
not affect the purpose of the projection. 

The groundtracks are not shown at constant scale, just as the straight great
circle paths on the Gnomonic and straight rhumb lines on the Mercator projection 
are not at constant scale. The complete tracks appear to be a sequence of zig-zag 
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lines, although for Landsat normally only the descending (daylight) groundtracks 
should be shown to reduce confusion, since interest is normally confined to them. 

While the cylindrical form of the Satellite-Tracking projections is of more inter
est if much of the world is to be shown, the conic form applies to most conti
nents and countries, just as do the usual cylindrical and conic projections. On each 
conic Satellite-Tracking projection, the meridians are equally spaced straight lines 
converging at a common point, and the parallels are unequally spaced circular 
arcs centered on the same point. There are three types of distortion patterns 
available with the conic form: 

1. For the normal map (fig. 49) of a continent or country, there can be confor
mality or no shape distortion along two chosen parallels, but correct scale at 
only one of them. The groundtracks break at the closest tracking limit, but 
the map cannot be extended to the other tracking limit in many cases, since 
it extends infinitely before reaching that latitude. 

2. If one of the parallels with conformality is made a tracking limit, the ground
tracks do not break at this tracking limit, since there can be no distortion 
there (fig. 50). 

3. If both parallels with conformality are made the same, the projection has just 
one standard parallel. If this parallel is made the tracking limit, the conic 
projection becomes the closest approximation to an azimuthal projection 
(fig. 51). For Landsat orbits, the cone constant of such a limiting projection 
is about 0.96, so the developed cone is about 4 percent less than a full circle, 
and the projection somewhat resembles a polar Gnomonic projection. With 
orbits of lower inclination, the approach to azimuthal becomes less. 

For each of the conics, the straight groundtracks are equidistant, they have 
constant inclinations to each meridian being crossed at a given latitude on a given 
map, and they are not at constant scale. They are also all tangent to a circle slightly 
smaller than the latitude circle for the tracking limit in case 1 above, and tangent 
to the tracking limit itself in cases 2 and 3. As in the case of the cylindrical form, 
any extension of the map from the tracking limit to a pole is cosmetic and arbi
trary, since the groundtracks do not pass through this region. 

FORMULAS FOR THE SPHERE 

Forward formulas (see p. 360 for numerical examples): 
For the Cylindrical Satellite-Tracking projection, R, i, P 2 , P 11 X.0 , <l>ll <\>, and 

X. must be given, where 

R =radius of the globe at the scale of the map. 
i =angle of inclination between the plane of the Earth's Equator and the 

plane of the satellite orbit, measured counterclockwise from the Equa
tor to the orbital plane at the ascending node (99.092° for Landsat 1, 2, 
3; 98.20° for Landsat 4, 5). 

P 2 =time required for revolution of the satellite (103.267 min for Landsat 1, 
2, 3; 98.884 min. for Landsat 4, 5). 

P 1 =length of Earth's rotation with respect to the precessed ascending node. 
For Landsat, the satellite orbit is Sun-synchronous; that is, it is always 
the same with respect to the Sun, equating P 1 to the solar day (1,440 
min). The ascending node is the point on the satellite orbit at which the 
satellite crosses the Earth's equatorial plane in a northerly direction. 

X.0 =central meridian. 
<!>1 =standard parallel (N. and S.). 

(<\>, X.) =geodetic latitude and longitude of point to be plotted on map. 
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7 (} \ I I I I I 7 (~ I I I £5 u !' 
'/ ;~ ~I I ~ I I I I ) {IY I j I I 

I li / I I I /i / f I I / I I I 
~ ~ I I ~ I ~ II I II~~ I I I I :I jl J 

FIGURE 48.-Cylindrical Satellite-Tracking projection (standard parallels 30° N. and S.). Landsat 1, 
2, 3 orbits. Groundtracks (paths 15, 30, 45, etc.) are shown as straight diagonal lines. They con
tinue broken at tracking limits (not shown). 

F 1 ' =[CP2/Pr) cos2 <h -cos i]/(cos2cp1 -cos2i)112 

F' =[(P2/P1) cos2cp-cos i]/(cos2 cp-cos2 i)112 

A.' =-arcsin (sin cp/sin i) 
'At =arctan (tan X.' cos i) 
L ='At - CP2/Pr)'A' 
x =R(X.-'11.0 ) cos cp1 

y =R L cos cp1/Fr' 
k =cos cp1/cos cp 
h =k F'IF1 ' 

(28-1) 
(28-la) 
(28-2) 
(28-3) 
(28-4) 
(28-5) 
(28-6) 
(28-7) 
(28-8) 

Geometrically, F' is the tangent of the angle on the globe between the ground
track and the meridian at latitude cp, and F 1 ' is the tangent of this angle both on 
the globe and on the map at latitude cp1. Scale factors hand k apply along the meri
dian and parallel, respectively. If the latitude is closer to either pole than the 
corresponding tracking limit, equation (28-2) cannot be solved, and the point 
cannot be mapped using these formulas. The X axis lies along the Equator, x 
increasing easterly, and the Y axis lies along the central meridian, y increasing 
northerly. If (A.- '11.0 ) lies outside the range ± 180°, 360° should be added or sub
tracted so it will fall inside the range. 

For the Conic Satellite-Tracking pro}ection with two parallels having confor
mality, R, i, P 2, P 11 '11.0 , cp0 , cp11 cp2, cp, and A. must be given, where the symbols 
are defined above, except that cp2 is the other parallel of conformality, but with
out true scale, and cp0 is the latitude crossing the central meridian at the desired 
origin of rectangular coordinates. For constants which apply to the entire map, 

n 

=arctan \[(P2/P1) cos2 <Pn - cos i]/(cos2 <Pn - cos2 i)112
) 

=-arcsin (sin <Pn/sin i) 
=arctan (tan 'An' cos i) 
='Atn- (P21Pr)'An' 
=(F2-F1)/(L2-Lr) 
=F1 - n L1 

Po =R cos cp1 sin F 1/[n sin (nL0 + s0 )] 

(28-9) 
(28-2a) 
(28-3a) 
(28-4a) 
(28-10) 
(28-11) 
(28-12) 
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FIGURE 49.-Conic Satellite-Tracking projection (conformality at lats. 45° and 70° N.). Landsat 1, 2, 3 
orbits. Groundtracks (paths 15, 30, 45, etc.) are shown as diagonal straight lines. They continue 
broken (not shown) at tracking limit, the smallest incomplete circle. The complete circle is the 
circle of tangency. 
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FIGURE 50.-Conic Satellite-Tracking projection ( conformality at lats. 45° and 80.9° N. ). Landsat 1, 2, 3 

orbits. Diagonal groundtracks (paths 15, 60, 105, etc.) are straight, unbroken even at the tracking 
limit, which is the same as the circle of tangency (inner circle). 
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FIGURE 51.-Conic Satellite-Tracking projection (standard parallel80.9° N.). Landsat 1, 2, 3 orbits. 
Groundtracks are as described on Fig. 50. The nearest approach to an azimuthal projection for 
these orbits. Inner circle is tracking limit and circle of tangency. 
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in which subscript n in equations (28-9) and (28-2a) through (28-4a) is made 0, 
1, or 2 as required for (28-10) through (28-12), and subscript n is omitted for 
calculating F and L for formulas below. 

For plotting each point (<f>, A.), 

p =R cos <!> 1 sin F 11[n sin (nL + s0)] 

e =n (A.- A.o) 
X =p sin 0 
y =po- p cos e 

(28-13) 
(14-4) 
(14-1) 
(14-2) 

If n is positive and L is equal to or less than ( -sofn), or if n is negative and L is 
equal to or greater than ( -s0/n), the point cannot or should not be plotted. The 
limiting latitude <P for L = ( -sofn) may be found using (28-20) through (28-22) 
below. 

In addition, p8 , the radius of the circle to which groundtracks are tangent on 
the map, and scale factors h and k, defined above, are found as follows: 

Ps =R cos <!> 1 (sin F 1)/n 
k = pni(R cos <P) 
h =k tan F/tan (nL + s0 ) 

(28-14) 
(28-15) 
(28-16) 

Radius Ps may be inserted into equations (14-1) and (14-2) in place of p for 
rectangular coordinates. The Y axis lies along the central meridian A.0 , y increas
ing northerly, and the X axis intersects perpendicularly at <Po, x increasing easter
ly. Geometrically, F 1 is the inclination of the groundtrack to the meridian at lati
tude <Pt. and n is the cone constant. 

For the conic projection with one standard parallel, <!> 1 = <!>2 , but equation (28-10) 
is indeterminate. The following may be used in its place: 

n = sin <!> 1 [(P2/P1)(2 cos2 i-cos2 <!> 1) - cos i]!([(P21P1) cos2 <!> 1 -cos i] 
[(P2/P 1)[(P21P1) cos2 <!> 1 - 2 cos i] + 1]) (28-17) 

For the conic projection with one standard parallel <!> 1 which is equal to the upper 
tracking limit, equation (28-17) may be considerably simplified to the following: 

n = sin i/[(P2/P1) cos i - 1]2 (28-18) 

Other equations for the conic form remain the same. 

Inverse Formulas (see p. 362 for numerical examples): 
For the cylindrical form, the same constants must be given as those listed for 

the forward formulas (R, i, P 2 , P 11 A.0 , and <f> 1), and F 1 ' must be calculated from 
equation (28-1). For a given (x, y), to find (<!>, A.): 

L =yF1 '/(Rcos<f>1) 

A.t =L + <PziP1) A.' 
A.' =arctan (tan A.tlcos i) 
<P = - arcsin (sin A.' sin i) 
A. = A.0 + xi(R cos <f>1) 

(28-19) 
(28-20) 
(28-21) 
(28-22) 
(28-23) 

Equations (28-20) and (28-21) must be iterated as a pair, using ( -90°) as the first 
trial A.' in equation (28-20), solving for A.t, inserting it into (28-21), finding a new 
A.' without using the equivalent of the Fortran ATAN2 function, and using it in 
(28-20), until A.' changes by a negligible amount. This final A.' is used in (28-22) 
to find <f>. 
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. A generally faster solution of (28-20) and (28-21) involves the use of aN ewton
Raphson iteration in place of those two equations, although equations are longer: 

A 
llA' 

tan [L + (P2/P 1) A.']/cos i 
- (A'-arctan A)/[1- (A2 + llcos2 i) (P2/P1) cos i/(A2 + 1)] 

(28-24) 
(28-25) 

The first trial A' is again ( -90°) in equation (28-24) and (28-25). The adjustment 
llA' is added to each successive trial until reasonable convergence occurs. 

For any of the conic forms, the initial constants R, i, P 2 , P 1 , A.0 , <j>0 , and <!> 1 alone 
or both <!> 1 and <!>2 must be given. In addition, all constants in equations (28-9) 
through (28 ~ 12), (28-2a) through (28-4a), and (28- 17) or (28 -18) if necessary 
must be calculated. For a given (x, y), to find (<!>, A), 

p 
e 
L 

± [x2 + (p0 -y)2
]112, taking the sign of n 

arctan [x/(p0 -y)] 
[arcsin (R cos <!> 1 sin F 1/(pn))-s0]/n 

(14-10) 
(14-11) 
(28-26) 

From L, A.' and then <!> are found using equations (28-20) through (28-22), or 
(28-24), (28-25), and (28-22), with iteration as described above. Then 

A = Ao + eln (14-9) 

Sample coordinates for several of the Satellite-Tracking projections are shown in 
tables 38 through 40. 
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TABLE 38.-Cylindrical Satellite-Tracking projection: Rectangular coordinates 

Landsat 1, 2, 3 orbits: i ~ 99.092" 
P 2 ~ 103.267 min. 
Pt ~ 1440.0 min. 

Globe radius: R ~ 1.0 

<l>t 0' ±30" :t45" 

Ft 13.09724' 13.96868' !5. 71115' 
X 0.0174531\" 0.0151151\' 0.012341!.' 

"""' 
±y h k ±y k ±y h 

TL* 7.23571 6.32830 5.86095 "" 5.48047 4.23171 "" 
80' 5.35080 55.0714 5.75877 4.33417 44.6081 4.98724 3.12934 32.2078 
70 2.34465 6.89443 2.92380 1.89918 5.58452 2.53209 1.37124 4.03212 
60 1.53690 3.18846 2.00000 1.24489 2.58266 1. 73205 0.89883 1.86473 
50 1.09849 2.01389 1.55572 0.88979 1.63126 1.34730 0.64244 1.17780 
40 0. 79741 1.49787 1.30541 0.64591 1.21328 1.13052 0.46636 0.87601 
30 0.56135 1.23456 1.15470 0.45470 1.00000 1.00000 0.32830 0.72202 
20 0.35952 1.09298 1.06418 0.29121 0.88532 0.92160 0.21026 0.63921 
10 0.17579 1.02179 1.01543 0.14239 0.82766 0.87939 0.10281 0.59758 

oo 0.00000 1.00000 1.00000 0.00000 0.81000 0.86603 0.00000 0.58484 

* Tracking limit, 80.908' ~ (180' - i) 
See text for other symbols. 

TABLE 39.-Conic Satellite-Tracking projections with two conformal parallels: Polar coordinates 

Landsat I, 2, 3 orbits (i, P,, P 1 same as Table 38) 
Globe radius: R ~ 1.0 

<l>t 30' 45" 

"'' 
60" 70" 

>1 0.49073 0.69478 
Ft 13.96868' 15. 71115' 

Ps 0.42600 0.27559 

<I> k k 

TL* 0.50439 1.56635 0.28663 1.26024 0.21642 
80° 0.59934 3. 72928 1.69373 0.33014 1.93850 1.32093 0.23380 
70 0.98470 1.61528 1.41283 0.57297 1.16394 1.16394 0.40484 
60 1.22500 1.20228 1.20228 0. 75975 1.00596 1.05572 0.55875 
50 1.41806 1.03521 1.08260 0.93154 0.97914 1.00689 0.71504 
45 1.50659 0.99771 1.04556 1.01774 1.00000 1.00000 0.79921 
40 1.59281 0.98135 1.02035 1.10669 1.04212 1.00374 0.89042 
30 1. 76478 1.00000 1.00000 1.30060 1.19708 1.04342 1.10616 
20 1.94551 1.08181 1.01599 1.53188 1.47984 1.13263 1.39852 
10 2.14662 1.23677 1.06965 1.82978 1.98371 1.29091 1.84527 
0 2.38332 1.49781 1.16956 2.25035 2.94795 1.56351 2.66270 

-10 2.67991 1.94172 1.33539 2.92503 5.10490 2.06361 4.79153 
-20° 3.08210 2.75586 1.60953 4.26519 11.6380 3.15356 29.3945 
ML** -60.65' (p = :xo) -38.52° (p = '>:l) 

* Tracking limit, 80.908' ~ (180' - i) 
** Minimum latitude, at infinite radiw; 
See text for other symbol:.>. 

TABLE 40.-Near-Azimuthal Conic Satellite-Tracking projection: Polar coordinates 

Landsat 1, 2, 3 orbits {i, P2, P 1 same as Table 38) 

<I> p 

TL* 0.16368 
80° 0.17953 
70 0.35986 
60 0.57095 
50 0.85650 
40 1.31643 
30 2.28682 
20° 6.22402 

ML** 

* Tracking limit, 80. 908' = (180' - i) 
** Minimum latitude, of infinite radius 
See text for other symbols. 

Globe radius: R ~ 1.0 
<l>t 80.908' 
11 0.96543 

Ft ±90" 

Ps 0.16368 

h 

1.00000 
1.00076 
1.09115 
1.36647 
1.99000 
3.53452 
8.83705 
58.0828 

13.70° (p = oo) 

k 

1.00000 
0.99813 
1.01579 
1.10243 
1.28641 
1.65907 
2.54931 
6.39449 

45" 
80.908' 
0.88475 

15. 71115" 

0.21642 

h 

1.21172 
1.08325 
0.90832 
0.87290 
0.93344 
1.00000 
1.09569 
1.40901 
2.00877 
3.28641 
6. 72124 
22.2902 
898.207 

-21.86° (p = oo) 

4.47479 
4.07207 
2.06744 
1.41421 
1.10006 
0.92306 
0.81650 
0.75249 
0.71802 
0.70711 

k 

1.21172 
1.19121 
1.04727 
0.98871 
0.98421 
1.00000 
1.02840 
1.13008 
1.31675 
1.65780 
2.35583 
4.30472 
27.6759 
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PSEUDOCYLINDRICAL AND MISCELLANEOUS 
MAP PROJECTIONS 

29. VAN DER GRINTEN PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. Not pseudocylindrical. 
• Shows entire globe enclosed in a circle. 
• Central meridian and Equator are straight lines. 
• All other meridians and parallels are arcs of circles. 
• A curved modification of the Mercator projection, with great distortion in the 

polar areas. 
• Equator is true to scale. 
• Used for world maps. 
• Used only in the spherical form. 
• Presented by van der Grinten in 1904. 

HISTORY, FEATURES, AND USAGE 

In a 1904 issue of a German geographical journal, Alphons J. van der Grinten 
(1852-?) of Chicago presented four projections showing the entire Earth. Aside 
from having a straight Equator and central meridian, three of the projections 
consist of arcs of circles for meridians and parallels; the other projection has 
straight-line parallels. The projections are neither conformal nor equal-area (van 
der Grinten, 1904; 1905). They were patented in the United States by van der 
Grinten in 1904. 

The best-known Vander Grinten projection, his first (fig. 52), shows the world 
in a circle and was invented in 1898. It is designed for use in the spherical form 
only. There are no special features to preserve in an ellipsoidal form. It has been 
used by the National Geographic Society for their standard world map since 1943, 
printed at various scales and with the central meridian either through America or 
along the Greenwich meridian; this use has prompted others to employ the projec
tion. The U.S. Department of Agriculture adopted the projection as the base map 
for economic data in the 1940's, and this led to frequent use in geography text
books (Wong, 1965, p. 117). The USGS has used one of the National Geographic 
maps as a base for a four-sheet set of maps of World Subsea Mineral Resources, 
1970, one at a scale of 1:60,000,000 and three at 1:39,283,200 (a scale used by the 
National Geographic), and for three smaller maps in the National Atlas (USGS, 
1970, p. 150-151, 332-335). All the USGS maps have a central meridian of long. 
85° W., passing through the United States. 

Van der Grinten emphasized that this projection blends the Mercator appear
ance with the curves of the Mollweide, an equal-area projection described later. 
He included a simple graphical construction and limited formulas showing the 
mathematical coordinates along the central meridian, the Equator, and the outer 
(180th) meridian. The meridians are equally spaced along the Equator, out the 
spacing between the parallels increases with latitude, so that the 75th parallels 
are shown about halfway between the Equator and the respective poles. Because 
of the polar exaggerations, most published maps using the Van der Grinten 
projection do not extend farther into the polar regions than the northern shores of 
Greenland and the outer rim of Antarctica. 

The National Geographic Society prepared the base map graphically. General 
mathematical formulas have been published in recent years and are only useful 
with computers, since they are fairly complex for such a simply drawn projection 
(O'Keefe and Greenberg, 1977; Snyder, 1979b). 
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FIGURE 52.-Van der Grinten projection. A projection resembling the Mercator, but not conformal. Used by the USGS for special world maps, modifying a 
base map prepared by the National Geographic Society. This illustration is prepared by computer. 
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29. VAN DER GRINTEN PROJECTION 

D 

B 

FIGURE 53.-Geometric construction of the Vander Grinten projection. 

GEOMETR~C CONSTRUCTION 

The meridians are circular arcs equally spaced on the Equator and joined at the 
poles. For parallels, referring to figure 53, semicircle CDB is drawn centered at 
A. Diagonal CD is drawn. PointE is marked so that the ratio of EA to AD is the 
same as the ratio of the latitude to 90°. Line FE is drawn parallel to CB, and FB 
and GB are connected. At H, the intersection of GB and AD, JHL is drawn 
parallel to CB. A circular arc, representing the parallel oflatitude, is then drawn 
through JKL. 

FORMULAS FOR THE SPHERE 

The general formulas published are in two forms. Both sets give identical 
results, but the 1979 formulas are somewhat shorter and are given here with 
some rearrangement and addition of new inverse equations. For the forward 
calculations, given R, A0 , <f>, and A (giving true scale along the Equator), to find x 
and y (see p. 363 for numerical examples): 

(29-1) 

taking the sign of (A- A0). Note that (A- A0 ) must fall between + 180° and -180°; if 
necessary, 360° must be added or subtracted. The X axis lies along the Equator, 
x increasing easterly, while the Y axis coincides with the central meridian Ao. 

taking the sign of <!>, 

where 

A = l/z11TI(A-A0)-(A-A0)hrl 
G =cos 6/(sin 6 +cos 6-1) 
P = G(2/sin 6-1) 
6 = arcsinl2<f>/1TI 
Q =A2 +G 

(29-2) 

(29-3) 
(29-4) 
(29-5) 
(29-6) 

(29-6a) 

But if<!>= 0 or ±90°, or A= Ao, these equations are indeterminate. In that case, if 
<I>= 0, 
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242 MAP PROJECTIONS-A WORKING MANUAL 

(29-7) 

and 

y=O 

or if A.= A.0 , or<!> = ±90° 

x=O 

and 

y = ±'TrR tan (8/2) (29-8) 

taking the sign of <j>. It may be noted that absolute values (symbol I I) are used in 
several cases. The origin is at the center (<J> = 0, A.= A.0). 

For the inverse equations, given R, A.0 , x, andy, to find<!> and A.: Because of the 
complications involved, the equations are given in the order of use. This is closely 
based upon a recent, noniterative algorithm by Rubincam (1981): 

taking the sign of y. 

X = x!('TrR) 
y = y!('TrR) 
Ct = -IYI(1 +_x2+ y2) 
c2 = c1 -2y2 + _x2 
c3 = - 2c1 + 1 + 2Y2 + (X2 + y2)2 

d = y2fc3 + (2c2
3/c3

3 -9c1c2/c3
2)/27 

a1 = (c1-cl/3cs)/cs 
m 1 = 2( -a1/3)112 

81 = (113) arccos (3d/a1m 1) 

<!> = ±'Tr[ -ml cos eel+ 'Tr/3)-c2/3cs] 

but if X= 0, equation (29-19) is indeterminate. Then 

(29-9) 
(29-10) 
(29-11) 
(29-12) 
(29-13) 
(29-14) 
(29-15) 
(29-16) 
(29-17) 
(29-18) 

(29-19) 

(29-20) 

The formulas for scale factors are quite lengthy and are not included here. 
Rectangular coordinates are given in table 41 for a map of the world with unit 
radius of the outer circle, orR= 1/'Tr. The longitude is measured from the central 
meridian. Only one quadrant of the map is given, but the map is symmetrical 
about both X and Y axes. 



30. SINUSOIDAL PROJECTION 

30. SINUSOIDAL PROJECTION 

SUMMARY 

• Pseudocylindrical projection. 
• Equal-area. 
• Central meridian is a straight line; all other meridians are shown as equally 

spaced sinusoidal curves. 
• Parallels are equally spaced straight lines, parallel to each other. Poles are 

points. 
• Scale is true along central meridian and all parallels. 
• Used for world maps with single central meridian or in interrupted form with 

several central meridians. 
• Used for maps of South America and Africa. 
• Used since the mid-16th century. 

HISTORY 

There is an almost endless number of possible projections with horizontal straight 
lines for parallels of latitude and curved lines for meridians. They are sometimes 
called pseudocylindrical because of their partial similarity to cylindrical projections. 
Scores of such projections have been presented, purporting various special 
advantages, although several are strikingly similar to other members of the group 
(Snyder, 1977). While there were rudimentary projections with straight parallels 
used as early as the 2nd century B.C. by Hipparchus, the first such projection 
still used for scientific mapping of the sphere is the Sinusoidal. 

This projection (fig. 54), used for world maps as well as maps of continents and 
other regions, especially those bordering the Equator, has been given many 
names after various presumed originators, but it is most frequently called by the 
name used here. Among the first to show the Sinusoidal projection was Jean 
Cossin of Dieppe, who used it for a world map of 1570. In addition, it was used by 
Jodocus Hondius for maps of South America and Africa in some of his editions of 
Mercator's atlases of 1606-1609. This is probably the basis for one of the names 
of the projection: The Mercator Equal-Area. Nicolas Sanson (1600-67) of France 
used it in about 1650 for maps of continents, while John Flamsteed (1646-1719) of 
England later used it for star maps. Thus, the name "Sanson-Flamsteed" has 
often been applied to the Sinusoidal projection, even though they were not the 
originators (Keuning, 1955, p. 24; Deetz and Adams, 1934, p. 161). 

While maps of North America are no longer drawn to the Sinusoidal, South 
America and Africa are still shown on this projection in recent Rand MeN ally 
atlases. 

FEATURES AND USAGE 

The simplicity of construction, either graphically or mathematically, combined 
with the useful features obtained, make the Sinusoidal projection not only popular 
to use, but a popular object of study for interruptions, transformations, and 
combination with other projections. 

On the normal Sinusoidal projection, the parallels of latitude are equally spaced 
straight parallel lines, and the central meridian is a straight line crossing the 
parallels perpendicularly. The Equator is marked off from the central meridian 
equidistantly for meridians at the same scale as the latitude markings on the 
central meridian, so the Equator for a complete world map is twice as long as the 
central meridian. The other parallels of latitude are also marked off for meridians 
in proportion to the true distances from the central meridian. The meridians 
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TABLE 41.-Vander Grinten projection: Rectangular coordinates 

[y coordinate in parentheses under x coordinate] 

~ oo 100 20° goo 40° 
L 

90° ........ 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.00000) (1.00000) (1.00000) (1.00000) (1.00000) 

80 ......... .00000 .03491 .06982 .10473 .13963 
( .60961) ( .61020) ( .61196) ( .61490) ( .61902) 

70 ......... .00000 .04289 .08581 .12878 .17184 
( .47759) ( .47806) ( .47948) ( .48184) ( .48517) 

60. • • • • • • • • I .00000 .04746 .09495 .14252 .19020 
( .38197) ( .38231) ( .38336) ( .38511) ( .38756) 

50 ......... .00000 .05045 .10094 .15149 .20215 
( .30334) ( .30358) ( .30430) ( .30551) ( .30721) 

40 ......... .00000 .05251 .10504 .15764 .21031 
( .23444) ( .23459) ( .23505) ( .23582) ( .23690) 

30 ......... .00000 .05392 .10787 .16185 .21588 
( .17157) ( .17166) ( .17192) ( .17235) ( .17295) 

20 ......... .00000 .05485 .10972 .16460 .21951 
( .11252) ( .11256) ( .11267) ( .11286) ( .11313) 

10 ......... .00000 .05538 .11077 .16616 .22156 
( .05573) ( .05574) ( .05577) ( .05581) ( .05588) 

0 ......... .00000 .05556 .11111 .16667 .22222 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

~ 100° 110° 120° 130° 140° . 
90° ........ 0.00000 0.00000 0.00000 0.00000 0.00000 

(1.00000) (1.00000) (1.00000) (1.00000) (1.00000) 
80 ......... .34699 .38069 .41394 .44668 .47882 

( .66917) ( .68174) ( .69548) ( .71035) ( .72631) 
70 ......... .43163 .47493 .51810 .56110 .60385 

( .52588) ( .53621) ( .54756) ( .55992) ( .57328) 
60 ......... .47903 .52754 .57608 .62463 .67313 

( .41762) ( .42525) ( .43366) ( .44282) ( .45275) 
50 ......... .50899 .56059 .61228 .66404 .71585 

( .32792) ( .33317) ( .33894) ( .34524) ( .35207) 
40 ......... .52871 .58218 .63575 .68939 .74310 

( .25001) ( .25333) ( .25697) ( .26094) ( .26523) 
30 ......... .54168 .59626 .65091 .70562 .76038 

( .18026) ( .18209) ( .18411) ( .18631) ( .18869) 
20 ......... .54979 .60499 .66022 .71548 .77077 

( .11635) ( .11716) ( .11804) ( .11901) ( .12005) 
10 ......... .55419 .60967 .66516 .72066 .77617 

( .05668) ( .05688) ( .05710) ( .05734) ( .05760) 
0 ......... .55555 .61111 .66667 .72222 .77778 

( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 
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TABLE 41.-Vander Grin ten projection: Rectangular coordinates-Continued 

~ Lat. 
50° 60° 70° 80° 90° 

goo ........ 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.00000) (1.00000) (1.00000) (1.00000) (1.00000) 

80 ......... .17450 .20932 .24403 .27859 .31293 
( .62435) ( .63088) ( .63863) ( .64760) ( .65778) 

70 ......... .21498 .25821 .30152 .34488 .38827 
( .48946) ( .49473) ( .50100) ( .50828) ( .51657) 

60 ......... .23800 .28594 .33403 .38225 .43059 
( .39073) ( .39462) ( .39925) ( .40462) ( .41074) 

50 ......... .25293 .30385 .35492 .40614 .45750 
( .30940) ( .31208) ( .31527) ( .31897) ( .32319) 

40 ......... .26308 .31596 .36897 .42210 .47535 
( .23829) ( .24000) ( .24202) ( .24436) ( .24703) 

30 ......... .26998 .32415 .37841 .43275 .48718 
( .17373) ( .17468) ( .17581) ( .17711) ( .17860) 

20 ......... .27445 .32944 .38446 .43953 .49464 
( .11347) ( .11389) ( .11439) ( .11497) ( .11562) 

10 ......... .27697 .33239 .38782 .44327 .49872 
( .05597) ( .05607) ( .05620) ( .05634) ( .05650) 

0 ......... .27778 .33333 .38889 .44444 .50000 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

~ La. 
150° 160° 170° 180° 

90° ......... 0.00000 0.00000 0.00000 0.00000 
(1.00000) (1.00000) (1.00000) (1.00000) 

80 .......... .51028 .54101 .57093 .60000 
( .74331) ( .76130) ( .78021) ( .80000) 

70 .......... .64631 .68843 .73013 .77139 
( .58762) ( .60293) ( .61919) ( .63636) 

60 .......... .72156 .76988 .81804 .86603 
( .46344) ( .47488) ( .48707) ( .50000) 

50 .......... .76768 .81951 .87132 .92308 
( .35942) ( .36729) ( .37569) ( .38462) . 

40 .......... .79686 .85066 .90448 .95831 
( .26986) ( .27482) ( .28010) ( .28571) 

30 .......... .81518 .87003 .92490 .97980 
( .19125) ( .19398) ( .19690) ( .20000) 

20 .......... .82609 .88143 .93678 .99216 
( .12117) ( .12237) ( .12365) ( .12500) 

10 .......... .83168 .88721 .94274 .99827 
( .05788) ( .05817) ( .05849) ( .05882) 

0 .......... .83333 .88889 .94444 1.00000 
( .00000) ( .00000) ( .00000) ( .00000) 

Radius of map = 1.0. Radius of sphere = llx. 

Origin: (x, y) 0 at Oat, long) = 0. Y axis increases north. One quadrant given. Other quadrants of world map are 
symmetrical. 



FIGURE 54.-Interrupted Sinusoidal projection as used by the USGS. The oldest pseudocylindrical projection, it shows areas correctly. 
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30. SINUSOIDAL PROJECTION 

connect these markings from pole to pole. Since the spacings on the parallels are 
proportional to the cosine of the latitude, and since parallels are equally spaced, 
the meridians form curves which may be called cosine, sine,or sinusoidal curves; 
hence, the name. 

Areas are shown correctly. There is no distortion along the Equator and central 
meridian, but distortion becomes pronounced near the outer meridians, especially 
in the polar regions. 

Because of this distortion, J. Paul Goode (1862-1932) of the University of 
Chicago developed an interrupted form of the Sinusoidal in 1916 with several 
meridians chosen as central meridians without distortion and a limited expanse 
east and west for each section. The central meridians may be different for North
ern and Southern Hemispheres and may be selected to minimize distortion of 
continents or of oceans instead. Ultimately, Goode combined the portion of the 
interrupted Sinusoidal projection between about lats. 40° N. and S. with the 
portions of the Mollweide or Homolographic projection (described later) not in 
this zone, to produce the Homolosine projection used in Rand McNally's Goode's 
Atlas (Goode, 1925). 

In 1927, the Sinusoidal was shown interrupted in three symmetrical segments 
in the N ordisk V iirlds Atlas, Stockholm, serving as the base for the Sinusoidal 
as shown in Deetz and Adams (1934, p. 161). It is this interrupted form which 
served in turn as the base for a three-sheet set by the USGS in 1978 at a scale of 
1:20,000,000, entitled Map of Prospective Hydrocarbon Provinces of the World. 
With interruptions occurring at longs. 160° W., 20° W., and 60° E., and the three 
central meridians equidistant from these limits, the sheets show (1) North and 
South America; (2) Europe, West Asia, and Africa; and (3) East Asia, Australia, 
and the Pacific; respectively. The maps extend pole to pole, but no data are shown 
for Antarctica. An inset of the Arctic region at the same scale is drawn to the 
polar Lambert Azimuthal Equal-Area projection. A similar map is being pre
pared by the USGS showing sedimentary basins of the world. 

The Sinusoidal projection is normally used in the spherical form, adequate for 
the usual small-scale usage, but the ellipsoidal form has been used for topographic 
mapping in Ecuador (C. J. Mugnier, pers. comm., 1985). 

FORMULAS FOR THE SPHERE 

The formulas for the Sinusoidal projection are perhaps the simplest of those for 
any projection described in this bulletin, except for the Equidistant Cylindrical. 
For the forward case, given R, A.0, <j>, and A., to find x and y (see p. 365 for 
numerical examples): 

x = R(A.->..0) cos <j> 
y = R<j> 
h = [1 +(A. -A.o)z sinz <j>]ltz 

k = 1.0 
e' = arcsin (1/h) 
w = 2 arctaniVz(A.- >..0) sin <j>l 

(30-1) 
(30-2) 
(30-3) 

(30-4) 
(30-5) 

where e' is the angle of intersection of a given meridian and parallel (see equation 
(4-14)), and h, k, and w are other distortion factors as previously used. The X 
axis coincides with the Equator, with x increasing easterly, while the Y axis 
follows the central meridian >..0 , y increasing northerly. It is necessary to adjust 
(A.- A.0), if it falls outside the range ± 180°, by adding or subtracting 3600. For the 
interrupted form, values of x are calculated for each section with respect to its 
own central meridian A.0 • 
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In equations (30-1) through (30-5), radians must be used, or <!> and A. in 
degrees must be multiplied by 7rl180°. 

For the inverse formulas, given R, A.0 , x, andy, to find<!> and A.: 

<!> =y!R 
A= Ao + x!(R cos <J>) 

(30-6) 
(30-7) 

but if<!>= ±1r/2, equation (30-7) is indeterminate, and A. may be given an arbitrary 
value such as A0• 

FORMULAS FOR THE ELLIPSOID 

The ellipsoidal form may be made by spacing parallels along the central 
meridian(s) true to scale for the ellipsoid and meridians along each parallel also 
true to scale. The projection remains equal-area, while the parallels are not quite 
equally spaced, and the meridians are no longer perfect sinusoids. Specifically, 
given a, e, A0 , <!>, and A, to find x and y (see p. 366 for numerical examples): 

where 

x = a (A.- A0 ) cos <j>/(1- e2 sin2 <!> )112 

y=M 

M =a [(1-e2/4-3e4/64-5e6/256- ... ) <!> 

(30-8) 
(30-9) 

-(3e2/8 + 3e4/32 + 45e6/1024 + ... ) sin 2 <!> 
+ (15e4 /256 + 45e6 /1024 + . . . ) sin 4 <!> 
-(35e6/3072 + ... ) sin 6 <!> + ... ] (3-21) 

Axes are the same as those for the spherical form above. 
For the inverse formulas, given a, e, A.0 , x, and y, to find <!> and A.: 

where 

and 

Then 

<!> = J.L+(3e1/2-27e1
3/32+ ... ) sin 2J.L+(21e1

2/16 
-55e1

4/32+ ... ) sin 4J.L+051e1
3/96- ... ) sin 6f.L 

+(1097e1
4/512- ... ) sin 8J.L+ ... 

el = [1- (1-e2)112]f[l + (1-e2)1i2] 
f.L = M![a(1-e2!4-3e4164-5e6/256- ... )] 

M=y 

A.= A.0 + x (l-e2 sin2 <!>) 112/(a cos <J>) 

(3-26) 

(3-24) 
(7-19) 

(30-10) 

(30-11) 

but if<!>= ±1r/2, equation (30-11) is indeterminate, and A may be given an arbitrary 
value such as A0 • 
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31. MOLLWEIDE PROJECTION 

SUMMARY 

• Pseudocylindrical. 
• Equal-area. 
• Central meridian is a straight line; 90th meridians are circular arcs; all other 

meridians are equally spaced elliptical arcs. 
• Parallels are unequally spaced straight lines, parallel to each other. Poles are 

points. 
• Scale is true along latitudes 40°44' N. and S. 
• Used for world maps with single central meridian or in interrupted form with 

several central meridians. 
• Inspiration for several other projections. 
• Presented by Mollweide in 1805. 

HISTORY AND USAGE 

The second oldest pseudocylindrical projection which is still in use (after the 
Sinusoidal) was presented by Carl B. Mollweide (1774-1825) of Halle, Germany, 
in 1805 (Mollweide, 1805). It is an equal-area projection of the Earth within an 
ellipse. It has had a profound effect on world map projections in the 20th century, 
especially as an inspiration for other important projections. It lay dormant until J. 
Babinet reintroduced it in 1857 under the name "homalographic." It has been 
called Babinet's Equal-Surface or the Elliptical projection, but it is most often 
called the Mollweide, Homalographic, or Homolographic. 

J. Paul Goode, after interrupting the Sinusoidal projection, made similar inter
ruptions of the Mollweide in 1916 to minimize distortion of continents or oceans. 
Ultimately he combined them to produce the Homolosine projection. 

Other projections directly inspired by the Mollweide have been the Van der 
Grinten, described earlier, and the Boggs Eumorphic, in which they coordinates 
of the Sinusoidal and Mollweide are arithmetically averaged, and the x coordi
nates are derived to maintain equality of area (Boggs, 1929). J. Fairgrieve in 1928 
(Steers, 1970, p. 172) was the first of several to use the oblique aspect, and John 
Bartholomew applied the name "Atlantis" to a transverse Mollweide centered on 
the Atlantic Ocean and used as the frontispiece in The Times Atlas of 1958. 
Allen K. Philbrick (1953) combined the Sinusoidal and Mollweide in a manner 
different from the Goode Homolosine, using both normal and oblique aspects. 
Less direct inspiration by the Mollweide has led to several other projections, 
especially pseudocylindrical, some of which have lines for poles. 

Some other projections showing the world in an ellipse, especially the Hammer 
and the Briesemeister, originate from the Lambert Azimuthal Equal-Area 
projection, not the Mollweide. Another projection occasionally seen is identical 
with the Mollweide, except that the parallels are equally spaced, and therefore 
the projection is not equal-area. It was first used in a rudimentary form in the 
16th century. 

FEATURES 

Unlike the Sinusoidal projection, which has been satisfactorily used for conti
nental maps, the Mollweide projection (fig. 55) is normally used as a world map, 
and occasionally for a very large region such as the Pacific Ocean. This is because 
only two points on the Mollweide are completely free of distortion unless the 
projection is interrupted. These are the points at latitudes 40°44'12" N. and S. on 
the central meridian(s). 
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FIGURE 55.-Mollweide projection. An equal-area projection of the world bounded with an ellipse, and the basis of several other projections. 
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31. MOLLWEIDE PROJECTION 

The world is shown in an ellipse with the Equator, its major axis, twice as long 
as the central meridian, its minor axis. The meridians 90° east and west of the 
central meridian form a complete circle. All other meridians are elliptical arcs 
which, with their opposite numbers on the other side of the central meridian, 
form complete ellipses which meet at the two poles. The central meridian is the 

.Jnajor axis of meridian ellipses less than 900 from it, and a portion of the Equator is 
the minor axis. Meridians greater than 90° have the reverse arrangement for their 
axes. Meridians are equally spaced along the Equator and along all other parallels. 
The 90th meridians form a circle. 

The parallels of latitude are straight parallel lines, but they are not equally 
spaced. Their spacing may be determined from the facts that the projection is 
equal-area and that the 90th meridians are circular. As a result, the regions along 
the Equator are stretched 23 percent in a north-south direction relative to east
west dimensions. This stretching decreases along the central meridian to zero at 
the 40°44' latitudes, and becomes compression nearer the poles. The distortion 
near the outer meridians is considerable at high latitudes, but less than that on 
the Sinusoidal. The distortion along the Equator led Bromley (1965) to propose 
flattening the projection in a north-south direction and expanding east-west, to 
provide an Equator free of distortion, but the Equator thereby becomes 2.47 
times as long as the central meridian. 

Because the Mollweide projection is normally used at a small scale, there is 
little justification for an ellipsoidal form. 

FORMULAS FOR THE SPHERE 

The forward formulas for the Mollweide require iteration, but they are other
wise relatively simple. Given R, X.0 , <j>, and X., to find x and y (see p. 367 for 
numerical examples): 

where 

x = (8112hr) R (X.- X.0 ) cos e 
y = 2112 R sin e 

2e + sin 2e = 11' sin <P 

(31-1) 
(31-2) 

(31-3) 

The X axis coincides with the Equator, x increasing easterly, and the Y axis 
coincides with the central meridian, y increasing northerly. Angle e is not a polar 
coordinate here; it is a parametric angle, geometrically the angle as seen from the 
center of the map between the Equator and the position of latitude <P on the 90th 
meridian circle. 

Equation (31-3) may be solved with rapid convergence (but slow at the poles) 
using a Newton-Raphson iteration consisting of the following instead of (31-3): 

M' = -(e' +sin e' -11' sin <j>)/(1 +cos e') (31-4) 

With <P as the first trial 8', AS' is calculated from (31-4), this value is added to 
the preceding trial e' to obtain the next trial e', and the calculation is repeated 
with (31-4) until Ae' is less than a predetermined convergence value. Then, using 
the final e'' e is calculated as follows: 

e= e'/2 (31-5) 

Note that all these formulas are in terms of radians. 
For the inverse formulas, given R, X.0 , x, andy, to find <P and X., no iteration is 

required: 
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8 = arcsin [y/(2112 R)] 
<1> =arcsin [(28 +sin 28)hr] 
X. = X.0 + 'ITX/(8112 R cos 8) 

(31-6) 
(31-7) 
(31-8) 

If <1> is ±90°, equation (31-8) is indeterminate, but X. may be made X.0 • Table 42 
lists the rectangular coordinates of the 90th meridian for a sphere of radius 
(112112), to make the maximum values equal to 1.0. The x coordinates for other 
meridians are proportional, and y coordinates are constant for a given latitude. 

TABLE 42.-M ollweide projection: Rectangular coordinates for the 90th meridian 

Latitude X y 

goo 0.00000 1.00000 
85 .20684 0.97837 
80 .32593 .94539 
75 .42316 .90606 
70 .50706 .86191 
65 .58111 .81382 
60 .64712 .76239 
55 .70617 .70804 
50 .75894 .65116 
45 .80591 .59204 
40 .84739 .53097 
35 .88362 .46820 
30 .91477 .40397 
25 .94096 .33850 
20 .96229 .27201 
15 .97882 .20472 
10 .99060 .13681 
5 .99765 .06851 
0 1.00000 .00000 

Radius of sphere: ¥2112 = 0. 707 unit. For other meridians, use same y, but change x proportionately. Central meridian 
is zero. For meridians west of central meridian, change sign of x. For southern latitudes, change sign of y. 
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32. ECKERT IV AND VI PROJECTIONS 

SUMMARY 

• Pseudocylindrical. 
• Equal-area. 
• Central meridian is a straight line; 180th meridians of Eckert IV are semi

circles; all other meridians are equally spaced elliptical arcs on Eckert IV and 
sinusoidal curves on Eckert VI. 

• Parallels are unequally spaced straight lines, parallel to each other. Poles are 
straight lines half as long as the Equator. 

• Scale is true along latitudes 40°30' N. and S. on Eckert IV and 4go16' on Eckert 
VI. 

• Used for world maps. 
• Presented by Eckert in 1g06. 

HISTORY AND USAGE 

In 1g06 Max Eckert (1868-1g38) of Kiel, Germany, presented a set of six new 
projections in which all the poles are lines half as long as the Equator, and in 
which all parallels of latitude are straight lines parallel to each other. The central 
meridian on each is also half the length of the Equator (Eckert, 1g06). Numbers 4 
and 6 are of most significance and are discussed here in detail. 

Of the six projections, nos. 2, 4, and 6 are equal-area, and nos. 1, 3, and 5 are 
not equal-area but have equally spaced parallels. For nos. 1 and 2, the meridians 
are straight lines broken at the Equator, and those projections are therefore little 
more than novelties with graticules composed entirely of straight lines, but with 
unnecessary distortion especially at the Equator. The meridians on nos. 3 and 4 
are elliptical arcs, while on 5 and 6 they are sinusoidal curves, with the exception 
of the straight central meridians, and (on 3 and 4) semicircular outer meridians. 

No. 3, with equidistant parallels and elliptical arcs has occasionally been identi
fied as the same as the Ortelius projection, named for the famous cartographer 
Abraham Ortelius who used a somewhat similar projection in 1570 for his world 
map. The border, the central meridian, and the parallels of the two projections 
are shown almost identically, and the meridians on each are equally spaced along 
the Equator. The shapes of most meridians, however, are different. On the 
Ortelius, they are circular arcs, semicircles for meridians at or more than goo from 
the central meridian, and circular arcs intersecting the central meridian at the 
poles within goo of the central meridian. 

The most commonly used of Eckert's six projections have been his nos. 4 and 6, 
which are more often designated with Roman numerals IV and VI, respectively. 
In the United States, Eckert IV (fig. 56) has been used in several atlases to show 
climate and other themes. It has also been used as an inset on other maps, such as 
wall maps of the world by the National Geographic Society. It ranked third as an 
equal-area world map projection used in U.S. textbooks between 1g40 and 1g6o, 
after the Goode Homolosine and Sinusoidal (Wong, 1g65, p. 101). The Eckert VI 
(fig. 57) is much less used in the United States, although it has occasionally 
appeared in textbooks and atlases. It has been more popular in the Soviet Union, 
having been used for several world distribution maps in the 1g37 Atlas Mira 
(World Atlas). An almost identical equal-area projection was presented by 
Karlheinz Wagner in 1932 and independently by V. V. Kavrayskiy in 1g36; theirs 
does not require the iteration in computations which is required by Eckert VI 
(Maling, 1g60, p. 2g7; Snyder, 1g77, p. 62). 

There have been numerous other pseudocylindrical projections with lines for 
poles, and Eckert's were not the first, but they are the most popular. Some have 
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FIGURE 56.-Eckert IV projection. An equal-area pseudocylindrical with poles half the length of the Equator. Outer meridians are semicircles; others are 
elliptical arcs. 
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FIGURE 57.-Eckert VI projection. Like figure 56, this is an equal-area pseudocy!indrical projection with poles half the length ofthe Equator. The meridians, 
however, are sinusoidal curves. 
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been obtained by averaging a cylindrical projection with the Sinusoidal or 
Mollweide projection, and others are derived by stipulating that the poles be lines 
of some other length in proportion to the length of the Equator. Instead of the full 
sinusoid or full semi ellipse, a portion of these curves or of some other mathemati
cal curve has been used for the meridians (Snyder, 1977). 

FEATURES 

The Eckert IV projection is bounded by two semicircles representing the 180th 
meridians and two straight lines connecting the ends of the semicircles. These 
straight lines represent the two poles, which are half the length of the Equator. 
Meridians are equally spaced semiellipses ranging in eccentricity from zero for 
the outer circular meridians to 1 for the straight central meridians. The parallels 
are straight lines parallel to the Equator and spaced to provide correct area 
within the border. They are therefore unequally spaced and closer together near 
the poles. There is a north-south stretching of shape at the Equator amounting to 
40 percent relative to east-west dimensions. This stretching decreases along the 
central meridian to zero at latitudes 40°30' N. and S. and becomes flattening 
beyond these parallels. The scale is correct only along these two parallels, and the 
only points free of distortion are at the intersection of these two points with the 
central meridian. Nearer the poles, the geographical features of the map are 
flattened in a north-south direction. 

The Eckert VI projection of the world is bounded by two sinusoidal curves 
which have the same shape as the 90th meridians of the Sinusoidal projection. 
Like the border of the Eckert IV, these curved meridians are connected with two 
straight lines connecting the ends of the curves. These straight lines, half the 
length of the Equator, are the poles. The other meridians are equally spaced 
sinusoids, except for the straight central meridian, and the other parallels are 
straight and parallel to each other. To preserve area, the parallels must be 
unequally spaced, farther apart at the Equator than at the poles. As a result, 
there is a 29 percent north-south stretch at the Equator, relative to east-west 
dimensions. Other general comments concerning distortion of the Eckert IV apply 
to Eckert VI, but the latitudes of true scale are 49°16' N. and S. 

These projections are for world maps, not regional maps, and there is no need 
for the ellipsoidal forms. 

FORMULAS FOR THE SPHERE 

The forward formulas for both Eckert IV and Eckert VI require iteration. 
Given R, A.0 , <!>, and A., to find x andy (see p. 368 for numerical examples): 

Eckert IV: 

where 

x = j2/[ 1T(4 + 1T)]112)R (A.- A.o)(1 +cos e) 
= 0.4222382 R (A.- A.0) (1 +cos e) 

y = 2[1T/(4+1T)]112 R sine 
= 1. 3265004 R t:~in e 

e + sine cos e + 2 sine = (2+1T/2) sin <1> 

(32-1) 
(32-1a) 
(32-2) 

(32-2a) 

(32-3) 

The X axis coincides with the Equator, x increasing easterly, and the Y axis 
coincides with the central meridian, y increasing northerly. Angle e is a paramet
ric angle, not a polar coordinate. Equation (32-3) may be solved with rapid 
convergence (but slow at the poles) using a Newton-Raphson iteration consisting 
of the following instead of (32-3): 
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M =- [e + sinecose + 2sine- (2+1T/2)sin<j>]/ 
[2 cos e (1 +cos e)J (32-4) 

With (<j>/2) as the first trial e, M is calculated from (32-4), this value is added to 
the preceding e to obtain the next trial e, and the calculation is repeated with 
(32-4) until Lle is less than a predetermined convergence value. Note that all 
these formulas are in terms of radians. 

Eckert VI: 

where 

X =R (A.-A.0) (1+cos e)/(2+1T)1i2 

Y = 2Ret(2 + 1T )1/2 

e + sin e = (1 + 1r/2) sin <1> 

(32-5) 
(32-6) 

(32-7) 

Axes are as described above for Eckert IV; e is parametric, but not the same as 
e for Eckert IV. Equation (32-7) may be replaced with the following Newton
Raphson iteration, treated in the same manner as equation (32-4) for Eckert IV, 
but with <1> as the first trial e: 

M = - [e + sin e - (1 + 1r/2) sin <I>J/(1 +cos e) (32-8) 

For the inverse formulas, given R, A.0 , x, andy, to find<!> and A., no iteration is 
required (see p. 368 for numerical examples): 

Eckert IV: 

Eckert VI: 

e =arcsin [y (4 + 1T)112/(21Tli2R)] 
= arcsin [y/(1.3265004R)] 

<1> = arcsin [(e + sin e cos e + 2 sin e)/(2 + 1r/2)] 
A. = A.0 + [ 1T(4 + 1T)]112x/[2R(1 +cos 6)] 

= A.0 + x/[0.4222382R (1 +cos e)] 

e = (2 + 1T)112y/(2R) 
<1> = arcsin [(e + sin e)/(1 + 1r/2)] 
A. = A.0 + (2 + 1r)112x/[R(l +cos e)] 

(32-9) 
(32-9a) 
(32-10) 
(32-11) 

(32-11a) 

(32-12) 
(32-13) 
(32-14) 

Table 43 lists the rectangular coordinates of the 90th meridian for a sphere of 
radius [(4 + 1r)112/(21r112)] for Eckert IV and radius [(2 + 1r)112/1T 112] for Eckert VI, to 
make maximum values equal to 1.0. The x coordinates for other meridians are 
proportional, and y coordinates are constant for a given latitude. 
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TABLE 43.- Eckert IV and VI projections: Rectangular 
coordinates for 90th meridian 

Eckert IV 

Latitude X y 

goo 0.50000 1.00000 
85 .55613 0.99368 
80 .60820 .97630 
75 .65656 .94971 
70 .70141 .91528 
65 .74291 .87406 
60 .78117 .82691 
55 .81625 .77455 
50 .84822 .71762 
45 .87709 .65666 
40 .90291 .59217 
35 .92567 .52462 
30 .94539 .45443 
25 .96208 .38202 
20 .97573 .30779 
15 .98635 .23210 
10 .99393 .15533 
5 .99848 .07784 
0 1.00000 .00000 

Radius of sphere: (4 + 7T)112i(27T112) = 0. 75386 unit for Eckert IV. 
(2 + 7T) 112;7T = 0. 72177 unit for Eckert VI. 

Eckert VI 

X 

0.50000 
.50487 
.51916 
.54198 
.57205 
.60782 
.64767 
.69004 
.73344 
.77655 
.81817 
.85724 
.89288 
.92430 
.95087 
.97207 
.98749 
.99686 

1.00000 

y 

1.00000 
0.99380 
.97560 
.94648 
.90794 
.86164 
.80913 
.75180 
.69075 
.62689 
.56090 
.49332 
.42454 
.35488 
.28457 
.21379 
.14269 
.07140 
.00000 

For other meridians, use same y, but change x proportionately. Central meridian is zero. For meridians west of 
central meridian, change sign of x. For southern latitudes, change sign of y. 
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APPENDIXES 

APPENDIX A 

NUMERICAL EXAMPLES 

The numerical examples which follow should aid in the use of the many formu
las in this st1'dy of map projections. Single examples are given for equations for 
forward and inverse functions of the projections, both spherical and ellipsoidal, 
when both are given. They are given in the order the projections are given. The 
order of equations used is based on the order of calculation, even though the 
equations may be originally listed in a somewhat different order. In some cases, 
the last digit may vary from check calculations, due to rounding off, or the lack of 
it. 

AUXILIARY LATITUDES (SEE P. 15-18) 

For all examples under this heading, the Clarke 1866 ellipsoid is used: a is not 
needed here, e2 = 0.00676866, ore= 0.0822719. Auxiliary latitudes will be calculated 
for geodetic latitude <? = 40°: 

Conformal latitude, using closed equation (3-1): 

x = 2 arctan \tan (45° + 40°/2) [(1-0.0822719 sin 40°)/(1 + 0.0822719 
sin 40°)]o.os22719/2)- 9oo 

= 2 arctan \2.1445069 [0.8995456]0·041136o)-90° 
= 2 arctan (2.1351882)-90° 
= 2x64.9042961°-90° 
= 39.8085922° = 39°48'30. 9" 

Using series equation (3-2), obtaining x first in radians, and omitting terms 
with e8 for simplicity: 

X = 40°X 7T/180°-(0.00676866/2 + 5 X0.006768662/24 + 3 X0.006768663
/ 

32)xsin (2x40°) + (5x0.006768662/48 + 7x0.006768663/80)xsin 
(4X40°)-(13x0.006768663/480) sin (6x40°) 

= 0.6981317-(0.0033939)X0.9848078 + (0.0000048)X0.3420201 
-(.0000000) X( -0.8660254) 

= 0.6947910 radian 
= 0.6947910X 180°/7T = 39.8085923° 

For inverse calculations, using closed equation (3-4) with iteration and given 
x = 39.8085922°, find <j>: 

First trial: 

<? = 2 arctan \tan (45° + 39.8085922°/2) [(1 + 0.0822719 sin 39.8085922°)/ 
(1-0.0822719 sin 39.8085922°)]0.os2z719i2)-90° 

= 2 arctan \2.1351882 [1.1112023]0·041136o)-90° 
= 129.9992366°-90° 
= 39.9992366° 
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Second trial: 

<!> = 2 arctan (2.1351882 [(1 + 0.0822719 sin 39.9992366°)/(1-0.0822719 
sin 39.9992366°)]0·0411360)-90° 

= 2 arctan (2.1445068)-90° 
= 39.9999970° 

The third trial gives <!> = 40.0000000°, also given by the fourth trial. 
Using series equation (3-5): 

<j> = 39.8085922° X 'lT/180° + (0.00676866/2 + 5X0.006768662/24 
+ 0.006768663/12) sin (2x39.8085922°) + (7x0.006768662/48 + 29 
X0.006768663/240) sin (4X39.8085922°) + (7X0.006768663/120) 
sin (6x39.8085922°) 

= 0.6947910+ (0.0033939)x0.9836256 + (0.0000067)x0.3545461 
+ (O.OOOOOOO)x( -0.8558300) 

= 0.6981317 radian 
= 0.6981317X 180°/'lT = 40.0000000° 

Isometric latitude, using equation (3-7): 

tJi =In (tan (45°+40°/2) [(1-0.0822719 sin 40°)/(1+0.0822719 
sin 40o)]o.osz2719t2) 

= In (2.1351882) 
= 0.7585548 

Using equation (3-8) with the value of x resulting from the above examples: 

tJ! =In tan (45°+39.8085923°/2) 
= In tan 64.9042962° 
= 0.7585548 

For inverse calculations, using equation (3-9) with tJ! = 0. 7585548: 

X = 2 arctan eo. 7585548- goo 
= 2 arctan (2.1351882)-90° 
= 39.8085922° 

From this value of x, <!>may be found from (3-4) or (3-5) as shown above. 
Using iterative equation (3-10), with tjl=0.7585548, to find <f>: 

First trial: 

<!> = 2 arctan e0·7585548-90° 
= 39.8085922°, as just above. 

Second trial: 

<!> = 2 arctan (eo·758554s [(1 + 0.0822719 sin 39.8085922°)/(1-0.0822719 
sin 39. 8085922°) ]0· 082271912)-90° 

= 2 arctan (2.1351882xl.0043469)-90° 
= 39.9992365° 

Third trial: 

<!> = 2 arctan [eo.758554s [(1 + 0.0822719 sin 39.9992365°)/(1-0.0822719 
sin 39.9992365°)]0·082271912)-90° 

= 39.9999970° 
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Fourth trial, substituting 39.9999970° in place of 39.9992365°: 

<P = 40.0000000°, also given by fifth trial. 

Authalic latitude, using equations (3-11) and (3-12): 

q = (1-0.00676866) \sin 40°/(1-0.00676866 sin2 40°)
[11(2x0.0822719)] ln [(1-0.0822719 sin 40°)/(1 + 0.0822719 sin 
40°)]] 

= 0.9932313 (0.6445903-6.0774117 ln 0.8995456) 
= 1.2792602 

qp = (1-0.00676866) \sin 90°/(1-0.00676866 sin2 90°)-[11 
(2x0.0822719)] ln [(1-0.0822719 sin 90°)/(1+0.0822719 sin 90°)]] 

= 1.9954814 
13 =arcsin (1.2792602/1.9954814) 

=arcsin 0.6410785 
= 39.8722878° = 39°52'20.2" 

Determining 13 from series equation (3-14) involves the same pattern as the 
example for equation (3-5) given above. 

For inverse calculations, using equation (3-17) with iterative equation (3-16), 
given 13=39.8722878°, and qp=1.9954814 as determined above: 

q = 1.9954814 sin 39.8722878° 
= 1.2792602 

First trial: 

<P = arcsin (1.2792602/2) 
= 39.762435° 

Second trial: 

<P = 39.7642435° + (180°/'IT) \[(1-0.00676866 sin2 39. 7642435°)2/(2 cos 
39. 7642435°)] [1.2792602/(1-0.00676866)-sin 39.7642435°/ 
(1-0.00676866 sin2 39. 7642435°) 
+ [11(2x0.0822719)] ln [(1-0.0822719 sin 39.7642435°)/ 
(1 + 0.0822719 sin 39. 7642435°)]]] 

= 39.9996014° 

Third trial, substituting 39.9996014° in place of 39.7642435°, 

<l> = 39.9999992° 

Fourth trial gives the same result. 
Finding <P from 13 by series equation (3-18) involves the same pattern as the 

example for equation (3-5) given above. 
Rectifying latitude, using equations (3-20) and (3-21): 

M = a[(1-0.00676866/4-3X0.006768662/64-5x0.006768663/256)x40° 
X1T/180°-(3X0.00676866/8 + 3X0.006768662/32 + 45 X0.006768663

/ 

1024) sin (2 X 40°) + (15 X 0. 006768662/256 + 45 X 0. 006768663 /1024) 
sin (4X40°)-(35x0.006768663/3072) sin (6x40°)] 

= a[0.9983057x0.6981317-0.0025426 sin 80°+0.0000027 sin 160° 
-0.0000000 sin 240°] 

= 0.6944458a 
MP = 1.5681349a, using 90° in place of 40° in the above example. 
fL = 90°X0.6944458a/1.5681349a 

' ~ 39.8563451°=39°51'22.8" 
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Calculation of I.L from series (3-23), and the inverse<!> from (3-26), is similar to 
the example for equation (3-2) except that e1 is used rather than e. From equa
tion (3-24), 

e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866) 112] 

= 0.001697916 

Geocentric latitude, using equation (3-28), 

<l>g =arctan [(1-0.00676866) tan 40°] 
= 39.8085032° = 39°48'30.6" 

Reduced latitude, using equation (3-31), 

11 =arctan [(1-0.00676866)112 tan 40°] 
= 39.9042229°=39°54'15.2" 

Series examples for <l>g and 11 follow the pattern of (3-2) and (3-23). 

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID (SEE P. 24-25) 

Radius of curvature and length of degrees, using the Clarke 1866 ellipsoid at 
lat. 40° N.: 
From equation (4-18), 

R' = 6378206.4 (1-0.00676866)/(1-0.00676866 sin2 40°)312 

= 6,361,703.0 m 

From equation (4-19), using the figure just calculated, 

L.p = 6361703.0 x '!T/180° = Ill, 032.7 m, the length of 1 o of latitude at lat. 40° N. 

From equation (4-20), 

N = 6378206.4/(1-0.00676866 sin2 40°)112 

= 6,387,143.9 m 

From equation (4-21), 

Lx = [6378206.4 cos 40°/(1-0.00676866 sin2 40°)112] 11"1180° 
= 85,396.1 m, the length of 1 o of longitude at lat. 40° N. 

MERCATOR PROJECTION (SPHERE)-FORWARD EQUATIONS (SEEP. 41, 44) 

Given: Radius of sphere: 
Central meridian: 

Point: 

Find: x, y, k 

R = 1.0 unit 
A-0 = 180° W. long. 

<J> = 35° N. lat. 
A. = 75° W. long. 

Using equations (7-1), (7-2), and (7-3), 

x = 1TX1.0x[(-75°)-(-180°)]!180°= 1.8325957 units 
y = I.Oxln tan (45°+35°/2) = I.Oxln tan (62.5°) 

=In 1.9209821 =0.6528366 unit 
h = k =sec 35° = 1/cos 35° = 1/0.8191520 = 1.2207746 
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MERCATOR PROJECTION (SPHERE)- INVERSE EQUATIONS (SEEP. 44) 

Inversing forward example: 
Given: R, Ao for forward example 

Find: <j>, A 

x = 1.8325957 units 
y = 0.6528366 unit 

Using equations (7-4) and (7-5), 

<l> = 90o-2 arctan (e-0.6528366/LO) 
= 90°-2 arctan (0.5205670) = 90°-2X27.5°= 35° 
= 35° N. lat., since the sign is " + " 

A= (1.8325957/l.O)x 180°/11' + ( -180°) 
= 105°-180°= -75°=75° W. long., since the sign is"-" 

The scale factor may then be determined as in equation (7 -3) using the newly 
calculated <j>. 

MERCATOR PROJECTION (ELLIPSOID)- FORWARD EQUATIONS (SEEP. 44) 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Central meridian: Ao = 180° W. long. 

Point: <t> = 35° N. lat. 
A = 75° W. long. 

Find: x, y, k 

Using equations (7-6), (7-7), and (7-8), 

X = 6378206.4 X ((-75°)-(-180°)] X 11'/180° = 11688673.7 m 

y = 6378206.4ln [tan (45o + 35o/2)(1- 0.0822719sin35o )0.082271912] 

1 + 0.0822719sin35° 
= 6378206.4 ln [1.9209821 x 0.9961223] 
= 6378206.4 ln 1.9135331 = 4,139,145.6 m 

k = (1-0.00676866 sin2 35°)112/cos 35° 
= 1.2194146 

MERCATOR PROJECTION (ELLIPSOID)- INVERSE EQUATIONS (SEE P. 44-45) 

Inversing forward example: 

Given: a, e, Ao for forward example 
x = 11688673.7 m 
y = 4139145.6 m 

Find: <j>, A 

Using equation (7- 10), 

t = e-4139145.616378206.4 = 0.5225935 
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From equation (7 -11), the fir-.?t trial <1> = goo - 2 arctan 0.5225935 = 34.8174484°. 
Using this value on the right side of equation (7-g), 

<j> o= goo -2 arctan (0.5225g35[(1-0.0822719 sin 34.8174484°)/ 
(1 + 0.082271g sin 34.8174484°)]0.0822719/z] 

= 34.g991687° 

Replacing 34.8174484° with 34.9991687° for the second trial, recalculation using 
(7-9) gives <1> = 34.9999969°. The third trial gives <1> = 35.0000006°, which does not 
change (to seven places) with recalculation. If it were not for rounding-off errors 
in the values of x andy, <j> would be 35o N. lat. 

For '11., using equation (7 -12), 

A = (11688673. 7/6378206.4) X 180°/7T + ( -180°) 
= -75.0000001° = 75.0000001° W. long. 

Using equations (7-13) and (3-5) instead, to find <j>, 

x = 90° -2 arctan 0.5225g35 
=goo -55.1825516° 
= 34.8174484° 

using t as calculated above from (7-10). Using (3-5), xis inserted as in the 
example given above for inverse auxiliary latitude x: 

<1> = 35.0000006° 

TRANSVERSE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEEP. 58) 

Given: Radius of sphere: 
Origin: 

Central scale factor: 
Point: 

Find: x, y, k 

R = 1.0 unit 
<Po = 0 
'11.0 = 75° W. long. 
ko = 1.0 
<j> = 40°30' N. lat. 
A = 73°30' W. long. 

Using equations (8-5), (8-1), (8-3), and (8-4) in order 

B =cos 40.5° sin [( -73.5°)-( -75°)] 
=cos 40.5° sin 1.5° = 0.0199051 

X =% X 1.0 X 1.0 ln [(1 + 0.019g051)/(1-0.019g051)] 
= 0.01ggo77 unit 

y = 1.0 X 1.0 (arctan [tan 40.5°/cos 1.5°]-0] 
= 40.50g6g8oo 7T/180° = 0. 7070276 unit 

k = l.0/(1-0.o1ggo512
) 112 = 1.0001g82 

TRANSVERSE MERCATOR (SPHERE)-INVERSE EQUATIONS (SEE P.60) 

lnversing forward example: 

Given: R, <j>0 , Ao, k0 for forward example 



Find:<\>, >.. 
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x = 0.0199077 unit 
y = 0. 7070276 unit 

Using equation (8-8), 

D = 0.7070276/(l.Oxl.O)+O = 0.7070276 radian 

For the hyperbolic functions of (x!Rk0 ), the relationships 

sinh x = (ex-e-x)f2 

and 

are recalled if the function is not directly available on a given computer or calcu
lator. In this case, 

sinh (x!Rk0 ) =sinh [0.0199077/(l.Ox 1.0)] 
= ( eo.o199077 _ e -o.o199077)f2 

= 0.0199090 
cosh (x!Rko) = (eo.o199077 + e-o.o199077)f2 

= 1.0001982 

From equation (8-6), with D in radians, not degrees, 

<!> = arcsin (sin 0.7070276/1.0001982) = arcsin (0.6495767/1.0001982) 
= 40.4999995° N. lat. 

From equation (8-7), 

A = -75° + arctan [0.0199090/ cos 0.7070276] 
= -75° + arctan 0.0261859 = -75° + 1.4999961 = -73.5000039° 
= 73.5000039° W. long. 

If more decimals were supplied with the x and y calculated from the forward 
equations, the <!> and A here would agree more exactly with the original values. 

TRANSVERSE MERCATOR (ELLIPSOID)- FORWARD EQUATIONS (SEEP. 60-61, 63) 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

Origin (UTM Zone 18): <\>0 = 0 

Central scale factor: 
Point 

Find: x, y, k 

Ao = 75° W. long. 
k0 = 0.9996 

<!> = 40° 30' N. lat. 
A = 73° 30' W. long. 

Using equations (8-12) through (8-15) in order, 
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e'2 == 0.00676866/(1-0.00676866) == 0.0068148 
N == 6378206.4/(1-0.00676866 sin2 40.5°)112 = 6387330.5 m 
T == tan2 40.5° = 0. 7294538 
C = 0.0068148 cos2 40.5° = 0.0039404 
A =(cos 40.5°) x [( -73.5°) - ( -75°)] 'IT/180° = 0.0199074 

Instead of equation (3-21), we may use (3-22) for the Clarke 1866: 

M = 111132.0894 x (40.5°) - 16216.94 sin (2x40.5°) + 17.21 sin (4x40.5°) 
- 0.02 sin (6X40.5°) 

= 4,484,837.67 m 
M 0 = 111132.0894 x oo- 16216.94 sin (2X0°) + 17.21 sin (4X0°)- 0.02 sin (6X0°) 

= 0.00 m 

Equations (8-9) and (8-10) may now be used: 

X = 0.9996 X 6387330.5 X [0.0199074 + (1-0.7294538+0.0039404) 
X 0.01990743/6 + (5-18X0.7294538+0.72945382 +72X0.0039404 
- 58 X 0.0068148) X 0.01990745/120] 

= 127,106.5 m 
y = 0.9996 X (4484837.7-0+6387330.5X0.8540807X(0.01990742/2 

+ (5-0.7294538+9X0.0039404+4X0.00394042
) X 0.01990744/24 

+ (61-58 X 0. 7294538 + 0. 72945382 + 600 X 0. 0039404-330 
X 0.0068148) X 0.01990746/720]) 

= 4,484,124.4 m 

These values agree exactly with the UTM tabular values, except that 500,000.0 
m must be added to x for "false eastings." To calculate k, using equation (8-11), 

k = 0.9996 X [1 +(1 +0.0039404)X0.01990742/2+(5-4X0.7294538+42 
X 0.0039404 + 13 X 0.00394042 

- 28 X 0.0068148) X 0.01990744/24 
+ (61-148X0. 7294538 + 16X0. 72945382

) X 0.01990746/720] 
= 0.9997989 

Using equation (8-16) instead, 

k = 0.9996 x [1 + (1 + 0.0068148 cos2 40.5°) x 127106.52
/ 

(2x0.99962 x 6387330.52
)] 

= 0.9997989 

TRANSVERSE MERCATOR (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 63-64) 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

Origin (UTM Zone 18): <Po = 0 
'11.0 = 75° W. long. 

Central scale factor: k 0 = 0. 9996 

Find: <j>, 'A. 

Point: x = 127106.5 m 
y = 4484124.4 m 

Calculating M 0 from equation (3-22), 
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M 0 = 111132.089X0°-16216.9 sin (2X0°) + 17.2 sin (4X0°) - 0.02 sin 
(6X0°) 

= 0 

From equations (8-12), (8-20), (3-24), and (7 -19) in order, 

e'2 = 0.00676866/(1-0.00676866) = 0.0068148 
M = 0 + 4484124.4/0.9996 = 4485918.8 m 
e1 = [1-(1-0.00676866)112)/[1 + (1-0.00676866)112) 

= 0.001697916 
f.l = 4485918.8/(6378206.4X(1-0.00676866/4-3X0.006768662/64 

-5 X 0.006768663/256)) 
= 0. 7045135 radian 

From equation (3-26), using f.l in radians, omitting the last term, 

<\>1 = 0. 7045135 + (3x0.001697916/2-27x0.0016979163/32) sin 
(2 X 0. 7045135) + (21 X 0.0016979162/16-55 X 0. 0016979164/32) 
sin (4x0.7045135)+(151X0.0016979163/96) sin (6x0.7045135) 

= 0. 7070283 radian 
= 0. 7070283 X 180°/1T 
= 40.5097362° 

Now equations (8-21) through (8-25) may be used: 

cl = 0.0068148 cos2 40.5097362° = 0.0039393 
T1 = tan2 40.5097362° = 0. 7299560 

N 1 = 6378206.4/(1-0.00676866 sin2 40.5097362°)112 
= 6387334.2 m 

R 1 = 6378206.4X(1-0.00676866)/(1-0.00676866 sin2 40.5097362°)312 
= 6,362,271.4 m 

D = 127106.5/(6387334.2x0.9996) = 0.0199077 

Returning to equation (8-17), 

<\> = 40.5097362°-(6387334.2 X0.8543746/6362271.4) X (0.01990772/2 
-(5 + 3X0. 7299560 + 10X0.0039393-4X0.00393932-9 
X0.0068148) x0.01990774/24 + (61 + 90X0. 7299560 + 298 
X 0. 0039393 + 45 X 0. 72995602-252 X 0. 0068148-3 
X 0. 00393932 ) X 0. 01990776/720] X 180°/ 1T 

= 40.5000000° = 40°30' N. lat. 

From equation (8-18), 

X. = -75° + ([0.0199077-(1+2X0.7299560+0.0039393)X0.01990773/6 
+ (5-2X0.0039393 + 28X0.7299560-3X0.00393932 +8 
x0.0068148 + 24 x 0. 72995602

) x0.019907751120]/cos 
40.5097362°) X 180°/1'1" 

= -75° + 1.5000000° = -73.5° = 73°30' W. long. 
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OBLIQUE MERCATOR (SPHERE)-FORWARD EQUATIONS (SEEP. 69-70) 

Given: Radius of sphere: R = 1.0 unit 
Central scale factor: k 0 = 1. 0 

Central line through: <j>1 = 45° N. lat. 
<!>2 = oo lat. 
A1 = oo long. 
A.2 = 90° W. long. 

Point: <!> = 30° S. lat. 
A = 120° E. long. 

Find: x, y, k 

Using equation (9-1), 

Ap = arctan ([cos 45° sin 0° cos oo - sin 45° cos oo cos ( -90°)]/ 
[sin 45° cos 0° sin ( -90°) - cos 45° sin 0° sin 0°] 

= arctan ([0-0]/[ -0. 7071068-0]) = oo 

Since the denominator is negative, add or subtract 180° (the numerator has neither 
sign, but it doesn't matter). Thus, 

From equation (9-2), 

<l>p =arctan [-cos (180°-0°)/tan 45°] 
= arctan [ + 1/0. 7071068] = 45° 

The other pole is then at<!> = -45°, A = 0°. From equation (9-6a), 

From equation (9-6), 

A =sin 45° sin ( -30°) - cos 45° cos ( -30°) sin [120° - ( -90°)] 
= 0. 7071068X( -0.5)-0. 7071068X0.8660254X( -0.5) 
= -0.0473672 

From equation (9-3), 

x = -LOx 1.0 arctan [tan ( -30°) cos 45°/cos (120° + 90°) + sin 45° tan (120° + 90°)] 
= 0.7214592 

Since cos (120° + 90°) is negative, subtract 7T, or x = -2.4201335 units 

From equation (9-4), 

y = (112)x l.Ox 1.0 ln [(1-0.0473672)/(1 + 0.0473672)] 
= -0.0474026 unit 

From equation (9-5), 

k = 1.0/[1-( -0.0473672)2
]112 = 1.0011237 

If the parameters are given in terms of a central point (for equations (9-7) 
and (9-8)), we shall assume certain artificial parameters (calculated with different 
formulas) which give the same pole as above: 
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Given: Radius of sphere: R = 1.0 unit 
Central scale factor: k 0 = 1.0 

Azimuth of central line: f3 = 48.8062990° east of north 
Center: <l>c = 20° N. lat. 

Ac = 68.6557771°W. long. 

Using equations (9-7) and (9-8), 

<l>p = arcsin (cos 20° sin 48.8062990°) 
= 45.0°N. lat. 

Ap = arctan [-cos 48.8062990°/( -sin 20° sin 48.8062990°)] 
-68.6557771° 

Since the denominator of the argument of arctan is negative, add -180° to Ap, 
using"-" since the numerator is"-": 

OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS (SEEP. 70) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Central scale factor: k 0 = 1.0 

Central line through: <!>1 = 45° N. lat. 
<1>2 = oo lat. 

Find: <!>, A 

At = 0° long. 
A2 = 90° W. long. 

Point: x = -2.4201335 units 
y = -0.0474026 unit 

First, <l>p and Ap are determined, exactly as for the forward example, so that Ao 
again is -90°, and <l>p = 45°. Determining hyperbolic functions, if not readily 
available, 

y/Rk0 = -0.0747026/(l.Oxl.O) = -0.0474026 
e-o.o474026 = 0.9537034 

sinh (y!Rk0) = (0.9537034-110.9537034)/2 
= -0.0474203 

cosh (y/Rk0) = (0. 9537034 + 110. 9537034)/2 
= 1.0011237 

tanh (y!Rk0 ) = (0.9537034 - 1/0.9537034)/(0.9537034 + 110.9537034) 
= -0.0473671 

From equation (9-9), 

<1> = arcsin (sin 45° x ( -0.0473671) + cos 45° sin 
[( -2.4201335/(1. 0 X 1.0)) X 180°/'TT ]/1.0011237 

= arcsin ( -0.5000000) 
= -30° = 30°8. lat. 
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From equation (9-10), 

A. = -90° + arctan ([sin 45° sin [ -2.4201335 x 180°/( 'TT x 1.0 x 1.0)] 
-cos 45° x (-0.0474203)]/cos[-2.4201335x180°/ 
('TTX1.0Xl.0)]j 
-90° + 30.0000041° 

= - 59.9999959° 

but the main denominator is -0.7508428, which is negative, while the numerator 
is also negative. Therefore, add (-180°) to A., so A. = -59.9999959°- 180° = 
-239.9999959° = 240° W. long. = 120° E. long. 

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- FORWARD EQUATIONS 
(SEE P. 71-74 ) 

For alternate A: 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Central scale factor: k 0 = 0. 9996 

Center: <Po = 40° N. lat. 
Central line through: <f>1 = 47°30' N. lat. 

A. 1 = 122° 18' W. long. (Seattle, Wash.) 
<f>2 = 25°42' N. lat. 
A.2 80°12' W. long. (Miami, Fla.) 

False coordinates: x0 4,000,000.0 m 
Yo 500,000.0 m 

Point: <P 40°48' N. lat. 
A. = 74°00' W. long. (New York City) 

Find: x, y, k 

Following equations (9-11) through (9-24) in order: 

B = [1 + 0.00676866 cos4 40°/(1-0.00676866)]112 

= 1.0011727 
A = 6378206.4X1.0011727X0.9996X(l-0.00676866)112/ 

(1-0.00676866 sin2 40°) 
= 6,379,333.2 m 

t0 = tan (45°-40°/2)/[(1-0.0822719 sin 40°)/ 
(1 + 0.0822719 sin 40°)]0·082271912 

= 0.4683428 
t1 = tan (45°-47.S0/2)/[(1-0.0822719 sin 47.5°)/ 

(1+0.0822719 sin 47.5°)]0·082271912 

= 0.3908266 
t2 = tan (45°-25. 7°/2)/[(1-0.0822719 sin 25. 7°)/ 

(1 + 0.0822719 sin 25. 7°)]0·082271912 

0.6303639 
D 1.0011727 x (1-0.00676866)112/[cos 40° x 

(1-0.00676866 sin2 40°)112] 
1.3043327 

E [1.3043327 + (1.30433272 -1)112] X0.4683428LOOI1727 

1.0021857 

using the "+" sign, since <Po is north or positive. 
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H = 0.39082661.0011727 = 0.3903963 
L 
F 
G 
J 

= 0.63036391.0011727 = 0.6300229 
1.0021857/0.3903963 = 2.5670986 
(2.5670986-112.5670986)/2 = 1.0887769 

= (1.00218572 -0.6300229X0.3903963)/(1.00218572 + 0.6300229 
x0.3903963) = 0.6065716 

p = (0.6300229-0.3903963)/(0.6300229 + 0.3903963) 
= 0.2348315 

¥2[( -122.3°) + ( -80.2°)] - arctan \0.6065716 tan [1.0011727 
X ( -122.3° + 80.2°)/2)/0.2348315)/1.0011727 

-101.25°- arctan (-0.9953887)/1.0011727 
- 56.4349628° 

'Yo = arctan \sin [1.0011727x(-122.3°+56.4349628°)]/1.0887769) 
= -39.9858829° 

<Xc = arcsin [1.3043327 sin ( -39. 9858829°)] 
= -56.9466070° 

These are constants for the map. For the given <P and X., following equations 
(9-25) through (9-34) in order: 

t = tan (45°-40.8°/2)/[(1-0.0822719 sin 40.8°)/(1 + 0.0822719 sin 
40. so) )0.0822719/2 

= 0.4598671 
Q = 1.0021857/0.45986711.0011727 = 2.1812805 
s = (2.1812805-1/2.1812805)/2 = 0.8614171 
T = (2.1812805 + 1/2.1812805)/2 = 1.3198634 
V = sin [1.0011727x(-74°+56.4349628°)] 

= -0.3021309 
U = [0.3021309 cos (-39.9858829°) + 0.8614171 sin (-39.9858829°)]/ 

1.3198634 
= -0.2440041 

v = 6379333.2 ln [(1 + 0.2440041)1(1-0.2440041)]/(2x 1.0011727) 
= 1,586, 767.3 m 

u = [[6379333.2 arctan \[0.8614171 cos ( -39.9858829°) 
+ (-0.3021309) sin (-39.9858829°)]/cos [1.0011727x(-74° 
+ 56.4349628°)])/1. 0011727)] X 'iT/180° 

= 4,655,443. 7 m 

Note: Since cos [1.0011727 x ( -74°+56.4349628°)] = 0.9532664, which is positive, 
no correction is needed to the arctan in the equation for u. The ( 'iT/180°) is inserted, 
if arctan is calculated in degrees. 

k = 6379333.2 COS (1.0011727X4655443.7X180°/('iTX6379333.2)) 
x (1-0.00676866 sin2 40.8°)1121\6378206.4 cos 40.8° cos 
[1.0011727X ( -74° + 56.4349628°))) 

1.0307554 
x = 1586767.3 cos ( -56.9466070°) + 4655443.7 sin ( -56.9466070°) 

+4000000 
= 963,436.1 m 

y = 4655443.7 cos (-56.9466070°)- 1586767.3 sin (-56.9466070°) 
+500000 

= 4,369,142.8 m 
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For alternate B (forward): 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Central scale factor: k 0 = 1. 0 

Center: <Po = 36° N. lat. 
A.c = 77.7610558° W. long. 

Azimuth of central line: etc = 14.3394883° east of north 
Point: <!> = 38°48'33.166" N. lat. 

38.8092128° 
A. = 76°52'14.863" W. long. 

= -76.8707953° 

Find: u, v (example uses center of Zone 2, Path 16, Landsat mapping, with Hotine 
Oblique Mercator). 

Using equations (9-11) through (9-39) in order, 

B [1 + 0.00676866 cos4 36°/(1-0.00676866)]112 

1.0014586 
A 63780206.4 X 1.0014586 X 1.0 X (1-0.00676866) 112/(1-0.00676866 

sin2 36°) = 6,380,777.0 m 
t0 tan (45°-36°/2)/[(1-0.0822719 sin 36°)/(1 + 0.0822719 sin 

360) ]0.0822719/2 

0.5115582 
D 1.0014586 x (1-0.00676866)112/[cos 36° 

x (1-0.00676866 sin2 36°)112] 
1.2351194 

F 1.2351194 + (1.23511942 -1)112 = 1.9600471 

using the "+" sign since <Po is north or positive. 

E = 1.9600471x0.5115582L0014586 = 1.0016984 
G = (1. 96004 71-111.96004 71)/2 = 0. 7249276 
'Yo = arcsin [(sin 14.3394883°)/1.2351194] 

11.5673996° 
A.0 = -77.7610558° - [arcsin (0. 7249276 tan 11.5673996°)]/1.0014586 

= -86.2814800° 
U<36", _ 77_76 ... "J = + (6380777.0/1.0014586) arctan [(1.23511942 -1)112/ 

cos 14.3394883°]X TI/180° 
= 4,092,868.9 m 

Note: The TI/180° is inserted, if arctan is calculated in degrees. These are con
stants for the map. The calculations of u, v, x, and y for (<!>, A.) follow the same 
steps as the numerical example for equations (9-25) through (9-34) for alternate 
A. For<!> = 38.8092128° and A. = -76.8707953°, it is found that 

u = 4,414,439.0 m 
v = -2,356.3 m 

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 74-75) 

The above example for alternate A will be inverted, first using equations (9-11) 
through (9-24), then using equations (9-40) through (9-48). Since no new equa-
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tions are involved for inverse alternate B, an example of the latter will be omitted. 
As stated with the inverse equations, the constants for the map are chosen as in 
the forward examples. 

Inversing forward example for alternate A: 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Central scale factor: k 0 = 0.9996 

Center: <l>o = 40° N. lat. 
Center line through: <1> 1 = 47° 30' N. lat. 

X.1 = 122° 18' W. long. 
<1>2 = 25° 42' N. lat. 
X.2 = 80° 12' W. long. 

False coordinates: x0 = 4,000,000.0 m 
Yo = 500,000.0 m 

Point: x = 963,436.1 m 
y = 4,369,142.8 m 

Find: <!>, X. 

Using equations (9-11) through (9-24) in order, again gives the following 
constants: 

B = 1.0011727 
A = 6,379,333.2 m 
E = 1.0021857 
X.0 = -56.4349628° 
'Yo= -39.9858829° 
ac = -56.9466070° 

Following equations (9-40) through (9-48) in order: 

v (963436.1-4000000.0) cos (-56.9466070°)- (4369142.8 
-500000.0) sin ( -56.9466070°) 

1,586,767.3 m 
u = (4369142.8-500000.0) cos ( -56.9466070°) + (963436.1 

-4000000.0) sin ( -56.9466070°) 
4,655,443. 7 m 

Q' e-<Loou727xJ586767.316379333.2J 

e -0.2490273 

= 0.7795587 
s I (0. 7795587-110. 7795587)/2 = -0.2516092 
T' (0. 7795587 + 110. 7795587)/2 = 1.0311679 
V' sin [(1.0011727x4655443.7/6379333.2)X180°/'1T] 

sin 41.8617535° = 0.6673356 
U' [0.6673356 cos (-39.9858829°)- 0.2516092 sin (-39.9858829°)]/ 

1.0311679 
0.6526562 

t ( 1.0021857/[(1 + 0.6526562)/(1-0.6526562)]1i2)11l.0011727 
0.4598671 

The first trial <1> for equation (7- 9) is 

<1> = 90° -2 arctan (0.4598671) = 40.6077096° 
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Calculating a new trial <j>: 

<!> goo - 2 arctan j0.45g8671 x [(1-0.082271g sin 40.60770g6°)/ 
(1 + 0.082271g sin 40.60770g6°)]0.0822719t2) 

40. 7gg25ogo 

Substituting 40. 7gg25ogo in place of 40.60770g6o and recalculating, <!> = 
40. 7gggg71o. Using this<!> for the third trial,<!> = 40.8000000°. The next trial gives 
the same value of <j>. Thus, 

<!> = 40.8° = 40°48' N. lat. 
A -56.434g628° - arctan j[ -0.25160g2 cos ( -3g. g85882go) 

- 0.6673356 sin (-3g.g85882g0 )]/cos [(1.0011727 
X 4655443.7/637g333.2) X 180°/71'])/1.0011727 

- 74.0000000° = 74°00' W. long. 

Using series equation (3-5) with (7 -13), to avoid iteration of (7-g), and begin
ning with equation (7 -13), 

x =goo -2 arctan 0.45g8671 
= 40.6077og6o 

Since equation (3-5) is used in an example under Auxiliary latitudes, the calcula
tion will not be shown here. 

CYLINDRICAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS 
(SEE P. 77, 80 ) 

Normal aspect: 
Given: Radius of sphere: 

Central meridian: 
Standard parallel: 

Point: 

Find: x, y 

R = 1.0 unit 
Ao = 75° W. long. 
<!>s = 30° N. & S. lat. 

<!> = 35° N. lat. 
A= 80° E. long. 

Using equations (10-1) and (10-2), 

x = 7TX 1.0 x [80°-(-75°)] x (cos 30°)1180°=2.3428242 units 
y = 1.0 x sin 35°/cos 30°=0.6623ogo unit 

Transverse aspect: 

Given: Radius of sphere: R = 1.0 unit 
<!>o = 20° S. lat. Origin: 

Central scale factor: 
Ao = 75° W. long. 
h0 = o.g8 

Point: 

Find: x, y 

<!> = 25° N. Lat. 
A= goo W. long. 

Using equations (10-3) and (8-3), 

x = (1.0/0.g8) x cos 25° sin [(-goo)-( -75°)] 
= (1.0/0.g8) x cos 25° sin ( -15°) 
= -0.23g356g unit 
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y = 1.0 x 0.98 x (arctan [tan 25°/cos ( -15°)] - ( -20°)) x 'IT/180° 
= 0.98 x 45.7692621° x 'IT/180°=0.7828478 unit 

Oblique aspect: 
Given: Radius of sphere: 

Central scale factor: 
Central line through: 

Point: 

Find: x, y 

Using equation (9-1), 

R = 1.0 unit 
h0 = 0.98 

<1> 1 = 30° N. lat. 
<1>2 = 60° N. lat. 
A1 = 75° W. long. 
A2 = 50° W. long. 

<1> = 30° S. lat. 
A= 100° W. long. 

AP =arctan \[cos 30° sin 60° cos ( -75°)-sin 30° cos 60° cos ( -50°)]/ 
[sin 30° cos 60° sin ( -50°)-cos 30° sin 60° sin ( -75°)]] 

=arctan \[0.1941143-0.1606969]/[ -0.1915111-( -0. 7244444)]) 
=arctan (0.0334174/0.5329333) 
= 3.5880129°=3.5880129° E. long. 

Since the denominator is positive, 180° is not added to the result. 
From equation (9-6a), 

From equation (9-2), 

Ao = 3.5880129° + 90° = 93.5880129° 

<l>p =arctan \-cos [3.5880129°-(-75°)]/tan 30°) 
= -18.9169858° = 18.9169858° S. lat. 

The other pole is then at 18.9169858° N. lat. and 176.4119871° W. long. From 
equations (10-4) and (10-5), calculating the arctan in radians: 

x = l.Ox0.98 arctan \[tan ( -30°) cos ( -18.9169858°) 
+sin ( -18.9169858°) sin ( -100°-93.5880129°))1 
cos ( -100°-93.5880129°)) 

= 0.98xarctan [ -0.6223338/( -0.9720102)] 
= 0. 98 x (0. 5694937 +'IT), adding 'IT since denominator is negative. 
= 3.6368646 units 

y = (1.0/0.98) [sin ( -18.9169858°) sin ( -30°)-
cos ( -18.9169858°) cos ( -30°) sin ( -100°-93.5880129°)] 

= -0.0309947 unit 

To locate a pole given a central point using equations (9-7) and (9-8), refer to 
the numerical example given under the forward spherical equations for the Oblique 
Mercator projection (p. 000). 

CYLINDRICAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS 
(SEEP. 80) 

Inversing forward examples: 
Normal aspect: 
Given: R, A0 , <l>s for forward example 
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x = 2.3428242 units 
y = 0.6623090 unit 

Find: <!>, A 

Using equations (10-6) and (10-7), 

<!>=arcsin [(0.6623090/l.O)xcos 30°] 
= 34.9999988° = 35° N. lat, if there were no round-off errors. 

A= [2.3428242/(l.Oxcos 30°)]x180°/1T+(-75°) 
= 80° E. long., ignoring round-off errors. 

Transverse aspect: 
Given: R, <!>0 , A0, h0 , for forward example 

Find<!>, A 

x = -0.2393569 unit 
y = 0. 7828478 unit 

Using equation (10-10), (10-8), and (10-9) in order, 

D = 0. 78284 78/(1. 0 X 0. 98) + (-20°) X 11'1180° 
= 0.4497584 

<!> =arcsin ([1-(0.98x(-0.2393569)/l.Oi]112 

Xsin (0.4497584 radians)/ 
= 25° N. lat., ignoring round-off errors. 

A = -75°+arctan ([0.98x(-0.2393569)/1.0]/ 
[[1- (0. 98 x ( -0.2393569)/1.0)2

] 112 cos (0.4497584 radians)]/ 
= -90°= 90° W. long. 

Oblique aspect: 
Given: R, h0 , and central line through same points as forward example, 

Find<!>, A 

x = 3. 6368646 units 
y = -0.0309947 unit 

First, <!>p and AP are determined exactly as for the forward example, so that Ao 
again is 93.5880129°, and <!>pis -18.9169858°. Using equations (10-11) and (10-12), 

yhofR = -0.0309947 X 0.98/1.0 
= -0.0303748 

xi(Rh0 ) = 3. 6368646/(1. 0 x 0. 98) 
= 3. 7110863 

<!> =arcsin (-0.0303748xsin (-18.9169858°) 
+ [1-( -0.0303748l]112 

X COS (-18.9169858°) 
x sin (3. 7110863 radians)/ 

=arcsin (-0.5)= -30°=30° S. lat. 
A = 93.5880129° +arctan ([[1-( -0.0303748)2

] 112 

x sin (-18.9169858°) 
x sin (3. 7110863 radians) 
- ( -0.0303748) X COS ( -18.9169858°)]/ 
[[1-(-0.0303748lJ112 x cos (3.7110863 radians)]/ 

= 260° or -100° = 100° W. long. 
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CYLINDRICAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS 
(SEE P. 81-82) 

Normal aspect.· 
Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 

e2 = 0.00676866 
or 

Standard parallel: 
Central meridian: 

Point: 

e = 0.0822719 
<)>8 =5° N. & S. lat. 
~0 = 75° W. long. 
<)> = 100 
~ = 78° W. long. 

Using equations (10-13), (3-12), (10-14), and (10-15) in order, 

ko =cos 5°/[1-0.00676866xsin2 5°]112 

= 0.9962203 
q = (1-0.00676866) x !sin 5°/(1-0.00676866xsin2 5°) 

-[1!(2x0.0822719)] x ln [(1-0.0822719Xsin 5°)/ 
(1+0.0822719Xsin 5°)]) 

= 0.1731376 
X = 6,378,206.4 X 0.9962203 X [ -78°-( -75°)] X "TT/180° 

= -332,699.8 m 
y = 6,378,206.4 x 0.1731376/(2x0.9962203) 

= 554,248.5 m 

Transverse aspect: 
Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 

e2 = 0.00676866 

Find: x, y 

or 
Central meridian: 

Latitude of origin: 
Scale factor at ~0: 

Point: 

e = 0.0822719 
~0 = 75o W. long. 

<)>0 = 30° N. lat. 
h0 = 0.99 

<)> = 40° N. lat. 
~ = 83° W. long. 

Using equations (3-12) and (3-11), 

q = (1-0.00676866) x !sin 40°/(1-0.00676866xsin2 40°) 
-[11(2x0.0822719)] x ln [(1-0.0822719xsin 5°)/ 
(1 +0.0822719Xsin 5°)]) 

= 1.2792602 

Inserting 90° in place of 40° in the same equation, 

qp = 1. 9954814 
13 =arcsin (1.2792602/1.9954814) 

= 39.8722878° 

, Using equations (10-16) and (10-17), 

13c =arctan [tan 39.8722878°/cos [ -83°-( -75°)] 
= 40.1482125° 

qc = 1.9954814 X sin 40.1482125° 
= 1.2866207 
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For the first trial <l>c in equation (3-16), 

<l>c =arcsin (1.2866207/2) 
= 40.0391089° 

Substituting into equation (3-16), 

<Pc = 40.0391089° + [(1-0.00676866 sin2 40.0391089°)2
/ 

(2 COS 40.0391089°)] X (1.2866207/(1-0.00676866) 
-sin 40.0391089°/(1-0.00676866 sin2 40.0391089°) 
+ (1!(2x0.0822719)] In [(1-0.0822719 
sin 40.0391089°)/(1 +0.0822719 sin 40.0391089°)]) x 180°/1T 

= 40.2757321° 

Substituting 40.2757321 o in place of 40.0391089° in the same equation, the new trial 
<Pc is found to be 40.2761382°. The next iteration results in no change to seven 
decimal places. Thus, 

<!>c = 40.2761382° 

Using equation (10-18), 

X = 6,378,206.4 X COS 39.8722878° X COS 40.2761382° 
x sin [-83°-(-75°)]/[0.99xcos 40.1482125° 
x (1-0.00676866Xsin2 40.2761382°)112] 

= -687,825.8 m 

Using equation (3-21), 

Me = 6,378,206.4 X [(1-0.00676866/4-3X0.006768662/64 
-5 X 0.006768663/256) X 40.2761382° X 1T/180° 
- (3X 0.00676866/8+3X0.006768662/32 
+ 45 X 0.006768663/1024) X sin (2X40.2761382°) 
+ (15 X 0. 006768662/256 + 45 X 0. 006768663/1024) 
x sin (4x40.2761382°) - (35x0.006768663

/ 

3072) x sin (6x40.2761382°)] 
= 4,459,980.0 m 

Substituting <!>o = 30° in the same equation in place of 40.2761382°, 

M 0 =3,319,933.3 m 

Using equation (10-19), 

y = 0.99 X (4,459,980.0-3,319,933.3) 
= 1,128,646.2 m 

Oblique aspect: 
Given: Clarke 1866 ellipsoid: 

or 
Central scale factor: · 

Central line through: 

a = 6,378,206.4 m 
e2 = 0.00676866 
e = 0.0822719 

h0 == 1.0 
<!> 1 = 30° N. lat. 
<!>2 = 40° N. lat. 
A1 = 75° W. long. 
A2 = 80° W. long. 
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Point: <!> = 42° N. lat. 
A.= 77° W. long. 

Find: x, y 

To find the position of the pole, equations (3-12) and (3-11) are used as in the 
examples for the normal and transverse aspects just above, to determine ~ 1 from 
<!> 1 and ~2 from <)>2 . The results are 

~1 = 29.8877623° 
~2 = 39.8722878° 

Inserting these values in place of <!> 1 and <!>2 in equations (9-1) and (9-2), listed 
under spherical formulas for the projection, 

Ap =arctan [(cos 29.8877623° sin 39.8722878°-
sin 29.8877623° cos 39.8722878° cos ( -80°))/ 
(sin 29.8877623° cos 39.8722878° sin (-80°) 
- cos 29.8877623° sin 39.8722878° sin ( -75°))] 

= arctan (0.4894080/0.1602532) 
= 71.8693268°, not adding 180° since denominator is positive. 

f3p =arctan [-cos (71.8693268°-( -75°))/tan 29.8877623°] 
= 55.5374608° 

Using equations (10-17) and (3-16), with subscript p instead of c, <l>p is found by 
iteration as in the example for <l>c under the transverse aspect. Finally, 

<l>p = 55.6583959° 

Using equations (10-20) and (10-21), and table 13 for the Clarke 1866 ellipsoid, 
the specific Fourier coefficients are calculated: 

B = 0.9991507126 + (-0.0008471537) cos (2 X 55.6583959°) 
+ (0.0000021283) COS (4 X 55.6583959°) 
+ ( -0.0000000054) COS (6 X 55.6583959°) 

= 0.9994571 
A2 = -0.0001412090 + ( -0.0001411258) cos (2 X 55.6583959°) 

+ (0.0000000839) COS (4 X 55.6583959°) 
+ (0.0000000006) COS (6 X 55.6583959°) 

= -0.0000900 
A 4 = -0.0000000435 + ( -0.0000000579) cos (2 X 55.6583959°) 

+ ( -0.0000000144) COS (4 X 55.6583959°) 
+ (0) COS (6X55.6583959°) 

= -0.0000000 

Equations (3-12) and (3-11) are again used to determine (3 from <!>, giving 

(3 = 41.8710109° 
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From equation (10-22), 

A.' =arctan ([cos 55.5374608° sin 41.8710109° 
- sin 55.5374608° cos 41.8710109° cos ( -77° 
-71.8693268°)]/cos 41.8710109° sin ( -77°-71.8693268°)]) 

= arctan [0. 9032359/( -0.3849775)] 
= -66.9153117° + 180° = 113.0846883° 

adding 180° because the denominator is negative. 

Using equations (10-23) through (10-25), using qp as computed above for the 
transverse aspect, 

X = 6,378,206.4 X 1.0X[0.9994571X113.0846883°X7r/180° 
+ (-0.0000900) x sin (2x113.0846883°) 
+ (-0.0000000) x sin (4xl13.0846883°) 

= 12,582,246.4 m 
F = 0.9994571 + 2 X (-0.0000900) X cos (2X113.0846883°) 

+ 4 X (-0.0000000) X COS (4Xll3.0846883°) 
= 0.9995817 

y = (6,378,206.4xl.9954814/2) x [sin 55.5374608° 
x sin 41.8710109° + cos 55.5374608° x cos 41.8710109° 
X COS ( -77°-71.8693268°))/(1.0X0.9995817) 

= 1,207,233.0 m 

CYLINDRICAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 82-84 ) 

Inversing forward examples: 
Normal aspect: 
Given: a, e2

, c:j>8 , and 11.0 as in forward ellipsoid examples 

Find: c:j>, 11. 

x = -332,699.8 m 
y = 554,248.5 m 

After k0 and qp are determined from (10-13) and (3-12) as in the forward normal 
and transverse examples, 

then, from (10-26), 

k 0 = 0.9962203 
qp = 1.9954814 

f3 =arcsin [2x554,248.5x0.9962203/(6,378,206.4Xl.9954814)] 
= 4.9775164° 

Using equations (10-17) and (3-16), with subscript c omitted, c:!> is found from f3 
bY, iteration as in the example for c:!>c under the forward transverse ellipsoid exam
ple. Finally, 

c:!> = 5° N. lat. 
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From (10-27), 

A.= -75° + [ -332,699.8/(6,378,206.4x0.9962203)] x 180°/11' 
= -78° = 78° W. long. 

Transverse aspect: 
Given: a, e2

, A-0 , <f>0, h0 as in forward ellipsoid example: 

Find: <f>, A. 

x = -687,825.8 m 
y = 1,128,646.2 m 

After M 0 is calculated from (3-21), using cf>o = 30° in place of <f>c, as in the forward 
ellipsoid example, 

From (10-28), 

M 0 = 3,319,933.3 m 

Me= 3,319,933.3 + 1,128,646.2/0.99 
=4,459,980.0 m 

From (7-19), (3-24) and (3-26), 

f.Lc = 4,459,980.0/[6,378,206.4 X (1-0.00676866/4 
-3 X 0.006768662/64 - 5 X 0.006768663/256)) 

= 0. 7004398 radians = 40.1322426° 
e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866)112] 

= 0.0016979 
<f>c = [0.7004398 + (3x0.0016979/2-27x0.00169793/32) 

sin (2x40.1322426°) + (21x0.00169792/16 
-55 x 0.0016979/32) sin (4x40.1322426°) 
+ (151x0.00169793/96) sin (6x40.1322426°) 
+ (1097X0.00169794/512) sin (8x40.1322426°)] x 180°/11' 

= 40.2761378° 

Using (3-12) and (3-11), with qp calculated as in the forward example, 

qc = (1-0.00676866) x (sin 40.2761378°/(1 
-0.00676866 x sin2 40.2761378°) - [1!(2 
x 0.0822719)] ln [(1-0.0822719 x sin 40.2761378°)/ 
(1 + 0.0822719 x sin 40.2761378°)]] 
1.2866207 

13c =arcsin (1.2866207/1.9954814) 
= 40.1482122° 

From equations (10-29) through (10-31), 

13' =-arcsin [0.99 x (-687,825.8) x cos (40.1482122°) 
x (1-0.00676866 x sin2 40.2761378°)112/ 

(6,378,206.4 X COS 40.2761378°)] 
= 6.1315692° 
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13 = arcsin (cos 6.1315692° sin 40.1482122°) 
= 39.8722875° 

A = -75°-arctan (tan 6.1315692°/cos 40.1482122°) 
= -75°-8°= -83°=83° W. long. 

Using (10-17) and (3-16), with subscript c omitted, <Pis found from 13 by iteration 
as in the example for <Pc under the forward transverse ellipsoid example. Finally, 

<1> = 40° N. lat. 

Oblique aspect: 
Given: a, e2

, h0 , calculated pole location (<l>p, Ap), calculated Fourier coefficients 
B, A2 , and A4 as in the forward oblique ellipsoid example, and Rq as calculated 
for the forward normal ellipsoid example, 

Find<!>, A. 

x = 12,582,246.4 m 
y = 1,207,233.0 m 

First qP = 1.9954814, as found from (3-12) in the forward transverse example. 

To solve for A.' from (10-32), the first trial A.' is found as described: 

A.' [12,582,246.4/(6,378,206.4 X LOX 0. 9994571)] X 180°/1T 
113.0884082° 

Using equation (10-32), 

A.' = [12,582,246.4/(6,378,206.4X LO)x 180°/1T 
-( -0.0000900) x sin (2x 113.0884082°) 
-( -0.0000000) x sin (4x 113.0884082°)]/ 
0.9994571 

113.0846878° 

Substituting 113.0846878° in place of 113.0884082° in this equation, A.' is calculated 
to be 113.0846883°. The next iteration yields no change to seven decimal places, so 
that 

A' = 113.0846883° 

Equation (10-24) is used to calculate F just as it was in the forward oblique 
example, so F is again 

F = 0.9995817 

From equations (10-33) through (10-35), 

13' =arcsin [2X0.9995817x LOx 1,207,233.0/ 
(6,378,206.4 XL 9954814)] 

= 10.93083763° 

13 =arcsin (sin 55.5374608° sin 10.93083763° 
+ cos 55.5374608° cos 10.93083763° 
sin 113. 0846883°) 

= 4L8710109° 
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A = 71.8693268° + arctan [cos 10.93083763° 
cos 113.0846883°/(cos 55.5374608° 
sin 10.93083763° - sin 55.5374608° 
cos 10.93083763° sin 113.0846883°)] 

= 71.8693268° + arctan [ -0.3849775/( -0.6374127)] 
= 71.8693268° + 31.1306732° + 180°, adding 180° 

because of the negative denominator. Thus, 

Using (10-17) and (3-16), ~is found from [3 as previously, dropping subscript c 
and with iteration, to produce 

~ = 42° N. lat. 

The computation of Fourier coefficients is not shown here, since it is lengthy and 
is not needed unless a different ellipsoid is desired. An example of computation of 
Fourier coefficients is given under the Space Oblique Mercator projection. 

MILLER CYLINDRICAL (SPHERE)- FORWARD EQUATIONS (SEEP. 88) 

Given: Radius of sphere: R = 1.0 unit 
Ao = oo long. Central meridian: 

Point: ~ = 50° N. lat. 
A = 75° W. long. 

Find x, y, h, k 

Using equations (11-1) through (11-5) in order, 

or 

X = l.Ox[ -75°-0°]X1T/180° 
= -1.3089969 units 

y = l.Ox[lntan(45°+0.4X50°)]/0.8 
= (ln tan 65°)/0.8 
= 0. 9536371 unit 

y = l.Ox(arcsinh [tan (0.8x50°)])/0.8 
= arcsinh 0.8390996/0.8 
= 0. 9536371 unit 

h = sec(0.8X50°) = 1/cos40° = 1.3054073 
k =sec 50° = 1/cos 50° = 1.5557238 

sin 1/2w = (cos 40°- cos 50°)/( cos 40° + cos 50°) 
= 0.0874887 

w = 10.0382962° 

MILLER CYLINDRICAL (SPHERE)- INVERSE EQUATIONS (SEE P. 88) 

Inversing forward example: 

Given: R, Ao for forward example 

Find:~. A 

x = - 1.3089969 units 
y = 0.9536371 unit 
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Using equations (11-6) and (11-7), 

or 

<!> = 2.5 arctan e(O.sxo.9536371/LOJ - (571"/8) X 180°hr 
= 2.5 arctan e0.7629096-l. 9634954 x 180°/71" 
= 2.5 arctan (2.1445069)- 1.9634954 x 180°/'lT 
= 2.5 X 65.0000006° - 112.5000000° 
= 50.0000015°=50° N. lat. 

~ =arctan [sinh (0.8x0.9536371/l.0)]/0.8 
= (arctan 0.8390997)/0.8 
= 50.0000015°=50° N. lat. 

A = 0° - (1.3089969/1.0) X 180°/'lT 
= oo - 74.9999978° = 75° W. long. 

CASSIN! (SPHERE)-FORWARD EQUATIONS (SEEP. 94) 

Given: Radius of sphere: R = 1.0 unit 

Origin: ~0 = 20° S. lat . 
.\0 = 75° W. long. 

Point: ~ = 25° N. lat. 
A. = 90° W. long. 

Find: x, y, h' 

Using equations (8-5), and (13-1) through (13-3) in order, 

B =cos 25° sin [ -90°-( -75°)] 
= -0.2345697 

x = 1.0 x arcsin ( -0.2345697) x 'lT/180° 
= -0.2367759 unit 

y = 1.0 x (arctan [tan 25°/cos [-90°-(-75°)]]-(-20°)fx'lT/180° 
= 1. 0 x 45.7692621 o x 'lT/180° = 0. 7988243 unit 

h' = 11[1-( -0.2345697)2
]112 

= 1.0287015 

CASSIN! (SPHERE)- INVERSE EQUATIONS (SEEP. 94-95) 

Inversing forward example: 

Given: R, ~0 , A.0 for forward example 

Find: <!>, A. 

x = -0.2367759 unit 
y = 0. 7988243 unit 

Using equations (13-6), (13-4), and (13-5) in order, 

D = (0. 7988243/l.O)x 180°171" + ( -20°) 
= 25.7692610° 
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4> = arcsin (sin 25.7692610° cos [(-0.2367759/1.0) x 180°/TI]j 
= arcsin 0.4226182 
= 25° N. lat. 

A -75° + arctan(tan[( -0.2367759/l.O)x 180°hr]/cos25. 7692610°] 
-75° + arctan ( -0.2679492) 
-75°+(-15°)= -90°=90° W. long. 

CASSIN! (ELLIPSOID)-FORWARD EQUATIONS (SEEP. 95) 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Origin: <Po = 40° N. lat. 
Ao = 75° W. long. 

Point: 4> = 43° N. lat. 
A = 73° W. long. 

Find: x, y, 8 at Az = 30° east of north 

Using equations (4-20), (8-13), (8-15), (8-14), and (3-21) in order, 

N = 6,378,206.4/(1-0.006768662 x sin2 43°)112 

= 6,388,270.3 m 
T = tan2 43° = 0.8695844 
A = [-73°- (-75°)]X(TI/180°)X COS 43° 

= 0.02552906 
C = 0.00676866 x cos2 43°/(1-0.00676866) 

= 0.003645081 
M = 6,378,206.4 X [(1-0.00676866/4-3X0.006768662/64 

-5 X 0.006768663/256) X43°X TI/180°-(3 X 0.00676866/ 
8 + 3x0.006768662/32 + 45x0.006768663/1024) 
sin (2x43°) + (15x0.006768662/256 + 45 
x0.006768663/1024) sin (4x43°)-(35x0.006768663

/ 

3072) sin (6X43°)] 
= 4, 762,504.8 m 

Substituting 40° for 43° in equation (3-21), 

M 0 = 4,429,318.9 m 

Using equations (13-7) through (13-9) in order, 

X = 6,388,270.3 X [0.02552906-0.8695844X0.025529063
/ 

6-(8-0.8695844 + 8X0.003645081) X0.8695844 
X 0.025529065/120] 

163,071.1 m 

y = 4,762,504.8 - 4,429,318.9 + 6,388,270.3 x tan 43o 
X (0.025529062/2 + (5-0.8695844+6X0.003645081) 
X 0.025529064/24] 

= 335,127.6 m 

8 1 + 163,071.12 cos2 30° x (1-0.00676866 X sin2 43°)2/ 

[2 X 6,378,206.42 X (1-0.00676866)] 
1.0002452 
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CASSIN! (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 95) 

Inversing forward example: 

Given: a, e2, 4>0, Ao as in forward example 

Find: 4>, A 

x = 163,071.1 m 
y = 335,127.6 m 

Calculating M 0 from equation (3-21) as in the forward example for 4>0 = 40°, 

M 0 = 4,429,318.9 m 

Using equations (13-12), (7-19), and (3-24) in order, 

M1 = 4,429,318.9 + 335,127.6 
= 4, 764,446.5 m 

f-ll = 4, 764,446.5/(6,378,206.4 X (1-0.00676866/4 
- 3 X 0.006768662/64 - 5 X 0.006768663/256)] 

= 0. 7482562 radians = 42.8719240° 
e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866)112] 

= 0.001697916 

Using equations (3-26), (8-22), (8-23), (8-24), and (13-13) in order, 

4>1 = 42.8719240° + ((3X0.001697916/2-27X0.0016979163/ 
32) sin (2X42.8719240°) + (21X0.0016979162/16 
- 55 x 0.0016979164/32) sin (4x42.8719240°) 
+ (151x0.0016979163/96) sin (6x42.8719240°) 
+ (1097x0.0016979164/512) sin (8x42.8719240°)] x 180°/'l'T 

= 43.0174782° 
T1 = tan2 43.0174782° 

= 0.8706487 
N 1 = 6,378,206.4/(1-0.00676866 sin2 43.0174782°)112 

= 6,388,276. 9 m 
R 1 = 6,378,206.4 X (1-0.00676866)/(1-0.00676866 

x sin2 43.0174782o)atz 
= 6,365,088.8 m 

D = 163,071.1/6,388,276.9 
= 0.0255266 

Using equations (13-10) and (13-11) in order, 

q, = 43.0174782°- (6,388,276.9xtan 43.0174782°/ 
6,365,088.8) x [0.02552662/2- (1 +3x0.8706487) 
X 0.02552664/24] X 180°/'l'T 

= 43° N. lat. 
A = -75° + ([0.0255266-0.8706487x0.02552663/3 

+ (1 + 3 X0.8706487) X 0.8706487 X 0.02552665/15]/ 
COS 43.0174782°) X 180°/'l'T 

= -73° = 73° W. long. 
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ALBERS CONICAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS (SEE P.lOO) 

Given: Radius of sphere: R = 1.0 unit 
Standard parallels: 

Origin: 

Point: 

<!> 1 = 29° 30' N. lat. 
<!>2 = 45° 30' N. lat. 
<l>o = 23° N. lat. 
Ao = 96° W. long. 
<!> = 35° N. lat. 
A = 75° W. long. 

Find: p, e, x, y, k, h, w 

From equations (14-6), (14-5), (14-3), (14-3a), and (14-4) in order, 

n =(sin 29.5° + sin 45.5°)/2 
= 0.6028370 

C = cos2 29.5° + 2 x 0.6028370 sin 29.5° 
= 1.3512213 

p = 1.0 x (1.3512213-2x0.6028370 sin 35°)112/0.6028370 
= 1.3473026 units 

p0 = 1.0 x (1.3512213-2X0.6028370 sin 23°)112/0.6028370 
= 1. 5562263 units 

e = o.6028370x[(-75°)-(-96°)] 
= 12.6595771° 

From equations (14-1), (14-2), and (14-7) in order, 

and 

x = 1.3473026 sin 12.6595771 o 

= 0.2952720 unit 
y = 1.5562263 - 1.3473026 cos 12.6595771° 

= 0.2416774 unit 
h =cos 35°/(1.3512213-2x0.6028370 sin 35°)112 

= 1.0085547 

k = 111.0085547 = 0.9915178 

From equation (4-9), 

sin V2w = 11.0085547 -0.99151781/(1.0085547 + 0.9915178) 
(1) = 0.9761189° 

ALBERS CONICAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS (SEEP. 101) 

Inversing forward example: 

Given: R, <l>I> <!>2 , <!>0 , A.0 for forward example 

Find: p, e, <J>, A 

x = 0.2952720 unit 
y = 0.2416774 unit 
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As in the forward example, from equations (14-6), (14-5), and (14-3a) in order, 

n = (sin29.5°+sin45.5°)/2 
= 0.6028370 

C = cos2 29.5° + 2 >< 0.6028370 sin 29.5° 
= 1.3512213 

Po = 1.0 X (1.3512213-2><0.6028370 
sin 23°)112/0.6028370 

= 1. 5562263 units 

From equations (14-10), (14-11), (14-8), and (14-9) in order, 

Given: 

p = [0.29527202 + (1.5562263-0.2416774?]112 
= 1.3473026 units 

{I =arctan [0.2952720/(1.5562263-0.2416774)] 
= 12.6595766°. Since the denominator is positive, 

there is no adjustment to e. 
<!> =arcsin [[1.3512213-(1.3473026><0.6028370/l.Ol]l 

(2><0.6028370)) 
= arcsin 0.5735764 
= 35.0000007° = 35° N. lat. 

A. = 12.6595766°/0.6028370 + ( -96°) 
= 20.9999992-96° 
= -75.0000008° = 75° W. long. 

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)-FORWARD EQUATIONS (SEE P.l01) 

Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Standard parallels: <l>l = 29° 30' N. lat. 

<1>2 = 45° 30' N. lat. 
Origin: <l>o = 23° N. lat. 

A.o = 96° W. long. 
Point: <!> = 35° N. lat. 

X. = 75° W. long. 

Find: p, e, x, y, k, h, w 

From equation (14-15), 

m 1 =cos 29.5°/(1-0.00676866 sin2 29.5°)It2 
= 0.8710708 

m2 =cos 45.5°/(1-0.00676866 sin2 45.5°)112 
= 0.7021191 

From equation (3-12), 

q1 = (1-0.00676866) [sin 29.5°/(1-0.00676866 sin2 29.5°) 
-(11(2><0.0822719)] In [(1-0.0822719 sin 29.5°)/ 
(1 + 0.0822719 sin 29.5°)]) 

= 0.9792529 

Using the same formula for q2 (with <!>2 instead of <!> 1), 

Q2 = 1.4201080 
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Using the same formula for q0 (with <l>o instead of <!> 1), 

q0 = 0. 7767080 

From equations (14-14), (14-13), and (14-12a) in order, 

n = (0.87107082 -0. 70211912)/(1.4201080-0. 9792529) 
= 0.6029035 

C = 0.87107082 + 0.6029035 X 0.9792529 
= 1.3491594 

Po = 6378206.4 X (1.3491594-0.6029035X0. 7767080)112/0.6029035 
= 9,929,079.6 m 

These are the constants for the map. For<!> = 35° N. lat. and A. = 75° W. long.: 
Using equation (3-12), but with <!> in place of <!>1, 

q = 1.1410831 

From equations (14-12), (14-4), (14-1), and (14-2) in order, 

p = 6378206.4 X (1.3491594-0.6029035 X 1.1410831)112/0.6029035 
= 8,602,328.2 m 

6 = 0.6029035 X ( -75°-(-96°)] = 12.6609735° 
x = 8602328.2 sin 12.6609735° = 1,885,472. 7 m 
y = 9929079.6 - 8602328.2 cos 12.6609735° 

= 1,535,925.0 m 

From equations (14-15), (14-16), (14-18), and (4-9) in order, 

m =cos 35°/(1-0.00676866 sin2 35°)112 
= 0.8200656 

k = 8602328.2X0.6029035/(6378206.4X0.8200656) 
= 0.9915546 

h = 110.9915546 = 1.0085173 
sin 1/zw = 11.0085173-0.99155461/(1.0085173+0.9915546) 

w = 0. 9718678° 

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS 

(SEEP. 102) 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a = 6378206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Standard parallels: <1> 1 = 29° 30' N. lat. 

<!>2 = 45° 30' N. lat. 
Origin: <l>o = 23° N. lat. 

A.0 = 96° W. long. 
Point: x = 1,885,472. 7 m 

y = 1,535,925.0 m 
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Find: p, e, <!>, A. 

The same constants n, C, p0 are calculated with the same equations as those 
used for the forward example. For the particular point: 

From equation (14-10), 

p = [1885472. 72 + (9929079.6-1535925.0lJ112 
= 8,602,328.3 m 

From equation (14-11), 

e =arctan [1885472. 7/(9929079.6-1535925.0)] 
=arctan 0.2246441 
= 12.6609733°. The denominator is positive; therefore e is not 

adjusted. From equation (14-19), 
q = [1.3491594-(8602328.3x0.6029035/6378206.4)2]/0.6029035 

= 1.1410831 

Using for the first trial<!> the arcsin of (1.141083112), or 34.7879983°, calculate a 
new <!> from equation (3-16), 

<!> = 34.7879983° + [(1-0.00676866 sin2 34. 7879983°)2/(2 cos 
34.7879983°)] x [1.14108311(1-0.00676866) - sin 34.7879983°/ 
(1-0.00676866 sin2 34. 7879983°) + [11(2 x 0.0822719)] In 
[(1-0.0822719 sin 34. 7879983°)/(1 + 0.0822719 sin 
34. 7879983°))) X 180°/'lT 

= 34.9997335° 

Note that 180°/'lT is included to convert to degrees. Replacing 34.7879983° by 
34.9997335° for the second trial, the calculation using equation (14-19) now pro
vides a third<!> of 35.0000015°. A recalculation with this value results in no change 
to seven decimal places. (This does not give exactly 35o due to rounding-off errors 
in x and y.) Thus, 

<!> = 35.0000015° N. lat. 

For the longitude use equation (14-9), 

h = (-96°) + 12.6609733°/0.6029035 
= -75.0000003° or 75.0000003° W. long. 

For scale factors, we revert to the forward example, since <!>and A are now known. 
Series equation (3-18) may be used to avoid the iteration above. Beginning 

with equation (14-21), 

13 =arcsin [1.14108311[1-[(1-0.00676866)/(2x0.0822719)] In 
[(1-0.0822719)/(1 + 0.0822719)])] 

= 34.8781793° 

An example is not shown for equation (3-18), since it is similar to the example 
for (3-5). 
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LAMBERT CONFORMAL CONIC (SPHERE)- FORWARD EQUATIONS 
(SEE P. 106-107 ) 

Given: Radius of sphere: 
Standard parallels: 

Origin: 

Point: 

Find: p, 6, x, y, k 

R=l.O unit 
4>1 = 33° N. lat. 
4>2 = 45° N. lat. 
<f>o = 23° N. lat. 
1\.0 =96° W. long. 
<f> = 35° N. lat. 
1\.=75° W. long. 

From equations (15-3), (15-2), and (15-1a) in order, 

n = ln (cos 33°/cos 45°)/ln [tan (45° + 45°/2)/tan (45° + 33°/2)] 
= 0.6304777 

F = [cos 33° tan°·6304777 (45° + 33°/2)]/0.6304777 
= 1. 9550002 units 

Po = 1.0 x 1.9550002/tan°·6304777 (45° + 23°/2) 
= 1.5071429 units 

The above constants apply to the map generally. For the specific <f> and I\, using 
equations (15-1), (14-4), (14-1), and (14-2) in order, 

p = 1.0 x 1.9550002/tan°·6304777 (45° + 35°/2) 
= 1.2953636 units 

e ::: 0.6304777 x r< -75°)-< -96°)] 
= 13.2400316° 

x = 1.2953636 sin 13.2400316° 
= 0.2966785 unit 

y = 1.5071429 - 1.2953636 cos 13.2400316° 
= 0.2462112 unit 

From equation (15-4), 

k =cos 33° tan°·6304777 (45° + 33°/2)/[cos 35° tan°·6304777 

(45° + 35°/2)] 
::: 0.9970040 

or from equation (4-5), 

k = 0.6304777 X 1.2953636/(1.0 COS 35°) 
= 0.9970040 

LAMBERT CONFORMAL CONIC (SPHERE)- INVERSE EQUATIONS 
(SEEP. 107) 

Inversing forward example: 

Given: R, <f>I> 4>2 , 4>0 , 1\0 for forward example 
x = 0.2966785 unit 
y = 0.2462112 unit 
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Find: p~ 8, <J>, A 

After calculating n, F, and Po as in the forward example, obtaining the same 
values, equation (14-10) is used: 

p = [0.29667852 + (1.5071429-0.2462112)2
] 112 

= 1.2953636 units 

From equation (14-11), 

8 = arctan [0.2966785/(1.5071429-0.2462112)] 
= 13.2400329°. Since the denominator is positive, 8 is not 

adjusted. 

From equation (14-9), 

A = 13.2400329°/0.6304777 + ( -96°) 
= -74.9999981° = 74.9999981° W. long. 

From equation (15-5), 

<l> = 2 arctan (1.0 x 1.9550002/1.2953636)110· 6304777 -90° 
= 34.9999974° N. lat. 

LAMBERT CONFORMAL CONIC (ELLIPSOID)-,. FORWARD EQUATIONS 
(SEEP. 107-108) 

Given: Clarke 1866 ellipsoid: 

or 
Standard parallels: 

Origin: 

Point: 

Find: p, 8, x, y, k 

From equation (14-15), 

a = 6,378,206.4 m 
e2 = 0.00676866 
e = 0.0822719 
<l>1 = 33° N. lat. 
<j>2 = 45° N. lat. 
<l>o = 23° N. lat . 
.\0 = 96° W. long. 
<J> = 35° N. lat. 
A = 75° W. long. 

m 1 =cos 33°/(1-0.00676866 sin2 33°)112 

= 0.8395138 
m2 =cos 45°/(1-0.00676866 sin2 45°)112 

= 0.7083064 

From equation (15-9), 

t 1 =tan (45°-33°/2)/[(1-0.0822719 sin 33°)/(1 + 0.0822719 sin 33°)]0082271912 

= 0.5449623 
t2 = 0.4162031, using above with 45° in place of 33°. 
t0 = 0.6636390, using above with 23° in place of 33°. 

From equations (15-8), (15-10), and (15-7a) in order, 

n =In (0.8395138/0. 7083064)/ln (0.5449623/0.4162031) 
= 0.6304965 
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F = 0.8395138/(0.6304965 X 0.54496230.6304965) 
= 1.9523837 

Po = 6378206.4 X 1.9523837 X 0.66363900.6304965 
= 9,615,955.2 m 

The above are constants for the map. For the specific <!>, A., using equation 
(15-9), 

t = 0.5225935, using above calculation with 35° in place of 33°. 

From equations (15-7), (14-4), (14-1), and (14-2) in order, 

p = 6378206.4 X 1.9523837 X 0.52259350·6304965 
= 8,271,173.9 m 

e = 0.6304965 x [ -75°-( -96°)] = 13.2404256° 
x = 8271173.9 sin 13.2404256° 

= 1,894,410.9 m 
y = 9615955.2-8271173.9 cos 13.2404256° 

= 1,564,649.5 m 

From equations (14-15) and (14-16), 

m =cos 35°/(1-0.00676866 sin2 35°)112 

= 0.8200656 
k = 8271173.9 X 0.6304965/(6378206.4 X 0.8200656) 

= 0.9970171 

LAMBERT CONFORMAL CONIC (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 109 ) 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: 

or 
Standard parallels: 

Origin: 

Point: 

a = 6,378,206.4 m 
e2 = 0.00676866 
e = 0.0822719 

<1> 1 = 33o N. lat. 
<1>2 = 45o N. lat. 
<l>o = 23o N. lat. 
A.0 = 96° W. long. 
x = 1,894,410.9 m 
y = 1,564,649.5 m 

The map constants n, F, and p0 are calculated as in the forward example, obtain
ing the same values. Then, from equation (14-10), 

p = [1894410.92 + (9615955.2 - 1564649.5)2
] 112 

= 8,271,173.8 m 

From equation (14-11), 

e =arctan [1894410.9/(9615955.2 - 1564649.5)] 
= 13.2404257°. The denominator is positive; therefore e is not adjusted. 

From equation (15-11), 

t = [8271173.8/(6378206.4 X 1.9523837))110.6304965 
= 0.5225935 
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To use equation (7-9), an initial trial <1> is found as follows: 

<1> = 90° - 2 arctan 0.5225935 
= 34.8174484° 

Inserting this into the right side of equation (7-9), 

<1> = 90° - 2 arctan (0.5225935 x [(1-0.0822719 sin 34.8174484°)/ 
(1 + 0.0822719 sin 34.8174484°)]o.os22719/2 

= 34.9991687° 

Replacing 34.8174484° with 34.9991687° for the second trial, a <1> of 34.9999969° is 
obtained. Recalculation with the new <1> results in <1> = 35.0000006°, which does not 
change to seven decimals with a fourth trial. (This is not exactly 35°, due to 
rounding-off errors.) Therefore, 

<1> = 35.0000006° N. lat. 

From equation (14-9), 

A = 13.2404257°/0.6304965 + ( -96°) 
= -75.0000013° = 75.0000013° W. long. 

Examples using equations (3-5) and (7-13) are omitted here, since compara
ble examples for these equations have been given above. 

EQUIDISTANT CONIC (SPHERE)- FORWARD EQUATIONS (SEE P.113) 

Given: Radius of sphere: R = 1.0 unit 
Standard parallels: <1> 1 = 29° 30' N. lat. 

<1>2 = 45° 30' N. lat. 
<l>o = 23° N. lat. Origin: 
Ao = 96° W. long. 

Point: <1> = 35° N. lat. 
A = 75° W. long. 

Find: p, e, x, y, k 

From equations (16-4), (16-3), (16-2), (16-1), and (14-4) in order, 

n = (cos 29.5°-cos 45.5°)/[(45.5°-29.5°) x 111180°] 
0.6067853 

G (cos 29.5°)/0.6067853 + 29.5° x 11/180° 
= 1.9492438 

Po 1.0 X (1.9492438 - 23° X 11/180°) 
= 1.5478181 units 

p 1.0 X (1.9492438-35° X 11/180°) 
1.3383786 units 

e = 0.6067853 X ( -75°-(-96°)] 
12.7 424921° 

Using equations (14-1), (14-2), and (16-5) in order, 

x 1.3383786 sin 12.7424921° 
0.2952057 unit 

y 1.5478181 - 1.3383786 cos 12.7424921° 
0.2424021 unit 
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k (1.9492438 - 35° x 11"1180°) x 0.6067853/cos 35° 
0.99140 

EQUIDISTANT CONIC (SPHERE)-INVERSE EQUATIONS (SEE P.l13) 

Inversing forward example: 

Given: R, <j:l 11 <j:l2 , <!>0 , ~0 for forward example 

Find: p, e, <j:l, ~ 

x = 0.2952057 unit 
y = 0.2424021 unit 

Calculating n, G, and p0 as in the forward example, 

n = 0.6067853 
G = 1.9492438 
Po = 1.5478181 units 

Using equations (14-10) and (14-11) in order, 

p = + [0.29520572 + (1.5478181-0.2424021)2
] 112 

= 1.3383786 units, positive because n is positive 
e =arctan [0.2952057/(1.5478181-0.2424021)] 

= 12.7 424933°, not adding 180° since denominator is positive 

Using equations (16-6) and (14-9) in order, 

<!> = [1.9492438 - 1.3383786/1.0) X 180°/11" 
= 35° N. lat. 

A = -96° + 12.7424933°/0.6067853 
= -75° = 75° W. long. 

EQUIDISTANT CONIC (ELLIPSOID)- FORWARD EQUATIONS (SEE P.l14) 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Standard parallels: <j:l1 = 29° 30' N. lat. 
<j:l2 = 45° 30' N. lat. 

Origin: <Po = 23° N. lat. 
Ao = 96° W. long. 

Point: <j:l = 35° N. lat. 
A = 75° W. long. 

Find: p, e, X, y, k 

From equations (14-15) and (3-21), 

m =cos 35°/(1-0.00676866 sin2 35°)112 

= 0.8200656 
M = 6,378,206.4 X [(1-0.00676866/4-3X0.006768662/64 

- 5 X 0.006768663/256) X 35° X 11"/180° - (3X0.00676866/ 
8 + 3 X 0.006768662/32 + 45 X 0.006768663/1024) 
sin (2x35°) + (15x0.006768662/256 + 45 x 0.006768663/ 

1024) sin (4X35°) - (35x0.006768663/3072) 
sin (6x35°)] 

= 3,874,395.2 m 
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Using the same equations, but with <1>1 = 29.5° in place of 35°, 

m 1 = 0.8710708 
M 1 = 3,264,511.2 m 

Similarly, with <1>2 = 45.5° in place of 35°, 

m2 = 0. 7021191 
M2 = 5,040,295.0 m 

and with <l>o = 23° in place of 35°, 

M0 = 2,544,389.8 m 

Using equations (16-10), (16-11), (16-9), (16-8), and (14-4) in order, 

n = 6,378,206.4 x (0.8710708-0. 7021191)/(5,040,295.0-3,264,511.2) 
= 0.6068355 

G = 0.8710708/0.6068355 + 3,264,511.2/6,378,206.4 
= 1.9472543 

Po= 6,378,206.4 X 1.9472543 - 2,544,389.8 
= 9,875,599.9 m 

p = 6,378,206.4 X 1.9472543 - 3,874,395.2 
= 8,545,594.4 m 

e = 0.6068355 x [ -75°-( -96°)] 
= 12.7 435458° 

Constants n, G, and p0 apply to the entire map. 
Using equations (14-1), (14-2), and (16-7) in order, 

x = 8,545,594.4 x sin 12.7435458° 
= 1,885,051.9 m 

y = 9,875,599.9 - 8,545,594.4 X COS 12.7435458° 
= 1,540,507.6 m 

k = (1.9472543-3,874,395.2/6,378,206.4) 
X 0.6068355/0.8200656 

= 0.99144 

EQUIDISTANT CONIC (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 114) 

Inversing forward example: 
Given: a, e2

, <1> 11 <1>2 , <1>0 , A.0 for forward example 

x = 1,885,051.9 m 
y = 1,540,507.6 m 

Calculating n, G, and p0 as in the forward example, 

n = 0.6068355 
G = 1.9472543 
Po= 9,875,599.9 m 
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Using equations (14-10), (14-11), (16-12), (7-19), (3-24), and (3-26) in order, 

p = + [1,885,051.92 + (9,875,599.9-1,540,507.6)2
] 112 

= 8,545,594.4 m 
e =arctan [1,885,051.9/(9,875,5gg_g-1,540,507.6)] 

= 12.7435461 o, not adding 180° since denominator is positive. 
M = 6,378,206.4 X 1.9472543 - 8,545,594.4 

= 3,874,395.4 m 
J.L = 3,874,395.4/[6,378,206.4 X (1-0.00676866/4 

- 3 x 0.006768662/64-5x0.006768663/256)] 
= 0.6084737 radians = 34.8629767° 

e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866)112] 

= 0.001697916 
<1> = 34.8629767° + [(3x0.001697916/2-27x0.0016979163

/ 

32) sin (2x34.8629767°) + (21x0.0016979162/16 
- 55 x 0.0016g7g164/32) sin (4x34.862g767°) 
+ (151x0.0016979163/96) sin (6x34.862g767°) 
+ (1097X0.0016979164/512) sin (8x34.8629767°)] 
X 180°/"TT 

= 35° N. lat. 

Using equation (14-g), 

X. = -g6o + 12.7435461°/0.6068355 
= -75° = 75° W. long. 

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)- FORWARD EQUATIONS 
(SEEP. 118-120 ) 

This example will illustrate equations (17 -14) through (17 -23), assuming prior 
calculation of the constants from equations (17 -1) through (17 -13). 

Given: Radius of sphere: R = 6,370,997 m 
Point: <1> = 40° N. lat. 

X. = goo W. long. 

Find: x, y, k 

From equations (17-14) and (17-15), 

z8 =arccos \sin 45° sin 40° + cos 45° cos 40° cos [( -19o5g'36") 
-(-goo)]) 

= 50.22875° 
Az8 =arctan \sin ( -1go59'36" + 90°)/[cos 45° tan 40° - sin 45° cos 

( -19o5g'36" + goon) 
= 6g.48856° 

Since 6g.48856° is less than 104.42834°, proceed to equation (17 -16). 
From equations (17-16) through (17-22), 

p8 = 1.89725 x 637ogg7 tan°·63056 (1/zx50.22875°) 
= 7,496,100 m 

k = 7,496,100 x 0.63056/(6370gg7 sin 50.22875°) 
= o.g6527 
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a= arccosj[tan°·63056 (VzX50.22875°) + tan°·63056 %(104° 
-50.22875°)]/1.27247) 

= 1.88279° 
n(Az8 A -Az8 ) = 0.63056 X (104.42834°- 69.48856°) = 22.03163° 

This is greater than a, so p8 ' = p8 • 

x' = 7,496,100 sin [0.63056 (104.42834°-69.48855°)] 
= 2,811,900 m 

y' = 7,496,100 cos [0.63056 (104.42834°-69.48855°)] 
-1.20709 X 6,370,997 

= -741,670 m 

From equations (17 -32) and (17 -33), 

x = -2,811,900cos45.81997° + 741670sin45.81997° 
= -1,427,800 m 

y = 741,670 cos 45.81997° + 2811900 sin 45.81997° 
= 2,533,500 m 

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)- INVERSE EQUATIONS 
(SEEP. 120-121) 

Inversing the forward example: 

Given: Radius of sphere: R = 6,370,997 m 
Point: 

Find: <j>, A. 

x = -1,427,800 m 
y = 2,533,500 m 

From equations (17-34) and (17-35), 

x' = -( -1,427,800) cos 45.81997° + 2,533,500 sin 45.81997° 
= 2,811,900 m 

y' = -( -1,427,800) sin 45.81997° - 2,533,500 cos 45.81997° 
= -741,670 m 

Since x' 'is positive, go to equations (17-36) through (17-44) in order: 

p'8 = [2,811,9002 + (1.20709x6,370,997- 741,670)2
] 112 

= 7,496,100 m 
Az' 8 =arctan [2,811,900/(1.20709 x 6,370,997 - 741,670)] 

= 22.03150° (The denominator is positive, so there is no 
quadrant correction.) 

p8 = 7,496,100 m 
z8 = 2 arctan [7,496,100/(1.89725x6,370,997)]110·63056 

= 50.22873° 
a= arccos j[tan°·63056 (V2X50.22873°) 

+ tan°·63056 112(104°-50.22873°)]/ 1.27247) 
= 1.88279° 

Since Az'8 is greater than a, go to equation (17-42). 

Az8 = 104.42834° - 22.03150°/0.63056 
= 69.48876° 
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tj> =arcsin (sin 45° cos 50.22873° + cos 45° sin 50.22873° cos 
69.48876°) 

= 39.99987° or 40° N. lat., if rounding off had not 
accumulated errors. 

X.= ( -19°59'36")-arctan (sin 69.48876°/[cos 45°/tan 50.22873° 
- sin 45° cos 69.48876°]) 

= -89.99987° or 90° W. long., if rounding off had not 
accumulated errors. 

POLYCONIC (SPHERE)- FORWARD EQUATIONS (SEEP. 128-129) 

Given: Radius of sphere: R = 1.0 unit 
Origin: 

Point: 

Find: x, y, h 

tj>0 = 30° N. lat. 
A.0 = 96° W. long. 
tj> = 40° N. lat. 
X.= 75° W. long. 

From equations (18-2) through (18-4), 

E = ( -75° + 96°) sin 40° 
= 13.4985398° 

x = 1. 0 cot 40° sin 13.4985398° 
= 0.2781798 unit 

y = 1.0 x [40° x 'IT/180°- 30° x 'IT/180° + cot 40° (1-cos 13.4985398°)] 
= 0.2074541 unit 

From equations (18-6) and (18-5), 

D = arctan ((13.4985398° x 'IT/180° - sin 13.4985398°)/(sec2 40° -
cos 13.4985398°)) 

= 0.17018327° 
h = (1-cos2 40° cos 13.4985398°)/sin2 40° cos 0.17018327° 

= 1.0392385 

POLYCONIC (SPHERE)- INVERSE EQUATIONS (SEEP. 129) 

Inversing the forward example: 

Given: Radius of sphere: 
Origin: 

Point: 

Find: tj>, X. 

R = 1.0 unit 
tj>0 = 30° N. lat. 
'11.0 = 96° W. long. 
x = 0.2781798 unit 
y = 0.2074541 unit 

Since y 4:. -1.0 x 30° x 'IT/180°, use equations (18-7) and (18-8): 

A= 30° X 'IT/180° + 0.2074541/1.0 
= 0.7310529 

B = 0.27817982/1.02 + 0. 73105292 

= 0.6118223 

Assuming an initial <1>n = A = 0. 7310529 radians, it is simplest to work with 
equation (18-9) in radians: 
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<l>n+ 1 = 0. 7310529 - [0. 7310529 X (0. 7310529 tan 0. 7310529 + 1) 
-0. 7310529-lfz(O. 73105292 + 0.6118223) tan 0. 7310529]/ 
[(0. 7310529 - 0. 7310529)/tan 0. 7310529-1] 

= 0.6963533 radian 

Using 0.6963533 in place of 0. 7310529 (except that the boldface retains the value 
of A) a new <Pn+l of 0.6981266 radian is obtained. Again substituting this value, 
0. 6981317 radian is obtained. The fourth iteration results in the same answer to 
seven decimal places. Therefore, 

<1> = 0.6981317 x 180°/'lT = 40.0000004° or 40° N. lat. 

From equation (18-10), 

h.= [arcsin (0.2781798 tan 40°/1.0)]/sin 40° + ( -96°) 
= -75.0000014° = 75° W. long. 

POLYCONIC (ELLIPSOID)- FORWARD EQUATIONS (SEEP. 129-130) 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 

Find: x, y, h 

From equation (3-21), 

e2 = 0.00676866 
Origin: <l>o = 30° N. lat. 

1\.0 = 96° W. long. 
Point: <1> = 40° N. lat. 

'A = 75° W. long. 

M = 6,378,206.4 X [(1-0.00676866/4 - 3 X 0.006768662/64 
-5X0.006768663/256) X 40° X '!T/180° - (3X0.00676866/8 
+3X0.006768662/32 + 45 X 0.006768663/1024) 
sin (2x40°) + (15x0.006768662/256 + 45 x 0.006768663/1024) 
sin (4x40°) - (35x0.006768663/3072) sin (6x40°)] 

= 4,429,318.9 m 

Using 30° in place of 40°, 

From equation (4-20), 

M0 = 3,319,933.3 m 

N = 6,378,206.4/(1-0.00676866 sin2 40°)112 

= 6,378,143.9 m 

From equations (18-2), (18-12), and (18-13), 

E = ( -75° + 96°) sin 40° 
= 13.4985398° 

x = 6,387,143.9 cot 400 sin 13.4985398° 
= 1,776,774.5 m, 

y = 4,429,318.9 - 3,319,933.3 + 6,387,143.9 cot 40° 
(1-cos 13.4985398°) 

= 1,319,657.8 m 
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To calculate scale factor h, from equations (18-16) and (18-15), 

D = arctan \(13.4985398° x 11'1180° - sin 13.4985398°)/[sec2 40° 
- cos 13.4985398° - 0.00676866 sin2 40°/(1-0.00676866 
sin2 40°)]j 

= 0.1708380522° 
h = [1-0.00676866 + 2(1-0.00676866 sin2 40°) sin2 

V2(13.4985398°)/tan2 40°]/(1-0.00676866) cos 0.1708380522° 
= 1.0393954 

POLYCONIC (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 130-131) 

Inversing the forward example: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 

Find: <f>, A. 

e2 = 0.00676866 
Origin: <f>o = 30° N. lat. 

A.0 = 96° W. long. 
Point: x = 1,776,774.5 m 

y = 1,319,657.8 m 

First calculating M 0 from equation (3-21), as in the forward example, 

M 0 = 3,319,933.3 m 

Since y 9= M 0 , from equations (18-18) and (18-19), 

A = (3,319,933.3 + 1,319,657.8)/6,378,206.4 
= 0.7274131 

B = 1,776,774.52/6,378,206.42 + 0.72741312 

= 0.6067309 

Assuming an initial value of <f>n = 0. 7274131 radian, the following calculations are 
made in radians from equations (18-20), (3-21), (18-17), and (18-21): 

C = (1-0.00676866 sin2 0. 7274131)112 tan 0. 7274131 
= 0.8889365 

Mn = 4,615,626.1 m 
M'n = 1- 0.00676866/4- 3X0.006768662/64- 5 X 0.006768663/256 

- 2 X (3X0.00676866/8 + 3 X 0.006768662/32 + 45 
X 0.006768663/1024) COS (2X0.7274131) + 4 X (15 
X 0.006768662/256 + 45 X 0.006768663/1024) COS (4 
X 0.7274131) - 6 X (35X0.006768663/3072) COS (6 
X 0. 7274131) 

= 0.9977068 
Ma = 4,615,626.1/6,378,206.4 = 0.7236558 

<f>n+l = 0. 7274131 - [0. 7274131 X (0.8889365 X 0. 7236558 + 1) 
- 0. 7236558 - lfz(O. 72365582 + 0.6067309) X 0.8889365]/ 
[0.00676866 sin (2x0.7274131) x (0.72365582 + 0.6067309 
- 2 X 0.7274131 X 0.7236558)/(4X0.8889365) 
+ (0.7274131 - 0.7236558) X (0.8889365 X 0.9977068 
- 2/sin (2x0.7274131))- 0.9977068] 

= 0.6967280 radian 
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Substitution of 0.6967280 in place of 0. 7274131 in equations (18-20), (3-21), 
(18-17), and (18-21), except for boldface values, which are A, not <l>n, a new 
<l>n + 1 of 0. 6981286 is obtained. Using this in place of the previous value results in a 
third <l>n+ 1 of 0.6981317, which is unchanged by recalculation to seven decimals. 
Thus, 

<1> = 0.6981317 x 180°/'lT = 40.0000005° = 40° N. lat. 

From equation (18-22), using the finally calculated C of 0.8379255, 

A= [arcsin (1, 776,774.5 x 0.8379255/6,378,206.4)]/sin 40° + ( -96°) 
= -75° = 75° W. long. 

MODIFIED POLYCONIC (IMW)-FORWARD EQUATIONS (SEEP. 131, 134-135) 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

Northernmost lat. of quad: 
Southernmost lat. of quad: 

Central meridian: 
Meridian true to scale: 

Point: 

<1>2 = 40° N. lat. 
<1> 1 = 36° N. lat. 
Ao = 75° W. long. 
A1 = 73o W. long. 

<1> = 39° N. lat. 
A = 76° W. long. 

For constants applying to entire map, using equations (18-26) and (18-27) for 
n = 1, 

R 1 = 6,378,388.0 x cot 36°/(1-0.00672267 x sin2 36°)112 

= 8,789,311.0 m 
F 1 = [ -73°-( -75°)] sin 36° 

= 1.1755705° 

Using <1>2 = 40° for n = 2 in the same equations, 

R 2 = 7,612,045.9 m 
F 2 = 1.2855752° 

Using equations (18-23) through (18-25) for n = 1 and 2, 

x1 = 8, 789,311.0 x sin 1.1755705° 
= 180,322.7 m 

x2 = 7,612,045.9 x sin 1.2855752° 
= 170,781.1 m 

y1 =8,789,311.0 x (1-cos 1.1755705°) 
= 1,849.957 m 

T2 = 7,612,045.9 x (1-cos 1.2855752°) 
= 1,916.033 m 

Using equation (3-21) for n = 1, 

M1 = 6,378,388 X [(1-0.00672267/4- 3 X 0.006722672/4 
- 5 X 0.006722673/256) X 36° X 'lT/180° - (3 X 0.00672267/ 
8 + 3 X 0.006722672/32 + 45 X 0.006722673/1024) 
sin (2x36°) + (15X0.006722672/256 + 45 
x 0.006722673/1024) sin (4x36°) - (35x0.006722673

/ 

3072) sin (6X36°)] 
= 3,985,606.6 m 
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Repeating the calculation for n = 2 and 4>2 = 40°, 

M2 = 4,429,605.0 m 

Using equations (18-28) through (18-33) in order, 

Y2 = [(4,429,605.0-3,985,.606.6)2 
- (170,781.1 - 180,322.7)2

] 112 

+ 1,849.957 
= 445,745.8 m 

C2 = 445,745.8- 1,916.033 
= 443,829.8 m 

p = (4,429,605.0 X 1,849.957- 3,985,606.6 X 445,745.8)/ 
(4,429,605.0 - 3,985,606.6) 

= -3,982,836.2 m 
Q = (445,745.8 - 1,849.957)/(4,429,605.0 - 3,985,606.6) 

= 0.9997691 
P' = (4,429,605.0 X 180,322.7 - 3,985,606.6 X 170, 781.1)/ 

(4,429,605.0 - 3,985,606.6) 
= 265,974.0 m 

Q' = (170,781.1- 180,322.7)/(4,429,605.0- 3,985,606.6) 
= -0.02149016 

The above constants apply to the entire quadrangle. The following values are for 
the specific point. Using equations (3-21) and (18-26) without subscripts, for 
<f> = 39°, 

M = 4,318,576.8 m 
R = 7,887,159.9 m 

Using equations (18-34) through (18-40) in order, 

Xa = 265,974.0 + (-0.02149016) X 4,318,576.8 
= 173,167.1 m 

Ya = -3,982,836.2 + 0.9997691 X 4,318,576.8 
= 334,743.2 m 

c = 334,743.2- 7,887,159.9 + (7,887,159.92 -173,167.12)112 

= 332,842.0 m 
Xb = 7,612,045.9 sin [( -76°-( -75°)) sin 40°] 

= -85,395.9 m 
Yb = 443,829.8 + 7,612,045.9 x (1-cos [( -76°-( -75°)) sin 40°]) 

= 444,308.8 m 
Xc = 8,789,311.0 sin [(-76°-(-75°)) sin 36°] 

= -90,166.1 m 
Yc =8,789,311.0 X (1- cos [(-76°-(-75°)) sin 36°]) 

== 462.5 m 

Using equations (18-41) through (18-44), 

D = [ -85,395.9-( -90,166.1)]/[444,308.8-462.5] 
== 0.01074735 

B == -90,166.1 + 0.01074735 X (332,842.0+7,887,159.9-462.5) 
== -1,827.9 m 

X = (-1,827.9-0.01074735 X [7,887,159.92 X (1 +0.010747352)

( -1,827.9)2]112}/(1 + 0.010747352) 

= -86,588.8 m 
y = 332,842.0 + 7,887,159.9- [7,887,159.92 - (-86,588.8)2]112 

= 333,317.3 m 

307 



308 MAP PROJECTIONS-A WORKING MANUAL 

MODIFIED POLYCONIC (IMW)-INVERSE EQUATIONS (SEE P.135) 

Inversing forward example: 

Given: a, e2
, <h, <j> 1 , A.0 , .\1 for forward example 

x = -86,588.8 m 
y = 333,317.3 m 

These constants are calculated exactly as in the forward case, and have the same 
values for this example: x~> x2 , YI> M 1, M2 , y2 , C2 , P, Q, P', Q'. The first trial 
<j> and A., or <l>ti and Ati, are found from equations (18-47) and (18-48): 

<l>ti = 40° 
Afl = [ -86,588.8/(6,378,388.0 X cos 40°)) X 180°/7T + ( -75°) 

= -76.0153586° 

Calculating x, y for these trial values of <j>, A., exactly as in the forward case, 
results in the following test values: 

Yc = 476.8 m 
xn = -86,707.4 m 
Ytl = 444,323.6 m 

The new trial <j> and A. are found from equations (18-49) and (18-50): 

<l>t2 = [(40°-36°) X (333,317.3-476.8)/(444,323.6-476.8)) +36° 
= 38.999598° 

Atz = [(-76.0153586°-( -75°)) X ( -86,588.8)/(-86, 707.4)] + ( -75°) 
= -76.0139694° 

Calculating x, y from tt -'se trial values, and then recalculating <j>, A.: 

Yc = 475.5 m 
Xtz = -87,798.8 m 
Ytz = 333,286.1 m 
<l>t3 = 38.9998792° 
At3 = -75.9999952° 

The next iteration produces the following: 

Then 

Yc = 462.5 m 
Xt3 = -86,588.5 m 
Yt3 = 333,303.9 m 
<l>t4 = 38.9999997° 
At4 = -75.9999984° 

Yc = 462.5 m 
Xt4 = -86,588.7 m 
Yt4 = 333,317.3 m 
<l>t5 = 38.9999996° 
Ats = -76.0000001 o 
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And finally, since there is no significant change, 

Yc = 462.5 m 
Xts = -86,588.8 m 
Yt5 = 333,317.3 m 
<l>t6 = 38.9999996° 
At6 = -76.0000001° 

Thus, <!> = 39° N. lat. and A = 76° W. long. 

BONNE (SPHERE)- FORWARD EQUATIONS (SEEP. 139-140) 

Given: Radius of sphere: R 
Standard parallel: <!> 1 

Central meridian: Ao 
Point: <!> 

A 

1.0 unit 
40° N. lat. 
75° W. long. 
30° N. lat. 
85° W. long. 

Find: x, y 

Using equations (19-1) through (19-4) in order, 

p = 1.0 x [cot 40° + (40°-30°) x ,./180°] 
= 1.3662865 units 

E = 1.0 X [ -85° - ( -75°)] cos 30°/1.3662865 
= -6.3385344° 

x = 1.3662865 sin ( -6.3385344°) 
= -0.1508418 unit 

y = 1.0 cot 40° - 1.3662865 cos ( -6.3385344°) 
= -0.1661807 unit 

BONNE (SPHERE)- INVERSE EQUATIONS (SEE P.140) 

Inversing forward example: 

Given: R, <j>1 , A.0 for forward example 

Find:<!>, A. 

x = -0.1508418 unit 
y -0.1661807 unit 

Using equations (19-5) through (19-7) in order, 

p = [(-0.1508418)2 + (l.Ocot40°-(-0.1661807))2]1'.! 
= 1.3662865 units 

<!> = (cot 40°) x 180°/'lT + 40°-(1.3662865/1.0) x 180°/,. 
= 30° N. lat. 

A = -75° + 1.3662865 x (arctan [ -0.1508418/(1.0 cot 40° 
- ( -0.1661807))])/(1.0 cos 30°) 

= -75° + 1.3662865 x (arctan [ -0.1508418/1.3579343])/ 
cos 30° 

= -85° = 85° W. long., not adding 180° to the arctan because 
the denominator is positive. 
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BONNE (ELLIPSOID)- FORWARD EQUATIONS (SEE P.140) 

Clarke 1866 ellipsoid: a 
e2 

Standard parallel: cj>1 

Central meridian: Ao 
Point: cJ> 

A 

= 6,378,206.4 m 
= 0.00676866 
= 40° N. lat. 
= 75° W. long. 
= 30° N. lat. 
= 85° W. long. 

Find: x, y 

Using equations (14-15) and (3-21), 

m = cos 30°/(1-0.00676866 sin2 30°)1-2 
= 0.8667591 

M = 6,378,206.4 X [(1-0.00676866/4-3X0.006768662/64 
-5X0.006768663/256) X 30° X 7r/180°- (3X0.00676866/8 
+ 3 X 0.006768662/32 + 45 X 0.006768663/1024) 
sin (2x30°) + (15x0.006768662/256 + 45 x 0.006768663

/ 

1024) sin (4x30°) - (35X0.006768663/3072) sin (6x30°)] 
= 3,319,933.3 m 

Using the same equations, but with cj>1 = 40° in place of 30°, 

m 1 = 0. 7671179 
M1 = 4,429,318.9 m 

Using equations (19-8) through (19-11) in order, 

p = 6,378,206.4 x 0. 7671179/sin 40° + 4,429,318.9 - 3319933.3 
= 8,721,287.6 m 

E = 6,378,206.4 X 0.8667591 X [ -85° - ( -75°)]/8, 721,287.6 
= -6.3389360° 

x = 8, 721,287.6 sin ( -6.3389360°) 
= -962,915.1 m 

y = 6,378,206.4 x 0.7671179/sin 40°-8,721,287.6 cos (-6.3389360°) 
= -1,056,065.0 m 

BONNE (ELLIPSOID)- INVERSE EQUATIONS (SEE P.l40) 

Inversing forward example: 

Given: a, e2
, cl>b A0 for forward example 

x = -962,915.1 m 
y -1,056,065.0 m 

Find: cj>, A 

Using equations (14-15) and (3-21), m 1 and M 1 are calculated as in the forward 
example: 

m 1 = 0. 7671179 
M 1 = 4,429,318.9 m 

Using equations (19-12), (19-13), (7-19), (3-24), and (3-26) in order, 
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p == [( -962,915.1)2 + (6,378,206.4 x 0. 7671179/sin 40°- ( -1,056,065.0))2)1'2 
= 8,721,287.6 m 

M = 6,378,206.4 x 0.7671179/sin 40° + 4,429,318.9-8,721,287.6 
= 3,319,933.3 m 

f.l. = (3,319,933.3/[6,378,206.4 X (1-0.00676866/4 
- 3 X 0.006768662/64 - 5 X 0.006768663/256))) X 180°/'TT 

= 29.8737595° 
e1 = [1-(1-0.00676866)~'>]/[1 + (1-0.00676866)1'2] 

= 0.001697916 
<!> = 29.8737595° + [(3 X 0.001697916/2-27 X 0.0016979163/32) 

sin (2 x 29.8737595°) + (21 x 0.0016979162/16 
- 55 x 0.0016979164/32) sin (4 x 29.8737595°) 
+ (151 x 0.0016979163/96) sin (6 x 29.8737595°) 
+ (1097 X 0.0016979164/512) sin (8 X 29.8737595°)] X 180°hr 

= 30° N. lat. 

Using equation (14-15), 

m cos 30°/(1-0.00676866 x sin2 30°)1'2 
0.8667591 

Using equation (19-14), 

A = -75° + 8721287.6 x (arctan [ -962,915.11 
(6,378,206.4 x 0. 7671179/sin 40° - ( -1,056,065.0))]]/ 
(6,378,206.4 X 0.8667591) 

= -85° = 85° W. long. 

ORTHOGRAPHIC (SPHERE)- FORWARD EQUATIONS (SEEP. 148-149) 

Given: Radius of sphere: R = 1.0 unit 
Center: 

Point: 

Find: x, y 

<1>1 = 40° N. lat. 
A0 = 100° W. long 

<1> = 30° N. lat. 
A= 110° W. long. 

In general calculations, to d~termine whether this point is beyond viewing, using 
equation (5-3), 

cos c = sin 40° sin 30° + cos 40° cos 30° cos (- 11 oo + 100°) 
= 0.9747290 

Since this is positive, the point is within view. 
Using equations (20-3) and (20-4), 

x = 1.0 cos 30° sin ( -110° + 100°) 
= -0.1503837 

y = 1. 0 [cos 40° sin 30° - sin 40° cos 30° cos (- 11 oo + 100°)) 
= -0.1651911 

Examples of other forward equations are omitted, since the formulas for the 
oblique aspect apply generally. 
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ORTHOGRAPHIC (SPHERE)- INVERSE EQUATIONS (SEEP. 150) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Center: 

Point: 

Find: <j>, A 

<1> 1 = 40° N. lat. 
Ao =woo W. long. 
x = -0.1503837 unit 
y = -0.1651911 unit 

Using equations (20-18) and (20-19), 

p = [( -0.1503837)2 + ( -0.1651911)2]112 

= 0.2233906 
c = arcsin (0.2233906/1.0) 

= 12.9082572° 

Using equations (20-14) and (20-15), 

<1> =arcsin [cos 12.9082572° sin 40° + (-0.1651911 sin 
12.9082572° cos 40°/0.2233906)] 

= 30.0000007°, or 30° N. lat. if rounding off did not occur. 
A= -woo + arctan [ -0.1503837 sin 12.9082572°/(0.2233906 

cos 40° cos 12.9082572° + 0.1651911 sin 40° sin 
12. 9082572°)] 

=-woo + arctan [ -0.0335943/0.1905228] 
= -100° + (-9.9999964°) 
= -109.9999964°, or 110° W. long. if rounding off did not 

occur 

Since the denominator of the argument of arctan is positive, no adjustment for 
quadrant is necessary. 

STEREOGRAPHIC (SPHERE)-FORWARD EQUATIONS (SEEP. 157-158) 

Given: Radius of sphere: R = 1.0 unit 
Center: 

Central scale factor: 

<1> 1 = 40° N. lat. 
Ao = 100 W. long. 
ko = 1.0 

Point: <1> = 30° N. lat. 
A = 75° W. long. 

Find: x, y, k 

Using equations (21-4), (21-2), and (21-3) in order, 

k = 2 x 1.0/[1 + sin 40° sin 30° + cos 40° cos 30° cos ( -75° + 100°)] 
= 1.0402304 

x = 1. 0 x 1. 0402304 cos 30° sin ( -75° + W0°) 
= 0.3807224 unit 

y = 1. 0 x 1. 0402304 [cos 40° sin 30° - sin 40° cos 30° cos ( -75° + W0°)] 
= -0.1263802 unit 

Examples of other forward equations are omitted, since the above equations are 
general. 



APPENDIX A: NUMERICAL EXAMPLES 

STEREOGRAPHIC (SPHERE)- INVERSE EQUATIONS (SEEP. 158-159) 

Inversing forward example: 

Given: Radius of sphere: 
Center: 

Central scale factor: 
Point: 

Find: <!>, X. 

R = 1.0 unit 
<1> 1 = 40° N. lat . 
.\0 = 100 W. long. 
k0 = 1.0 
x = 0.3807224 unit 
y = -0.1263802 unit 

Using equations (20-18) and (21-15), 

p = [0.38072242 + ( -0.1263802)2
] 112 = 0.4011502 units 

c = 2 arctan [0.4011502/(2Xl.Oxl.O)] 
= 22.6832261° 

Using equations (20-14) and (20-15), 

<!> =arcsin [cos 22.6832261° sin 40° + (-0.1263802) 
sin 22.6832261 o cos 40°/0.4011502] 

= arcsin 0.5000000 = 30° = 30° N. lat. 
X. = -100° + arctan [0.3807224 sin 22.6832261 °/(0.4011502 

cos 40° cos 22. 6832261 o + 0.1263802 sin 40° sin 22. 6832261 °)] 
= -100° + arctan (0.1468202/0.3148570) 
= -100° + 25.0000013° 
= -74.9999987° = 75° W. long. 

except for effect of rounding-off input data. Since the denominator of the argu
ment of arctan is positive, no quadrant adjustment is necessary. If it were negative, 
180° should be added. 

STEREOGRAPHIC (ELLIPSOID)- FORWARD EQUATIONS (SEEP. 160-161) 

Oblique aspect: 

Given: Clarke 1866 ellipsoid: 

or 
Center: 

Central scale factor: 
Point: 

Find: x, y, k 

From equation (3-1), 

a = 6,378,206.4 m 
e2 = 0.00676866 
e = 0.0822719 

<1>1 = 40° N. lat. 
.\0 = 100° W. long. 
k 0 = 0.9999 

<1> = 30° N. lat. 
X.= 90° W. long. 

x1 = 2 arctan (tan (45°+40°/2) [(1-0.0822719 sin 40°)/ 
(1 +0.0822719 sin 40°)]0.0822719t2) -90° 

= 2 arctan 2.1351882 - 90° 
== 39.8085922° 

x = 2 arctan (tan (45°+30°/2) [(1-0.0822719 sin 30°)/ 
(1 + 0.0822719 sin 30°)]0.0822719t2] _ goo 
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= 2 arctan 1. 7261g56 - goo 
= 29.831833go 

From equation (14-15), 

From equation (21-27), 

m1 =cos 40°/(1-0.00676866 sin2 40°)112 
= 0.7671179 

m =cos 30°/(1-0.00676866 sin2 30°)112 

= 0.86675g1 

A = 2 X 6,378,206.4 X 0. 9g99 X 0. 767117g/(cos 39.8085922° 
[1Xsin 39.8085922° sin 29.8318339° + cos 39.8085922° 
cos 2g.8318339° cos ( -90° + 100°)]) 

= 6,450,107.7 m 

From equations (21-24), (21-25), and (21-26), 

x = 6,450,107. 7 cos 29.8318339° sin ( -90° + 100°) 
= 971,630.8 m 

y = 6,450,107.7 [cos 39.8085922° sin 29.8318339° 
- sin 39.8085922° cos 29.8318339° cos ( -90° + 100°)] 

= -1,063,049.3 m 
k = 6,450,107. 7 COS 29.8318339°/(6,378,206.4 X 0.8667591] 

= 1.0121248 

Polar aspect with known k0 : 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

or e = 0.0819919 
Center: South Pole c!> 1 = goo S. lat. 

Ao = 100° W. long. (meridian 
along pos. Y axis) 

Central scale factor: k 0 = 0. 994 

Find: x, y, k 

Point: c!> = 75° S. lat. 
'A= 150° E. long. 

Since this is the south polar aspect, for calculations change signs of x, y, c!>, A, 
and Ao (<f.>cis not used): Ao = 100° E. long., c!> = 75° N.lat., A= 150°W.long. Using 
equations (15-9) and (21-33), 

= tan(45° - 75°/2)/[(1-0.0819919 sin 75°)/(1 + 0.0819919 sin 75°)]0·081991912 
= 0.1325120 

p = 2 X 6,378,388.0 X 0.994 X 0.1325120/[(1 +0.0819919)[1+0.08199191 
X (1-0.0819919)[1-0.08199191)112 

= 1,674,638.5 m 

Using equations (21-30) and (21-31), changing signs of x and y for the south 
polar aspect, 

x = -1,674,638.5 sin ( -150° -100°) 
= -1,573,645.4 m 
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y = + 1,674,638.5 cos (- 150° - 100°) 
= -572,760.1 m 

From equation (14-15), 

m =cos 75°/(1-0.00672267 sin2 75°)112 

= 0.2596346 

From equation (21-32), 

k = 1,674,638.5/(6,378,388 X 0.2596346) 
= 1.0112245 

Polar aspect with known <l>c not at the pole: 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

Find: x, y, k 

or 
Standard parallel: 

Point: 

e = 0.0819919 
<l>c = 71° S. lat. 
Ao = 100 W. long. (meridian 

along pos. Y axis) 
<l> = 75° S. lat. 
A = 150° E. long. 

Since <l>c is southern, for calculations change signs of x, y, <l>c, <l>, A, and A0: <l>c = 
71 o N. lat., <l> = 75° N. lat., A = 150° W. long., Ao = 100° E. long. Using equation 
(15-9), t for 75° has been calculated in the preceding example, or 

t = 0.1325120 

For tc, substitute 71° in place of 75° in (15-9), and 

tc = 0.1684118 

From equations (14-15) and (21-34), 

me= cos 71°/(1-0.00672267 sin2 71°)112 

= 0.3265509 
p = 6,378,388.0 X 0.3265509 X 0.1325120/0.1684118 

= 1,638,869.6 m 

Equations (21-30), (21-31), and (21-32) are used as in the preceding south polar 
example, changing signs of x andy. 

x = -1,638,869.6 sin (- 150° - 100°) 
= -1,540,033.6 m 

y = + 1,638,869.6 cos (- 150° - 100°) 
= -560,526.4 m 

k = 1,638,869.6/(6,378,388.0 X 0.2596346) 
= 0.9896255 

where m is calculated in the preceding example. 
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STEREOGRAPHIC (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 161-162) 

Oblique aspect (inversing forward example): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

or e = 0.0822719 
Central: <!>1 = 40° N. lat. 

Ao = 100° W. long. 
Central scale factor: k0 = 0. 9999 

Find:<!>, A 

From equation (14-15), 

Point: x = 971,630.8 m 
y = -1,063,049.3 m 

m1 =cos 40°/(1-0.00676866 sin2 40°)112 

= 0.7671179 

From equation (3-1), as in the forward oblique example, 

X1 = 39.8085922° 

From equations (20-18) and (21-38), 

p = [971,630.82 + ( -1,063,049.3)2] 112 
= 1,440,187.6 m 

ce = 2 arctan [1,440,187.6 cos 39.8085922°/(2x6,378,206.4 
X 0.9999 X 0.7671179)] 

= 12.9018251° 

From equation (21-37), 

x =arcsin [cos 12.9018251° sin 39.8085922° 
+ (-1,063,049.3 sin 12.9018251° cos 39.8085922°/1,440,187.6)] 

= 29.8318337° 

Using x as the first trial <P in equation (3-4), 

<P = 2 arctan (tan (45° + 29.8318337°/2) x [(1 + 0.0822719 
sin 29.8318337°)/(1-0. 0822719 sin 29.8318337o)]o.o822719/z] 
-90° 

= 29.9991438° 

Using this new trial value in the same equation for <!>, not for x, 

<j> = 2 arctan !tan (45° + 29.8318337°/2) x [(1 + 0.0822719 
sin 29. 9991438°)/( 1-0. 0822719 sin 29. 9991438°) ]0·082271912) 
-90° 

= 29.9999953° 

Repeating with 29.9999953° in place of 29.9991438°, the next trial <!> is 

<!> = 29.9999997° 
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The next trial calculation produces the same <!> to seven decimals. Therefore, 
this is <j>. 

Using equation (21-36), 

A = -100° + arctan [g71,630.8 sin 12. go18251 °/ 
(1,440,187.6 cos 3g.8085g22° cos 12.g018251° 
+ 1,063,04g.3 sin 3g.8085g22o sin 12. gQ18251 °)] 

= -100° + arctan (216,g46.g/1,230,366.8) 
= -100° + 10.0000000° 
= -go.oooooooo = goo W. long. 

Since the denominator of the arctan argument is positive, no quadrant adjust
ment is necessary. If it were negative, it would be necessary to add or subtract 
180°, whichever would place the final A between + 180° and -180°. 

Instead of the iterative equation (3-4), series equation (3-5) may be used 
(omitting terms with e8 here for simplicity): 

<j> = 2g.8318337° X 'IT/180° + (0.00676866/2 + 5 X 0.006768662/24 
+ 0.006768663/12) sin (2 x 2g.8318337°) + (7 x 0.006768662/48 
+ 2g x 0.006768663/240) sin (4 x 2g.8318337°) + (7 
x 0.0067686631120) sin (6 x 2g.8318337°) 

= 0.5235g88 radian 
= 2g. gggggg7o 

Polar aspect with known k0 (inversing forward example): 

Given: International ellipsoid: a = 6,378,388.0 m 
e2 = 0.00672267 

Find:<!>, A 

or 
Center: South Pole 

Central scale factor: 
Point: 

e = 0.081gg1g 
<!>1 = 90° S. lat. 
Ao = 100° W. long. (meridian along pos. Y axis) 
k0 = o.gg4 
x = -1,573,645.4 m 
y = -572,760.1 m 

Since this is the south polar aspect, change signs as stated in text: For cal
culation, use <!>c = goo, Ao = 100° E. long., x = 1,573,645.4 m, y = 572,760.1 m. 
From equations (20-18) and (21-3g), 

p = (1,573,645.42 + 572, 760.12
) 112 

= 1,674,638.5 m 
t = 1,674,638.5 X [(1 + 0.081gg1g)ll+0.0819919l 

(1-0.0819g1g)ll-0.08l9919l]112/(2 X 6,378,388.0 X 0.g94) 
= 0.1325120 

To iterate with equation (7-g), use as the first trial<!>, 

<!> = 90° - 2 arctan 0.1325120 
= 74.9031975° 

Substituting in (7 -9), 

<!> = 90° - 2 arctan \0.1325120 x [(1-0.0819919 sin 74.9031g75°)/ 
(1 + 0.0819919 sin 74.9031975°)]o.osl9919t2) 

= 74.9gg9546° 
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Using this second trial <1> in the same equation instead of 74.9031975°, 

The third trial gives the same value to seven places, so, since the sign of 4> must 
be reversed for the south polar aspect, 

4> "" - 74.9999986°, "" 75° S. lat., disregarding effects of rounding off. 

If the series equation (3-5) is used instead of (7 -9), xis first found from (7 -13): 

x = 90° - 2 arctan 0.1325120 
= 74.9031975° 

Substituting this into (3-5), after converting x to radians for the first term, 4> is 
found in radians and is converted to degrees, then given a reversal of sign for the 
south polar aspect, giving the same result as the iteration. 

From equation (20-16), 

A == + 100° + arctan [1,573,645.4/( -572, 760.1)] 
== 100° + ( -69.9999995°) 
== 30.0000005° 

However, since the denominator of the argument of arctan is negative, 180° must 
be added to A (added, not subtracted, since the numerator is positive), then 
the sign of A must be changed for the south polar aspect: 

A == - (30. 0000005° + 180°) 
= -210.0000005° 

To place this between + 180° and -180°, add 360°, so 

A == + 149.9999995° or 150° E. long., disregarding effects of rounding off. 

Polar aspect with known <l>c not at the pole (inversing forward example): 

Given: International ellipsoid: a = 6,378,388.0 m 
e2 == 0.00672267 

Find: <!>, A 

or e = 0.0819919 
Standard parallel: <l>c = 71 o S. lat. 

Ao = 100° W. long. (meridian along pos. Y axis) 
Point: x == -1,540,033.6 m 

y :;;= -560,526.4 m 

Since this is south polar, change signs as stated in text: For calculation, <l>c == 
71° N. lat., Ao == 100° E. long., x = 1,540,033.6, y = 560,526.4. From equations 
(15-9) and (14-15), as calculated in the corresponding forward example, 

tc = tan(45°-71°/2)/[(1-0.0819919sin71°)/ 
(1 + 0.0819919 sin 71 °)]0·081991912 

= 0.1684118 
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me = cos 71°/(1-0.00672267 sin2 71°)112 

= 0.32655og 

From equations (20-18) and (21-40), 

p = (1,540,033.62 + 560,526.42)112 

= 1,638,86g.5 m 
t = 1,638,86g.5 X 0.1684118/(6,378,388.0 X 0.326550g) 

= 0.1325120 

For the first trial <1> in equation (7-9), 

<j> goo- 2 arctan 0.1325120 
74.g03197° 

Substituting in (7 -g), 

<j> = goo- 2 arctan (0.1325120 [(1 - 0.0819919 sin 74.903197°)/ 
(1 + 0.0819919 sin 74.903197°)]0-081991912] 

= 74.9999586° 

Replacing 74.9031g7o with 74_g99g586°, the next trial <1> is 

<I> = 75.0000026° 

The next iteration results in the same <1> to seven places, so changing signs, 

<j> = -75.0000026° = 75° S. lat., disregarding effects of rounding off. 

The use of series equation (3- 5) with (7 -13) to avoid iteration follows the same 
procedure as the preceding example. For A., equation (20-16) is used, calculating 
with reversed signs: 

A. = + 100° + arctan[1,540,033.6/( -560,526.4)] 
= 100° + (-69. 9999997°) 
= 30.0000003° 

Since the denominator in the argument for arctan is negative, add 180°: 

A. = 210.0000003° 

Now subtract 360° to place A. between + 180° and -180°: 

A. = -14g.9999997° 

Finally, reverse the sign to account for the south polar aspect: 

A. = + 149.999g997° = 150° E. long., disregarding rounding off in the input. 

GNOMONIC (SPHERE)-FORWARD EQUATIONS (SEEP. 165, 167) 

Given: Radius of sphere: R = 1.0 unit 
Center: <!>t = 40° N. lat. 

Ao = 100° W. long. 
Point: <I> = 30° N. lat. 

A. = uoo W. long. 
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Find: x, y 

Using equation (5-3), 

cos c = sin 40° sin 30° + cos 40° cos 30° cos [- 11 oo-(- 100°)] 
= 0.9747290 

Since cos c is positive (not zero or negative), the point is in view and may be 
plotted. Using equations (22-3) through (22-5) in order, 

k' == 1/0.9747290 
= 1.0259262 

x = 1. 0 x 1. 0259262 cos 30° sin [- 11 oo - (- 100°)] 
== -0.1542826 unit 

y = 1. 0 x 1. 0259262 x (cos 40° sin 30° - sin 40° 
cos 30° cos [ -110° - ( -100°)]) 

= -0.1694739 unit 

Examples of other forward equations are omitted, since the above equations are 
general. 

GNOMONIC (SPHERE)- INVERSE EQUATIONS (SEE P.167) 

Inversing forward example: 

Given: R, <j> 11 A.0 for forward example 

x -0.1542826 unit 
y = -0.1694739 unit 

Find: <j>, A. 

Using equations (20-18) and (22-16), 

p = [(-0.1542826l + (-0.1694739?]112 
= 0.2291823 unit 

c = arctan (0.2291823/1.0) 
= 12.9082593° 

Using equations (20-14) and (20-15), 

<j> =arcsin [cos 12.9082593° sin 40° + (-0.1694739 
sin 12.9082593° cos 40°/0.2291823)] 

= 30° N. lat. 
A = -100° + arctan[-0.1542826sin12.9082593°/ 

(0.2291823 cos 40° cos 12.9082593°- (-0.1694739) 
sin 40° sin 12.9082593°)] 

= -100° + arctan (-0. 03446529/0.1954624) 
= -110° = 110° w. long.' not adding 180° to the arctan, because the denomi

nator is positive. 

Given: 

VERTICAL PERSPECTIVE (SPHERE)-FORWARD EQUATIONS (SEEP. 173) 

Radius of sphere: 
Height of perspective point: 

Center of projection: 

R = 6,371 km 
H =500km 
<!>1 = 39° N. lat. 
A0 = 77° W. long. 
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Point: <!> = 41 o N. lat. 
>-.. = 74° W. long. 

Find: x, y 

First H is converted to P as described after equation (23-3): 

p = 500/6,371 + 1 
= 1.0784806 

Using equation (5-3), 

cos c =sin 39° sin 41° + cos 39° cos 41° cos [-74°-(-77°)] 
= 0.99858702 

Since cos cis greater than liP, the point is within range and may be plotted. Using 
equations (23-3), (22-4), and (22-5) in order, 

k' = (1.0784806-1)/(1.0784806-0.99858702) 
= 0.98231426 

x = 6,371 x 0.98231426 cos 41° sin [-74°-(-77°)] 
= 247.19409 km 

y = 6,371 x 0.98231426 x \cos 39° sin 41 °-sin 39° cos 41 o cos[ -74°-( -77°)]) 
= 222.48596 km 

VERTICAL PERSPECTIVE (SPHERE)- INVERSE EQUATIONS (SEEP. 175) 

Inversing forward example: 

Given: R, H, <l>I> >-..0 for forward example 
x = 247.19409 km 
y = 222.48596 km 

Find: <!>, >-.. 

The conversion of H to P is made as in the forward example, so that 

p = 1. 0784806 

Using equations (20-18), (23-4), (20-14), and (20-15) in order, 

p = [247.194092 + 222.485962
]112 

= 332.57318 km 
c = arcsin \[1.0784806 - (1-332.573182 x (1.0784806 + 1)/ 

(63712 X (1.0784806-1)))112)/[6,371 X (1.0784806-1)/ 
332.57318 + 332.57318/(6,371 X (1.0784806-1))]) 

= 3.0461860° 
<!> =arcsin [cos 3.0461860° sin 39° + (222.48596 sin 3.0461860° 

cos 39°/332.57318)] 
=41° N. lat. 

>-.. = -77° + arctan [247.19409 sin 3.0461860°/(332.57318 
cos 39° cos 3.0461860° - 222.48596 sin 39° sin 3.0461860°)] 

= -77° + arctan (13.1361245/250.652184) 
= -74° = 74°W.long., not adding 180°tothe arctan because the denominator is 

positive. 
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TILTED PERSPECTIVE (SPHERE)-FORWARD EQUATIONS (SEEP. 175-176) 

Using forward example for Vertical Perspective (sphere), but applying tilt: 

Given: Radius of sphere: 
Height of perspective point: 

Center of projection: 

Tilt of plane: 
Azimuth of upward tilt: 

Point: 

R = 6,371 km 
H = 500 km 
~1 = 39° N. lat. 
Ao = 77° W. long. 
w =30° 
'Y = 50° east of north 
~ = 41° N. lat. 
A = 74° W. long. 

Find: Xt, Yt 

First, x,y is calculated exactly as in the forward Vertical Perspective (sphere) 
example, so that 

x = 247.19409 km 
y = 222.48596 km 

Using equations (23-7), (23-5), and (23-6) in order, 

A = ((222.48596 cos 50° + 247.19409 sin 50°) sin 30°/500] + cos 30° 
= 1.1983983 

Xt = (247.19409 cos 50° - 222.48596 sin 50°) cos 30°/1.1983983 
= - 8.3400123 km 

Yt = (222.48596 cos 50° + 247.19409 sin 50°)/1.1983983 
= 277.34759 km 

TILTED PERSPECTIVE (SPHERE)- INVERSE EQUATIONS (SEEP. 176) 

Inversing forward example: 

Given: R, H, ~I> A0 , w, 'Y for forward example 
Xt = -8.3400123 km 
Yt = 277.34759 km 

Find:~, A. 

Using equations (23-11) through (23-14) in order, 

M = 500 x ( -8.3400123)/(500-277.34759 sin 30°) 
= -11.5408351 

Q = 500 x 277.34759 cos 30°/(500-277.34759 sin 30°) 
= 332.372874 

x = -11.5408351 cos 50° + 332.372874 sin 50° 
= 247.19409 km 

y = 332.372874 cos 50° - ( -11.5408351) sin 50° 
= 222.48596 km 

These values of x and y are used to calculate ~ and A exactly as for the Vertical 
Perspective (sphere) inverse equations, so 

~ = 41° N. lat. 
A = 74° W. long. 
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VERTICAL PERSPECTIVE (ELLIPSOID)-FORWARD EQUATIONS (SEEP. 176-177) 

Given: Clarke 1866 ellipsoid: 

Height of perspective point: 
Center of projection: 

a = 6,378,206.4 m 
e2 = 0.00676866 
H = 500,000 m 
<1>1 = 39° N. lat. 

Height of center above ellipsoid: 
, Point: 

>-0 = 77° W. long. 
h0 =200m 
<1> = 41° N. lat. 

Find: x,y 

>- = 74° W. long. 
h =100m 

Since His given, Pis computed from equations (8-23), (23-21) and (23-17), 
using <1> 1 as the first trial <1>g: 

N 1 = 6,378,206.4/(1-0.00676866 sin2 39°)112 

= 6,386,772.6 m 
P =(cos 39°/cos 39°) (500,000 + 6,386,772.6 + 200)16,378,206.4 

= 1.0797664 
<1>u = 39° - arcsin [6,386, 772.6 x 0.00676866 sin 39° cos 39°/ 

(1.0797664 X 6,378,206.4)) 
= 38.8241050° 

Substituting 38.8241050° in place of the second 39° only in the equation for P, the 
second iterations produce 

p = 1.0770938 
<1>g == 38.8236686° 

The next iterations produce 

p = 1.0770872 
<1>g = 38.8236675° 

There is no change in the next iteration; therefore, these values are final. Using 
equations (4-20), (23-15), (23-16), (23-19), (23-19a), and (23-20) in order, 

N = 6,378,206.4/(1-0.00676866 sin2 41 °)112 

= 6,387,517.6 m 
c = [(6,387,517.6 + 100)/6,378,206.4] cos 41° 

= 0.7558232 
S = \[6,387,517.6x(1-0.00676866) + 100]/6,378,206.4] sin 41° 

= 0.6525799 
K = 500,000/[1.0770872 cos (39°-38.8236675°) 

-0.6525799 sin 39° - 0. 7558232 cos 39° cos ( -74°-( -77°))] 
= 6,264,070.9 m 

x = 6,264,070.9 x 0. 7558232 sin [ -74°-( -77°)] 
= 247,786.2 m 

y = 6,264,070.9 x [1.0770872 sin (39°-38.8236675°) 
+ 0.6525799 cos 39°- 0.7558232 sin 39° cos (-74°-(-77°))] 

= 222,134.1 m 

323 



.324 MAP PROJECTIONS-A WORKING MANUAL 

VERTICAL PERSPECTIVE (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 177-178) 

Inversing forward example: 

Given: a, e2, .H, <1> 1, X.0 , h0 for forward example 

Find: <!>, X. 

x = 247,786.2 m 
y = 222,134.1 m 

Equations (23-21) and (23-17) are used to compute P and <!>g, just as in the forward 
equations, so that 

p = 1. 0770872 
<l>g = 38.8236675° 

Then, using equations (23-22) through (23-28) in order, 

B = 1.0770872 cos (39°-38.8236675°) 
= 1.0770821 

D = 1.0770872 sin (39°-38.8236675°) 
= 0.00331482 

L = 1- 0.00676866 cos2 39° 
= 0.9959120 

G = 1- 0.00676866 sin2 39° 
= 0.9973193 

J = 2 x 0.00676866 sin 39° cos 39° 
= 0.00662075 

U =- 2 X 1.0770821 X 0.9959120 X 500,000 - 2 X 0.00331482 
X 0.9973193 X 222,134.1 + 1.0770821 X 0.00662075 
X 222,134.1 + 0.00331482 X 500,000 X 0.00662075 

= -1,072,553.2 m 
V = 0.9959120 X 500,0002 + 0.9973193 X 222,134.12 

- 500,000 X 0.00662075 X 222,134.1 + (1-0.00676866) 
X 247,786.22 

= 3. 584366 x lOll m2 

For the initial trial, since h may not be zero, E = 1. Using equations (23-29) 
through (23-34) in order, 

t = 1.07708722 x (1-0.00676866 cos2 38.8236675°) 
- 1.0 X (1-0.00676866) 

= 0.1621193 
K' = (-( -1,072,553.2) + [( -1,072,553.2)2 

- 4 X 0.1621193 
X 3.584366 X 10ll]ltZj/(2X0.1621193) 

= 6,262, 797.2 m 
X = 6,378,206.4 X [(1.0770821-500,000/6,262,797.2) cos 39° 

-(222,134.116,262,797.2-0.00331482) sin 39°] 
= 4,814,079.9 m 

Y = 6,378,206.4 X 247,786.2/6,262,797.2 
= 252,352.3 m 

s = (222,134.1/6,262,795.7-0.00331482) cos 39° 
+ (1.0770821-500,000/6,262, 795. 7) sin 3W 

= 0.6525753 
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A. =- 77° + arctan (252,352.3/4,814,079.9) 
= -73.9993222° 

For a first trial <f>, use arcsin S, or 40.7360514°. For this trial <f> and A., select h. 
It will be taken as 100 m, for the sake of this example, in order to repeat the 
forward example. Using equations (23-35) and (23-36), 

<1> =arcsin (0.6525753/[(1-0.00676866)/(1-0.00676866 
sin2 40. 7360514°)112 + 100/6,378,206.4]) 

= 41.0004168° 
E = [1/(1-0.00676866 sin2 41.0004168°)112 + 100/6,378,206.4]2 

- 0.00676866 sin2 41.0004168° x [11(1-0.00676866 sin2 41.0004168°) 
- 1002/(6,378,206.42-6,378,206.42 x0.00676866)] 

= 1.0000314 

Using this value of E in equation (23-29), and the above value of <1> (41.0004168°) 
in the right side of equation (23-35), each equation (23-29) through (23-35) is 
recomputed, with the following results: 

The next iteration produces 

t = 0.1620882 
K' = 6,264,074.3m 
X = 4,814,189.6m 
Y = 252,300.9 m 
s = 0.6525799 
A. = -74.0000011° 

<P = 40.9999978° 
E = 1.0000314 

A. = -74.0000011° 
<P = 40.9999991° 

The next produces no change in A. or <f> to seven decimal places. Thus, 

A. = 74° W. long. 
<1> = 41° N. lat. 

TILTED PERSPECTIVE (ELLIPSOID)-"CAMERA" PARAMETERS FROM PROJECTIVE 
CONSTANTS (SEEP. 178) 

Using forward example for Vertical Perspective (ellipsoid), but applying tilt: 

Given: a, e2
, H, <j>1, A.0 , h0 for forward Vertical Perspective (ellipsoid) example 

Tilt of plane: 
Azimuth of upward tilt: 

Point: 

w =30° 
"' = 50° east of north 
<1> = 41° N. lat. 
A. = 74° W. long. 
h =100m 
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Find: Xt, Yt 

First, x and y are calculated exactly as for the forward Vertical Perspective 
(ellipsoid) example, giving 

x = 247,786.2 m 
y = 222,134.1 m 

Using equations (23-7), (23-5), and (23-6) in order, 

A= ((222,134.1 cos 50° + 247,786.2 sin 50°) sin 30°/500,000) +cos 30° 
= 1.1986257 

Xt = (247,786.2 cos 50°-222,134.1 sin 50°) cos 30°!1.1986257 
= -7,868.693 m 

Yt = (222,134.1 cos 50°+247,786.2 sin 50°)/1.1986257 
= 277,484.7 m 

TIL TED PERSPECTIVE (ELLIPSOID WITH "CAMERA" 
PARAMETERS)- INVERSE EQUATIONS (SEEP. 178) 

Inversing forward example: 

Given: a, e2
, H, <I>I> l\.0, h0 , w, "' for forward example 

Xt = -7,868.693m 
Yt = 277,484.7 m 

Using equations (23-11) through (23-14) in order, 

M = 500,000 x (-7,868.693)/(500,000-277,484.7 sin 30°) 
== -10,890.694 m 

Q = 500,000 x 277,484.7 cos 30°/(500,000-277,484. 7 sin 30°) 
= 332,600.29 m 

x = -10,890.694 cos 50° + 332,600.29 sin 50° 
= 247,786.2 m 

y = 332,600.29 cos 50° - ( -10,890.694) sin 50° 
= 222,134.1 m 

Then <1> and l\. are calculated from x and y exactly as for the inverse Vertical 
Perspective (ellipsoid) example, giving 

l\. = 74° W. long. 
<1> = 41° N. lat. 

TIL TED PERSPECTIVE (ELLIPSOID WITH PROJECTIVE 
EQUATIONS)-FORWARD (SEE P.l78-180) 

An example is not given to solve equations (23-43) and (23-44), solving 11 simul
taneous equations, since it is tedious but also fairly standard in approach. The ex
amples below determine constants K 1-K11 for the example used above, and then 
apply them to find rectangular coordinates. 

Given: parameters for forward Tilted Perspective (ellipsoid) example, repeated 
here: 
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Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Height of perspective point: H = 500,000 m 
Center of projection: <I> I = 39° N. lat. 

A.o = 77o W. long. 
Height of center above ellipsoid: ho =200m 

Tilt of plane: (1) = 30° 
Azimuth of upward tilt: "( = 50° east of north 

To produce the same rectangular coordinates, the (Xt, Yt) axes are assumed to 
coincide with the (Xt', Yt') axes; thus, 

B = oo 
x0 = 0 
Yo= 0 

First P and <l>u are calculated by iteration from H, etc., exactly as they are in 
the forward Vertical Perspective (ellipsoid) example above, resulting in 

p = 1. 0770872 
<l>u = 38.8236675° 

Using equations (23-45) through (23-62) in order, 

U = 1.0770872 x [sin (39°-38.8236675°) cos 50° sin 30° 
+ cos (39°-38.8236675°) cos 30°] 

= 0.9338458 
F =[sin 39° sin ( -77°) cos 50° - cos ( -77°) sin 50°]/0.9338458 

= -0.6066034 
V =[sin 39° sin ( -77°) sin 50° + cos ( -77°) cos 50°] cos 30°/0.9338458 

= -0.3015228 
M =[sin 39° cos ( -77°) sin 50°-sin ( -77°) cos 50°] cos 30°/0.9338458 

= 0.6813973 
N =[sin 39° cos ( -77°) cos 50° + sin ( -77°) sin 50°]/0.9338458 

= -0.7018436 
w = [-sin 50° cos 30° cos 0° - cos 50° sin 0°]/0. 9338458 

= -0.7104106 
T = [-sin 50° cos 30° sin oo + cos 50° cos 0°]/0.9338458 

= 0.6883231 
K 5 = -(-0.7018436) sin 30°- cos 39° cos (-77°) cos 30°/0.9338458 

= 0.1887983 
K 6 = -( -0.6066034) sin 30° - cos 39° sin ( -77°) cos 30°/0.9338458 

= 1.0055359 
K7 =(cos 39° cos 50° sin 30° - sin 39° cos 30°)/0.9338458 

= -0.3161523 
Kl = 500,000 X [0.6813973 cos 0° + (-0.7018436) sin 0°] 

+ 0.1887983 X 0 
= 340,698.6 m 

K2 = 500,000 X [ -0.3015228 cos 0° + ( -0.6066034) sin 0°] 
+ 1. 0055359 X 0 

= -150,761.5 m 
K3 = 500,000 X ( -0. 7104106) cos 39° + ( -0.3161523) X 0 

= -276,046.4 m 
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K 4 = 500,000 X ( -0. 7104106) X 1.0770872 sin (39° - 38.8236675°) + 0 
= -1,177.4 m 

Ks = 500,000 X [0.6813973 sin 0° - ( -0. 7018436) cos 0°] + 0.1887983 X 0 
= 350,921.8 m 

K9 = 500,000 X [ -0.3015228 sin 0° - ( -0.6066034) cos 0°] + 1.0055359 X 0 
= 303,301.7 m 

Kw = 500,000 X 0.6883231 cos 39° + ( -0.3161523) X 0 
= 267,463.7 m 

K 11 = 500,000 x 0.6883231 x 1.0770872 sin (39°-38.8236675°) + 0 
= 1,140.8 m 

To test these constants K1 - K11 , equations (23-15), (23-16), and (23-38) through 
(23.:....42) may be used, remembering that x't = Xt and y't = Yt in this example. 

Using the same point previously used, 

Find: Xt, Yt 

<1> = 41° N. lat. 
A. = 74° W. long. 
h =100m 

Calculating C and S exactly as in the forward Vertical Perspective (ellipsoidal) 
example, 

c = 0.7558232 
s = 0.6525799 

Using (23-38) through (23-40), 

X = 0. 7558232 cos ( -74°) 
= 0.2083331 

Y = 0. 7558232 sin ( -74°) 
= -0.7265439 

z = 0.6525799 

Using equations (23-41) and (23-42), first calculating the denominator, 

den. = 0.1887983 x 0.2083331 + 1. 0055359 x ( -0. 7265439) 
+ ( -0.3161523) X 0.6525799 + 1 

= 0.1024523 
Xt = (340,698.6 X 0.2083331 + ( -150, 761.5) X ( -0. 7265439) 

+ (-276,046.4) X 0.6525799 + (-1,177.4))/0.1024523 
= -7,868.7 m 

Yt = [350,921.8 X 0.2083331 + (303,301.7) X (-0.7265439) 
+ 267,463.7 X 0.6525799 + 1,140.8)10.1024523 

= 277,484.8 m 

These values agree with the results in the forward Tilted Perspective (ellipsoid) 
example. 

TIL TED PERSPECTIVE (ELLIPSOID WITH 
PROJECTIVE EQUATIONS)- INVERSE (SEEP. 180) 

Inversing forward example: 
Given: K1 - K11 as determined just above 
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Find: <\>, X. 

Xt = -7,868.7 m 
Yt = 277,484.8 m 

Using equations (23-63) through (23-77) in order, since Xt = x' t and Yt = y' t 
by choice in the example for calculating Kn, 

AI = -7,868.7 X 0.1887983-340,698.6 
= -342,184.2 m 

A 2 = -7,868.7 x 1.0055359- (-150,761.5) 
= 142,849.2 m 

A3 = -7,868.7 X ( -0.3161523) - ( -276,046.4) 
= 278,534.1 m 

A 4 = -1,177.4- (-7,868.7) 
= 6,691.3 m 

A5 = 277,484.8 X 0.1887983 - 350,921.8 
= -298,533.1 m 

A 6 = 277,484.8 X 1.0055359-303,301.7 
= -24,280.8 m 

A7 = 277,484.8 X (-0.3161523)- 267,463.7 
= -355,191.2 m 

A 8 = 1,140.8 - 277,484.8 
= -276,344.0 m 

A9 = -342,184.2 X (-276,344.0)- 6,691.3 X (-298,533.1) 
= 9.655812 x 1010 m2 

A 10 = -342,184.2 X (-355,191.2)- 278,534.1 X (-298,533.1) 
= 2.046925 x 1011 m2 

An = 142,849.2 X ( -298,533.1) - ( -342,184.2) X ( -24,280.8) 
= -5.095372 x 1010 m2 

A 12 = 142,849.2 X ( -355,191.2) - 278,534.1 X ( -24,280.8) 
= -4.397575 x 1010 m2 

Al3 = 142,849.2 X ( -276,344.0) - 6,691.3 X ( -24,280.8) 
= -3.931305 x 1010 m2 

A 14 = (2.046925 X 1011
)
2 + ( -5.095372 X 1010

)
2/(1-0.00676866) 

+ ( -4.397575 X 1010
) 2 

= 4.644686 x 1022 m4 

A 15 = 9.655812 X 1010 
X 2.046925 X 1011 + ( -4.397575) X 1010 

X ( -3.931305) X 1010 

= 2.149354 x 1022 m4 

Assuming E = 1 for the first trial, using equations (23-78), (23-79), (23-80), and 
(23-35), with a trial "+" sign for the "±" in equation (23-79), 

A 16 = (9.655812 X 1010
)
2

- 1.0 X (-5.095372 X 1010? + (-3.931305 X 1010
)
2 

= 8.272705 x 1021 m4 

S = [2.149354 X 1022/(4.644686 X 1022
)) 

+ ([2.149354 X 1022/(4.644686 X 1022
))

2 

- 8.272705 X 1021/(4.644686 X 1022
)]112 

= 0.6525751 
X. = arctan ((9.655812 x 1010 

- 2.046925 x 1011 x 0.6525751)/ 
( -4.397575 X 1010 

X 0.6525751 - ( -3.931305 X 1010))] 

= arctan [ -3.7019109 x 1010/(1.0615571 x 1010
)] 

= -73.9992678° 

The first trial <1> is arcsin S = 40.7360359°. It is assumed that h = 100 for this 
example based on <1> and X.. 
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<I> = arcsin [0.6525751/[(1-0.00676866)/(1-0.00676866 
x sin2 40. 7360359°)112 + 100/6378206.4) 

= 41.0004013° 

Since <1> and A. place the approximate point at a reasonable location, the trial " + " 
sign is satisfactory. 

A second trial E is now calculated from equation (23-36): 

E = [1/(1-0.00676866xsin2 41.0004013°)112 + 100/6,378,206.4]2 

-0.00676866 x sin2 41.0004013° [1!(1-0.00676866Xsin2 41.0004013°) 
-1002/(6,378,206.42 -6,378,206.42 x0.00676866)] 

= 1.0000314 

This is substituted in place of 1.0 forE in equation (23-78) and A 16, S, A., and <1> 

are recalculated until <1> changes by a negligible amount. Finally, disregarding 
round-off errors in the above example, 

<1> = 41° N. lat. 
A. = 74° W. long. 

TILTED PERSPECTIVE (ELLIPSOID)-"CAMERA" 
PARAMETERS FROM PROJECTIVE CONSTANTS 

(SEE P. 180-181) 

Using constants calculated in forward example for Tilted Perspective (ellipsoid 
with projective equations): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Height of center above ellipsoid: h0 = 200 m 
Constants K1 - K11 previously calculated 

Find: H, <!>I, Ao, w, "(, e, Xo, Yo 

The three simultaneous equations (23-81) are set up as follows: 

340,698.6 X 0 + (-150,761.5) Y0 + (-276,046.4) Z 0 = -(-1,177.4) 
350,921.8 X 0 + 303,301.7 Y0 + 267,463.7 Z 0 = -1,140.8 
0.1887983 X 0 + 1.0055359 Y0 + (-0.3161523) Z 0 = -1 

Solving these three equations for the three unknowns, 

X 0 = 0.1887645 
Y0 = -0.8176291 
Z 0 = 0.6752538 

Using equations (23-82) through (23-86), 

Xp = [340,698.6x0.1887983 + ( -150, 761.5)x 1.0055359 
+ ( -276,046.4) X ( -0.3161523)]/[0.18879832 

+ 1.00553592 + ( -0.3161523)2) 

== -0.06961613 m 
Yp == [0.1887983x350,921.8 + 1.0055359X303,301. 7 

+ ( -0.3161523) X 267,463. 7]/(0.18879832 

+ 1.00553592 + ( -0.3161523)2
] 

= 250,000.04 m 
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A.0 ==arctan ( -0.8176291/0.1887645) 
= -77° = 77o W. long., not adding 180° since the denominator is positive. 

p == [0.18876452 + (-0.8176291)2 +0.67525382
] 112 

= 1.0770873 
<!>9 =arcsin (0.6752538/1.0770873) 

= 38.8236777° 

Using equation (23-87), with <l>g as the first approximation for <!>1> 

<!>1 = 38.8236777° + arcsin j0.00676866 sin 38.8236777° 
cos 38.8236777°/[1.0770873 x (1-0.00676866 sin2 38.8236777°)112]) 

= 38.9997744° 

Substituting this value for <!>1 in the same equation, and leaving the first use of 
<l>g intact, since it is part of the equation, the second iteration gives, 

<!>1 = 39.0000099° 

The next iteration gives 

and the next gives no change to seven decimals. Therefore, disregarding round
off errors, 

Using equation (23-88), 

H = 6,378,206.4 x [1.0770873 cos 38.8236777°/cos 39° 
-11(1-0.00676866 sin2 39°)112 - 200/6,378,206.4] 

= 500,000.0 m 

Using equations (23-15), (23-16), (23-38) through (23-40), (23-41), and 
(23-42), coordinates x0 and Yo are found for <!>1 and >..0: 

C = [11(1-0.00676866 sin2 39°)112 + 200/6,378,206.4] cos 39° 
= 0.7782141 

S == [(1-0.00676866)1(1-0.00676866 sin2 39°)112 

+ 200/6,378,206.4] sin 39° 
== 0.6259200 

X = 0. 7782141 cos ( -77°) 
= 0.1750601 

Y = 0. 7782141 sin ( -77°) 
= -0.7582685 

z == 0.6259200 
Xo = (340,698.6 X 0.1750601 + ( -150, 761.5) X ( -0. 7582685) 

+ (-276,046.4) X (0.6259200) + (-1,177.4))/(0.1887983 
X 0.1750601 + 1.0055359 X ( -0. 7582685) + ( -0.3161523) 
X (0.6259200) + 1] 

= 0.04 m, actually zero if round-off had not occurred. 
y0 = -0.03 m similarly from (23-42) as Yt', actually zero 
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Using equations (23-89) and (23-90), 

w =arcsin ([(0.04-( -0.06961613))2 + (250,000.04-( -0.03))2) 112/ 

500,000) 
= 29.9999447°, actually 30° without round-off. 

e =arctan [(0.04-( -0.06961613))/(250,000.04-( -0.03))] 
= 0.0000256°, actually oo without round-off. 

Calculating (xt', Yt') for (<f>I + 0.02°, A-0) just as coordinates (x0 , y0 ) were calculated 
above, 

Xt' -1,698.034 m 
Yt' 1,645.247 m 

Using equations (23-91) through (23-93), 

Given: 

Xt =[-1,698.034-0.04]cos0° + [1,645.247-(-0.03)]sin0° 
= -1,698.07 m 

Yt = [1,645.247-( -0.03)] cos 0°-[ -1,698.034-0.04] sin oo 
= 1,645.28 m 

'Y = - arctan [ -1,698.07/(1,645.28 cos 30°)] 
= 49.99997°, actually 50° without round-off. 

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS 
(SEEP. 186) 

Radius of sphere: R = 3. 0 units 
Center: <1>1 = 40° N. lat. 

A-0 = 100° W. long. 
Point: <1> = 20° S. lat. 

A. = 100° E. long. 

Find: x, y 

Using equation (24-2), 

k' = (2/[1 + sin 40° sin ( -20°) + cos 40° cos ( -20°) cos (100° + 100°)])112 

= 4.3912175 

Using equations (22-4) and (22-5), 

x = 3.0x4.3912175 cos (-20°) sin (100°+ 100°) 
= -4.2339303 units 

y = 3.0x4.3912175 [cos 40° sin (-20°) - sin 40° cos ( -20°) cos (100° + 100°)] 
= 4. 0257775 units 

Examples for the polar and equatorial reductions, equations (24-3) through 
(24-14), are omitted, since the above general equations give the same results. 

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS 
(SEEP. 186-187) 

Inversing forward example: 

Given: Radius of sphere: R = 3.0 units 
Center: <1> 1 = 40° N. lat. 

A-0 = 100° W. long. 



Find: <!>, A 

APPENDIX A: NUMERICAL EXAMPLES 

Point: x = -4.2339303 units 
y = 4.0257775 units 

Using equations (20-18) and (24-16), 

From equation (20-14), 

p = [(-4.2339303?+4.02577752
]112 

= 5.8423497 units 
c = 2 arcsin [5.8423497/(2x3.0)] 

= 153.6733917° 

<I> =arcsin [cos 153.6733917° sin 40° + 4.0257775 
sin 153.6733917° cos 40°/5.8423497] 

= -19.9999993° = zoo S. lat., disregarding rounding-off effects. 

From equation (20-15), 

A = -100° + arctan [ -4.2339303 sin 153.6733917°/ 
(5.8423497 cos 40° cos 153.6733917° 
-4.0257775 sin 40° sin 153.6733917°)] 

= -100° + arctan [ -1.8776951/( -5.1589246)] 
= -100° + 20.0000005° 
= -79.9999995° 

Since the denominator of the argument of arctan is negative, add 180°: 

A = 100.0000005° = 100° E. long., disregarding rounding-off effects. 

In polar sphe:dcal cases, the calculation of A from equations (20-16) or (20-17) is 
simpler than the above, but the quadrant adjustment follows the same rules. 

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS 
(SEEP. 187-188) 

Oblique aspect: 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 

Find: x, y 

Using equation (3 -12), 

e2 = 0.00676866 
or e = 0.0822719 

Center: <1> 1 = 40° N. lat. 
Ao = 100° W. long. 

Point: <1> = 30° N. lat. 
A = 110° W. long. 

q = (1-0.00676866) [sin 30°/(1-0.00676866 sin2 30°)-[11 
(2x0.0822719)] ln [(1-0.0822719 sin 30°)/ 
(1 + 0.0822719. sin 30°)]) 

= 0.9943535 

Inserting <1>1 = 40° in place of 30° in the same equation, 

ql = 1.2792602 
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Inserting 90° in place of 30°, 

Using equation (3-11), 

Using equation (3-13), 

qp = 1.9954814 

13 =arcsin (0.9943535/1.9954814) 
= 29.8877622° 

13 1 =arcsin (1.2792602/1.9954814) 
= 39.8722878° 

Rq = 6,378,206.4 X (1.9954814/2)112 

= 6,370,997.2 m 

Using equation (14-15), 

m 1 = cos 40°/(1-0.00676866 sin2 40°)112 

= 0.7671179 

Using equations (24-19) and (24-20), 

B = 6,370,997.2xj2/[1 +sin 39.8722878° sin 29.8877622° 
+ cos 39.8722878° cos 29.8877622° cos ( -110° + 100°)]]112 

= 6,411,606.1 m 
D = 6,378,206.4X0.7671179/(6,370,997.2 cos 39.8722878°) 

= 1.0006653 

Using equations (24 -17) and (24 -18), 

x = 6,411,606.1 x 1.0006653 cos 29.8877622° sin (-110°+100°) 
= -965,932.1 m 

y = (6,411,606.1!1.0006653)[cos 39.8722878° sin 29.8877622° 
- sin 39.8722878° cos 29.8877622° cos ( -110° + 100°)] 

= -1,056,814.9 m 

Polar aspect: 
Given: Internationalellipsoid: a = 6,378,388.0 m 

e2 = 0.00672267 
or e = 0.0819919 

Center: North Pole <jJ1 = 90° N. lat. 

Find: <jJ, A., h, k 

From equation (3-12), 

A.0 = 100° W. long. (meridian along 
neg. Y axis) 

Point: <P = 80° N. lat. 
A. = 5° E. long. 

q = (1-0.00672267) !sin 80°/(1-0.00672267 sin2 80°) 
-[1!(2x0.0819919)] ln [(1-0.0819919 sin 80°)/ 
(1 + 0.0819919 sin 80°)]) 

= 1.9649283 
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Using the same equation with 90° in place of 80°, 

qp = 1.9955122 

From equation (14-15), 

m =cos 80°/(1-0.00672267 sin2 80°)112 
== 0.1742171 

Using equations (24-23), (21-30), (21-31), and (21-32), 

p == 6,378,388.0 X (1.9955122-1.9649283)112 

== 1,115,468.3 m 
x == 1,115,468.3 sin (5°+ 100°) 

== 1,077,459.7 m 
y = -1,115,468.3 cos w + 100°) 

= 288,704.5 m 
k = 1, 115,468.3/(6,378,388. 0 X 0.17 42171) 

== 1.0038193 
h = 1/1.0038193 = 0.9961952 

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 188-190) 

Oblique aspect (inversing forward example): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 

Find:<!>, A 

e2 = 0.00676866 
or e = 0.0822719 

Center: <!> 1 = 40° N. lat. 
A0 = 100° W. long. 

Point: x = -965,932.1 m 
y = -1,056,814.9 m 

Since these are the same map parameters as those used in the forward example, 
calculations of map constants not affected by <!> and A are not repeated here. 

qp = 1.9954814 
f3t = 39.8722878° 
Rq = 6,370,997.2 m 
D = 1. 0006653 

Using equations (24-28), (24-29), and (24-27), 

p = [[ -965,932.1/1.0006653]2 + [1.0006653x( -1,056,814.9)]2
)112 

= 1,431,827.1 m 
Ce = 2 arcsin [1,431,827.11(2x6,370,997.2)] 

= 12.9039908° 
q = 1.9954814 [cos 12.9039908° sin 39.8722878° 

+ 1.0006653x( -1,056,814.9) sin 12.9039908° 
cos 39.8722878°/1,431,827.1] 

= 0.9943535 
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For the first trial <I> in equation (3-16), 

<1> = arcsin (0. 9943535/2) 
= 29.8133914° 

Substituting into equation (3-16), 

<1> = 29.8133914° + [(1-0.00676866 sin2 29.8133914°l/ 
(2 cos 29.8133914°)] x jo. 9943535/(1-o.oo676866) 
- sin 29.8133914°/(1-0.00676866 sin2 29.8133914) 
+ [1/(2 X 0.0822719)] In [(1-0.0822719 
sin 29.8133914°)/(1 + 0.0822719 sin 29.8133914°)]) x 180°/'lT 

= 29.9998293° 

Substituting 29.9998293° in place of29.8133914° in the same equation, the new trial 
<1> is found to be 

<I> = 30.0000002° 

The next iteration results in no change to seven decimal places; therefore, 

<1> = 30° N. lat. 

Using equation (24-26), 

A = -100° + arctan j-965,932.1 sin 12.9039908°/[1.0006653 
X 1,431,827.1 COS 39.8722878° COS 12.9039908° 
-1.00066532 ( -1,056,814.9) sin 39.8722878° 
sin 12.9039908°]) 

= -100° + arctan (-215,710.0/1,223,352.4) 
= -100° - 9.9999999° 
= -109.9999999° = 110° W. long. 

Since the denominator of the argument for arctan is positive, no quadrant ad
justment is necessary. 

Polar aspect (inversing forward example): 

Given: 

Find:<!>, A 

International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

or e = 0.0819919 
Center: North Pole <1> 1 = 90° N. lat. 

Ao = 100° W. long. (meridian 
along neg. Y axis) 

Point: x = 1,077,459. 7 m 
y = 288,704.5 m 

First qp is found to be 1.9955122 from equation (3-12), as in the corresponding 
forward example for the polar aspect. From equations (20-18) and (24-31), 

p = (1,077,459. 72 + 288, 704.52
) 112 

= 1,115,468.4 m 
q = + [1.9955122 - (1,115,468.4/6,378,388.0?] 

= 1.9649283 
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Iterative equation (3-16) may be used to find 4>. The first trial 4> is 

4> =arcsin (1.9649283/2) 
= 79.2542275° 

When this is used in equation (3-16) as in the oblique inverse example, the next 
trial 4> is found to be 

4> = 79.9744304° 

Using this value instead, the next trial is 

4> = 79.9999713° 

and the next, 

4> = 80.0000036° 

The next value is the same, so 

4> = 80° N. lat. 

From equation (20-16), 

'A= -100° + arctan [1,077,459.7/(-288,704.5)] 
= -174.9999978° 

Since the denominator of the argument for arctan is negative, add 180°, or 

A = 5.0000022° = 5° E. long. 

AZIMUTHAL EQUIDISTANT (SPHERE)- FORWARD EQUATIONS 
(SEEP. 195-196) 

Given: Radius of sphere: R = 3.0 units 
4>1 = 40° N. lat. Center: 

Point: 

Find: x, y 

Ao = 100° W. long. 
4> = 20° S. lat. 
A= 100° E. long. 

Using equations (5-3) and (25-2), 

cos c =sin 40° sin ( -20°) + cos 40° cos ( -20°) cos (100° + 100°) 
= -0.8962806 

c = 153.6733925° 
k' = (153.6733925° x '!T/180°)/sin 153.6733925° 

= 6.0477621 

Using equations (22-4) and (22-5), 

x = 3.0 x 6.0477621 cos ( -20°) sin (100° + 100°) 
= -5.8311398 units 

y = 3.0 x 6.0477621 [cos 40° sin ( -20°) - sin 40° cos ( -20°) 
cos (100° + 100°)] 

= 5.5444634 units 

337 



338 MAP PROJECTIONS-A WORKING MANUAL 

Since the above equations are general, examples of other forward formulas are 
not given. 

AZIMUTHAL EQUIDISTANT (SPHERE)- INVERSE EQUATIONS (SEEP. 196-197) 

Inversing forward example: 

Given: Radius of sphere: 
Center: 

Point: 

Find: <1>, A 

R = 3.0 units 
<1>1 = 40° N. lat. 
Ao = 100° W. long. 
x = -5.8311398 units 
y = 5.5444634 units 

Using equations (20-18) and (25-15), 

p = [( -5.8311398)2 + 5.54446342
] 112 

= 8.0463200 units 
c = 8. 0463200/3.0 

= 2.6821067 radians 
= 2.6821067 X 180°/71" = 153.6733925° 

Using equation (20-14), 

<1> =arcsin (cos 153.6733925° sin 40° + 5.5444634 sin 
153.6733925° cos 40°/8.0463200) 

= -19.9999999° 
= 20° S. lat., disregarding effects of rounding off. 

Using equation (20-15), 

A = -100° + arctan [( -5.8311398) sin 153.6733925°/(8.0463200 
cos 40° cos 153.6733925° - 5.5444634 sin 40° 
sin 153.6733925°)] 

= -100° + arctan [(-2.5860374)/(-7.1050794)] 
= -100° - arctan 0.3639702 
= -80.0000001° 

but since the denominator of the argument of arctan is negative, add or subtract 
180°, whichever places the final result between + 180° and -180°: 

A= -80.0000001° + 180° 
= 99.9999999° 
= 100° E. long., disregarding effects of rounding off. 

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- FORWARD EQUATIONS 
(SEEP. 197-201) 

Polar aspect: 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

Center: North Pole <1> 1 = 90° N. lat. 
Ao = 100° W. long. (meridian 

along neg. Y axis) 
Point: <1> = 80° N. lat. 

A = 5° E. long. 
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Find: x, y, k 

Using equation (3-21), 

M = 6,378,388.0 X [(1-0.00672267/4 - 3 X 0.006722672/64 - 5 
X 0.006722673/256) X 80° X '!T/180° - (3 X 0.00672267/8 
+ 3 X 0.006722672/32 + 45 X 0.006722673/1024) sin (2 X 80°) 
+ (15 X 0.006722672/256 + 45 X 0.006722673/1024) sin (4 X 80°) 
- (35 x 0.006722673/3072) sin (6 x 80°)] 

= 8,885,403.1 m 

Using the same equation (3-21), but with 90° in place of 80°, 

MP = 10,002,288.3 m 

Using equation (14-15), 

m =cos 80°/(1-0.00672267 sin2 80°)112 

= 0.1742171 

Using equations (25-16), (21-30), (21-31), and (21-32), 

p = 10,002,288.3 - 8,885,403.1 
= 1,116,885.2 m 

x = 1,116,885.2 sin (5° + 100°) 
= 1,078,828.3 m 

y = -1,116,885.2 cos (5° + 100°) 
= 289,071.2 m 

k = 1,116,885.2/(6,378,388.0 X 0.1742171) 
= 1.0050946 

Oblique aspect (Guam projection): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Find: x, y 

Center: <!>1 = 13°28'20.87887" N. lat. 
A.0 = 144°44'55.50254" E. long. 

False origin: x0 = 50,000 m 
y 0 = 50,000 m 

Point: <1> = 13°20'20.53846" N. lat. 
A.= 144°38'07.19265" E. long. 

Using equation (25-18), after converting angles to degrees and decimals: (<!>1 = 
13.472466353°, A.0 = 144.748750706°, <!> = 13.339038461°, A. = 144.635331292°), 

X = [6,378,206.4 X (144.635331292° - 144. 748750706°) 
cos 13.339038461 °1(1-0.00676866 sin2 13.339038461 °)112] 

X '!T/180° 
= -12,287.52 m 

Since 50,000 m is added to the origin for the Guam projection, 

X= -12,287.52 + 50,000.0 
= 37,712.48 m 
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From equation (3-21), 

M = 6,378,206.4 X [(1-0.00676866/4 - 3 X 0.006768662/64 - 5 
X 0.006768663/256) X 13.339038461° X 7T/180° - (3 
X 0.00676866/8 + 3 X 0.006768662/32 + 45 X 0.006768663/ 

1024) sin (2 x 13.339038461 °) + (15 x 0.006768662/256 
+ 45 x 0.006768663/1024) sin (4 x 13.33903846n 
- (35 x 0.006768663/3072) sin (6 x 13.339038461°)] 

= 1,475,127.96 m 

Substituting 4>1 = 13.4 72466353° in place of 13.339038461 o in the same equation, 

M 1 = 1,489,888. 76 m 

Using equation (25-19), and using the x without false origin, 

y = 1,475,127.96- 1,489,888.76 + (-12,287.52)2 tan 13.339038461° 
x (1-0.00676866 sin2 13.339038461 °)112/(2 x 6,378,206.4) 

= -14,758.00 m 

Adding 50,000 meters for the false origin, 

y = 35,242.00 m 

Oblique aspect (Micronesia form): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Center: Saipan Island: 4>1 = 15°11'05.6830" N. lat. 
Ao = 145°44'29.9720" E. long. 

False origin: x0 = 28,657.52 m 
Yo= 67,199.99 m 

Point: Station Petosukara 4> = 15°14'47.4930" N. lat. 
A= 145°47'34.9080" E. long. 

Find: x, y 

First convert angles to degrees and decimals: 

4>1 = 15.18491194° 
A0 = 145.7416589° 
4> = 15.24652583° 
A = 145.7930300° 

From equations (4-20a), (4-20), (25-20), and (25-21) in order, 

N 1 = 6,378,206.4/(1-0.00676866 x sin2 15.18491194°)112 

= 6,379,687.9 m 
N = 6,378,206.4/(1-0.00676866 x sin2 15.24652583°)112 

= 6,379,699. 7 m 
t!J =arctan [(1-0.00676866) tan 15.24652583° 

+ 0.00676866 x 6379687.9 sin 15.18491194°/ 
(6,379,699. 7 X COS 15.24652583°)) 

= 15.2461374° 
Az = arctan (sin (145. 79303° - 145. 7416589°)/ 

[cos 15.18491194° x tan 15.2461374° 
- sin 15.18491194° x cos (145. 79303° - 145. 7416589°)]/ 

= 38.9881345° 
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Since sin Az =I= 0, from equation (25-22a), 

s = arcsin [sin (145. 79303° - 145. 7416589°) x cos 15.2461374°/ 
sin 38. 9881345°] 

= 0.001374913 radians, since s is used only in radians. 

From equations (25-23) through (25-27) in order, 

G = 0.00676866112 sin 15.18491194°/(1-0.00676866)112 

= 0.02162319 
H = 0.00676866112 cos 15.18491194° cos 38.9881345°/ 

(1-0.00676866)112 

= 0.06192519 
C = 6,379,687.9 X 0.001374913 X \1-0.0013749132 X0.061925192 

X (1-0.061925192)/6 + (0.0013749133/8) X 0.02162319 
X 0.06192519 X (1-2X0.061925192

) + (0.0013749134/120) 
X [0.061925192 X (4-7X0.061925192 ) - 3 X 0.021623192 

X (1-7X0.061925192
)) - (0.0013749135/48) X 0.02162319 

X 0.06192519) 
= 8,771.52 m 

x = 8, 771.52 x sin 38.9881345° + 28,657.52 
= 34,176.20 m 

y = 8,771.52 X COS 38.9881345° + 67,199.99 
= 74,017.88 m 

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 201-202) 

Polar aspect (inversing forward example): 

Given: International ellipsoid: a = 6,378,388.0 m 
e2 = 0.00672267 

Center: North Pole: <1> 1 = 90° N. lat. 
;>..0 = 100° W. long. (meridian along 

neg. Y axis) 
Point: x = 1,078,828.3 m 

y = 289,071.2 m 

Find: <!>, A. 

Using equation (3-21), as in the corresponding forward example, 

Mp = 10,002,288.3 m 

Using equations (20-18), (25-28), and (7 -19), 

p = (1,078,828.32 + 289,071.22
)112 

= 1,116,885.2 m 
M = 10,002,288.3 - 1,116,885.2 

= 8,885,403.1 m 
. f.1 = 8,885,403.1/[6,378,388.0 X (1-0.00672267/4-3X0.006722672/64 

- 5 X0.006722673/256)) 
= 1.3953965 radians 
= 1.3953965 X 180°1-rr = 79.9503324° 

Using equations (3-24) and (3-26), 

e1 = [1-(1-0.00672267)112]/[1 + (1-0.00672267)112] 

= 0.0016863 
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q, = 1.3953965 radians + (3x0.0016863/2-27x0.00168633/32) 
sin (2x79.9503324°) + (21x0.00168632/16-55 
x 0.00168634/32) sin (4x79.9503324°) + (151 
x 0.00168633/96) sin (6x79.9503324°) 

= 1. 3962634 radians 
= 1.3962634 X 180°/11' = 79.9999999° 
= 80° N. lat., rounding off. 

Using equation (20-16), 

'A = -100° + arctan [1,078,828.3/( -289,071.2)] 
=- 100°-74.9999986° + 180° 
= 5.0000014° 
=5° E. long., rounding off. 

The 180° is added because the denominator in the argument for arctan is negative. 

Oblique aspect (Guam projection, inversing forward example): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Center: <!J 1 = 13.472466353° N. lat. 
'A0 = 144.748750706° E. long. 

False origin: x0 = 50,000 m 

Find: <\l, A. 

y0 = 50,000 m 
Point: x = 37,712.48 m 

y = 35,242.00 m 

First subtract 50,000 m from x andy to relate them to actual projection origin: 
x = -12,287.52 m, y = -14,758.00 m. Calculation of M 1 from equation (3-21) 
is exactly the same as in the forward example, or 

M 1 = 1,489,888. 76 m 

From equation (25-30), the first trial M is found from an assumed <\J = Q> 1 : 

M = 1,489,888. 76 + ( -14, 758.00) - ( -12,287.52)2 tan 13.472466353° 
x (1-0. 00676866 sin2 13.4 72466353°)112/(2 x 6,378,206.4) 

= 1,475,127.92 m 

Using equation (7-19) and the above trial M, 

fA. = 1,475,127.92/[6,378,206.4 X (1-0.00676866/4-3X0.006768662/ 

64-5x0.006768663/256)] 
= 0.2316688 radian 

Using equation (3-24), 

e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866)112] 

= 0.0016979 

Using equation (3-26) in radians, although it could be converted to degrees, 
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<!> = 0.2316688 + (3 X 0.0016979/2 - 27 X 0.00169793/32) 
sin (2X0.2316688) + (21x0.00169792/16-55 
x 0.00169794/32) sin (4X0.2316688) + (151 
x 0.00169793/96) sin (6x0.2316688) 

= 0.2328101 radian 
= 0.2328101 X 180°/11' = 13.3390381° 

If this new trial value of<!> is used in place of <!>1 in equation (25-30), a new value 
of M is found: 

M = 1,475,127.95 m 

This in turn, used in (7 -19), gives 
f.L = 0.2316688 radian 

and from (3-26), 

<!> = 13.3390384° 

The third trial, through the above equations and starting with this value of <!>, 
produces no change to seven decimal places. Thus, this is the final value of <!>. 
Converting to degrees, minutes, and seconds, 

<!> = 13°20'20.538" N. lat. 

Using equation (25-31) for longitude, 

A = 144.748750706° + [(-12,287.52) X (1-0.00676866 
sin2 13.3390384°)112/(6,378,206.4 cos 13.3390384°)] x 180°/11' 

= 144.6353313° 
= 144°38'07.193" E. long. 

Oblique aspect (Micronesia form, inversing forward example): 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Center: Saipan Island <!> 1 = 15.18491194° N. lat. 

Find: <!>, A 

Ao = 145.7416589° E. long. 
False origin: x0 = 28,657.52 m 

Yo = 67,199.99 m 
Point: x = 34,176.20 m 

y = 74,017.88 m 

From equations (25-32) through (25-41) in order, 

c = [(34,176.20 - 28,657.52)2 + (74,017.88-67,199.99)2)112 

= 8,771.51 m 
Az = arctan [(34,176.20-28,657.52)/(74,017.88-67,199.99)] 

= 38.9881292° 
N 1 6,378,206.4/(1-0.00676866 sin2 15.18491194°)112 

= 6,379,687.9 m 
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A -0.00676866 cos2 15.18491194° cos2 38.9881292°/ 
(1-0.00676866) 

= -0.003834730 
B = 3x0.00676866x(1 +0.003834730) sin 15.18491194° cos 

15.18491194° X COS 38.9881292°/(1-0.00676866) 
= 0.004032465 

D = 8, 771.51/6,379,687.9 
= 0.001374913 

E = 0.001374913 + 0.003834730 X (1-0.003834730) X 0.0013749133/6 
- 0.004032465 X (1-3x0.003834730) X 0.0013749134/24 

= 0.001374913. This is in radians for use in equation (25-38). 

For use as degrees in equations (25-39) and (25-40), 

E = 0.001374913 X 180°/1T = 0.07877669° 
F 1 + 0.003834730 X 0.0013749132/2 - 0.004032465 

X 0.0013749133/6 
1. 000000004 

ljJ = arcsin (sin 15.18491194° cos 0.07877669° + cos 15.18491194° 
x sin 0.07877669° cos 38.9881292°) 

= 15.2461374° 
'A = 145.7416589° + arcsin (sin 38.9881292° sin 0.07877669°/ 

cos 15.2461374°) 
145.7416589° + 0.0513711° 

= 145.7930300° 
= 145° 47'34.908" E. long. 

<1> = arctan [(1-0.00676866x 1.000000004 sin 15.18491194°/sin 
15.2461374°) x tan 15.2461374°/(1-0.00676866)] 
15.2465258° 
15°14'47.493" N. lat. 

MODIFIED-STEREOGRAPHIC CONFORMAL (SPHERE)- FORWARD EQUATIONS 
(SEEP. 207-208) 

Using Modified-Stereographic Conformal projection of Alaska (spherical form) as 
example: 

Given: Radius of sphere: R = 1.0 unit 
Order of equation: m = 6 

Center: <1>1 = 64° N. lat. 
'!1.0 = 152° W. long. 

Constants A 1-A6 : See Table 33, using constants for sphere. 
B1-B6: See Table 33, using constants for sphere. 

Point: <1> = 60° N. lat. 
'A = 150° W. long. 

Find: x, y, k 

Using equations (26-1) through (26-3) in order, 

k' = 21/1 + sin 64° sin 60° + cos 64° cos 60° cos [ -150°-( -152°)]) 
= 1.0012864 

x' = 1.0012864 cos 60° sin [ -150°-( -152°)] 
= 0.01747220 

y' = 1.0012864x(cos 64° sin 60°- sin 64° cos 60° cos [ -150°- ( -152°)]) 
= -0.06957209 
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Using equations in (26-6), withj=2, in order, 

r = 2x0.01747220 
= 0.03494439 

s' = 0.017472202 +(-0.06957209)2 

= 0.00514555 
Yo =0 
a 1 = A 6 +iB6 

= 0.3660976 + ( -0.2937382)i 
bt =A5+iB5 

= 0.0636871 + ( -0.1408027)i 
c1 = 6x(A6 +iB6 ) 

= 2.1965856 + ( -1. 7624292)i 
d1 = 5x(A5 +iB5) 

= 0.3184355 + ( -0. 7040135)i 
a2 = b1 +ra1 

= 0.0636871 + ( -0.1408027)i+0.03494439X(0.3660976+ ( -0.2937382)i] 
= 0.07648016 + ( -0.15106720)i 

b2 = A 4 +iB4 -s'a1 

= -0.0153783 + ( -0.1968253)i-0.00514555 X (0.3660976 + ( -0.2937382)i] 
= -0.01726207 + ( -0.19531385)i 

c2 = d1 +rc1 

= 0.3184335 + ( -0. 7040135)i + 0.03494439X(2.1965856 + ( -1. 7624292)i] 
= 0.39519385 + ( -0. 76560052)i 

d2 = 4x(A4 +iB4)-s'c1 

= 4x [ -0.0153783 + ( -0.1968253)i]-0.00514555x [2.1965856 + ( -1. 7624292)i] 
= -0.07281585 + ( -0. 77823253)i 

Incrementing j to 3, 4, and 5 for the four variables aj, bj, Cj, and dj in the same set 
of equations, 

a3 = b2 + ra2 = -0.01458952 + ( -0.20059281)i 
b3 =A3 +iB3 -s'a2 = 0.00706707+0.00558982 i 
c3 = d2 +rc2 = -0.05900604+(-0.80498597)i 
d3 =3x(A3 +iB3)-s'c2 = 0.02034831+0.01837694i 
a4 = b3 + ra3 = 0.00655725 + ( -0.00141977)i 
b4 =A2 +iB2 -s'a3 = 0.00532637+(-0.00308534)i 
c4 = d3 + rc3 = 0.01828638 + ( -0.00975281)i . 
d4 = 2x(A2 +iB2)-s'c3 = 0.01080622 + (-0.00409290)i 
a 5 = b4 +ra4 = 0.00555551 + ( -0.00313495)i 
b5 =A1 +iB1-s'a4 = 0.99721856+0.00000731i 
c5 = d4 +rc4 = 0.01144523+ (-0.00443371)i 
d5 = 1x(A1 +iB1)-s'c4 = 0.99715821 +0.00005018i 

Incrementing j to 6 for aj and bj only, 

a6 = b5 + ra5 = 0. 997 41269 + ( -0. 00010224)i 
b6 =g0 -s'a5 = -0.00002859+0.00001613i 

Using equations (26-7) through (26-9) in order, and with the relationship i2 = -1, 

x +iy = 1 x\[0.01747220 + ( -0.06957209)i][0.99741269 
+ ( -0.00010224)i] + ( -0.000002859) + 0.00001613i) 
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= 0.01742699 + 0.0000071li2 -0.06939387i-0.00002859 + 0.00001613i 
= 0.01739129-0.06937775i 

x = 0.01739129 unit 
y = -0.06937775 unit 

F 2 + iF1 = [0.01747220 + ( -0.06957209)i][0.01144523 
+ ( -0.00443371)i] + 0.99715821 + 0.00005018i 

= 0.99704972+(-0.00082355)i 
k = [0.997049722 +(-0.00082355l]112 X1.0012864 

= 0.9983327 

MODIFIED-STEREOGRAPHIC CONFORMAL (SPHERE)
INVERSE EQUATIONS (SEEP. 208) 

Inversing forward example: 

Find: <f>, 'A 

x = 0.01739129 unit 
y = -0.06937775 unit 

Using the Knuth algorithm equations (26-6) with (26-10), (26-13), and (26-8), 
but not in that order, the first trial x' = 0.01739129/1, and trial y' = -0.06937775/1. 
Except for the values of x' andy', equations (26-6) are used in the same manner 
as they were in the forward example, resulting in 

a6 = 0.99741192 + (-0.00010209) i 
b6 = -0.00002841 + 0.00001606 i 
c5 = 0.01144135 + ( -0.00445277) i 
d5 = 0.99715864 + 0.00004934 i 

Using equations (26-13), (26-8), and (26-10) in order, 

f(x' + iy') = [0.01739129 + (-0.06937775) i] [0.99741192 
+ ( -0.00010209) i] + ( -0.00002841) + 0.00001606 i 
- [0. 01739129 + ( -0. 06937775) i]/1 

= -0.00008051 + 0.00019384 i 
F 2 + iF1 = [0.01739129 + (-0.06937775) i] [0.01144135 

+ ( -0.00445277) i] + 0.99715864 + 0.00004934 i 
= 0.99704869 + ( -0.00082188) i 

~ (x' + iy') = - [ -0.00008051 + 0.00019384 i]/[0.99704869 + ( -0.00082188) i] 
= -0.00008091 + 0.00019435 i 

The division in equation (26-10) uses the relationship that 

Adding ~ (x' + iy') to (x' + iy'), 

x' = 0.01739129 - 0.00008091 
= 0.01747220 

y' = -0.06937775 + 0.00019435 
= -0.06957210 
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Repeating the above steps with the new values of (x', y'), the new 

6 (x' +iy') = 0.00000000 + 0.00000000 i 

Thus there is no change to eight decimals, so equations (26-14) through (26-17) 
may be used in order, 

p = [0.017472202 + ( -O.o6g57210)2] 112 

= 0.07173252 
c = 2 arctan ( 0. 07173252/2) 

= 4.10820g5o 
<!> =arcsin [cos 4.10820g5o sin 64° + ( -0.06g57210 

sin 4.10820g5o cos 64°/0.07173252)] 
= 60° N. lat. 

X. = -152° + arctan [0.01747220 sin 4.10820g5o/ 
(0.07173252 cos 64° cos 4.10820g5o 
- (-0.06g57210) sin 64° sin 4.10820g5°)] 

= -150° = 150° W. long., not adding 180° to the arctan because the denominator 
is positive. 

SPACE OBLIQUE MERCATOR (SPHERE)- FORWARD EQUATIONS 
(SEE P. 218-219 ) 

Given: Radius of sphere: R = 6,370,9g7.0 m 
i = gg,og2o Landsat 1, 2, 3 orbit: 

P 21P1 = 18/251 
Path= 15 

Point: <!> = 40° N. lat. 
X. = 73° W. long. 

Find: x, y for point taken during daylight northern (first) quadrant of orbit. 

Assuming that this is only one of several points to be located, the Fourier 
constants should first be calculated. Simpson's rule may be written as follows, 
using X.' as the main variable: 

If 

F = I} j(>..')d>..' 

a close approximation of the integral is 

F = (6>..' /3)[/(X.' a) + 4f (X.' a + 6X.') + 2/ (X.' a + 26>..') + 4f (X.' a + 36>..') 
+ 2/ (X.' a + 4~>..') + ... + 4f (X.' b - 6X.') + f (X.' b)] 

where f (X.') is calculated for X.' equal to a, and for X.' at each equal interval 
6>..' until X.'= b. The values f (X.') are alternately multiplied by 4 and 2 as the 
formula indicates, except for the two end values, and all the resulting values are 
added and multiplied by one-third of the interval. The interval 6X.' must be 
chosen so there is an even number of intervals. 

Applying this rule to equation (27-1) with the suggested go interval in X.', the 
function/ (X.')= (H -S2 )/(1 + S2

) 112 is calculated for a X.' of 0°, go, 18°, 27°, 36°, ... , 
81°, and goa, with ten go intervals. The calculation for X.'= go is as follows, using 
equations (27-4) and (27-5): 
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H = 1 - (18/251) cos gg.og2o 
= 1.0113321 

S = (18/251) sin gg.og2o cos go 
= o.o6gg403 

f (A.')= (1.01!3321 - o.o6gg4032)/(1 + o.o6gg4032
) 112 

= l.003g87g 

To calculate B, the following table may be figuratively prepared, although a 
computer or calculator program would normally be used instead (His a constant): 

>..' s /(>..') Multiplier Summation 

oo ----------------.-- 0.0708121 1.0038042 X1= 1.0038042 
9 ......................................... .0699403 1.0039879 X4= 4.0159516 

18 .0673463 1.0045212 X2= 2.0090423 ------------------
27 ------------------ .0630941 1.0053522 X4= 4.0214087 
36 .0572882 1.0064001 X2= 2.0128001 ------------------
45 ------------------ .0500717 1.0075627 X4= 4.0302507 
54 ......................................... .0416223 1.0087263 X2= 2.0174526 
63 ------------------ .0321480 1.0097770 X4= 4.0391079 
72 ------------------ .02.18822 1.0106114 X2= 2.0212227 
81 ------------------ .0110775 1.0111474 X4= 4.0445895 
90 .......................................... .0000000 1.0113321 X1= 1.0113321 

Total = 30.2269624 

To convert to B, again referring to equation (27 -1) and remaining in degrees for 
the final multipliers, since they cancel, 

B = (2/180°) X (g0 /3) X 30.226g624 
= 1.0075654 

This is the Fourier coefficient B for equation (27-6) with A.' in radians. To use 
A.' in degrees, multiply B by '!T/180°: 

B = 1.0075654 X 7r/180 
= 0.017585334 

Calculations of An and Cn are similar, except that the calculations of the func
tion involve an additional trigonometric term at each step. For example, to calcu
late C3 for A.' =9°, using equation (27-3) and the S found above from equation 
(27-5), 

j(A.') = [S/(1 + 8 2) 112] cos 3A.' 
= [0.06gg403/(1 + 0.06gg4032) 112] COS (3 X go) 
= 0.06216542 

The sums for An corresponding to 30.226g624 forB are as follows: 

for A2: -0.05645g4 
for A4: 0.000041208 

To convert to the desired constants, 

A 2 = [4/(180°X2)] X (9°/3) X ( -0.05645g4) 
= -0.001881g8 

A4 = [4/(180°X4)] X (go/3) X (0.000041208) 
= 0.0000006868 
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The sums for Cn: 

To convert, 

for C 1: 1.0601909 
for C3 : -0.0006626541 

C1 == [4x(l.0113321 + 1)/(180°X1)] X (9°/3) X (1.0601909) 
= 0.1421597 

C3 == (4X (1.0113321 + 1)/(180°X3)) X (9°/3) X ( -0.0006626541) 
= -0.0000296182 

These constants, rounded to seven decimal places except for B, will be used 
below: 

Using equation (27 -11), 

ho = 128.87°- (360°/251) x 15 
== 107.36° 

To solve equations (27-8) and (27-9) by iteration, determine h 1
p from equation 

(27 -12) and the discussion following the equation, with N = 0: 

Then 

'A.'p = 90° X (4X0+2-1) 
== 90° 

htp = -73°-107.36° + (18/251) x 90° 
= -173.9058167° 

cos hfp = -0.9943487 

Using h 1p as the first trial value of h 1 in equation (27-9), using extra decimal 
places for illustration: 

ht == -73° - 107.36° + (18/251) X 90° 
= -173.9058167°, as before. 

Using equation (27-8), 

h' ==arctan [cos 99.092° tan (-173.9058167°) +sin gg,092° 
tan 40°/cos ( -173.9058167°)] 

== -40.36g10525° 

For quadrant correction, from the discussion following equation (27-12), using 
the sign of cos hfp as calculated above, 

h' = -40.36g1Q525° + goo- goo sin goo x (-1) 

= -40.36g10525° + 180° 
= 13g,6308947° 

This is the next trial X.'. Using equation (27- g), 

ht = -73° - 107.36° + (18/251) X 13g,6308947° 
= -170.34662g1 ° 
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Substituting this value of A.t in place of -173.9058167° in equation (27 -8), 

A.' = -40.9362858° 

The same quadrant adjustment applies: 

A.' = -40.9362858° + 180° 
= 139.0637142° 

Substituting this in equation (27-9), 

and from equation (27 -8), 

From the 4th iteration, 

From the 5th iteration, 

From the 6th iteration, 

A.t = -170.3873034° 

A.' = 139.0707998° 

A.t = -170.3867952° 
A.' = 139.0707113° 

A.t = -170.3868016° 
A.' = 139.0707124° 

A.t = -170.3868015° 
A.' = 139.0707124° 

Since A.' has not changed to seven decimal places, the last iteration is taken as the 
final value. Using equation (27-10), with the final value of A.t, 

4>' =arcsin [cos 99.092° sin40°- sin 99.092°cos40° sin 
( -170.3868015°)] 

= 1.4179606° 

From equation (27-5), 

S = (18/251)sin99.092°cos139.0707124° 
= -0.0534999 

From equations (27-6) and (27-7), 

x = 6,370,997x(0.017585334x139.0707124°+(-0.0018820) 
sin (2X139.0707124°) + 0.0000007 sin (4X139.0707124°) 
-[ -0.0534999/(1 + ( -0.0534999)2)112] In tan 
(45° + 1.4179606°/2)] 

= 15,601,233.74 m 
y = 6,370,997x(0.1421597 sin 139.0707124°+(-0.0000296) 

sin (3x 139.0707124°) + [11(1 + ( -0.0534999)2)112] 
In tan (45° + 1.4179606°/2)) 

= 750,650.37 m 
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SPACE OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS 

(SEE P. 219-221) 

Inversing forward example: 

Given: Radius of sphere: R = 6,370,997.0 m 
'1, = 99.092° Landsat 1, 2, 3 orbit: 

Point: 

Find: <!>, X. 

P 21P1 = 18/251 
Path = 15 

x = 15,601,233.74 m 
y = 750,650.37 m 

Constants A2 , A 4 , B, Cb C3, and X.0 are calculated exactly and have the same 
values as in the forward example above. To solve equation (27 -15) by iteration, 
the first trial X.' is x/BR, using the value of B for X.' in degrees in this example: 

X.' = 15,601,233. 74/(0.017585334X6370997.0) 
= 139.2518341° 

Using equation (27-5) to findS for this trial X.', 

S = (18/251) sin 99.092° cos 139.2518341° 
= -0.0536463 

Inserting these values in the right side of equation (27 -15), 

X.' = [15,601,233. 74/6,370,997.0 + ( -0.0536463) 
x750,650.37/6,370,997.0-( -0.0018820) sin (2x 139.2518341°) 
-0.0000007 sin (4x 139.2518341 °)-( -0.0536463) 
x [0.1421597 sin 139.2518341 o + ( -0.0000296) 
sin (3x 139.2518341°)])/0.017585334 

= 139.0695675° 

Substituting this new trial value of X.' in (27 -5) for a newS, then both in (27 -15) 
for a new X.', the next trial value is 

X.' = 139.0707197° 

The fourth value is 

X.' = 139.0707124° 

and the fifth does not change to seven decimal places. Therefore, this X.' is the 
final value. The corresponding S last calculated from (27-5) is 

S = (18/251) sin 99.092° cos 139.0707124° 
= -0.0534999 

Using equation (27-16), 

lntan(45° + <!>' /2) = [1 + ( -0.0534999)2
)112 x [750650.37/ 

6370997.0-0.1421597 sin 139.0707124° 
-( -0.0000296) sin (3 x 139.0707124°)] 

= 0.02475061 
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tan ( 45° + <J> '/2) = eo.o247506I 
= 1.0250594 

45 o + <!> '/2 = arctan 1. 0250594 
= 45.7089803° 

<J>' = 2X(45.7089803°-45°) 
= 1.4179606° 

Using equation (27 -13), 

A. =arctan [(cos 99.092° sin 139.0707124°- sin 99.092° 
tan 1.4179606°)/cos 139.0707124°]-(18/251) 
139.0707124° + 107.36° 

= arctan [ -0.1279654/( -0. 7555187)] + 97.3868015° 
= 9.6131985° + 97.3868015° 
= 107.0000000° 

Since the denominator of the argument of arctan is negative, and the numerator 
is negative, 180° must be subtracted from A., or 

Using equation (27-14), 

A. = 107.0000000°-180° = -73.0000000° 
= 73° W. long. 

<!> = arcsin (cos 99. 092° sin 1. 4179606° + sin 99. 092° 
cos 1.4179606° sin 139.0707124°) 

= 40.0000000° 
= 40° N. lat. 

For ground track calculations, equations (27 -17) through (27 -20) are used, 
given the same Landsat parameters as above for R, i, P2/Pb and path 15, with 
A.0 = 107.36°, and<!> = 40° S.lat. on the daylight (descending)partofthe orbit. Using 
equation (27 -17), 

A.' = arcsin [sin ( -40°)/sin 99. 092°] 
= -40.6145062° 

To adjust for quadrant, subtract from 1800, which is the A.' of the descending node: 

Using equation (27 -18), 

A.' = 180°-( -40.6145062°) 
= 220.6145062° 

A. =arctan [(cos 99.092° sin 220.6145062°)/cos 220.6145062°] 
-(18/251)X220.6145062° + 107.36° 

=arctan [0.1028658/(-0.7591065)] + 91.5390394° 
= 83.8219462° 

Since the denominator of the argument for arctan is negative, add 180°, but 360° 
must be then subtracted to place A. between + 180° and -180°: 

A. = 83.8219462 + 180°-360° 
= -96.1780538° 
= 96°10'40.99" W. long. 
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If A. is given instead, with the above A. used for the example, equations (27 -19) 
and (27-9) are iterated together using the same type of initial trial A.' as that 
used in the forward example for equations (27-8) and (27-9). In this case, as 
described following equation (27-12), A.'p is 270°, but this is only known from the 
final results. If A.' P = 90° is chosen, the same answer will be obtained, since there is 
considerable overlap in actual regions for which two adjacent A.'p's may be used. 
If A.'p = 450° is chosen, the A.' calculated will be about 487.9°, or the position on 
the next orbit for this A.. Using A.'p=270° and the equation for 'Atp following equa
tion (27 -12), 

Atp = -96.1780538° - 107.36° + (18/251) X 270° 
= -184.1755040° 

for which the cosine is negative. From equation (27-9), the first trial 'At is the 
same as 'Atp· From equation (27 -19), 

A.' =arctan [tan ( -184.1755040°)/cos 99.092°] 
= 24.7970120° 

For quadrant adjustment, using the procedure following (27 -12), 

A.' = 24.7970120 + 270°-90° sin 270° X ( -1) 
= 204.7970120° 

where the ( -1) takes the sign of cos 'Atp· 

Substituting this as the trial A.' in (27-9), 

'At = -96.1780538°-107.36° + (18/251)x204.7970120° 
= -188.8514155° 

Substituting this in place of -184.1755040° in (27 -19), 

A.' =44.5812628° 

but with the same quadrant adjustment as before, 

A.'= 224.5812628° 

Repeating the iteration, successive values of A.' are 

A.' = 219.5419815°, then 
= 220.8989682°, then 
= 220.5386678°, then 
= 220.6346973°, then 
= 220.6091287°, then 
= 220.6159384°, etc. 

After a total of about 16 iterations, a value which does not change to seven decimal 
places is obtained: 

A.' =220.6145063° 
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Using equation (27-20), 

<1> =arcsin (sin 99.092° sin 220.6145063°) 
= -40.0000000° 
= 40° S. lat. 

SPACE OBLIQUE MERCATOR (ELLIPSOID)-FORWARD EQUATIONS 
(SEE P. 222-224 ) 

While equations are also given for orbits of small eccentricity, the calculations 
are so lengthy that examples will only be given for the circular Landsat 1, 2, or 3 
orbit. 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0.00676866 

Landsat 1, 2, 3 orbit: i = 99.092° 
P 2/P1 = 18/251 

R0 = 7,294,690.0 m 
Path= 15 

Point: <1> = 40° N. lat. 
A. = 73° W. long. 

Find: x, y for point taken during daylight northern (first) quadrant of orbit. 

The calculation of Fourier constants for the map follows the same basic proce
dure as that given for the forward example for the spherical form, except for 
greater complications in computing each step for the Simpson's numerical inte
gration. The formula for Simpson's rule (see above) is not repeated here, but an 
example of calculation of a functionf(A.") for constant A 2 at A."= 18° is given below, 
as represented in equation (27 -22). 

Using equations (27-24) through (27-27) in order, 

J = (1-0.00676866)3 

= 0.9798312 
W = [(1-0.00676866 cos2 99.092°?/(1-0.00676866)2]-1 

= 0.0133334 
Q = 0.00676866 sin2 99.092°/(1-0.00676866) 

= 0.0066446 
T = 0.00676866 sin2 99.092° x (2-0.00676866)/(1-0.00676866)2 

= 0.0133345 

Using equations (27-30) and (27-31), 

S = (18/251) sin 99.092° cos 18°X[(1 + 0.0133345 
sin2 18°)/(1 + 0.0133334 sin2 18°) (1 + 0.0066446 sin2 18°)]112 

= 0.0673250 
H = [(1 + 0.0066446 sin2 18°)/(1 + 0.0133334 sin2 18°)]112 

X [(1 + 0.0133334 sin2 18°)/(1 + 0.0066446 sin2 18°)2 

-(18/251) X 1.0 COS 99.092°) 
= 1.0110133 
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Calculating the function f (A") as given above, 
f (A")= [(1.0110133 X 0.9798312-0.06732502)/(0.97983122 

+ 0.06732502
) 112] cos (2x18°) 

= 0.8122693 

In tabular form, using 9° intervals in A", the calculation of A2 proceeds as follows, 
integrating only to 90° for the circular orbit: 

'A" H s f('A") Multiplier Summation 

0° ------------------ 1.0113321 0.0708121 1.0035971 X1= 1.0035971 
9 ------------------- 1.0112504 0.0699346 0.9545807 X4= 3.8183229 

18 ------------------- 1. 0110133 0.0673250 0.8122693 X2= 1.6245386 
27 ------------------- 1. 0106439 0.0630509 0.5904356 X4= 2.3617425 
36 ------------------- 1.0101782 0.0572226 0.3106003 X2= 0.6212007 
45 ------------------- 1. 0096617 0.0499888 0.0000000 X4= 0.0000000 
54 ------------------- 1. 0091450 0.0415321 -0.3110197 X2= -0.6220394 
63 ------------------- 1. 0086787 0.0320636 -0.5919529 X4= -2.3678116 
72 ------------------- 1. 0083085 0.0218167 -0.8151437 X2= -1.6302874 
81 ------------------- 1. 0080708 0.0110417 -0.9585531 X4= -3.8342122 
90 ------------------- 1. 0079888 0.0000000 -1.0079888 X1= -1.0079888 

Total = -0.0329376 

To convert to A 2 , referring to equation (27-22), 

A 2 = [4/(180° x 2)]x(9°/3)x(-0.0329376) 
= -0.0010979 

Similar calculations of A 4 , B, C1 , and C3 lead to the values given in the text 
following equation (27-54): 

B = 0.0175544891 for A" in degrees 
A 4 = -0.0000013 
cl = o.1434410 
c3 = o.oooo285 

Since the calculations of in and mn are not necessary for calculation of x and y 
from <1> and A, or the inverse, and are also lengthy, they will be omitted in these 
examples. The examples given will, however, assist in the understanding of the 
text concerning their calculations. The other general constant needed is Ao, deter
mined from (27 -37), as in the forward spherical formulas and example: 

Ao = 128.87°-(360°/251) X 15 
= 107.36° 

For coordinates of the specific point, equations (27-34) and (27-35) are 
iterated together. Except for the additional factor of (1-e2) in (27-34), the pro
cedure is identical to the forward spherical example for solving (27 -8) and 
(27-9). The calculations of A1p and the first trial At are identical with that exam
ple since <1> and A have been made the same. The sign of cos Atp is also negative. 

A'p = 90° 
At = -173.9058167° 
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Using equation (27-34), 

X" =arctan [cos gg.og2o tan ( -173.9058167°) + (1-0.00676866) 
sin gg.092° tan 40°/cos ( -173.g058167°)] 

= -40.1810005° 

For quadrant correction, 

A." = -40.1810005° + 90° - goo sin goo x ( -1) 
= 13g.81899g5o 

Successive iterations give 

(2) At = -170.33313g5o 
A." = 13g.2478g15° 

(3) At = -170.3740g54° 
A." = 13g.2550483° 

(4) At = -170.3735822° 
A." = 13g.2549587° 

(5) A.t = -170.3735886° 
A." = 13g.254g5g8o 

(6) At = -170.3735885° 
A." = 13g.254g5g8o 

These last values do not change within seven decimal places in subsequent 
iterations. 

Using equation (27-36) with the final value of At, 

<!>" =arcsin [[(1-0.00676866) cos gg.og2o sin 40°-sin gg.og2o 
cos 40° sin ( -170.3735885°)]/(1-0.00676866 
sin2 40°)112) 

= 1.46g2784° 

From equation (27-30), using 13g.254g5g8o in place of 18° in the example for cal
culation of Fourier constants, 

s = -0.0535730 

From equations (27-32) and (27-33), 

X = 6,378,206.4 X [0.0175544891 X 139.254g5g8o + ( -0.0010g7g) 
sin (2x 13g.254g5g8o) + ( -0.0000013) sin (4 x 13g.254g5g8o) 
-[ -0.0535730/(0.g7g83122 + ( -0.0535730)2

) 112] In tan (45° 
+ 1.46g2784°/2)j 

= 15,607, 700.g4 m 
y = 6,378,206.4x[0.1434410 sin 13g.254g5g8o + 0.0000285 

sin (3 x 13g.254g5g8o) + [O.g7g8312/(0.97g83122 

+ ( -0.0535730)2
) 112] In tan (45° + 1.46g2784°/2)) 

= 760,636.33 m 

For calculation of positions along the groundtrack for a circular orbit, these 
examples use the same basic Landsat parameters as those in the preceding exam
ple, except that <!> = 40° S. lat. on the daylight (descending) part of the orbit. To 
find A.', <!>g is first calculated from equation (27 -41): 
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<l>g = ( -40°) - arcsin (6,378,206.4X0.00676866 sin ( -40°) cos 
( -40°)/[7,294,690.0x (1-0.00676866 sin2 ( -40°))112] 

= -40° - ( -0.1672042°) 
= -39.8327958° 

From equation (27 -42), 

'A' =arcsin [sin ( -39.8327958°)/sin 99.092°] 
= -40.4436361° 

To adjust for quadrant, since the satellite is traveling south, subtract from 
1/z X 360°: 

il., = 180° - ( -40.4436361 °) 
= 220.4436361° 

Using equation (27-43), 

il. =arctan [(cos 99.092° sin 220.4436361°)/cos 220.4436361°] 
-(18/251) X 220.4436361° + 107.36° 

=arctan [0.1025077/( -0. 7610445)] + 91.5512930° 
= 83.8800995° 

Since the denominator of the argument for arctan is negative, add 180°, but 360° 
must also be subtracted to place 'A between + 180° and - 180°: 

il. = 83.8800995° + 180° - 360° 
= -96.1199005° 
= 96°07'11.64" W. long. 

If 'A is given instead, with the above A. used in the example, equations (27-19) 
and (27-35) are iterated together with X.' in place of 'A" in the latter. The tech
nique is the same as that used previously for solving (27-8) and (27-9) in the 
forward spherical example. See also the discussion for the corresponding spheri
cal ground track example, using equations (27 -19) and (27 -9), near the end of the 
inverse example. Since the formulas for the circular orbit are the same for ellip
soid or sphere for this particular calculation, the various iterations are not shown 
here. With il. = -96.1199005°, A.' is found to be220.4436361°. To find the correspond
ing <1> from equation (27 -44), a trial <1> = arcsin (sin 99.092° sin 220.443636JD) = 
-39.8327958° is inserted: 

<1> = arcsin (sin 99.092° sin 220.4436361°) + arcsin (6,378,206.4 
x 0.00676866 sin ( -39.8327958°) cos ( -39.8327958°)/ 
(7,294,690.0 X (1-0.00676866 
sin2 

( -39.8327958°))112]) 

-39.9998234° 

Substituting -39.9998234° in place of -39.8327958° in the same equation, a new 
value of <1> is obtained: 

<I> = -39.9999998° 

With the next iteration, 

<I> = -40.0000000° 
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which does not change to seven decimal places. Thus, 

4> = 40° S. lat. 

SPACE OBLIQUE MERCATOR (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 224-225) 

This example is also limited to the circular Landsat orbit, using the parameters 
of the forward example. 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e2 = 0. 00676866 

Landsat 1, 2, 3 orbit: t = 99.092° 

Find: 4>, X. 

P21P1 = 18/251 
R 0 = 7,294,690.0 m 

Path = 15 (thus X.0 = 107.36° as in forward 
example) 

Point: x = 15,607,700.94 m 
y = 760,636.33 m 

All constants J, W, Q, T, An, B, and Cn, as calculated in the forward example, 
must be calculated or otherwise provided for use for inverse calculations. 

To find X." from equation (27-51) by iteration, the procedure is identical to that 
given for (27 -15) in the inverse spherical example, except for the use of differ
ent constants. For the initial X." = xlaB, 

A11 15,607,700. 94/(6,378,206.4 X 0.0175544891) 
= 139.3965968° 

Using equation (27-30) to findS for this value of X.", 

S = (18/251) sin 99.092° cos 139.3965968° x [(1 + 0.0133345 
sin2 139.3965968°)/(1 + 0.0133334 sin2 139.3965968°)(1 
+ 0.0066446 sin2 139.3965968°))112 

= -0.0536874 

Inserting these values into (27-51), 

X." = (15,607, 700.94/6,378,206.4 + ( -0.0536874/0.9798312) 
x (760,636.33/6,378,206.4) - ( -0.0010979) sin (2 
x 139.3965968°)-( -0.0000013) sin (4 X 139.3965968°) 
- ( -0.0536874/0.9798312) x [0.1434410 sin 139.3965968° 
+ 0.0000285 sin (3 x 139.3965968°)])/0.0175544891 

139.2539963° 

Substituting this new trial value of X." into (27-30) for a newS, then both into 
(27-51), the next trial value is 

X." = 139.2549663° 
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and the fourth trial value is 

A." 139.2549597° 

The fifth trial value is 

A." = 139.2549598° 

which does not change with another iteration to seven decimal places. Therefore, 
this is the final value of A.". The corresponding S last calculated from (27-30) 
using this value of A." is -0.0535730. Using equation (27-52), 

ln tan(45° + 4>"/2) = [1 + (-0.0535730)2/0.97983122] 112 

x [760,636.33/6,378,206.4-0.1434410 sin 
139.2549598°-0.0000285 sin (3 x 139.2549598°)] 

= 0.0256466 
tan (45o + 4>"/2) = eo.oz56466 

= 1.0259783 
45° + 4>"12 = arctan 1.0259783 

= 45. 7346392° 
4>" = 2 X ( 45.7346392°- 45°) 

= 1.4692784° 

Using equations (27-48), (27-47), and (27-46) in order, 

U = 0.00676866 cos2 99.092°/(1-0.00676866) 
= 0.0001702 

V = j[l-sin2 1.4692784°/(1-0.00676866)] cos 99.092° 
sin 139.2549598°-sin 99.092° sin 1.4692784° 
x [(1 + 0.0066446 sin2 139.2549598°) x (1-sin2 1.4692784°) 
-0.0001702 sin2 1.4692784°]112)/ 
[1-sin2 1.4692784° (1 + 0.0001702)] 

= -0.1285013 
A.t = arctan ( -0.1285013/cos 139.2549598°) 

= arctan [ -0.1285013/( -0. 7576215)] 
= 9.6264115° 

Since the denominator of the argument for arctan is negative, and the numerator 
is negative, subtract 180°: 

A.t = 9.6264115°-180° 
== -170.3735885° 

Using equation (27-45), 

A. == -170.3735885°-(18/251)X139.2549598°+107.36° 
= -73.0000000° 
= 73° W. long. 

Using equation (27-49), 

4> = arctan ([tan 139.2549598° cos ( -170.3735885°) -cos 99.092° 
sin ( -170.3735885°)]/[(1-0.00676866) sin 99.092°]) 

= 40.0000000° 
= 40° W. lat. 
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SATELLITE-TRACKING (SPHERE)-FORWARD EQUATIONS (SEEP. 231-232, 236) 

Cylindrical form: 

Given: Radius of sphere: 
Landsat 1, 2, 3 orbit: 

Map parameters: 

Point: 

Find: x, y, h, k 

Using equation (28-1), 

R = 1.0 unit 
i = 99.092° 

P2/P1 = 18/251 
Ao = 90° W. long. 

<!>1 = 30° N. and S. lat. 
<!> = 40° N. lat. 
)1. = 75° W. long. 

F 1 ' [(18/251) cos2 30°-cos 99.092°]/(cos2 30°-cos2 99.092°)112 

0.2487473 

Repeating this for 40° in place of 30°, using equation (28-1a), 

F' = 0.2669577 

Using equations (28-2) through (28-8) in order, 

)1.' = -arcsin (sin 40°/sin 99.092°) 
= -40.6145062° 

At = arctan [tan ( -40.6145062°) cos 99.092°] 
= 7. 7170932° 

L = 7. 7170932°-(18/251)X(-40.6145062°) 
= 10.6296873° 

X = 1.0 X ( -75° - ( -90°)) COS 30° X 'IT/180° 
= 0.2267249 unit 

y = 1.0 X 10.6296873° X ('IT/1800) COS 30°/0.2487473 
= 0. 6459071 unit 

k = cos 30°/cos 40° 
= 1.1305159 

h = 1.1305159 X 0.2669577/0.2487473 
= 1.2132788 

Conic Form (two parallels with conformality): 

Given: Radius of sphere: 
Landsat 1, 2, 3 orbit: 

Map parameters: 

Point: 

Find: x, y, p8 , k, h 

R = 1.0 unit 
i = 99.092° 

P2IP1 = 18/251 
)1.0 = 90° W. long. 
<l>o = 30° N. lat. 
<!> 1 = 45° N. lat. 
<!>2 = 70° N. lat. 

<!> = 40° N. lat. 
A = 75° W. long. 

Using equation (28-9) for ann of zero, 

F 0 arctan ([(18/251) cos2 30°-cos 99.092°]/(cos2 30°-cos2 99.092°)112) 

13.9686735° 
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Repeating this for <f> 1 (45°) and <f>2 (70°), in place of 30°, 

F 1 15.7111447° 
F 2 = 28.7497148° 

Using equations (28-2a) through (28-4a) for ann of zero, 

A.' 0 = -arcsin (sin 30°/sin 99.092°) 
= -30.4218063° 

A.w = arctan [tan ( -30.4218063°)cos 99.092°] 
= 5.3013386° 

L0 = 5.3013386°-(18/251) x ( -30.4218063°) 
= 7.4829821° 

Repeating these equations for an n of 1 and then 2, 

A1
J = -45.7337490° 

A.n = 9.2086865° 
L1 = 12.4883976° 
A1

2 = -72.1102281° 
A.t2 = 26.0835377° 
L2 = 31.2547891° 

Using equations (28-10) through (28-12), 

n = (28. 7497148°-15. 7111447°)/(31.2547891°-12.4883976°) 
= 0.6947830 

So = 15. 7111447°-0.6974830X 12.4883976° 
= 7.0344182° 

p0 = 1.0 cos 45° sin 15.7111447°/[0.6947830 sin (0.6947830x7.4829821° 
+ 7.0344182°)] 

= 1.3005967 units 

These constants apply to the entire map. For the point (<f>, A.), using equations 
(28-9) and (28-2a) through (28-4a) in order for an omitted n, or a <t> of 40° 

F = 14.9469825° 
A1 = -40.6145062° 
A.t = 7.7170932° 
L = 10.6296873° 

Since n is positive and L is greater than ( -sofn), the point may be plotted. 
Using equation (28-13), the calculation is the same as that for p0 , except that 
L is used in place of L0 : 

p = 1.1066853 units 

Using equations (14-4), (14-1), and (14-2) in order, 

e = 0.6947830 x [ -75°-( -90°)] 
= 10.4217452° 

x = 1.1066853 sin 10.4217452° 
= 0.2001910 unit 

y = 1.3005967- 1.1066853 cos 10.4217452° 
= 0.2121685 unit 
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Using equations (28-14) through (28-16) in order, 

p8 = 1.0 cos 45° sin 15.7111447°/0.6947830 
= 0.2755908 unit 

k = 1.1066853 x 0.6947830/(l.OXcos 40°) 
= 1.0037357 

h = 1.0037357 tan 14.9469825°/tan (0.6947830x 10.6296873°+ 7.0344182°) 
= 1.0421246 

SATELLITE-TRACKING (SPHERE)- INVERSE EQUATIONS (SEEP. 236-237) 

Inversing forward examples: 

Cylindrical form: 

Given: R, i, P2/P~> A.0 , <1> 1 as in forward example 

Find: <1>, A. 

x = 0.2267249 unit 
y = 0.6459071 unit 

Calculate F 1 ' from (28 -1), exactly as in the forward example: 

F/ = 0.2487473 

Using equation (28-19), 

L = [0.6459071 X0.2487473/(1.0 cos 300)] X 180°/'iT 
= 10.6296860° 

Using equations (28-24) and (28-25) rather than (28-20) and (28-21), and a 
first trial}..' of(-90°), 

A =tan [10.6296860°+(18/251)x(-90°)]/cos 99.092° 
= -0.4620014 

d}l.' = -[ -90°-arctan ( -0.4620014)1/[1-(( -0.4620014f + 1/cos2 99.092°) 
(18/251) cos 99.092°/(( -0.4620014f + 1)] 

= 47.3862943° 
A1 = -90° + 47.3862943° 

= -42.6137057° 

Replacing ( -90°) in (28-24) and (28-25) with ( -42.6137057°), 

dA I = 1. 9959795° 
A1 = -40.6177262° 

Repeating the iteration successively gives 

d}l.' = 0.0032237° 
}..' = -40.6145026° 

d}l.' = -0.0000000 

Since there is no change to seven decimals, 

A1 = -40.6145026° 
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Using equations (28-22) and (28-23), 

<!> = -arcsin [sin ( -40.6145026°) sin 99.092°] 
= 40° N. lat., neglecting round-off errors 

A. = -90° + [0.2267249/(l.Ocos30°)] x 180°/rr 
= -75° = 75o W. long. 

Conic form (two parallels with conformality): 

Find: <j>, A. 

x = 0.2001910 unit 
y = 0.2121685 unit 

Calculate F 0 , F 1, F 2 , A.0 ', A. to, £ 0 , A. 1 ', A.tl, £ 1, A.2 ', A.t2 , L2 , n, s0 , and p0 exactly as in 
the forward example. Using equations (14-10), (14-11), and (28-26) in order 

p = [0.20019102 + (1.3005967 -0.2121685)2
]112 

= 1.1066853 units 
e = arctan [0.2001910/(1.3005967 -0.2121685)] 

= 10.4217462° 
L =[arcsin (1.0 sin 45° sin 15.7111447°/ 

(1.1066853X0.6947830)) -7.0344182°]/ 
0.6947830 

= 10.6296877° 

With ( -90°) as the first trial A.' in (28-24) and (28-25), calculating as in the in
verse cylindrical example, 

A = -0.4620016 
6-A.' = 47.3862896° 

A.' = -42.6137104° 

Replacing ( -90°) as the trial A.' with ( -42.6137104°), and successively iterating, 
the result converges to 

A.' = -40.6145076° 

Using equations (28-22) and (14-9), 

<!> = - arcsin [sin ( -40.6145076°) sin 99.092°] 
= 40° N. lat., disregarding round-off errors. 

A. = -90° + 10.4217462°/0.6947830 
= -75° = 75° W. long. 

VANDER GRINTEN (SPHERE)- FORWARD EQUATIONS (SEEP. 241-242) 

Given: Radius of sphere: 
Central meridian: 

Point: 

R = 1.0 unit 
A.0 = 85° W. long. 

<j> = 50° S. lat. 
A. = 160° W. long. 
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Find: x, y 

From equations (29-6), (29-3), (29-4), (29-5), and (29-6a) in order, 

e =arcsin 12x(-50°)/180°1 
=arcsin 0.5555556 
= 33.7489886° 

A = 1/z I 180°/[( -160°)-( -85°)]-[( -160°)-( -85°)]/180°1 
= lfz I -2.4000000-(-0.4166667) I 
= 0.9916667 

G = cos 33. 7489886°/(sin 33.7489886° + cos 33.7489886° - 1) 
= 2.1483315 

P = 2.1483315 x (2/sin 33. 7489886°-1) 
= 5.5856618 

Q = 0.99166672 + 2.1483315 = 3.1317342 

From equation (29-1), 

x = -'ITX1.0x(0.9916667x(2.1483315-5.58566182) 

+ [0.99166672 x (2.1483315-5.58566182
)
2 

-(5.58566182 + 0.99166672) X (2.14833152-5.58566182)]112)/ 
(5.58566182 + 0. 99166672

) 

= -1.1954154 units 

taking the initial"-" sign because (A.-1..0) is negative. Note that 'IT is not con
verted to 180° here, since there is no angle in degrees to offset it. From equation 
(29-2), 

y = -'ITX1.0x(5.5856618X3.1317342-0.9916667 
X[(0.99166672 + 1) X(5.58566182 + 0.99166672

) 

-3.13173422]112)/(5.58566182 + 0.99166672) 

= -0.9960733 units, taking the initial "-" sign because <1> is 
negative. 

VANDER GRINTEN (SPHERE)-INVERSE EQUATIONS (SEEP. 242) 

Inversing forward example: 

Given: Radius of sphere: 
Central meridian: 

Point: 

Find: <!>, A. 

R = 1.0 unit 
1..0 = 85° W. long. 
x == -1.1954154 units 
y = -0.9960733 unit 

Using equations (29-9) through (29-19) in order, 

X = -1.1954154/('!Txl.O) 
== -0.3805125 

Y = -0.9960733/('ITXl.O) 
== -0.3170600 

c1 = -0.3170600x [1 + ( -0.3805125)2 + ( -0.3170600l] 
= -0.3948401 

c2 == -0.3948401-2X(-0.3170600)2 +(-0.3805125)2 

= -0.4511044 
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G3 = -2X(-0.3g48401)+1+2X(-0.3170600)2 

+ [( -0.3805125i + ( -0.3170600)2
]
2 

= 2.050g147 
d = ( -0.3170600)2/2.050g147 + [2 X ( -0.4511044)3/2.050g1473 

-g X ( -0.3g48401) X ( -0.4511044)/2.050g1472]/27 
= 0.0341124 

a 1 = [ -o.3g48401-( -0.4511044)2/(3x2.050g147)]/2.050g147 
= -0.2086455 

m 1 = 2x(0.2086455/3)vz 
= 0.527440g 

81 = (113) arccos [3x0.0341124/(-0.2086455x0.527440g)] 
= (113) arccos ( -0.g2gg322) 
= 52.8080831° 

<!> = -180°X[ -0.527440gx cos (52.8080831° + 60°) 
-( -0.4511044)/(3X2.050g147)) 

= -50° = 50° S. lat., taking the initial"-" sign because y is 
negative. 

A =180°X((-0.3805125)2 + (-0.3170600i -1 + 
[1+2X((-0.3805125)2

- (-0.3170600)2
) 

+ (( -0.3805125)2 + ( -0.3170600)2)2]ltlj/ 
[2x(-0.3805125)] + (-85°) 

= -160° = 160° W. long. 

SINUSOIDAL (SPHERE)- FORWARD EQUATIONS (SEEP. 247) 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao =goo W. long. 

<1> = 50° S. lat. Point: 
A = 75° W. long. 

Find: x, y, h, k, 8', w 
From equations (30-1) through (30-5) in order, 

X = 1.0 X [-75°-(-g0°))X COS (-50°) X 'TT/180° 
= 0.1682814 unit 

Y = 1.0 X ( -50°) X 'TT/180° 
= -0.8726646 unit 

h = (1 + [ -75°-( -g0°)]2 X(7r/180°i X sin2 ( -50°))vz 
= l.01gg11g 

k = 1.0 
8' =arcsin (1/1.01ggng) 

= 78.65g7ngo 
w =2arctan 1(112)[-75°-(-goo)] x ('TT/180°) x sin(-50°) I 

= 11.4523842° 

SINUSOIDAL (SPHERE)- INVERSE EQUATIONS (SEEP. 248) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao =goo W. long. 

Point: x = 0.1682814 unit 
y = -0.8726646 unit 

Find: <!>, A 
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From equations (30-6) and (30-7), 

Given: 

<j> = ( -0.8726646/1.0) X 180°hr 
= -49.9999985° 
= 50° S. lat. rounding off. 

A = -90° + [0.1682814/(1.0 X cos(-49.9999985°)] X 180°hr 
= - 75.0000007° 
= 75° W. long. 

SINUSOIDAL (ELLIPSOID)- FORWARD EQUATIONS (SEEP. 248) 

Clarke 1866 ellipsoid: a = 6,378,206.4 m 
e 2 = 0.00676866 

Central meridian: Ao = 90° W. long. 
Point: <j> = 50° S. lat. 

A = 75o W. long. 

Find: x, y 

Using equations (30-8), (3-21), and (30-9) in order, 

x = 6,378,206.4 x [ -75° - ( -90°)] x (-rr/180°) cos ( -50°) )/ 
(1-0.00676866 sin2 ( -50°))112 

= 1,075,471.5 m 
M = 6,378,206.4 X [(1-0.00676866/4-3x0.006768662/64 

-5 X 0.006768663/256) X ( -50°) X 'TT/180° - (3 X 0.00676866/8 
+ 3 X 0.006768662/32 + 45 X 0.006768663/1024) sin (2 X ( -50°)) 
+ (15 X 0.006768662/256 + 45 X 0.006768663/1024) sin (4 X ( -50°)) 
- (35 x 0.006768663/3072) sin (6 x ( -50°))] 

= -5,540,628.0 m 
y = -5,540,628.0 m 

SINUSOIDAL (ELLIPSOID)- INVERSE EQUATIONS (SEF. P. 248) 

Inversing forward example: 

Given: a, e2
, Ao for forward example 

x = 1,075,471.5 m 
y = -5,540,628.0 m 

Using equations (30-10), (7-19), (3-24), (3-26), and (30-11) in order, 

M = -5,540,628.0 
f-l = -5,540,628.0/(6378206.4 X (1-0.00676866/4 

-3 x 0.006768662/64-5x0.006768663/256)] 
= -0.8701555 radians = -49.8562390° 

e1 = [1-(1-0.00676866)112]/[1 + (1-0.00676866) 112] 
= 0.001697916 

<j> = -49.8562390° + [(3x0.001697916/2-27x0.0016979163/32) 
sin (2x(-49.8562390°)) + (21x0.0016979162!16 
-55x0.0016979164/32) sin (4x(-49.8562390°)) 
+ (151x0.0016979163/96) sin (6x(-49.8562390°)) 
+ (1097X0.0016979164/512) sin (8X(-49.8562390°))]X180°/7T 

= -50° = 50° S. lat. 
A = -90° + [1075471.5x(l-0.00676866 sin2 

( -50°))112/ 
(6,378,206.4 X COS ( -50°))] X 180°/'TT 

= -75° = 75° W. long. 
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MOLL WEIDE (SPHERE)- FORWARD EQUATIONS (SEEP. 251) 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao = goo W. long. 

Point: <1> = 50° S. lat. 
A = 75° W. long. 

Find: x, y 

From equation (31-4), using <1> or -50° as the flrst trial 6', 

M' -(( -50°) x TI/180° + sin ( -50°) - 'iT sin ( -50°)]/ 
(1 + COS (-50°)] X 180°/'iT 

-26. 781846go 

Thenexttrial6' = -50°-26.781846go = -76.781846go_ Usingthisinplaceof-50° 
for 6' (not <)>) in equation (31-4), subsequent iterations produce the following: 

6.6' = -4.33670g7o 
6' = -81.1185566° 

6.6' = -0.13g15g7o 
6' = -81.2577163° 

6.6' = -0.0001450° 
6' = -81.2578612° 

6.6' = -0.0000000° 

Since there is no change to seven decimal places, using (31-5), 

6 -81.2578612°/2 
= -40.628g306° 

Using (31-1) and (31-2), 

X = (8112/TI) X 1.0 X [ -75°-( -gQ0 ))cos( -40.628g3Q6°) X TI/180° 
= 0.1788845 unit 

y = 2112 x 1.0 sin ( -40.628g306°) 
= -o.g208758 unit 

MOLLWEIDE (SPHERE)- INVERSE EQUATIONS (SEEP. 251-252) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao = goo W. long. 

Point: x = 0.1788845 unit 
y = -o.g208758 unit 

Find: <)>, A 

Using equations (31-6) through (31-8) in order, 

6 = arcsin [ -o.g208758/(2112 x 1.0)] 
= -40.628g3l1° 

<)> = arcsin ([2 X ( -40.628g311 °) x TI/180° + sin [2 X ( -40.628g311 °)]]/Tij 
= -50° = 50° S. lat., neglecting round-off errors 

A = -goo + (TI X 0.1788845/[8112 X 1.0 cos ( -40.628g311 °)]j X 180°/'iT 
= -75° = 75° W. long. 
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ECKERT IV (SPHERE)- FORWARD EQUATIONS (SEE P. 256-257 ) 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: 

Point: 

Find: x, y 

A0 = goo W. long. 
<1> = 50° S. lat. 
A = 75° W. long. 

From equation (32-4), using (<!>/2) or -25° as the first trial 8, 

M - [ (-25°) x 1ri180° + sin (-25°) cos (-25°) + 2 sin (-25°) 
-(2 + 1T/2) sin ( -50°)]/[2 cos ( -25°) x (1 +cos ( -25°))] 

-17.7554344° 

The next trials= -25°-17.7554344°= -42.7554344°. Using this in place of -25° 
for 8 in equation (32-4), subsequent iterations produce the following: 

.:l8 = -2,gg1209go 
8 = -45.7466443° 

.:l8 = -0.11138g4o 
8 = -45.8580337° 

.:l8 = -0.0001573° 
8 = -45.8581910° 

.:l8 = -0.0000000° 

Sincethereisnochangetosevendecimalplaces, 8 = -45.8581g10o. Using(32-1a) 
and (32-2a), 

X = 0.4222382 X 1 X [ -75°-(-g0°)) X (1T/180°) X [1 + COS(-45.8581g10°)] 
= 0.1875270 unit 

y = 1.3265004 x 1 x sin ( -45.8581g10°) 
= -o.g51g210 unit 

ECKERT IV (SPHERE)-:- INVERSE EQUATIONS (SEEP. 257) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: A0 = goo W. long. 

Point: x = 0.1875270 unit 
y = -0.9519210 unit 

Find: <!>, A 

Using equations (32-ga), (32-10), and (32-lla) in order, 

8 = arcsin [ -o.g51g210/{1.3265004x 1)] 
= -45.8581937° 

<1> = arcsin [( -45.8581937° x 1r/180o + sin ( -45.8581937°) 
cos ( -45.8581937°) + 2 sin ( -45.8581937°))/ 
(2 + 1TI2)] 

= -50.0000027° = 50° S. lat., disregarding round-off errors. 
A. = -90° + [0.1875270/[0.4222382X1 

X (1 + COS ( -45.8581937°))]] X 180°/1T 
= -74.9999991° = 75° W. long. 
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ECKERT VI (SPHERE)- FORWARD EQUATIONS (SEEP. 257) 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao = 90° W. long. 

Point: <1> = 50° S. lat. 
A = 75° W. long. 

Find: x, y 

From equation (32-8), using <1> or -50° as the frrst trial e, 

M -\[( -50° x 1TI180° + sin ( -50°) - (1 + 1r/2) sin ( -50°)]/ 
[1 + COS ( -50°)]) X 180°/1T 

-11.5316184° 

Thenexttriale = -50°-11.5316184° = -61.5316184°. Usingthisinplaceof-50° 
fore (but not <I>) in equation (32-8), subsequent iterations produce the following: 

M = -0.6337921 o 

e = -62.1654105° 
ae = -0.0021049° 

e = -62.1675154° 
M = -o.oooooooo 

Since there is no change to seven decimal places, e = -62.1675154°. Using (32-5) 
and (32-6), 

X 1 X [-75°- (-90°)] X (1T/180°) X [1 + cos(-62.1675154°)]/(2 + 1T)112 

0.1693623 unit 
y 2 X 1 X ( -62.1675154°) X ( 1T/180°)/(2 + 1T)ll2 

-0.9570223 unit 

ECKERT VI (SPHERE)- INVERSE EQUATIONS (SEEP. 257) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: Ao = 90° W. long. 

Point: x = 0.1693623 unit 
y = -0.9570223 unit 

Find: <j>, A 

Using equations (32-12), (32-13), and (32-14) in order, 

e = (2 + 1r)112 x ( -0.9570223) x (180°/1T)/(2x 1) 
= -62.1675178° 

<1> = arcsin [( -62.1675178° x 1TI180° + sin ( -62.1675178°))/(1 + 1TI2)] 
= -50.0000021° = 50° S. lat., disregarding round-off errors. 

A = -90° + (2+1T)112 X 0.1693623 X (180°/1T)/[1X(1 + cos (-62.1675178°))] 
= -75° = 75° W. long. 
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APPENDIX B 
USE OF MAP PROJECTIONS BY U.S. GEOLOGICAL SURVEY-SUMMARY 

Note This list is not exhaustive. For further details, see text. 

Class/Projection Maps 

Cylindrical 
Mercator ----------------------------------------- Northeast Equatorial Pacific 

Indonesia (Tectonic) 
Other planets and satellites 

Transverse Mercator ------------------------- 7V2' and 15' quadrangles for 
22 States 

North America 
Universal Transverse Mercator ----------- 1 o lat. x 2° long. quadrangles 

of U.S. metric quadrangles and 
County maps. 

"Modified Transverse Mercator" ---------- Alaska 
Oblique Mercator ------------------------------ Grids in southeast 

Alaska 
Landsat Satellite Imagery 

Miller Cylindrical ------------------------------ World 
Equidistant Cylindrical ---------------------- United States and some State Index 

Maps 

Conic 
Albers Equal-Area Conic -------------------- United States and sections 
Lambert Conformal Conic ------------------ 7%' and 15' quadrangles for 

32 States 

Bipolar Oblique Conic 

Quadrangles for Puerto Rico, Virgin 
Islands, and Samoa 

State Base Maps 
Quadrangles for International 

Map of the World 
Some other planets and satellites 
Some State Index Maps 

Conformal ------------------------------------- North America (Geologic) 
Polyconic ----------------------------------------- Quadrangles for all States 
Modified Polyconic ---------------------------- Quadrangles for International 

Map of the World 

Azimuthal 
Orthographic (oblique) ----------------------- Pictorial views of Earth 

or portions 
Stereographic (oblique) ----------------------- Other planets and satellites 

(polar) -------------------------- Antarctica 
Arctic regions 
Other planets and satellites 

Lambert Azimuthal Equal-Area 
(oblique) --------------------------------------- Pacific Ocean 
(polar) ------------------------------------------ Arctic regions (Hydrocarbon 

Provinces) 
North and South Polar regions 

(polar expeditions) 
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Azimuthal Equidistant (oblique) ---------- World 

Space 

Quadrangles for Guam and 
Micronesia 

Space Oblique Mercator --------------------- Satellite image mapping 

Miscellaneous 
Van der Grinten ------------------------------- World (Subsea Mineral Resources, 

misc.) 
Sinusoidal (interrupted) ---------------------- World (Hydrocarbon Provinces) 



APPENDIXC 
STATE PLANE COORDINATE SYSTEMS-CHANGES FOR 1983 DATUM 

This listing indicates changes for the NAD 1983 datum 
from projections, parameters, and origins of zones as 
described in table 8 for the NAD 1927 datum. It is im
portant to understand that State plane coordinates based 
on the datum cannot be correctly converted to coordinates 
on the 1983 datum merely by using inverse formulas to 
convert from 1927 rectangular coordinates to latitude and 
longitude, and then using forward formulas with this 
latitude and longitude to convert to 1983 rectangular coor
dinates. Due to readjustment of the survey control net
works and to the change of ellipsoid, the latitude and 
longitude also change slightly from one datum to the 
other. 

These changes have been approved by the National 
Geodetic Survey (William M. Kaula, James Stem, pers. 
comm., 1986). They are given in the same order as the 
entries in table 8, except that only the changes are shown. 
All parameters not listed remain as before, except for the 
different ellipsoid and datum. Because all coordinates at 
the origin have been changed, and because they vary con
siderably, they are presented in the body of the table 
rather than as footnotes. Samoa is not being changed to 
the new datum. 

[L indicates Lambert Conformal Conic] 

California 
Montana 
Nebraska 

Area 

Puerto Rico and Virgin Islands 
South Carolina 
Wyoming 

Zone 

Alabama 
East 
West 

Alaska, 2-9 
Arizona, all 
Delaware 
Florida 

East, West 
Georgia 

East 
West 

Hawaii, all 
Idaho 

East 
Central 
West 

Illinois 
East 
West 

Indiana 
East 
West 

Maine 
East 
West 

Mississippi 
East 

West 

Projection 

L 
L 
L 
L 
L 
Unresolved 

Transverse Mercator projection 

Coordinates of origin (meters) 
X y 

200,000 0 
600,000 0 
500,000 0 
213,360 0 
200,000 0 

200,000 0 

200,000 0 
700,000 0 
500,000 0 

200,000 0 
500,000 0 
800,000 0 

300,000 0 
700,000 0 

100,000 250,000 
900,000 250,000 

300,000 0 
900,000 0 

300,000 0 

700,000 0 

Other Changes 

Zones 

6 
1 
1 
1 
1 

Origin in Intl. feet! 

Lat. of origin 43°40' N. 

Scale reduction 1:20,000, 
Lat. of origin 29°30' N. 
Scale reduction 1:20,000, 
Lat. of origin 29°30' N. 
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Zone 

Missouri 
East 
Central 
West 

Nevada 
East 
Central 
West 

New Hampshire 
New Jersey 

New Mexico 
East 
Central 
West 

New York 
East 
Central 
West 

Rhode Island 
Vermont 
Wyoming 

MAP PROJECTIONS-A WORKING MANUAL 

Transverse Mercator projection 

Coordinates of origin (meters) 
X y 

250,000 
500,000 
850,000 

200,000 
500,000 
800,000 
300,000 
150,000 

165,000 
500,000 
830,000 

0 
0 
0 

8,000,000 
6,000,000 
4,000,000 

0 
0 

0 
0 
0 

Other changes 

Central meridian 7 4 o 30' W. 
Scale reduction 1:10,000. 

All parameters identical with above New Jersey zone. 
250,000 0 
350,000 0 
100,000 0 
500,000 0 

Unresolved 
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Lambert Conformal Conic projection 

Coordinates of origin (meters) 
Zone X y Other changes 

Alaska, 10 1,000,000 0 
Arkansas 

North 400,000 0 
South 400,000 400,000 

California Zone 7 deleted. 
1-6 2,000,000 500,000 

Colorado, all 914,401.8289 304,800.6096 
Connecticut 304,800.6096 152,400.3048 
Florida, North 600,000 0 
Iowa 

North 1,500,000 1,000,000 
South 500,000 0 

Kansas 
North 400,000 0 
South 400,000 400,000 

Kentucky 
North 500,000 0 
South 500,000 500,000 

Louisiana 
North 1,000,000 0 Lat. of origin 30°30' N. 
South 1,000,000 0 Lat. of origin 28°30' N. 
Offshore 1,000,000 0 Lat. of origin 25°30' N. 

Maryland 400,000 0 Lat. of origin 37° 40' N. 
Massachusetts 

Mainland 200,000 750,000 
Island 500,000 0 

Michigan GRS 80 ellipsoid used 
without alteration. 

North 8,000,000 0 
Central 6,000,000 0 Long. of origin 84 °22' W. 
South 4,000,000 0 Long. of origin 84 °22' W. 

Minnesota, all 800,000 100,000 
Montana 600,000 0 Standard parallels, 45°00' 

(single zone) and 49°00' N. 
Long. of origin 109 o 30' W. 
Lat. of origin 44°15' N. 
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Zone 

Nebraska 
(single zone) 

New York 
Long Island 

North Carolina 
North Dakota, all 
Ohio, all 
Oklahoma, all 
Oregon 

North 
South 

Pennsylvania, all 
Puerto Rico and 

Virgin Islands 

South Carolina 
(single zone) 

South Dakota, all 
Tennessee 
Texas 

North 
North Central 
Central 
South Central 
South 

Utah 
North 
Central 
South 

Virginia 
North 
South 

Washington, all 
West Virginia, all 
Wisconsin all 

Lambert Confonnal Conic projection 

Coordinates of origin (meters) 
X y 

500,000 0 

300,000 0 
609,621.22 0 
600,000 0 
600,000 0 
600,000 0 

2,500,000 0 
1,500,000 0 

600,000 0 

200,000 200,000 

609,600 0 

600,000 0 
600,000 0 

200,000 1,000,000 
600,000 2,000,000 
700,000 3,000,000 
600,000 4,000,000 
300,000 5,000,000 

500,000 1,000,000 
500,000 2,000,000 
500,000 3,000,000 

3,500,000 2,000,000 
3,500,000 1,000,000 

500,000 0 
600,000 0 
600 000 0 

NOTE: All these systems are based on the GRS 80 ellipsoid. 
1For the International foot, 1 in=2.54 em, or 1 ft=30.48 em. 

Standard parallels, 40°00' and 
43°00' N. 
Long. of origin 100°00' W. 
Lat. of origin 39°50' N. 

Lat. of origin 40°10' N. 

(Two previous zones identical 
except for x andy of origin.) 
Standard parallels, 
32°30' and 34°50' N. 
Long. of origin 81 °00' W. 
Lat. of origin 31 °50' N. 

Lat. of origin 34 °20' N. 

Central meridian 98°30' W. 



INDEX 

[Italic page numbers indicate major references] 

Page 
A 

Acronyms i.x 
Adams, O.S. 2, 13-18, 98, 99, 100 
Aeronautical charts 106 
Africa, maps of . 76, 138, 139, 157, 243 
Alaska, maps of . 2, 57 

Albers Equal-Area Conic projection 99 
Modified-Stereographic Conformal projection 203, 

205, 206, 209, 210, 212 
"Modified Transverse Mercator" projection 64-65, 

97, 113, 371 
Polyconic projection 128 
State Plane Coordinate System 51, 52, 54, 

56, 66, 68, 373, 375 
Albers, H.C. 98 
Albers Equal-Area Conic projection 

features 
formulas, ellipsoid 

sphere 
history 
polar coordinates 

27, 77.98-103 
98-100, 105, 112 
101-102, 292-294 
100-101, 291-292 

98 
103 

usage 2, 35, 97, 98-100, 128, 371 
American Geographical Society 86, 116, 117, 157 
American Polyconic projection 124 
American Telephone & Telegraph Co. 192 
AMS Lunar projection 169 
Analemma projection 145 
Antarctica, maps of 2, 157, 371 
Aphylactic projections 4 
Aposphere 66 
Arab cartographers 145, 154 
Arctan function, general ix 
Arctic regions, maps of 157, 184, 371 
Arithmetic-Geometric Mean (AGM) iteration 17 
Army Map Service 57, 127, 169 
Asia, maps of 138, 139, 157, 203 
Astrogeology, USGS Center of 41, 157 
ATAN2 function, Fortran, general ix 
Atlantic Ocean, maps of . 4 7, 249 
"Atlantis" projection 249 
Atlas Mira 253 
August projection 
Australasia, maps of . 
Authalic latitude 

See latitude, authalic 
Authalic projections 
Auxiliary latitudes 

See latitude, auxiliary 
Azimuth, calculation, on sphere . 

on ellipsoid 
symbols 

Azimuthal Equal-Area projection 
Azimuthal Equidistant projection 

features 
formulas, ellipsoid .. 

sphere 
geometric construction 
history .. 
polar coordinates 
rectangular coordinates 

34 
68, 139, 203 

4 

30 
199, 201, 202 

viii 
182 

5, 112, 191-202 
141, 192, 194 

197-202, 338-344 
195-197, 337-338 

194 
191-192 

144, 198 
196-197 

usage 34, 35, 194, 372 
Azimuthal projections 4, 5, 7, 33, 141-202 

scale and distortion 21, 23, 26 
transformation . 31-32 
See also Azimuthal Eqnidistant projection, Gnomonic 

projection, Lambert Azimuthal Equal-Area 
projection, Orthographic projection, 
Stereographic projection, Vertical Perspec
tive projection 

B 

Babinet, J. 
Babinet's Equal-Surface projection 
Bartholomew, J. 

Page 

249 
249 
249 

Basement Map 116 
Bathymetric Map 41 
Behrmann, VV. 76, 77 
Bessel ellipsoid 11, 12 
Bipolar Oblique Conic Conformal projection I, 51, 

features and usage 
formulas, sphere 
history 
rectangular coordinates 

Board of Longitude 
Boggs, S.VV. 
Boggs Eumorphic projection 
Bomford, G. 
Bonne, R. 
Bonne projection 

features 
formulas, ellipsoid .. 

sphere 
history 
usage 

Borneo, maps of 

86, 116-123 
116-117. 371 

117-121, 301-303 
116 

122-123 
9 

86 
34, 249 

192 
138 

7, 33, 138-140 
138-139 

140, 310-311 
139-140, 309 

92, 138 
139 

66, 68 
128 Bousfield's Modified Polyconic projection 

Briesemeister, W.A. 116 
34, 249 

251 
Briesemeister projection 
Bromley, R.H. 

Cagnoli, A. 
Calculator, pocket 

c 

Carte Paral!elogrammatique, La 
Cassini, J.D. or G.D. 
Cassini de Thury, C.F. 
Cassini projection 

features 
formulas, ellipsoid .. 

sphere 
history 
usage 

Cassini-Soldner projection 

191 
2, 4, 29, 67 

90 
92 
92 

92-95 
92-94 

95, 289-290 
94-95, 288-289 

92 
94, 138 

57, 94 
See also Cassini projection 

Cauchy-Riemann equations 
Central projection 
Chamberlin, VV. 
Chamberlin Trimetric projection 
Clarke, A.R. 
Clarke 1866 ellipsoid 

27-28, 203 
164 
192 

139, 192 
11, 169, 173 

11, 13, 65, 82, 
83, 103, 115, 212, 225 

corrections for auxiliary latitudes 
using 

dimensions 
distortion of sphere vs 
formulas using . 
length of degree using 

15-18 
11, 12 

27 
15-18 

25 
use, Guam projection 199 

maps of U.S. 11, 100, 110, 125, 212 
Mercator projection tables 45 
Micronesia mapping . 200 
Polyconic projection tables 132-133 
State Plane Coordinate System 51, 56 
Universal Transverse Mercator projection 58, 59 

"Clarke's best formula" 199, 202 
Classification of projections 3-7, 33 
Close, C.F. 192 
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Coast Survey . . . . . . . . . . . 126 
See also Survey of the Coast, United States Coast and 

Geodetic Survey 
Cole, J.H. 
Columbus, C. 
Colvocoresses, A.P. 
Computer 
Cone, basis of projection ... 
Cone constant . 

See also specific conic projection 
Conformal latitude 

See latitude, conformal 

66, 71 
9 

214, 215 
1, 4, 29, 67 
5, 6, 7, 33 

ix, 21 

Conformal projections 2, 4, 27-28, 34, 35 
See also Bipolar Oblique Conic Conformal projection, 

Lambert Conformal Conic projection, Mer
cator projection, Modified-Stereographic 
Conformal projections, Oblique Mercator 
projection, Space Oblique Mercator projec
tion, Stereographic projection, Transverse 
Mercator projection 

"Conic projection" 111 
"Modified" 113 

Conic (conical) projections 5, 7, 21, 97-140, 142 
scale and distortion 21, 25 
transformation 31, 32 
See also Albers Equal-Area Conic projection, Bipolar 

Oblique Conic Conformal projection, Equi
distant Conic projection, Lambert Con
formal Conic projection, Polyconic 
projection, Satellite-Tracking projections 

Conical Orthomorphic projection 104 
Conrad of Dyffenbach . . . . . . . . . . . 191 
Continents, maps of 35 

See also specific continent 
Convergence of meridians 21 
Coordinates, polar 21, 23 

rectangular ix, 21 
See also specific projection 

Cordiform projections 
Coronelli, V.M. 
Cossin, J. 
Curvature, radius of . 

total 
Cylinder, basis of projection 
Cylindrical Equal-Area projection 

features 

138, 154 
138 

.. .. 243 
24, 25, 266 

70 
5, 6, 7, 33 

37. 76-85, 98 
76-77 

formulas, ellipsoid 81-85, 281-287 
sphere 77, 80-81, 278-280 

history 48 
usage ..... 35 

Cylindrical projections 5, 7, 21, 33, 37-95, 97, 142, 371 
scale and distortion . . . 21, 25 
transformation . 31-32 

See also Cassini projection, Cylindrical Equal-Area 
projection, Equidistant Cylindrical projec
tion, Gall Cylindrical projection, Mercator 
projection, Miller Cylindrical projection, 
Oblique Mercator projection, Satellite
Tracking projections, Simple Cylindrical 
projection, Transverse Equidistant Cylin
drical projection, Transverse Mercator 
projection 

D 

d'Aiguilion, F. 
D'Aiembert, J.L. 
Datum 

145, 154 
203 

11-13 
13, 56 

13, 373-376 
. .. 146 

North American Datum (NAD) 1927 
North American Datum (NAD) 1983 

Debenham, F. 

Deetz, C.H. 
Deformation, maximum angular 

De Ia Hire, P. 
De !'Isle, J.N ... 
Distortion of maps 

2 
20-21, 23-24, 142-144, 

221, 226 
169 

111, 138 

See deformation, maximum angular; scale 
Donald, J.K. 192 
Durer, A. 145 

E 

Easting, false ix, 10, 63, 64 
Eccentricity of ellipsoid 

See ellipsoid, eccentricity 
Eckert, M. 253 
Eckert IV and VI projections 253-258 

features 256 
formulas, sphere, Eckert IV 256-257, 368 

Eckert VI 257, 369 
history 253, 256 
rectangular coordinates . . . . . . . . . . . . . . . 258 
usage 34, 253, 256 

Edwards, T. 76 
Egyptian cartographers 145, 154, 169, 191 
Eisenlohr projection 34 
Electronic surveying . . . . . . . . . . 10 
Ellipsoid, Earth taken as 10, 11-18 

eccentricity, symbols viii, 13 
flattening 11, 12, 13 
scale and distortion 11, 24-27 
Stereographic projection characteristics 155 
See also Bessel ellipsoid; Clarke 1866 ellipsoid; Inter-

national ellipsoid; latitude, auxiliary; specific 
projection 

Elliptical integrals . . . . . 17 
Elliptical projection 249 
Equal-area projections 4, 28, 34, 35 

See olso Albers Equal-Area Conic projection, Bonne 
projection, Cylindrical Equal-Area projec
tion, Eckert IV and VI projections, Lambert 
Azimuthal Equal-Area projection, 
Mollweide projection, Sinusoidal projection 

Equatorial projections . . . . . . . . . . . 7, 29, 32, 141 
Azimuthal Equidistant . . . . . . 192, 194 
Gnomonic 165 
Lambert Azimuthal Equal-Area 184 
Orthographic 145-146 
Stereographic . 155 

Equiareal projections 4 
Equidistant Conic projection 64, 97, 111-115 

features . . . . . . . . . . 112, 138 
formulas, ellipsoid . 114, 299-301 

sphere 113-114, 298-299 
history 111 
polar coordinates 115 
usage . . . . . . . . . . . . 35, 113 

Equidistant Cylindrical projection 90-91, 92, 94, 97, 247 
formulas, for sphere 91 
history and features 90-91 
usage . . . . . . . . . . . . . . . . . . 35, 371 
See olso Cassini projection 

Equidistant projections . . . . 4, 34, 35 
See also Azimuthal Equidistant projection, Cassini 

projection, Equidistant Conic projection, 
Equidistant Cylindrical projection 

Equirectangular projection 90, 112 
Equivalent projections 4 
Eratosthenes 90 
ERTS satellite imagery 94, 214 
Espinosa, A.F. 203 
~~E. ~ 

Euler, L. 111 
Eurasia, maps of . . . . . . . . . . . . . 66, 76 
Europe, maps of . 2, 98, 138, 139, '157 
Everett, J.D. 111 
Extraterrestrial mapping 2, 13, 14 

Lambert Conformal Conic projection . 42-43, 371 
Mercator projection 41-43, 371 
Perspective projections 169 
Stereographic projection, oblique . . . . . . . 43, 155 

polar 42-43, 157 
Transverse Mercator projection 42-43 

F 

Fairgrieve, J. 249 
False eastings and northings 
Ferro Ill! prime meridian 
Flamsteed, J. 

ix, 10, 63, 64 
8 

243 
82-84, 218, 219, 220, 223, 224, 

225, 229, 347-349, 354 
Fourier series .. 

France, maps of . 
French Academy of Sciences 

8, 92, 104, 138, 139 
... 11 



G 

Galilean satellites of Jupiter 
See Jupiter satellites 

Galileo 
Gall, J. 

9 
76, 86 

Gall (Stereographic) Cylindrical projection 
Gauss, C.F. 

37, 76, 86 
48 
48 
48 

Gauss Conformal projection . 
Gauss·Kriiger projection ... 
Geodesic distance, calculation 
Geodesic path 
Geodetic Reference System (GRS) 
Geodetic triangulation 

199, 201, 202 
10, 70, 81 

12, 13 
9 

90, 111 
11, 12 

Geographia 
Geoid, Earth taken as 

Geologic maps 
Geosynchronous satellites 
Geothermal Map 
Germain, A. 
Ginzburg, G.A. 
Glareanus, H. 
Globular projection 
Gnomic projection 
Gnomonic projection 

coordinates, polar 
rectangular 

features 
formulas, sphere 
history 
usage 

Goode, J.P. 
Goode Homolosine projection . 
Goode's Atlas 
Great Britain, maps of . 
Great Lakes, maps of . 
Great-circle distance ..... 
Great-circle paths 
Greenwich as prime meridian . 
G RS 80 ellipsoid 
Grids 

.. 98, 116, 371 
170 
116 
48 

182 
191 

184, 194 
164 

164-168, 169, 192 
143 
168 

4, 141, 164-165 
165, 167, 319-320 

164 
35, 164-165 

247, 249 
34, 247. 249, 253 

247 
57, 94 
56, 68 
30, 39 

4, 35, 67. 81, 164, 165 
ix, 8-9. 10, 157 

12, 13, 376 
3, 10 

declination 21 
See also State Plane Coordinate System; Transverse 

Mercator, Universal; World Polyconic Grid 
GS50 Projection 206, 209, 210, 212 
Guam projection 194, 198-199, 201, 372 

Hammer, E. 
Hammer projection .. 
Hammer·Aitoff projection 
Hammond, Inc. 
Harrison, J. 
Harrison, R.E. 
Hassler, F.R. 
Hatt, P. 
Hawaii, maps of 
Hayford, J.F. 
Hayford ellipsoid 

H 

See also International ellipsoid 

182 
34, 182, 249 

182 
139 

9 
146, 169 

2, 124 
191 

41, 68, 99 
11 

11-12 

Heat Capacity Mapping Mission (HCMM) imagery 68 
Hemispheres, maps of . . 34-35, 182, 184, 191, 194 
Hipparchus 8, 145, 154, 243 
Homalographic projections 4, 249 
Homolographic projections 4, 249 
Homolosine projection 34, 247, ·249, 253 
Hondius, J. 243 
Hooke, R. 9 
Horizon aspect of projections, definition 29 
Horologium projection 164 
Hotine, M. 66, 68, 70-75 
Hotine Oblique Mercator (HOM) projection 

See Oblique Mercator projection, Hotine 
Huygens, C. 9 
Hydrocarbon Provinces, maps of 157, 184, 247, 371, 372 

Ibn-ei-Zarkali 
Index maps, topographic 
Indicatrix, Tissot's 
Indonesia, maps of 

154 
90-91, 371 

20-21, 27, 215 
41, 371 

INDEX 

International ellipsoid 11-12, 82, 83, 136, 157 
dimensions 11-12 
length of degree using 25 
use with polar projections . . . 163, 190 
use io Universal Transverse Mercator projection 58 

International Map Committee 131 
International Map of the World (IMW) 106, 128, 

131-137, 157, 371 
International Meridian Conference 9 
International Union of Geodesy and Geophysics (IUGG) 

11, 13 
Interrupted projections .. 34, 246, 247, 249, 372 
Inverse equations, for auxiliary latitudes 15-18 

for projections 
See specific projection 

for transformations ... 
Isometric latitude 
Italy, map of 

Junkins, J.L. 
Jupiter satellites, maps of 

J 

32 
15, 27, 264-265 

68 

214 

Lambert Conformal Conic projection 
Mercator projection 

42-43, 106 
41-43 

43 
14 

42-43 

Orthographic projection 
reference spheres 
Stereographic projection 

Kavrayskiy, V.V. 
Kepler's laws 
Knuth algorithm 
Kruger, L. 

K 

L 

99, 111, 253 
225 

207. 208, 346 
48 

Laborde, J. 66, 68, 70, 203 
Lagrange projection 34 
Lallemand, C. 131 
Lambert, J.H. 48, 49, 76, 104, 105, 182 
Lambert Azimuthal Equal-Area projection 2, 98, 

coordinates, polar 
rectangular 

182-190, 192, 249 
143, 190 
188-189 

features 141, 182, 184 
formulas, ellipsoid . . 187-190, 333-337 

sphere 185-187, 332-333 
geometric construction 184-185 
history 48, 182 
usage 2, 35, 43, 139, 184, 194, 247, 371 

Lambert Conformal Conic projection 104-110, 
116, 117 

features 22, 105, 112 
formulas, ellipsoid . 107-109, 296-298 

sphere 106-107, 295-296 
history 48, 104-105 
polar coordinates . . 110 
usage 2, 35, 97, 105-106, 128, 206, 207, 230, 371 

in extraterrestrial mappiog 42-43, 106 
io International Map of the World 106, 131, 157 
in State Plane Coordinate System 2, 51, 

52, 54-56, 127. 371, 373, 375-376 
Lambert Cylindrical Equal-Area projection 

See Cylindrical Equal-Area projection 
Lambert's Equal-Area Conic projection 98 
Landsat imagery, Hotine Oblique Mercator projec-

tion 68, 69, 371 
Oblique Cassini projection 94 
Perspective projections 173 
Satellite-Tracking projections 230 
Space Oblique Mercator projection 94, 214-225 

Latitude, authalic 16, 18, 82, 102, 187-190, 265 
auxiliary . . . 13-18, 263-266 

See also latitude: authalic, conformal, geocentric, 
isometric, parametric. reduced 

conformal 15-16, 18, 66, 108, 160-162, 263-264 
footpoint 63, 82, 95 
geocentric 17-18, 108, 266 
geodetic ix, 8, 13 

length of degrees . . 24-25, 266 
scale and distortion 21-27 

379 
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geographic 
See latitude, geodetic 

isometric 
measurement of 
parametric or reduced 
''pseudotransformed.'' 
rectifying 
reduced ... 
standard 

See parallels, standard 
See also specific projection 

transformed 
Least squares, use of . 
Lee, L.P. 
L'Isle 

See De I'Isle 
London as prime meridian 
Longitude 

geodetic 
length of degree 
scale and distortion 
See also specific projection 

measurement of .... 
''pseudotransformed'' 
"satellite-apparent" 
transformed 

Lorgna, A.M. 
Loritus, H. 
Loxodromes 

See rhumb lines 
Ludd, W. 

M 

McBryde projections 
McBryde-Thomas projections . 
Madagascar, maps of . 
Malaya, maps of 
Maps for America 
Marinus of 'I'yre ... 
Mars, maps of 

15, 27, 264-265 
8 

18 
221 

16-17, 265-266 
18, 266 

ix, 31, 219 
99, 203, 204 

33, 48, 203, 209 

8 
8-10 
8-10 

24-25, 266 
21-27 

8-9 
221 
219 

ix, 31, 219 
182 
191 

154 

34 
34 

66, 68, 203 
68 

1 
90 

2 
Lambert Conformal Conic projection 
Mercator projection 

42-43, 106 
41-43 
13, 14 reference ellipsoid 

Stereographic projection 42-43, 155 
42-43, 57 

43 
33, 192 

13 
38, 39, 111, 138, 154, 191 

154 

Transverse Mercator projection 
Mars satellites, maps of 
Maurer, H. 
Meades Ranch, Kans. 
Mercator, G. 
Mercator, R. 
Mercator Equal-Area projection 243 
Mercator projection 37, 38-47, 48-50, 66, 67, 

68, 77, 86, 92, 105, 145, 203 
features 
formulas, ellipsoid 

sphere 
history 
oblique 

4, 38-41 
14, 15, 44-45, 267-268 

41, 44, 266-267 
38 

See Oblique Mercator projection 
rectangular coordinates .. 45 
Transverse 

See Transverse Mercator projection 
usage . . . . 34, 35, 38-43, 371 

in extraterrestrial mapping . . 41-43 
with another standard parallel 47 

Mercury, maps of 2 
Lambert Conformal Conic projection 42, 106 
Mercator projection . . . 41, 42 
reference sphere 14 
Stereographic projection 42, 155 

Meridian 
central ix, 10, 31 

See also specific projection 
prime ix, 8-9, 10, 157 

29 Meridian aspect of projection 
Meridians 

See longitude 
Meridional aspect of projection 
Metallogenic Map 
Metric conversion 
Micronesia, mapping of 
Miller, O.M. 

29 
116 

51, 376 
194, 199-201, 202, 372 

. . . 86, 116, 203, 209 

Miller Cylindrical projection 
features 
formulas, sphere 
history 
rectangular coordinates 
usage 

Mineral Resources, maps of . 
Modified Polyconic projection 

86-.89 
86-87 

88, 287-288 
86-87 

89 
1, 34, 371 

239, 372 
106, 127, 128, 

131-137. 157, 371 
coordinates, rectangular 136 
formulas, ellipsoid 131, 134-135, 306-309 

Modified-Stereographic Conformal projections 28, 

coordinates, rectangular 
features 
formulas, ellipsoid 

sphere 
history 
usage 

203-212 
212 

204-207 
208, 210-211 

207-208, 344-347 
203 

203-204 
Modified Stereographic projection ... 
"Modified Transverse Mercator" projection 

See Transverse Mercator, "Modified" 

170 

Mollweide, C.B. 
Mollweide projection 

features 
formulas, sphere 
history 
rectangular coordinates 

249 
239, 247, 249-252 

249, 251 
251-252, 367 

249 
252 

usage 34, 249 
Moon, maps of Earth's 2 

Lambert Azimuthal Equal-Area projection 184 
Lambert Conformal Conic projection 42-43, 106 
Mercator projection 41-43 
reference sphere . . 14 
Stereographic projection 42, 155 

Murdoch, P. . . . 111 

N 

National Aeronautics and Space Administration 
(NASA) 214, 215 

National Atlas 2, 86, 98, 106, 184, 194, 239 
National Bureau of Standards 51 
National Geodetic Survey 198, 373 

See also United States Coast and Geodetic Survey 
National Geographic Society 139, 184, 192, 194, 239, 253 
National Mapping Program 1 
National Ocean Service . . . 1, 39, 124 

See also United States Coast and Geodetic Survey 
National Oceanic and Atmospheric Administration 

(NOAA) 69 
Nell, A.M. 139 
Neptune satellite, maps of 

reference sphere 
New England Datum 
New Mexico Planning Survey 
New Zealand, maps of 
Newton, I. 
Newton-Raphson iteration 

Nordisk Viirlds Atlas 

42-43 
14 
13 

113 
68, 203 

11 
129, 130, 208, 210, 

237, 251, 256, 257 
247 

North America, ellipsoid 11 
maps of . 11, 51, 68, 116-117, 139, 371 
naming 38 

North American Datum 
See under datum 

Northing, false 
Nowicki, A.L. . . 

0 

ix, 10, 63, 64 
169-170, 173 

Oblated Stereographic projection 86, 209 
Oblique Conformal Conic projection 116-117 

See also Bipolar Oblique Conic Conformal projection 
Oblique Equidistant Conic projection 117 
Oblique Mercator projection 29, 86-75, 116, 203 

features 67-68, 215 
formulas, ellipsoid 70-75, 274-278 

sphere 69-70, 272-274 
history 66 
Hotine (HOM), formulas 70-75 
usage, satellite imagery 68-69, 214, 215 

State Plane Coordinate System . . . 51, 371 



U.S. Lake Survey 56, 68 
usage (other than Hotine) 34, 35, 68-69 

Oblique projections . . 7, 23, 29, 34, 35, 37, 141 
Azimuthal Equidistant . . . . 34, 194 
Cylindrical Equal-Area 35, 76, 79-84 
Equidistant Cylindrical . . 94 
Gnomonic 165 
Lambert Azimuthal Equal-Area 35, 184 
Orthographic 146 
Stereographic 35, 155 
transformations 31-32 
See also Bipolar Oblique Conic Conformal projection, 

Oblique Conformal Conic projection, Oblique 
Equidistant Conic projection, Oblique Mer
catOr projection, Space Oblique Mercator 
projection 

Ordnance Survey 57, 94 
Ortelius, A. 138, 253 
Ortelius projection 253 
Orthographic Cylindrical projection 76 
Orthographic projection 145-153, 159, 169, 182, 184, 191 

coordinates, polar 142 
rectangular 151-153 

features 141, 145-146 
formulas, sphere 148-150, 311-312 
geometric construction 148 
history . . . . . . . . . . . . 145 
usage .... 

Orthomorphic projections 

p 

35, 43, 146, 147, 371 
4 

Pacific Ocean, maps of 2, 184, 203, 249, 371 
Paper maps, distortion 3 
Parallels, standard . . . ix, 5, 21, 97, 142 

Albers Equal-Area Conic projection 98-103 
Bipolar Oblique Conic Conformal projection 116-117 
Bonne projection . . . . 138-140 
Equidistant Conic projection . . . 111-115 
Lambert Conformal Conic projection 105-108 
Mercator projection . . . . 47 
Stereographic projection 155, 157 

Parallels of latitude 
See latitude 

Parent, A. 169 
Paris, meridian of 92 
Perspective conic projections 97 
Perspective projection 5, 33, 141, 169-181 

coordinates, rectangular 17 4 
features 170-173 
formulas, tilted, ellipsoid 178-181, 323-325 

sphere 175-176, 322 
vertical, ellipsoid . . . 176-178, 323 

sphere . 173, 175, 320-321 
projective equations 178-181, 325-332 

history 169-170 
usage 169-170 
See also Gnomonic projection, Orthographic projec-

tion, Stereographic projection 
Peters, A. 
Philadelphia as prime meridian 
Philbrick, A.K. 

76 
8 

249 
Plane as basis of projection . . . . 5, 6, 7 

See also azimuthal projections, Perepective projection 
Planets, maps of 

See extraterrestrial mapping 
Planisphaerum projection 
Plastic maps, distortion ... 
Plate Carnie . 
Polar azimuthal projections 

Azimuthal Equidistant 
Gnomonic 
Lambert Azimuthal Equal-Area 
Orthographic 
Stereographic . 

154 
3 

35, 90, 92, 112 
5, 29, 141 

... 192 
165 

182, 184 
. . . . . . . . . . 145 

155 
See also Stereographic projection, Polar 

Polyconic Grid, World ... 10, 127 
Polyconic projection 7, 33, 124-137, 199 

features . . . . . . 97, 124, 138 
formulas, ellipsoid . . . . 129-131, 304-306 

sphere . . 128-129, 303-304 
geometric construction . . . . . . 128 

INDEX 

history 124 
modified 106, 127, 128, 131-137, 157, 306-309,371 
rectangular . . 128 
rectangular coordinates .. 132-133, 136 
usage . . 2, 57, 64, 106, 126-128, 371 

Postel, G. 191 
Principio, Md. 13 
Progressive Military Grid 127 
Prolated Stereographic projection 203 
Pseudoazimuthal projections 
Pseudoconic projections 7, 33, 139 
Pseudocylindrical projections 7, 28, 33, 34, 243-258 

transformation . . . 31-32 
See also Eckert IV and VI projections, Mollweide pro

jection, Sinusoidal projection 
Ptolemy, C. . . . 1, 8, 90, 97, 111, 145, 154 

Q 

Quadrangles . 2, 126-128, 371, 372 
See also State Plane Coordinate System 

R 

Rand McNally & Co. 
Rechteckige Plattkarte, Die 
Rectangular projection 
Rectified skew orthomorphic projection 
Rectifying latitude . 

139, 146, 243 
90 
90 
66 
18 

Reilly, W.l. 
Rhumb lines 

calculation of 
Robinson projection . 
Robbins' geodesic inverse 
Rosenmund, M. 
Rowland, J.B. 
Roze, J. 
Rubincam, D.P. 
Ruysch, J. 

Sanson, N. 

s 

Sanson-Flamsteed projection 
Satellites, artificial 

203 
4, 10, 34, 35, 38, 39 

46-47 
34 

199 
66, 68, 70 

68, 215 
154 
242 
111 

243 
243 

imagery from 
figure of Earth from 

2, 68-69, 94, 170, 173, 372 
... 12 

See also Landsat imagery 
Satellites, natural, maps of 

See Mars, Moon, Jupiter, Saturn, Uranus, Neptune 
Satellite-Tracking projections 213, 230-238 

coordinates, polar 238 
rectangular . . 238 

features 230-231 
formulas, sphere, conic . 232, 236, 237, 

history .. 
usage 

cylindrical 

Saturn satellites, maps of 
Mercator projection 
Orthographic projection 
reference spheres 
Stereographic projection 

Scale error 
See also scale factor 

Scale factor .. 
areal 
calculation 
See also specific projection 

Scale of maps 
See also scale factor 

Schmid, E. 
Selection of projections . 
Series, computation of 
Shape distortion 

See also specific projection 
Simple Conic projection 
Simple Cylindrical projection 

360-362, 363 
231-232, 236-237, 

360, 362-363 
230 
230 

41-42 
43 
14 
42 
21 

21 
24 

21, 23-26 

4 

68 
34-35 
18-19 

4, 20-27 

.. 111 
...... 90 
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Simpson's rule 17, 85, 218, 347, 354 
Singular points in conformal projections 4 
Sinusoidal projection 7, 48, 139, 243-248, 

249, 251, 256 
features .... 243-244 
formulas, ellipsoid . . . . 248, 366 

sphere 247-248, 365-366 
history 243 
usage 34, 243, 247, 253, 372 

Soldner, J.G. von 92 
Solov'ev, M.D. 139 
South America, maps of 68, 116, 139, 243 
Soviet Union or Russia, maps of . . . . . . . 111 
Space map projections 213-238 
Space Oblique Conformal Conic projection 213 
Space Oblique Mercator projection 66, 68, 70, 

213, 214-229, 230 
features 214-215 
formulas, ellipsoid, circular orbit 221-225, 354-359 

non circular orbit 225-229 
sphere 

history 
usage .... 

Space photography 
Sphere, Earth taken as ... 

formulas for projections 
See specific projection 

scale and distortion 
Spheroid, oblate 

See ellipsoid 
Stabius, J. 
Standard circle . 
Standard parallels 

See parallels, standard 

215, 218-221, 347-354 
... 214 

. . . . . . . 2, 94, 215, 372 
169, 175, 178-181 

3, 11 

21, 23-24 

138, 154 
155, 160 

State base maps 2, 106, 127, 371 
State Plane Coordinate System (SPCS) 10, 51-57, 

127, 373-376 
using Hotine Oblique Mercator projection 51, 52, 

56, 68 
using Lambert Conformal Conic projection 2, 51, 

52, 54-56, 105-106, 108, 375-376 
using Transverse Mercator projection 2, 51, 

52-54, 373-374 
Stereographic Cylindrical projection (Gall) 37, 76, 86 
Stereographic projection 5, 58, 71, 154-163, 

coordinates, polar 
rectangular 

features 
formulas, ellipsoid .. 

sphere 
history .. 
modified 

169, 182, 184, 194, 203 
142, 163 

158 
4, 23, 141, 154-155 

160-162, 313-319 
157-160, 312-313 

. .... 154 
170 

See also Modified·Stereographic Conformal 
projections 

Oblated . . . 203 
Polar 2, 35, 105, 106, 131, 157, 161-163, 165, 371 

Universal .. 58, 157 
See also Stereographic projection: features; for· 

mulas; history 
Prolated 203 
usage . . . 34, 35, 58, 106, 131, 155, 156 

in extraterrestrial mapping 42-43, 155, 157, 371 
Suggested projections 34-35 
Survey of the Coast . . . . . . . . . . . . 2, 124 

See also Coast Survey, United States Coast and 
Geodetic Survey 

Switzerland, maps of . 
Sylvanus, B. 

"Tailor-made" projection 
Tectonic maps 
Thales 
Theon 
Thompson, E.H. 

T 

Tilted Perspective projection 
See Perspective projection 

Times Atlas, The 
Tissot, N .A. 
Tis sot's indicatrix 

66,68 
.... 138 

116 
2. 41, 98, 116 

164 
154 
48 

249 
.... 20 

20-21, 27, 215 

Tobler, W.R. 
"Topographic Mapping Status •••" 
Topographic maps .......... . 

See also quadrangles 
Ttansformation of graticules 

See also specific projection 

33 
90 

3 

29-32 

Ttansverse Equidistant Cylindrical projection 57 
Ttansverse Mercator projection l, 29, 48-65, 

features 
formulas, ellipsoid 

sphere 
history 
"Modified" .. 
rectangular coordinates 
Universal (UTM) 

66, 68, 71, 92, 94 
22, 49-51 

14, 60-61, 63-64, 269-271 
58, 60-61, 268-269 

.... 48 
64-65, 97, 113, 204, 371 

60-61 
!0, 57-58, 59, 62, 64, 

106, 127, 157, 371 
usage 1, 34, 35, 43, 51-54, 57-58, 371 

in State Plane Coordinate System . . 2, 51, 
52-54, 106, 121. 373-374 

Ttansverse projections 7, 29, 76, 77, 79, 81 
See also Transverse Equidistant projection, 

Transverse Mercator projection 
Tsinger, N.J. (N.Ya.) 
"Twilight" projection 
Two-Point Azimuthal projection .. 
Two-Point Equidistant projection .. 

u 

99 
169 
192 
192 

United Nations (UN) . . . . . . . 157 
United States, maps of . 5, 371 

Albers Equal-Area Conic projection . 98-101, 103 
Datums used 11-13 
Ellipsoids used 11-13 
Lambert Conformal Conic projection 106, 108, 110 
Modified·Stereographic Conformal projection 203-

Polyconic projection 
States 

Boundaries 
Plane Coordinate System 

210, 212 
124, 127-128 

2 
... 8 

See State Plane Coordinate System 
Topographic quadrangles 

See quadrangles 
Universal Ttansverse Mercator Grid 

See Transverse Mercator, Universal 
See also Alaska, Hawaii 

United States Coast and Geodetic Survey 1, 2, 
11, 39, 68, 98, 104, 105, 124-126, 129 

See also Coast Survey, Survey of the Coast 
United States Department of Agriculture 239 
United States Lake Survey 56, 68 

United States National Weather Service 170 
United States Standard Datum 13 
Universal Polar Stereographic projection . 58, 157 
Universal Ttansverse Mercator (UTM) projection 

See Ttansverse Mercator projection, Universal 
Uranus satellites, maps of 42 

reference spheres 14 

v 
Van der Grin ten, A.J. 239 
Vander Grinten projection I, 194,239-242, 244-245, 249 

features . . . 239 
formulas, sphere 241-242, 363-365 
geometric construction . . . . . . 241 
history 239 
rectangular coordinates . . 244-245 
usage ... 

Vaulx, J. de .. 
Venus, maps of 

Lambert Conformal Conic projection 
Mercator projection 
reference sphere 
Stereographic projection 

Vertical Perspective projection 
See Perspective projection 

Vitkovskiy, V.V ... 

239, 372 
154 

42 
41-42 

14 
42 

.. 111 
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Wagner, K. 253 
Washington, D.C., meridian 8 

Universal Transverse Mercator (UTM) zone 57-58 
Werner, J. 138, 154 
Werner projection 138, 139 
West Indies, maps of ... 68 
World, maps of 34, 371, 372 

Azimuthal Equidistant projection 191 
Cylindrical Equal· Area projection 76 
Eckert IV and VI projections 253 
Equidistant Cylindrical projection 90 

uU,S. G.P.O. 1987- 181-407:60010 

INDEX 

Homolosine projection ... 
Mercator projection 
Miller Cylindrical projection 
Mollweide projection 
Van der Grioten projection 

World Geodetic System (WGS) 
World Polyconic Grid 
Wright, E ... 

z 

Zenithal Equal-Area projection 
Zenithal projections ... 

257. 259, 253 
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86 

249 
239 

12, 13 
10, 127 
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