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Abstract: 

Global climate change affects marine fish through drivers such as warming, 
acidification and oxygen depletion, causing changes in marine ecosystems 
and socio-economic impacts. Experimental and observational results inform 
about anticipated effects of different drivers, but linking between these 
results and ecosystem level changes requires quantitative integration of 
physiological and ecological processes into models to advance research and 
inform management.  
 
We give an overview of important physiological and ecological processes 
affected by environmental drivers. We then provide a review of available 
modelling approaches for marine fish, analysing their capacities for 
process-based integration of environmental drivers. Building on this, we 
propose approaches to advance important research questions.  
 
Examples of integration of environmental drivers exist for each model 
class. Recent extensions of modelling frameworks have a greater potential 
for including detailed mechanisms to advance model projections. 
Experimental results on energy allocation, behaviour and physiological 
limitations will advance the understanding of organism-level trade-offs and 
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thresholds in response to multiple drivers. More explicit representation of 
life cycles and biological traits can improve description of population 
dynamics and adaptation, and data on food web topology and feeding 
interactions help detail the conditions for possible regime shifts. 
Identification of relevant processes will benefit the coupling of different 
models to investigate spatial-temporal changes in stock productivity and 
responses of social-ecological systems.  
 
Thus, a more process-informed foundation for models will promote the 
integration of experimental and observational results and increase the 
potential for model-based extrapolations into a future under changing 
environmental conditions. 
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Abstract 20 

Global climate change affects marine fish through drivers such as warming, acidification 21 

and oxygen depletion, causing changes in marine ecosystems and socio-economic impacts. 22 

Experimental and observational results inform about anticipated effects of different 23 

drivers, but linking between these results and ecosystem level changes requires 24 

quantitative integration of physiological and ecological processes into models to advance 25 

research and inform management. 26 

We give an overview of important physiological and ecological processes affected by 27 

environmental drivers. We then provide a review of available modelling approaches for 28 

marine fish, analysing their capacities for process-based integration of environmental 29 

drivers. Building on this, we propose approaches to advance important research questions.  30 

Examples of integration of environmental drivers exist for each model class. Recent 31 

extensions of modelling frameworks have a greater potential for including detailed 32 

mechanisms to advance model projections. Experimental results on energy allocation, 33 

behaviour and physiological limitations will advance the understanding of organism-level 34 

trade-offs and thresholds in response to multiple drivers. More explicit representation of 35 

life cycles and biological traits can improve description of population dynamics and 36 

adaptation, and data on food web topology and feeding interactions help detail the 37 

conditions for possible regime shifts. Identification of relevant processes will benefit the 38 

coupling of different models to investigate spatial-temporal changes in stock productivity 39 

and responses of social-ecological systems. 40 
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Thus, a more process-informed foundation for models will promote the integration of 41 

experimental and observational results and increase the potential for model-based 42 

extrapolations into a future under changing environmental conditions. 43 
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Introduction 78 

The productivity of marine fish stocks is influenced by a multitude of environmental 79 

factors. In the near future, many stocks will be increasingly affected by climate change 80 

including global ocean warming, ocean acidification, oxygen loss and other long-term and 81 

more regional environmental changes such as salinity, nutrient redistribution or 82 

eutrophication and pollution (Roessig et al., 2005, Cochrane et al., 2009, Hollowed et al., 83 

2013, Pörtner et al., 2014). Environmental drivers affect marine ecosystems, marine 84 

organisms and fish stocks through direct impacts on individual physiology and life history, 85 

and/or indirectly via changes in primary productivity or ecological (mainly food web) 86 

interactions, spatial configuration of habitats, or planktonic larval transport (Doney et al., 87 

2012, Metcalfe et al., 2012).  88 

Responses to these environmental drivers, e.g. through changes in productivity and spatial 89 

distribution will co-determine the future development of fish stocks and fisheries (Perry et 90 

al., 2005, Lehodey et al., 2006). For instance, periodic changes between anchovy and 91 

sardine regimes in the North Pacific can be explained by different optimum growth 92 

temperatures (Takasuka et al., 2007, Lindegren and Checkley, 2013), and warming 93 

temperatures have contributed to recently high stock levels in Barents Sea cod (Ottersen et 94 

al., 2006, Kjesbu et al., 2014). In tropical and upwelling areas, and due to the general 95 

warming trend, low oxygen availability can set physiological limits to fish stocks (Ekau et 96 

al., 2010, Stramma et al., 2010). Across marine ecosystems, ocean acidification has emerged 97 
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as an additional threat for marine fish populations e.g. through impacts on larval behaviour 98 

and associated mortality as seen in coral reef fish (Munday et al., 2010). 99 

Climate change impacts different hierarchical levels of biological organization, from 100 

individual physiology and population level changes to community and ecosystem shifts (Le 101 

Quesne and Pinnegar, 2012). Many of the direct effects on organisms can only be observed 102 

and investigated at the cellular or individual level, and to assess their overall stock effects, 103 

they have to be scaled up to population and community level, thus integrating processes on 104 

the different levels (Rijnsdorp et al., 2009, Pörtner and Peck, 2010). Physiological processes 105 

link the physical environment to individual-level responses and thus help to gain principal 106 

mechanism-based understanding of climate change impacts on populations and 107 

ecosystems (Pörtner and Farrell, 2008, Denny and Helmuth, 2009, Chown et al., 2010). 108 

To anticipate climate change effects in marine ecosystems, ecological simulation models 109 

allow for the inclusion of processes on different hierarchical levels of biological 110 

organization, and an analysis of their mutual feedbacks. Models may integrate the impacts 111 

of multiple drivers on fish from the physiological to the community and ecosystem levels, 112 

and to analyse stock dynamics under different scenarios of environmental change. To 113 

improve model projections and test hypotheses about environmental determinants for fish 114 

stocks, it is necessary to investigate mechanisms underlying stock dynamics and 115 

distribution (Hollowed et al., 2009, Hare, 2014). As empirical or statistical descriptions are 116 

based on the observed range of the combined underlying factors, historical data and 117 

identified patterns for fish stocks may fail to resolve uncertainties of projections if the 118 
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underlying processes, e.g. life history, energetics, and recruitment patterns, change and 119 

causalities are not understood (Mangel and Levin, 2005).  120 

A more mechanistic formulation of models could be based on the explicit consideration of 121 

physiological and ecological processes that determine observed phenomena (Baskett, 122 

2012, Metcalfe et al., 2012). This could increase the projection capacities of models under 123 

new combinations of environmental drivers (Jørgensen et al., 2012, Russell et al., 2012). 124 

These models could make better use of results from advanced experiments on multiple 125 

drivers (Denman et al., 2011, Dupont and Pörtner, 2013) and be tested with observations 126 

on stock dynamics in already changing environments, facilitating development of early-127 

warning signs for productivity changes in fish stocks (Brander, 2010). In the light of 128 

recently increased efforts to establish ecosystem-based fisheries management approaches 129 

and the growing importance of societal climate adaptation, an integration of knowledge 130 

about ecological and physiological processes seems necessary more than ever before (Cury 131 

et al., 2008, Miller et al., 2010, Persson et al., 2014).  132 

Although models for use in climate change projections and ecosystem-based fisheries 133 

management have been reviewed for general strengths and weaknesses (Keyl and Wolff, 134 

2007, Plagányi, 2007, Stock et al., 2011, Hollowed et al., 2012) and some approaches for 135 

better integration of physiological data and mechanistic concepts have been proposed 136 

(Metcalfe et al., 2012, Persson et al., 2014), a systematic inspection of possible directions 137 

for advancement is currently lacking. An up-to-date and comprehensive review of 138 

modelling approaches for marine fish and options for direct integration of environmental 139 
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effects therefore seems timely and may facilitate better interdisciplinary exchange and 140 

well-coordinated progress in this fast-developing field. 141 

In this article, we will provide an overview of potentially relevant physiological and 142 

ecological processes to understand climate change impacts on fish stocks (section two). We 143 

then review available modelling approaches and present examples for marine fish species, 144 

analysing them for their potential and limitations to incorporate environmental impacts on 145 

the identified processes (section three). In the closing section, we exemplify the challenges 146 

and potential for the advancement of models by addressing five key questions in regard to 147 

climate change impacts on marine fish, in the context of changes in their ecosystems and in 148 

human resource uses. 149 

From drivers to processes: Physiological and ecological processes affected by environmental 150 

drivers 151 

Physiological processes act from the cellular to the organism level, and can be used to 152 

explain direct effects of environmental drivers and individual tolerance towards changes. 153 

They affect and are affected by higher levels of biological organization, such as the 154 

population or community and ecosystem interactions, where ecological processes can 155 

serve to extrapolate the impacts of climate change, ocean acidification and other drivers 156 

(Pörtner and Peck, 2010, Monaco and Helmuth, 2011, Gaylord et al., 2015). As a framework 157 

for structuring our analysis of modelling approaches, we will consider physiological and 158 

ecological key processes, organized by the level of biological organization on which they act 159 
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primarily (Fig. 1). This is intended to help the reader identify potentially relevant processes 160 

as the basis for choosing an appropriate model. 161 

Organism level processes, and suborganismal processes interacting on the 162 

individual level 163 

Environmental drivers can affect a range of processes at the organismal level, and 164 

individual tolerance of fish is co-defined by suborganismal (i.e. tissue and cellular) level 165 

capacities and processes (cf. Fig. 1). Basic organism processes such as routine activity, 166 

growth and reproduction are sustained only in a limited range of temperatures, indicating 167 

thermal specialization. Through its effects on metabolic processes in ectothermic animals, 168 

temperature modifies development and growth rates. Elevated temperatures entail 169 

increased metabolic rates and energy turnover (Clarke and Johnston, 1999). However, 170 

when a critical temperature is reached, aerobic physiological performance fails to increase 171 

further or is even reduced, due to limited oxygen availability and capacities of respiratory, 172 

ventilatory, and cardiovascular systems. Sustained performance relies on aerobically 173 

produced metabolic energy, thus oxygen availability sets general limits to fish metabolism 174 

and growth (Pauly, 2010). Organismal capacities vary between behavioural types and 175 

habitat adaptations, e.g. active pelagic swimmers vs. benthic ambush predators, 176 

eurythermal vs. stenothermal habitats (Pörtner et al., 2004). Individual fish behaviour thus 177 

has consequences for population, community and ecosystem processes, and behavioural 178 

adaptation may also buffer impacts of environmental drivers on individuals and 179 

populations (Mittelbach et al., 2014). 180 
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Limitations to an animal’s performance and tolerance to unfavourable environmental 181 

conditions will eventually become visible at the whole animal level, but are co-defined at 182 

the cellular level. While temperature may be the most important factor in setting these 183 

limits (Pörtner and Peck, 2010), further environmental factors such as ocean acidification 184 

or hypoxia (low O2 levels) can modify aerobic capacity and temperature limits (Pörtner, 185 

2010, 2012). Hypoxia has for instance been shown to reduce food uptake and limit 186 

metabolic and growth rates and development of early life stages in fish (Ekau et al., 2010). 187 

More recently, ocean acidification (declining oceanic pH and elevated CO2 levels) has been 188 

identified as an additional driver, underscoring the necessity to integrate physiological 189 

responses and experimental results on interactions among drivers into models and 190 

projections (Fabry et al., 2008, Riebesell and Gattuso, 2015).  191 

High seawater CO2 levels increase CO2 diffusion into the bloodstream of marine fish, which 192 

is generally compensated within hours to days by an active accumulation of bicarbonate 193 

(HCO3-) to maintain the extracellular pH required for efficient cellular functioning (e.g. 194 

Heisler, 1984, Brauner and Baker, 2009, Melzner et al., 2009b). The increased energy 195 

demand of compensatory metabolic processes such as acid-base regulation (Deigweiher et 196 

al., 2008, Melzner et al., 2009a) can entail shifts in the animal’s energy budget, and lead to 197 

acclimatory responses in various physiological processes. Consequently, ocean acidification 198 

will act in addition to, or synergistically with, ocean warming, leading to decreased upper 199 

critical temperatures (Pörtner and Peck, 2010). Recent studies have demonstrated a 200 

considerable chronic impact of ocean acidification, e.g. on cellular metabolism (Strobel et 201 

al., 2012, Strobel et al., 2013), metabolic rate (Michaelidis et al., 2007, Enzor et al., 2013), 202 

respiratory performance (Couturier et al., 2013) and aerobic scope (Rummer et al., 2013).  203 
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Thus, consideration of the physiological processes involved in individual responses can 204 

serve to integrate the effects of multiple drivers (increasing temperature, acidification, 205 

hypoxia) and to assess the combined effect on the organism and the energetic cost of 206 

individual acclimation.  207 

Population level processes: recruitment, reproduction, population adaptation 208 

Processes at the population level, such as recruitment, determine the dynamics of fish 209 

stocks and can be strongly influenced by the physical environment (Rothschild et al., 1989, 210 

Myers, 1998, Ottersen et al., 2013, Szuwalski et al., 2014). Increasing temperatures lead to 211 

faster development of fish larval stages, earlier maturation at smaller sizes and reduced 212 

per-capita fecundity, affecting population productivity (Rijnsdorp et al., 2009, Baudron et 213 

al., 2014).  214 

Embryos and larval stages do not yet express the fully developed capacities for acid-base 215 

regulation of juvenile and adult fish. Thus, additional stressors such as ocean acidification, 216 

hypoxia or pollution can lead to increased mortality and impaired growth performance 217 

(Franke and Clemmesen, 2011, Baumann et al., 2012, Frommel et al., 2012, Nikinmaa, 218 

2013). Increased temperature and ocean acidification can also affect reproductive output 219 

and gamete survival, impacting reproduction of the population (Inaba et al., 2003, Frommel 220 

et al., 2010, Miller et al., 2015). Thus, egg and larval stages are potential bottlenecks in life 221 

history and in adaptation of fish to multiple environmental drivers (Melzner et al., 2009b, 222 

Rijnsdorp et al., 2009). 223 
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Whether adaptation of fish populations can keep pace with future changes in 224 

environmental conditions is an important open research question (Rijnsdorp et al., 2009). 225 

Population adaptation can happen within the range of phenotypic plasticity, e.g. through 226 

behavioural adaptation, developmental and trans-generational acclimation (Crozier and 227 

Hutchings, 2014), or by evolution of adaptive genetic divergence (Nielsen et al., 2009, 228 

Reusch, 2014). While genomic markers have been linked to ecological differentiation e.g. in 229 

Atlantic cod (Hemmer-Hansen et al., 2013), most available studies have found plastic 230 

responses, and studies reporting trans-generational plasticity under conditions of climate 231 

change are relatively scarce for large and long-lived fish species (Crozier and Hutchings, 232 

2014, Munday, 2014). However, some laboratory and in situ experiments demonstrate that 233 

heritable effects can significantly enhance tolerance to environmental drivers and involve 234 

metabolic readjustments (Donelson and Munday, 2012, Miller et al., 2012, Shama et al., 235 

2014). Effects of climate change at the population level may also act synergistically with 236 

impacts of human exploitation, as fishing pressure can lead to a reduction in size at 237 

maturation (Law, 2000, Jørgensen et al., 2007) and to a higher sensitivity towards 238 

environmental fluctuations in exploited stocks (Perry et al., 2010).  239 

Community level processes: predation, competition, mutualism & facilitation 240 

Direct environmental effects on fish are influenced by species interactions in the food web, 241 

and can lead to indirect effects on other species (e.g. Link et al., 2009, Engelhard et al., 242 

2014, Bogstad et al., 2015). The response of a marine ecosystem to changes of one stock 243 

depends on the type of trophic control, i.e. bottom-up or top-down (Frank et al., 2006), and 244 

the characteristics of predator-prey interactions are a primary determinant of marine 245 
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community resilience (Hunsicker et al., 2011). Cascading effects triggered by direct impacts 246 

on one element of the food web may be especially relevant in top-down controlled systems 247 

(Frank et al., 2006), can lead to regime or phase shifts, and therefore have to be considered 248 

when discussing effects of climate change (Mangel and Levin, 2005, Link et al., 2009).  249 

Changes in prey biomass and composition can influence the energy uptake for fish due to 250 

different energy content or size of food particles (Beaugrand et al., 2003, Beaugrand and 251 

Kirby, 2010). Regional changes in zooplankton communities are correlated to rising water 252 

temperatures and may facilitate range shifts of fish stocks, which follow the occurrence of 253 

their preferred prey (Brander, 2010, Dalpadado et al., 2012). Calcifying zooplankton 254 

species, e.g. pteropods, may be vulnerable to ocean acidification and warming (Lischka and 255 

Riebesell, 2012). Non-calcifying zooplankton, such as copepods, have displayed a reduced 256 

overall energy content under warming and acidification (Hildebrandt et al., 2014), and may 257 

also be impacted indirectly through reduced food quality of phytoplankton (Rossoll et al., 258 

2012).  259 

Changes in trophic interactions and energy transfer will be modulated by individual animal 260 

feeding behaviour. Behaviour and sensory systems of fish can be influenced by elevated 261 

CO2 levels putatively through interaction with neuronal receptors (Briffa et al., 2012, 262 

Nilsson et al., 2012, Hamilton et al., 2014). Effects have been shown to occur in all life 263 

stages in laboratory and field experiments mostly of tropical reef fish (but see Jutfelt et al., 264 

2013, Jutfelt and Hedgarde, 2013) and include impaired olfactory, visual and hearing 265 

abilities (Simpson et al., 2011, Leduc et al., 2013, Chung et al., 2014), reduced capacities for 266 

learning, homing and decision-making (Devine et al., 2012, Ferrari et al., 2012), and 267 
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reduced or delayed behavioural responses towards predators (Ferrari et al., 2011, Munday 268 

et al., 2013a, Nagelkerken et al., 2015).  269 

In sharks, warming and acidification can impair growth and hunting behaviour (Pistevos et 270 

al., 2015).  271 

Thus, changes in planktonic community composition and predator-prey interactions point 272 

at probable changes in food composition for fish and in marine community dynamics. Other 273 

interactions, such as mutualism, facilitation or parasitism, may also be affected by changed 274 

occurrences and sensitivities of species, and influence the response at the community level. 275 

Spatial ecosystem level processes: migration, dispersal, habitat availability 276 

The spatial heterogeneity of marine habitats influences the range of environmental 277 

conditions experienced by individuals, and interacts with population and community 278 

processes (Ciannelli et al., 2008). Changes in distribution ranges of marine fish species 279 

under climate change, are based on the spatial processes migration and dispersal, and on 280 

the availability of suitable habitat (Roessig et al., 2005). For instance, vertical foraging 281 

migrations or large-distance seasonal migrations can be linked to characteristic 282 

temperature corridors (e.g. Kitagawa et al., 2000, Stensholt, 2001). Spatial structure and 283 

distribution of stocks can be shaped by migratory behaviour and larval dispersal, as 284 

governed by oceanic currents and bottom topography (e.g. Rindorf and Lewy, 2006, 285 

Knutsen et al., 2007). Local impacts of climate change e.g. in spawning or nursery grounds 286 

can thus disrupt spatial life cycles via recruitment success (Petitgas et al., 2012, Llopiz et 287 
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al., 2014). Spatial structure of fish stocks also influences the response to harvesting 288 

(Ciannelli et al., 2013). 289 

Ocean warming may reduce dispersal distances and decrease population connectivity due 290 

to faster larval development, and can lead to shifts in seasonal spawning timing (O'Connor 291 

et al., 2007, Asch, 2015). Experimental and empirical data can elucidate these spatial-292 

temporal organism-habitat connections. Processes such as migration and recruitment can 293 

in principle be described as a result of behavioural responses to the spatial environment, 294 

governed by physiological capabilities and limitations (cf. Fiksen et al., 2007). 295 

Observational and telemetry data can be used to inform about population movements 296 

(Metcalfe et al., 2012), and genomic methods can reveal fine-scale population structuring 297 

and local or regional adaptive differentiation in fish species (Nielsen et al., 2009).  298 

From processes to models: Modelling approaches and their capacity for process-based 299 

integration of environmental drivers 300 

In this section, the main types of models used to investigate marine fish are analysed for 301 

their capacity to incorporate the effects of environmental drivers on specific physiological 302 

and ecological processes. For clarity, we divide the models into seven categories: 1) single-303 

species population dynamic models, 2) multi-species population dynamic models, 3) 304 

trophodynamic & mass-balanced models, 4) species distribution models (SDMs), 5) trait-305 

based & size-spectrum models, 6) individual-based models (IBMs), and 7) bioenergetic 306 

models. These categories represent historical developments, but no definitive functional 307 

distinctions. Modelling approaches are under rapid development and continuously 308 
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incorporating new possibilities, sometimes originating from other model classes. Finally, 309 

we describe approaches and issues for the coupling of models and coupled end-to-end 310 

models. 311 

We aim to explain the underlying concepts, and review recent applications and extensions 312 

with regard to the incorporation of environmental drivers, to give a guideline in the choice 313 

of a suitable modelling approach. Furthermore, we present relevant freely available 314 

software packages, to encourage the reader to try out models and gain a better 315 

understanding of the underlying assumptions.  316 

Single-species population dynamic models 317 

Single-species population dynamic models descend from models used for traditional 318 

fisheries stock assessment (Ricker, 1954, Beverton and Holt, 1957). These models rely on 319 

catch and survey data to estimate fish stock size, and simulate stock dynamics based on 320 

estimated population-level parameters like biomass, growth rate, recruitment, fishing and 321 

natural mortality (Hilborn, 2012). Extensions have divided stocks into age and/or size 322 

classes that can possess varying mortalities and growth (Deriso et al., 1985, Fournier et al., 323 

1990), and ‘matrix population’ models consider both factors e.g. by describing stages 324 

within age classes (Caswell, 2001). 325 

Organism: Stock models with both size- and age-structure can integrate adjustments of 326 

size-dependent or age-dependent processes (e.g. growth, mortality, development as shift to 327 

the next stage) based on environmental effects. The effects of temperature have been 328 

incorporated by tuning the growth function, e.g. for climate-dependent variations in 329 
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Atlantic cod stocks (Brander, 1995, Clark et al., 2003), and by adjusting natural mortality, 330 

e.g. in an age-structured model for Pacific saury (Cololabis saira, Scomberesocidae; Tian et 331 

al., 2004). Assumed effects of changes in temperature, salinity and hypoxia on growth, 332 

mortality and reproduction have been integrated in a matrix projection model for Atlantic 333 

croaker (Micropogonias undulatus, Sciaenidae; Diamond et al., 2013).  334 

Population: Stock assessment models aggregate early life stages in an empirical stock-335 

recruitment relationship (Needle, 2001), which determines critical characteristics of the 336 

produced stock dynamics (e.g. Cabral et al., 2013). Environmental drivers have been 337 

incorporated into recruitment functions (Hollowed et al., 2009), e.g. as temperature effects 338 

on North Sea and Baltic cod (Köster et al., 2001, Clark et al., 2003), on tropical rock lobster 339 

(Panulirus ornatus, Palinuridae; Plaganyi et al., 2011) and on Baltic sprat (Sprattus sprattus, 340 

Clupeidae; Voss et al., 2011). The influences of atmospheric oscillations and regional 341 

oceanographic regimes on recruitment have been incorporated e.g. for Atlantic cod 342 

(Brander and Mohn, 2004), Northern rock sole (Lepidopsetta polyxystra, Pleuronectidae; 343 

Hollowed et al., 2009) and jackass morwong (Nemadactylus macropterus, Cheilodactylidae; 344 

Wayte, 2013). 345 

Simpler, non stage-structured ‘surplus production’ models have investigated stock 346 

dynamics as driven by temperature regimes and climate oscillations (Rose, 2004, Holsman 347 

et al., 2012). Matrix projection models can incorporate more process detail, integrating 348 

reproduction and estimating recruitment from growth, maturation and cannibalism 349 

processes, as applied for Atlantic cod (Frøysa et al., 2002, Andrews et al., 2006) and 350 

Atlantic croaker (Diamond et al., 2013).  351 
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Community: Food web interactions are not explicitly incorporated in single-species 352 

assessment models (see ‘multi-species population dynamic models’), but are indirectly 353 

considered through model fitting to stock observations. Stock models could take into 354 

account changes in community level processes via adjusting stock growth or an additional 355 

mortality parameter.  356 

Spatial consideration: Movement of stocks has been integrated through grid cells 357 

connected by advection and diffusion e.g. for albacore (Thunnus alalunga, Scombridae; 358 

Fournier et al., 1998) and for Atlantic cod (Andrews et al., 2006). By modelling the 359 

dynamics of metapopulations with distinct sub-stocks, differences in population 360 

parameters and more detailed spatial processes such as migration, spatially disaggregated 361 

spawning, and larval diffusion can be incorporated (Goethel et al., 2011).  362 

Multi-species population dynamic models 363 

Multi-species population dynamic models originate from the extension of single-species 364 

stock assessment models (Pope, 1979, Gislason, 1999, Lewy and Vinther, 2004). These 365 

models use diet data to couple several species via their feeding interactions, whereby the 366 

mortality rate of a stock is determined from its consumption by other species (Pope, 1991, 367 

Magnússon, 1995, Rose and Sable, 2009). Selection of the included species can be based on 368 

abundance, relevance from an economic or management perspective, or because of key 369 

interactions with the target species (Rindorf et al., 2013, Plaganyi et al., 2014b). Models 370 

include up to six species and often aim to evaluate interdependent fluctuations of fish 371 

stocks in response to environmental changes (e.g. Bogstad et al., 1997, Livingston, 2000). 372 
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Organism: Due to an underlying structure equivalent to single-species population dynamic 373 

models, multi-species models have essentially the same capacities and limitations for 374 

integrating organism-level processes. The explicit consideration of species interactions 375 

may allow a more realistic parameterization e.g. of natural mortality and growth 376 

(Hollowed, 2000).  377 

Population: Restrictions apply as for single species stock models. However, multi-species 378 

models can include impacts of predation by other species on early life stages, as 379 

demonstrated e.g. for Atlantic cod and interacting species (Lewy and Vinther, 2004, 380 

Lindstrøm et al., 2009, Speirs et al., 2010). This would in principle allow for integration of 381 

food-web mediated environmental effects on recruitment success. 382 

Community: Multi-species models incorporate predation and competition processes 383 

among the included species, with a moderate number of species assumed to be sufficient to 384 

describe regional food web dynamics (Rindorf et al., 2013). The predation process is 385 

formulated as a statistical ‘functional response’ between predator consumption and prey 386 

abundance (Holling type functions; Holling, 1959), where prey suitability is usually based 387 

on data from stomach content analysis (Magnússon, 1995). Environmental influence on the 388 

predation process has been incorporated by dynamically modelling stomach content and 389 

the impact of temperature on evacuation rates to represent metabolic activity, in a study 390 

with Atlantic menhaden (Brevoortia tyrannus, Clupeidae) and its predators (Garrison et al., 391 

2010). 392 

Spatial consideration: Multi-species models can divide stock representations into several 393 

regional areas to include connecting processes such as seasonal migration patterns and 394 

Page 20 of 93Fish and Fisheries



For Review Only

20 

larval dispersal, as realized for the Barents Sea (Tjelmeland and Bogstad, 1998, Lindstrøm 395 

et al., 2009).  396 

Trophodynamic & mass-balance models 397 

Trophodynamic or mass-balance models (also termed whole system or aggregate system 398 

models) build on the analysis of mass or energy flows in ecological networks (Polovina, 399 

1984, Ulanowicz, 1985). Exchange of biomass as wet weight or energy equivalents is 400 

modelled among functional groups or ‘compartments’ (usually species or ecologically 401 

similar groups of species) in marine food webs. Available software packages include 402 

Econetwrk (Ulanowicz, 2004), which focuses on network analysis, Ecotroph (Gascuel and 403 

Pauly, 2009), which analyses biomass flow through trophic levels, and the multifunctional 404 

and widely utilised Ecopath with Ecosim package (EwE; Christensen and Walters, 2004). 405 

Organism: Effects of temperature, acidification and hypoxia on physiological performance 406 

of organisms have been incorporated in Ecosim by forcing functional groups or by 407 

adjusting their aggregate production, consumption or mortality values (e.g. Ainsworth et 408 

al., 2011, Cornwall and Eddy, 2015). The spatial EwE extension Ecospace (Walters et al., 409 

1999) permits specifying habitat quality based on various environmental factors, which 410 

then determines foraging capacity (Christensen et al., 2014a), and can divide life stages into 411 

smaller packages to approach ‘individual-based’ functionality (Walters et al., 2010). 412 

Population: The ‚multi-stanza’ feature in EwE facilitates the representation of life stages to 413 

describe recruitment (Christensen and Walters, 2004, Walters et al., 2010), but 414 

reproduction is not explicitly represented. As the underlying parameters are on functional 415 
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group level, the analysis of plasticity and adaptation of populations is limited (Christensen 416 

and Walters, 2004). 417 

Community: Energy flow over trophic levels can inform about general ecosystem 418 

characteristics and functioning (e.g. Link et al., 2008, Gascuel et al., 2011). The 419 

differentiation of represented compartments (species or functional groups) can be adjusted 420 

to optimize between food web resolution and data availability and reliability (Prato et al., 421 

2014), informed by general ecological knowledge and sensitivity analyses (Link, 2010, 422 

Lassalle et al., 2014). 423 

Predation is represented by a functional response depending on predator and prey 424 

biomasses (Christensen and Walters, 2004). In principle, vulnerability settings for each 425 

compartment provide an aggregate measure to integrate e.g. risk-sensitive foraging or 426 

predation behaviour (Ahrens et al., 2012). Via forcing functions, consumption and 427 

vulnerability parameters, or zooplankton groups and primary production can be adjusted 428 

to represent impacts of climate change on feeding interactions or food availability (e.g. 429 

Shannon et al., 2004, Field et al., 2006, Araújo and Bundy, 2012). 430 

Spatial consideration: The Ecospace module of EwE can represent spatial-temporal 431 

distribution of biomass, including probability functions of movement (Walters et al., 2010). 432 

Habitat suitability, seasonal migrations and larval dispersal have been integrated e.g. for 433 

areas in the Mediterranean (Libralato and Solidoro, 2009, Fouzai et al., 2012). Two recently 434 

added features enable dynamic spatial-temporal environmental data input (Steenbeek et 435 

al., 2013a) and more detailed integration of variable habitat suitability factors (Christensen 436 

et al., 2014a).  437 
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Species Distribution Models (SDMs) 438 

Species Distribution Models (SDMs, also termed niche-based models, climate envelope 439 

models, or predictive habitat distribution models) link observed geographical species 440 

distributions to environmental parameters, classically through regression analysis (Guisan 441 

and Zimmermann, 2000, Elith and Leathwick, 2009). Besides a wealth of applications in the 442 

terrestrial realm, SDMs are increasingly used for projecting future distributions of marine 443 

fish stocks from regional projections of environmental factors (Cheung et al., 2008, Cheung 444 

et al., 2009, Lenoir et al., 2010). Dedicated SDM software platforms enable the application 445 

and comparison of different algorithms (e.g. Thuiller et al., 2009). 446 

Organism: Organism level effects of environmental drivers can readily be incorporated 447 

into SDMs as performance curves dependent on physical factors. To integrate multiple 448 

environmental variables, different suitability factors can be multiplied (e.g. Kaschner et al., 449 

2006). Aerobic scope has been used to integrate effects of temperature, oxygen, pH and 450 

food energy into the population growth function for marine fish stocks (Cheung et al., 451 

2011).  452 

SDMs which aim to increase detail by including functional relationships between physical 453 

variables and species performance, e.g. thermodynamic energy transfer principles, have 454 

been termed mechanistic SDMs or mechanistic niche models (Dormann, 2007, Kearney and 455 

Porter, 2009). Under changing environmental conditions, increased care has to be taken in 456 

the choice of environmental variables, species-specific data, and applied algorithms to 457 

supply ecologically meaningful and robust projections (Araújo and Guisan, 2006, Heikkinen 458 

et al., 2006, Austin, 2007).  459 
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Population: A logistic population growth model incorporates temperature effects on 460 

population carrying capacity to model the global distribution of fish species (Cheung et al., 461 

2008). As environmental correlations are usually based on the occurrence of adults, it is 462 

difficult to include ontogenetic shifts in environmental tolerance or preference in different 463 

life stages (Robinson et al., 2011), but more detailed, stage-structured representations of 464 

population processes have been achieved in terrestrial models (e.g. Fordham et al., 2013). 465 

Community: The incorporation of community shifts under climate change represents a 466 

challenge for SDMs, as species interactions are only implicitly included in the empirically 467 

based response function. Depending on the scale of projections, changes in species 468 

interactions may significantly influence the performance of SDMs (Araújo and Rozenfeld, 469 

2014). Mechanistic SDMs aim to exclude biotic interactions from the response function and 470 

consider them separately (Guisan and Thuiller, 2005) to take into account differential 471 

preferences of prey and predator for environmental factors (Robinson et al., 2011),  472 

An SDM for the North Atlantic has been extended with community size-spectra to represent 473 

competition between species as a division of available food energy (Fernandes et al., 2013). 474 

For the Mediterranean Sea, a niche model has been coupled to a trophic network model to 475 

derive temperature-induced shifts in food webs (Albouy et al., 2014). 476 

Spatial consideration: SDMs can provide high spatial resolution, but correlations are 477 

often limited by the availability of species occurrence data. Larval dispersal, adult 478 

migrations, habitat availability and regional primary production changes have been 479 

included into projections of worldwide distribution changes of marine fish (Cheung et al., 480 

2009, Cheung et al., 2010). Seasonal migrations and other spatio-temporal processes 481 
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governed by factors other than current environmental parameters (e.g. genetic) are more 482 

difficult to include (Robinson et al., 2011), but have been included e.g. in a habitat 483 

prediction model for southern Bluefin tuna (Thunnus maccoyii, Scombridae) under 484 

changing oceanographic conditions (Hartog et al., 2011). 485 

Trait-based & size-spectrum models 486 

Trait-based models constitute a relatively new approach, focusing on the description of 487 

individual characteristics and processes (traits), e.g. size, morphology or weight, which are 488 

defined to govern performance of organisms in a specific environment (Chown, 2012). 489 

These traits can be used together with metabolic scaling and predation rules to describe 490 

life histories and interactions (Brown et al., 2004, Andersen and Beyer, 2006) and to 491 

construct community size-spectrum models for fish (Benoit and Rochet, 2004, Pope et al., 492 

2006). A multi-species size spectrum modelling package, is available with an example 493 

parameterized for the North Sea (Scott et al., 2014). 494 

Organism: Trait-based models can incorporate considerable detail on organism-level 495 

processes such as growth, foraging, reproduction and basal metabolism, modelling 496 

organismal trade-offs via energy allocation (Jørgensen and Fiksen, 2006). For Atlantic cod 497 

larvae, optimal vertical migration and life history strategies have been derived from 498 

responses to the environmental variables food, temperature and light (Kristiansen et al., 499 

2009, Fiksen and Jorgensen, 2011). Recently, individual energy and oxygen budgets have 500 

been used to derive changes in growth, mortality and reproduction rates under ocean 501 

warming and project impacts on population characteristics and optimal behavioural and 502 

life history strategies (Holt and Jørgensen, 2014, Holt and Jørgensen, 2015). 503 
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Population: Trait-based models have high potential to describe processes shaping 504 

population dynamics, such as reproduction and recruitment, by basing them on individual 505 

life histories. These can be resolved for size, growth and maturation (e.g. Hartvig et al., 506 

2011, Holt and Jørgensen, 2014). However, trait-based models usually include an empirical 507 

stock-recruitment relationship to determine recruitment and represent closure of life 508 

cycles (Jacobsen et al., 2014). Adaptation of fish populations to size-selective drivers (e.g. 509 

fisheries exploitation) can be quantified based on changes of individual growth, 510 

reproduction and mortality processes (Andersen and Brander, 2009). Eco-genetic or 511 

adaptive dynamics models investigate plasticity and evolutionary rates within populations 512 

(Dunlop et al., 2009).  513 

Community: In size spectrum models, community interactions and food webs are usually 514 

constructed bottom-up, based on the realized interactions as governed by the integrated 515 

traits, e.g. ‘size at maturation’ (e.g. Jennings and Brander, 2010, Hartvig et al., 2011). Simple 516 

size spectrum models can investigate community shifts under temperature effects on 517 

growth (Pope et al., 2009). Behavioural, energy allocation and foraging processes can 518 

connect individual processes in more detail (Andersen and Beyer, 2013), and functional 519 

separation in interactions can be integrated by using coupled size spectra, as exemplified 520 

for pelagic predators and benthic detritivores (Blanchard et al., 2009).  521 

Spatial consideration: Size spectrum models can use spatial input from oceanographic 522 

and biogeochemical models to incorporate e.g. temperature effects on feeding and 523 

mortality (Blanchard et al., 2012) and to simulate movement (Watson et al., 2014).  524 
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Individual-based models (IBMs) 525 

Individual-based models (also termed agent-based models) are a bottom-up modelling 526 

approach, based on the simulation of individuals as separate entities. Their status is 527 

determined by internal state variables and changed by interactions with other individuals 528 

and the environment (e.g. foraging and predation), generating population and higher-level 529 

system properties (Huston et al., 1988, Judson, 1994, Grimm, 1999). Various IBM 530 

programming packages focus on agent-environment interactions (Railsback et al., 2006, 531 

Arunachalam et al., 2008). More specialized software tools model environmental impacts 532 

on the dispersal of planktonic fish larvae (Lett et al., 2008, e.g. Huebert and Peck, 2014). 533 

Organism: IBMs for larval fish describe growth, development and mortality as dependent 534 

on environmental parameters (Hinckley et al., 1996, Hermann et al., 2001, Gallego et al., 535 

2007). Behavioural rules can link environmental factors (e.g. light, temperature, oxygen) to 536 

metabolism, energy use, and predation risk (Fiksen et al., 2007). Energy allocation 537 

principles can be used to describe connections and trade-offs among internal processes in 538 

IBMs (Sibly et al., 2013). More detailed environmental and experimental data is needed for 539 

further advances in larval IBMs (Lett et al., 2010, Peck and Hufnagl, 2012).  540 

Population: IBMs allow for consideration of inter-individual variation in fish responses 541 

and the resulting environmental selection (Van Winkle et al., 1993) and can thus be used to 542 

investigate population adaptation to changing environmental drivers (e.g. Anderson et al., 543 

2013). While representing both detailed early life stages and closed life cycles of 544 

populations produces considerable model complexity and computational demands, IBMs 545 

can be used to integrate variation into more aggregate models (Rose et al., 2001).  546 
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IBMs have been used to investigate early life stage dynamics, connectivity between stocks 547 

and environmental impact on recruitment potential of marine fish (Mullon et al., 2002, 548 

Miller, 2007, Hinrichsen et al., 2011). Demographic changes under climate change have 549 

been investigated for Atlantic salmon (Salmo salar, Salmonidae; Piou and Prévost, 2012). 550 

Community: IBMs are successful in detailing the predation of larval fish on zooplankton 551 

based on spatial co-occurrence, the environment and behavioural processes, e.g. 552 

investigating match-mismatch dynamics (Kristiansen et al., 2011). Thus, growth and 553 

mortality can be described as emergent properties of individual interactions, providing the 554 

predation functional response with ecological detail (Huse and Fiksen, 2010).  555 

Changes in lower trophic levels can be integrated as ‘prey fields’ (aggregated prey densities 556 

in a defined space) into larval models (Hermann et al., 2001, Daewel et al., 2008). Size-557 

governed predation processes have been resolved in a multi-species IBM for pelagic fish 558 

communities (OSMOSE; Shin and Cury, 2001, 2004; for this and other multi-species IBMs, 559 

see section on 'coupled and end-to-end models'). 560 

Spatial consideration: Biophysical IBMs can model impacts on larval dispersal, based on 561 

output from three-dimensional oceanographic models, as realized e.g. for larvae of walleye 562 

pollock (Theragra chalcogramma, Gadidae; Hermann et al., 2001), Southern African 563 

anchovy (Engraulis capensis, Engraulidae; Mullon et al., 2002), Atlantic cod (Vikebo et al., 564 

2007, Heath et al., 2008) and Atlantic herring (Vikebo et al., 2010). A mechanism-based, not 565 

species-explicit model has been used to investigate climate change impacts on adult fish 566 

and mammal migrations (Anderson et al., 2013). 567 
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Bioenergetic models 568 

Bioenergetic models simulate the internal energy budget of organisms by using rules for 569 

energy allocation. Metabolic processes such as feeding, respiration, growth and 570 

reproduction are linked to external parameters, e.g. food and temperature, to determine 571 

the organism’s performance (Brown et al., 2004, Hartman and Kitchell, 2008). Classic 572 

bioenergetic models have been applied to a variety of fish species (Hansen et al., 1993). In 573 

Dynamic Energy Budget (DEB) models (Kooijman, 2000, van der Meer, 2006), individuals 574 

are characterized by the state of different energy compartments such as structure, reserves 575 

and reproduction (Lika and Kooijman, 2011, Nisbet et al., 2012). Energy budget 576 

representations have also been integrated into other model types (see ‘Organism’ 577 

subsections of ‘Trait-based & size-spectrum models’, ‘Individual-based models’ and 578 

‘Coupled and end-to-end models’ sections). 579 

Organism: Energy budgets have been used to compare temperature-dependent organism 580 

performances and sensitivities among different fish species (van der Veer et al., 2001, 581 

Sousa et al., 2008, Freitas et al., 2010). While this provides the base for a mechanistic 582 

understanding of diverging organism performances under climate change, further research 583 

will be required to incorporate life history and behavioural detail, activity costs, and 584 

seasonal and ontogenetic variations in energy allocation (Beauchamp et al., 2007, Sibly et 585 

al., 2013) as well as the treatment of oxygen supply for metabolism (Pauly, 2010).  586 

Population: Bioenergetic models have been scaled up to population level to determine 587 

parameters such as biomass, consumption and growth of fish stocks, based on changes in 588 

metabolic and feeding rates (Beauchamp et al., 2007, Perez-Rodriguez and Saborido-Rey, 589 
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2012). To include more detail on population level processes, DEBs have been integrated 590 

into matrix population models (e.g. Klanjscek et al., 2006) and energy allocation patterns 591 

adapted to the life-history of the organism (Nisbet et al., 2012).  592 

Spawning dynamics resulting from temperature and food effects on energy budgets have 593 

been investigated for European anchovy (Pecquerie et al., 2009) and Atlantic Bluefin tuna 594 

(Thunnus thynnus, Scombridae; Chapman et al., 2011).The integration of energy budget 595 

models into IBMs allows more detailed upscaling of individual-level processes to 596 

population level (Hölker and Breckling, 2005, Sibly et al., 2013), and for DEB-IBM 597 

integration a software framework is available (Martin et al., 2011, Martin et al., 2013).  598 

Community: Predator-prey interactions in bioenergetic IBMs determine energy transfer 599 

between individuals, and can therefore include changes in prey composition or energy 600 

content (Martin et al., 2011). Behavioural aspects of foraging are more difficult to include 601 

(Beauchamp et al., 2007). Dynamic Energy Budgets have been used to derive thermal 602 

ranges of fishes in the North Sea (Freitas et al., 2010), and can be integrated into size-603 

spectra models to investigate community dynamics (Maury and Poggiale, 2013). 604 

Spatial consideration: A DEB model has been coupled to biogeochemical and lower 605 

trophic level models to investigate the spatial distribution of North Atlantic flatfish species 606 

(Teal et al., 2012). To investigate detailed spatial processes, bioenergetic models have been 607 

integrated into size-structured models (e.g. Maury, 2010; see ‘Coupled and end-to-end 608 

models’), and can be incorporated into individual-based and species distribution models, 609 

but data availability and the complexity of organismal plasticity and ontogenetic changes 610 

may limit their up-scaling to the ecosystem level (Freitas et al., 2010).  611 
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Coupled and end-to-end models 612 

As each modelling approach has characteristic strengths and simplifications, coupling of 613 

different ecological models increases the potential for explicit process integration (cf. 614 

Reuter et al., 2010). A range of coupled models is available, and some consist of a complex 615 

array of submodels, connecting ecosystem levels and scientific disciplines (Moloney et al., 616 

2011) to achieve an ‘end-to-end’ representation of climate change impacts, i.e. from 617 

physical oceanographic changes via nutrient dynamics and planktonic lower trophic levels, 618 

to fish stocks, other higher trophic levels and links to socio-economic dynamics (Travers et 619 

al., 2007, Fulton, 2010, Rose et al., 2010). To link across these levels, models can profit from 620 

detailing processes, e.g. related to energy allocation, feeding and behaviour (Nisbet et al., 621 

2000, Brown et al., 2004, Kearney et al., 2010, Persson et al., 2014). Note that recent 622 

extensions and advances in end-to-end modelling are not all covered in the peer-reviewed 623 

literature, and it is beyond the scope of this paper to provide more than a short overview of 624 

these models.  625 

Three conceptually related models integrate oceanographic models, simplified nutrient and 626 

lower trophic level dynamics and bioenergetic models for certain pelagic fish species. 627 

APECOSM (Apex Predators ECOSystem Model; Maury, 2010) and SEAPODYM (Spatial 628 

Ecosystem And POpulations DYnamics Model; Lehodey et al., 2008) represent size-629 

structured predation and movement in different tuna and related species, and have been 630 

used to investigate worldwide distribution shifts under climate change (Lefort et al., 2015, 631 

Lehodey et al., 2015). NEMURO.FISH (North Pacific Ecosystem Model for Understanding 632 

Regional Oceanography - For Including Saury and Herring) has been developed to 633 
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investigate climate regime effects on Pacific herring (Clupea pallasii pallasii, Clupeidae; 634 

Megrey et al., 2007, Rose et al., 2008) and Pacific saury (Ito et al., 2004).  635 

OSMOSE (Object-oriented Simulator of Marine ecOSystems Exploitation) is an IBM 636 

representing multiple size classes and size-based interactions (Shin and Cury, 2004). 637 

Recent OSMOSE versions have been used to investigate combined effects of climate change 638 

and fisheries by coupling energy-dependent growth of early life stages to simple models of 639 

lower trophic levels (Travers-Trolet et al., 2014). Based on environmental driving from the 640 

NEMURO model, a recent multi-species IBM development for the California Current 641 

simulates dynamics of Californian anchovy (Engraulis mordax, Engraulidae) and Pacific 642 

sardine (Sardinops sagax caerulea, Clupeidae), linking to an agent-based fisheries model 643 

(Fiechter et al., 2015, Rose et al., 2015). 644 

Atlantis is a modular end-to-end model aimed at the evaluation of management strategies 645 

(Fulton et al., 2004, Fulton et al., 2011). Fish stocks are age-structured, with average size 646 

and condition tracked, and different types of functional responses can be used to describe 647 

trophic interactions (Fulton, 2010, Kaplan et al., 2012). Effects of warming, acidification 648 

and salinity changes have been integrated on represented processes such as growth, 649 

reproduction, and movement (Griffith et al., 2012, Fulton and Gorton). 650 

In principle, these comprehensive models possess a high potential for consideration of 651 

multiple drivers for different species and at various levels of description. However, the 652 

complexity of model structures causes a high work effort for estimating and analysing 653 

empirical parameters, the consideration of scaling issues and the coupling of modules may 654 
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be limited by calibration issues and the propagation of uncertainties (Fulton et al., 2003, 655 

Rose, 2012, Voinov and Shugart, 2013, Evans et al., 2015). 656 

As an alternative to the use of increasingly complex model structures, purposefully 657 

simplified end-to-end models can quantify climate change impacts and provide 658 

management advice. These have been termed ‘models of intermediate complexity’ (Hannah 659 

et al., 2010) and can be related to or based on multi-species population dynamic models 660 

(Plaganyi et al., 2014b). Recent examples have linked nutrient dynamics to fisheries 661 

management for the North Sea and Baltic Sea (e.g. Heath, 2012, Radtke et al., 2013). Also, 662 

Ecospace models (see ‘Trophodynamic & mass-balance models’) can be driven with spatial-663 

temporal input from oceanographic models (Steenbeek et al., 2013) to investigate e.g. 664 

interactions of hypoxia and fishing (de Mutsert et al., 2015). Lastly, in system dynamics 665 

modeling, which aims at a simplified representation of social-ecological systems (Costanza 666 

and Ruth, 1998), some examples for fish stocks in the Northwest Atlantic have 667 

incorporated habitat conditions and management elements (Ruth and Lindholm, 1996, 668 

Gottlieb, 1998). 669 

From models to understanding and projections: Model choices and challenges for addressing 670 

questions of environmental change 671 

Our compilation illustrates that modelling approaches have strongly diverging capacities to 672 

incorporate physiological and ecological processes under scenarios of climate change 673 

(Table 1). Most approaches concentrate on specific levels of organization and neglect 674 

others, although in many cases recently added features have improved capacities. The best 675 

Page 33 of 93 Fish and Fisheries



For Review Only

33 

choice of model thus depends on the primary question of interest, the relevant processes 676 

and the available data.  677 

To exemplify relevant considerations when choosing or constructing a model, we consider 678 

five basic research questions asked by the scientific community. Questions 1 to 3 relate to 679 

advancing the fundamental understanding of biological responses of fishes to 680 

environmental changes (individual tolerance, population adaptation and ecological regime 681 

shifts). Questions 4 and 5 focus on projections of the future states of fish stocks (spatial 682 

distribution and links to socio-economic developments). We evaluate the capabilities of the 683 

presented model classes to treat these questions and suggest how these models may profit 684 

from integrating more experimental results and empirical data. 685 

Question 1: What is the individual response and tolerance of fish to multiple 686 

changing environmental drivers? 687 

Laboratory experiments contribute primarily to this research question by investigating 688 

organism level processes that determine the effect of multiple and combined 689 

environmental drivers (increasing temperature, acidification, hypoxia) on individual 690 

performance. Research on the cumulative effects of stressors, life stage-specific 691 

sensitivities and trade-offs between physiological processes can build the foundation for 692 

explaining the capacity for and the limitations of individual plasticity. 693 

Bioenergetic models can represent individual processes in greatest detail. To project 694 

effects on higher-level processes, energy budgets have been successfully integrated in 695 

individual-based, trait-based, size-spectrum, species distribution and end-to-end models. 696 
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Individual-based and trait-based models on the individual level are most directly 697 

parameterized with results from experiments, can consider inter-individual heterogeneity, 698 

and facilitate a mechanistic understanding of the effects of different constraining or 699 

enhancing factors on the performance of individuals. Due to detail richness and specificity 700 

of model formulations, these models are often not easily transferable to other species. 701 

When applied to multiple species and in a spatial ecosystem context, computational 702 

demands can be high. 703 

Species distribution models and Ecospace offer comparatively straightforward integration 704 

of physiological performance curves into response functions to single and multiplicative 705 

drivers. Due to the implicit assumptions regarding upscaling to higher levels of 706 

organization, robustness and uncertainty of the applied response functions can be assessed 707 

e.g. by using results on sub-lethal physiological responses, which can be provided by 708 

laboratory experiments (Woodin et al., 2013). In single or multi-species population 709 

dynamic and mass-balance models, experimental results can be used to adjust growth, 710 

consumption and mortality of (age/size) stages or cohorts. As this kind of aggregated 711 

integration of results does not account for individual variation in responses, robustness of 712 

these representations should be assessed over the range of responses in regard to 713 

interactions with other drivers and with processes on higher levels (such as predation and 714 

selection). This can be conducted e.g. by sensitivity analyses informed by physiological and 715 

ecological results, and by including multiple aggregate parameterisations to reflect some 716 

level of variation.  717 
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Advancements are necessary in the individual-level integration of multiple drivers, which 718 

can be informed by results from specifically designed experiments. Models will benefit 719 

from the integration of data on energy allocation and well-established physiological 720 

performance measures, such as aerobic scope, to define habitat suitability under driver 721 

combinations (Teal et al., 2015). These can be used to integrate experimental results 722 

directly into hydrodynamic and biogeochemical models (e.g. Cucco et al., 2012). Integrative 723 

concepts such as scope for activity (Claireaux and Lefrancois, 2007) and oxygen- and 724 

capacity-limited thermal tolerance (OCLTT; Pörtner, 2010) can be used to reduce 725 

complexity of representation and serve as a matrix for integration of multiple driver effects 726 

in order to generalize organismal performance and stress sensitivity (Pörtner, 2012).  727 

Models should also increasingly incorporate dynamic responses, to account for acclimation 728 

and evolution. Laboratory measurements of organismal acclimation and phenotypic 729 

response variation within populations, as well as knowledge of the functional mechanisms 730 

underlying organismal responses, can help to estimate organismal adaptive capacity (see 731 

also question 2). 732 

Question 2: How will climate change affect the population dynamics of fish stocks 733 

and what is their capacity for adaptation? 734 

To assess fish stock responses to climate change, integration of the population level 735 

processes recruitment and reproduction, and of the adaptation capacity of populations is 736 

needed. Recent meta-analyses and statistical models show that for many stocks, 737 

recruitment may be strongly dependent on the environment (Ottersen et al., 2013, 738 

Szuwalski et al., 2014, Pecuchet et al., 2015). Data from different early life stages, the 739 
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reproduction process and from trans-generational experiments can contribute to create a 740 

more mechanistic description of the environmental dependence of population dynamics 741 

and to determine the capacity of stocks to undergo adaptation.  742 

Stage-structured single or multi-species population dynamic models can be used to 743 

investigate the impacts of environmental change on population size and age structure. The 744 

use of generalized stock-recruitment relationships or environmental carrying capacities 745 

entails strong assumptions, such as homogeneity of a cohort and of environmental 746 

conditions (Metcalfe et al., 2012), and the recruitment function can put considerable 747 

uncertainty on projections from these models (e.g. Cabral et al., 2013, Howell et al., 2013). 748 

An improved integration of environmental effects could be based on the explicit 749 

representation of different early life stages (e.g. eggs, non-feeding and feeding larval 750 

stages), as realized in some matrix projection models. To incorporate spatially resolved 751 

habitat drivers of population processes, increasing focus should also be put on the 752 

development of mechanistic SDMs that incorporate stage-structured population dynamic 753 

models, as they have been realized for terrestrial systems (e.g. Keith et al., 2008, Fordham 754 

et al., 2013, Lurgi et al., 2014).  755 

For a more detailed investigation of population structure across life stages and to 756 

investigate population adaptation based on acclimation and evolution, trait-based models 757 

and IBMs making use of heritable, physiology-based traits will play an important role. 758 

While next-generation population genomic methods will help to link genotype and 759 

phenotype (Hemmer-Hansen et al., 2014), laboratory studies on organismal tolerance 760 

ranges and individual adaptation can help to identify plasticity and within-population 761 
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variation in phenotypic traits. Investigation of adaption will advance further once gene 762 

expression can be more precisely linked to physiological functions and environmental 763 

performance, making use of transcriptomic data and transgenerational experiments 764 

(Munday, 2014, Logan and Buckley, 2015). This approach would improve mechanistic 765 

understanding of acclimation and evolution (Whitehead, 2012, Alvarez et al., 2015) and 766 

could be informed by data gained from ‘common garden’ experiments with fish from 767 

different environmental conditions (e.g. Oomen and Hutchings, 2015) and from laboratory 768 

experiments (Munday et al., 2013b). Investigations for early life stages can be 769 

complemented by large-scale manipulations conducted e.g. in mesocosms (cf. Munday et 770 

al., 2013b, Stewart et al., 2013).  771 

Thus, using genetic data and physiological knowledge, exploratory studies about detailed 772 

scaling of key processes from organism to population level may succeed when using trait-773 

based models or IBMs that integrate key traits for physiological mechanisms (cf. Reuter et 774 

al., 2008). Behavioural traits mediate a wide range of organism-organism and organism-775 

habitat interactions in fish (Munday et al., 2013b, Nagelkerken and Munday, 2015), and 776 

thus may become valuable in modelling phenotypic variation and adaptive potential in the 777 

context of communities and ecosystems (e.g. Giske et al., 2014). Most trait-based models, 778 

however, currently include only a low number of different traits. In IBMs, ‘super-779 

individuals’ can represent a variable number of real individuals (Scheffer et al., 1995). This 780 

concept can be used to scale up organismal properties to higher-level dynamics, 781 

maintaining self-organised population properties (Reuter et al., 2005) while limiting 782 

computational demands. It has been extended into grid-based approaches, for community 783 
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size-spectra in OSMOSE (Shin and Cury 2004) and for sardine and anchovy in the 784 

Californian Current in NEMURO.FISH (Fiechter et al., 2015, Rose et al., 2015).  785 

Question 3: Will marine food webs be resilient to climate change, or can regime 786 

shifts occur? 787 

Regime shifts in marine ecosystems can have strong impacts on fish stocks and are difficult 788 

to predict (Frank et al., 2005, deYoung et al., 2008), but community responses to 789 

environmental drivers may be crucially determined by characteristics of food web 790 

interactions (Mangel and Levin, 2005, Hunsicker et al., 2011, Plaganyi et al., 2014a). Food 791 

web topology can be elucidated by analysing biochemical tracers such as stable isotopes 792 

and fatty acids (Young et al., 2015). Experimental results on feeding parameters, predation 793 

behaviour (e.g. prey switching) and size-dependence can help to detail the interactions and 794 

mechanistically describe changes in community-level processes under multiple climate 795 

change drivers (Stefansson, 2003, Persson et al., 2014, Nagelkerken and Munday, 2015). 796 

In trophic mass-balance models such as EwE and in end-to-end models, different types of 797 

trophic control (bottom-up, top-down, or a mixture) can be integrated through 798 

vulnerability parameters (e.g. Ahrens et al., 2012), and network analysis indicators can be 799 

used to characterize the resulting food web dynamics and identify key functional groups 800 

(Heymans et al., 2014). Yet, aiming for a complete representation of food webs causes a 801 

comparatively high need for field data, especially when analysing dynamics over time.  802 

Multi-species stock models are less data demanding and have been used to compare 803 

conditions for regime shifts and thresholds among different systems (e.g. Petrie et al., 2009, 804 
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Plaganyi et al., 2014a). Their simplified structure should be informed by ecological 805 

knowledge, such as identification of major trophic pathways and selection of key 806 

components (Gilman et al., 2010, Shin et al., 2010), network analysis of more complex 807 

models (e.g. Metcalf et al., 2008, Livi et al., 2011), or ‘ecotypes’ that represent mixed 808 

ecological characteristics (Engelhard et al., 2010).  809 

Size spectrum models can investigate food web dynamics based on size structure (e.g. 810 

Blanchard et al., 2010), but representation of other properties that affect interactions is 811 

currently limited. To quantitatively characterize the vulnerability of interaction processes 812 

to predator/prey or environmental changes, IBMs and trait-based models can use 813 

behavioural rules and inter-individual variability to produce emergent feeding interactions, 814 

instead of relying on a statistical functional response (Fiksen et al., 2007, Mariani and 815 

Visser, 2010). Understanding of marine ecosystem resilience under climate change could 816 

be advanced by trait-based models with a focus on ecologically functional traits (Bremner, 817 

2008, Mouillot et al., 2013) and by multi-species IBMs that use empirical results on food 818 

uptake, energy allocation and predation behaviour to set parameter values (see ‘Coupled 819 

and end-to-end models’). Predation and energy allocation are key processes to link fish 820 

models to lower trophic level changes (Cury et al., 2008), and a realistic two-way coupling 821 

is necessary to describe ecosystem dynamics, especially in top-down controlled systems 822 

(Travers et al., 2009, Daewel et al., 2014).  823 

To provide data for parameterization of these models, more systematic experimental 824 

investigation of environmental influences on foraging and assimilation processes is 825 

necessary. The effects of different functional response formulations on model behaviour 826 
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should be tested more routinely, and whenever feasible, relevant behavioural and habitat 827 

aspects be represented dynamically. Options include using integrative suitability or 828 

vulnerability settings (e.g. Kempf et al., 2010, Ahrens et al., 2012) and multi-dimensional 829 

functional responses (e.g. Büssenschütt and Pahl-Wostl, 2000, Dawes and Souza, 2013). 830 

These community models can then inform spatially resolved models to explore how local 831 

food web dynamics respond to changes in spatial distribution of species abundance. 832 

Question 4: How will the spatial distribution and range of stocks change? 833 

This research question combines data on different levels of biological organization (cf. Fig. 834 

1), as individual responses to local environmental factors (e.g. temperatures, oxygen 835 

levels), adaptation and changes in recruitment, food web interactions, and dispersal and 836 

habitat availability all influence the distribution of fish stocks (Roessig et al., 2005, Rose, 837 

2005, Hollowed et al., 2013). 838 

Spatial variability is well represented in Species Distribution Models. SDMs have advanced 839 

considerably in incorporating details on organism-level processes, population dynamics, 840 

competition and spatial-temporal processes, and can be based upon experimental results 841 

on different levels, as exemplified for acidification and warming effects on a marine 842 

invertebrate species (Queirós et al., 2015). Underlying assumptions of steady-state 843 

relations in SDMs should always be critically examined (e.g. Guisan and Thuiller, 2005, 844 

Knudby et al., 2010). Additional empirical results should be used to consider potentially 845 

critical effects in processes not explicitly represented, e.g. recruitment, population 846 

adaptation, migration and dispersal, and changes in species interactions (cf. Brander et al., 847 

2013).  848 
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Further development of SDMs in the marine realm should also be inspired from extensive 849 

experience with related models in terrestrial applications, especially with respect to 850 

dynamic (state-dependent) integration of population and community level processes 851 

(Robinson et al., 2011, Fordham et al., 2013) and to physiological limits and adaptive 852 

evolution (Catullo et al., 2015), although not all concepts may be transferable to marine 853 

systems. The trophodynamic model Ecospace offers functionality similar to SDMs in its 854 

‘habitat capacity’ response functions, with dynamic integration of spatial processes into the 855 

food web context and the option to link to spatial-temporal input (Steenbeek et al., 2013, 856 

Christensen et al., 2014a). As end-to-end models usually resolve spatial and community 857 

processes, they possess high capacity for more integrative projections of distribution 858 

changes (e.g. Rose et al., 2015).  859 

IBMs have been used to describe larval growth and dispersal in high spatial resolution and 860 

integrate sampling data (Lett et al., 2010, Hidalgo et al., 2012). Energy allocation principles 861 

may be able to trace recruitment success and the evolution of spawning migrations, but 862 

need to be informed by more experimental research and coupled between all life stages (cf. 863 

Fiksen et al., 2007, Peck and Hufnagl, 2012). Integrative physiological concepts may be 864 

used to generalize changes in relative performance of interacting or competing species 865 

(Pörtner and Farrell, 2008, Pörtner, 2012). Additionally, more observational, telemetric 866 

and demographic data will be needed to improve incorporation of spatial structure and 867 

processes (Runge et al., 2010, Metcalfe et al., 2012). 868 

The incorporation of active migration of later life stages and of spatially resolved and 869 

potentially patchy distribution of spawning habitat, and in general the integration of lower 870 
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and higher level processes represent significant challenges in achieving reliable projections 871 

about spatial shifts of fish stocks under climate change. In the near future, these challenges 872 

will probably be handled using coupling of different modelling approaches and end-to-end 873 

models along with case-dependent strategies for reduction of complexity. In the meantime, 874 

adequate use of simpler representations will remain valuable for management and policy 875 

advice. 876 

Question 5: What will be the socio-economic impacts and the implications for 877 

management of changing marine ecosystems? 878 

Climate-mediated changes in marine ecosystems and fish stocks can have different socio-879 

economic effects in different regions and affect a range of ecosystem services used by 880 

human societies (Cooley et al., 2009, Sumaila et al., 2011, Pörtner et al., 2014). Climate 881 

change effects can interact with human uses, e.g. by fishing, and can be modified by other 882 

short-term anthropogenic drivers such as eutrophication or pollution and amplified or 883 

even overridden by general socio-economic developments (Perry et al., 2010). Therefore, 884 

an analysis of ecosystem impacts of climate change in exploited marine systems, and 885 

especially the assessment of their socio-economic consequences, need to link biological and 886 

socio-economic research approaches, building on an identification of involved ecological 887 

processes and incorporating interactions with human societies (Le Quesne and Pinnegar, 888 

2012, Hilmi et al., 2013).  889 

Different model classes have been used to assess management or adaptation strategies to 890 

climate change effects for fish stocks and marine ecosystems, but societal dynamics have 891 

until recently received little attention (Barange et al., 2010). Socio-economic dynamics and 892 
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background scenarios related to fish markets have been integrated into extended 893 

population dynamic or ‘bioeconomic’ models (e.g. Merino et al., 2010, Norman-Lopez et al., 894 

2013), species distribution models (Cheung et al., 2010, Jones et al., 2014), mass-balance 895 

models (Christensen et al., 2015), size spectrum and trait-based models (Woodworth-896 

Jefcoats et al., 2013, Barange et al., 2014, Zimmermann and Jorgensen, 2015) and the end-897 

to-end model Atlantis (Fulton et al., 2011, Griffith et al., 2012). 898 

Societies have a range of adaptation options to climate change-induced changes, e.g. 899 

increase of fishing effort, economic diversification, or change of fishing grounds (Perry et 900 

al., 2011). Incorporating adaptive societal responses and their social and cultural 901 

conditions, based on observations and models, can enable improved governance and 902 

increase resilience of marine social-ecological systems (Folke, 2006, Miller et al., 2010, 903 

Schlüter et al., 2012). Societal dynamics can be implemented e.g. using network models 904 

(Janssen et al., 2006) or arising from individual actor behaviour in ‘agent-based’ models 905 

(Gilbert and Terna, 2000).  906 

The advancement of integrated models is promising to achieve more accurate projections 907 

of the future states of social-ecological systems (Österblom et al., 2013, Griffith and Fulton, 908 

2014), and models for informing fisheries management under changing environmental 909 

drivers have been developed (e.g. Cooley et al., 2015). Advances are necessary in 910 

identifying specific societal adaptive capacities in response to regionally expected impacts 911 

of climate change, based on reliable quantitative data. Beyond fisheries, quantification of 912 

impacts of other marine industries and on the provision of other marine ecosystem 913 

services is needed, such as tourism, carbon sequestration, or coastal protection (cf. 914 
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Beaumont et al., 2007, Liquete et al., 2013). Conceptual challenges relate to scale 915 

differences and the identification of processes which determine adaptive capacities of 916 

natural and social systems (Perry and Ommer, 2003, Griffith and Fulton, 2014).  917 

Conclusions 918 

The integration of physiological and ecological processes has great potential to advance 919 

ecological models for fish stocks. Representation of mechanisms mediating climate effects 920 

can be increased by 1) identifying key processes for the question of interest across levels of 921 

organization, 2) using and coupling models which represent the key processes, and 3) 922 

incorporating experimental results from a range of conditions and across life history stages 923 

and generations. 924 

For investigating the direct effects of multiple environmental drivers on fish, models should 925 

be adapted sensibly to integrate experimental data and investigate organism-level trade-926 

offs and sensitivities, e.g. by making use of energy allocation principles. The investigation of 927 

changes in population dynamics can benefit from increased model detail in the 928 

representation of effects on early life stages and reproduction. Understanding of 929 

acclimation and evolution under climate change can be advanced by assessment of 930 

functional traits and specifically designed experiments. Marine community shifts under 931 

multiple drivers can be better anticipated by analysis of food web structure and 932 

quantification of functional responses. Research on stock distribution shifts and socio-933 

economic impacts of changes in marine living resources should increasingly incorporate 934 

results on the co-determination of spatial movement and dispersal by behavioural fish 935 

responses and trade-offs in energy allocation and community interactions, and improve the 936 
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integration of societal dynamics. Coupling of models to address these higher-order 937 

questions can be informed e.g. by data on food energy content and transfer, and by 938 

behavioural observations of fish and people. 939 

Improvements in projection capacities by integrating these processes, and potential trade-940 

offs e.g. with regard to parameter uncertainties, will have to be verified on a case-to-case 941 

basis. Scaling issues will have to be addressed to reduce the complexity of models while 942 

maintaining sensitivities across scales: a focus should be put on the identification of 943 

mechanisms and techniques that span levels of description and can couple specialized 944 

models without levelling out heterogeneity and variability at lower levels that may be 945 

decisive for higher level dynamics. Examples include the super-individual concept in 946 

individual-based models and physiological concepts for estimating organism sensitivity 947 

towards multiple drivers. 948 

To this end, planning of experiments and structuring of models should be coordinated 949 

more closely in the research process and based on an improved dialogue between 950 

modellers and experimentalists. This will warrant meaningful physiological experiments 951 

and an improved integration of both empirical results and mechanistic understanding of 952 

effects into existing and future models. 953 
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Table 1: Overview on model classes for marine fish and their potential for representation of 

physiological processes and integration of experimental results on various levels of 

biological organisation. Processes marked by an asterisk* are either incorporated on an 

aggregate level or non-dynamically (state-independent). Processes in brackets () can only 

be incorporated in a subset of models of the class or by using additional software features 

(see text for details). Coupled and end-to-end models can in principle incorporate all 

processes, and their specific capabilities depend on the model classes they are based on.  

model 

class 
incorporated processes on level of description 

main use in 

climate 

change 

context 

 Organism Population Community Ecosystem  

1. Single-

species 

population 

dynamic  

growth* 

mortality* 

(development*) 

 

 

recruitment 

(reproduction) 

-- migration* 

dispersal* 

 

stock 

management 

(no relevant 

stock 

interactions) 

2. Multi-

species 

population 

dynamic 

growth* 

mortality* 

(development*) 

(foraging*) 

(assimilation*) 

 

recruitment 

(reproduction) 

predation* 

competition* 

migration* 

dispersal* 

 

stock 

management 

(interactions 

important), 

community 

dynamics 
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3. tropho-

dynamic & 

mass-

balance 

growth* 

mortality* 

(development*) 

foraging* 

assimilation* 

(recruitment) 

(reproduction*) 

predation* 

competition* 

mutualism* 

migration 

(dispersal) 

habitat 

 

(all in 

Ecospace) 

community 

and 

ecosystem 

resilience, 

ecosystem-

based 

management 

4. species 

distri-

bution 

(SDM) 

growth* 

mortality* 

foraging* 

limitations* 

recruitment* (predation*) 

(competition) 

 

(with size 

spectrum or 

trophic 

models) 

migration* 

(dispersal*) 

habitat 

 

distribution 

range shifts, 

local fish 

catch 

potential 

5. trait-

based & 

size-

spectrum 

(plasticity) 

behaviour 

growth 

mortality 

development 

foraging 

assimilation 

(metabolism) 

energy allocation 

limitations 

recruitment* 

reproduction 

adaptation 

predation* 

competition* 

habitat* 

 

trade-offs in 

organismal 

processes, 

adaptation 

and 

community 

structure 
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6. indi-

vidual-

based 

(IBM)  

(plasticity) 

behaviour 

growth 

mortality 

development 

foraging 

assimilation 

(metabolism) 

energy allocation 

limitations 

recruitment* 

reproduction 

adaptation 

predation 

competition 

mutualism* 

migration  

dispersal 

habitat 

 

larval 

dispersal, 

behavioural 

and 

population 

adaptation 

7. bio-

energetic 

growth 

mortality 

(development) 

foraging 

assimilation 

metabolism 

energy allocation 

(limitations) 

(recruitment) 

(reproduction) 

 

(in IBMs) 

 

(predation) 

(competition) 

 

(in size-

spectrum 

models) 

(migration) 

(habitat) 

 

(in IBMs or 

SDMs) 

trade-offs in 

organismal 

processes, 

linking of 

individual 

effects to 

community 

dynamics 

8. coupled 

& end-to-

end 

[based on multi-

species, size-

spectrum, IBM, 

or bioenergetic] 

recruitment* 

reproduction 

adaptation 

predation 

competition 

mutualism* 

migration  

dispersal 

habitat 

 

ecosystem-

based 

management, 

distribution 

and regime 

shifts 

 1933 
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 1934 

Figure 1: Overview over physiological and ecological processes, as a framework to assess 1935 

potential effects of environmental drivers on fish stocks. Processes are separated among 1936 

different levels of biological hierarchy, from organism and suborganismal (cell and tissue 1937 

or organ) processes to population, community, and spatio-temporal ecosystem processes. 1938 

Environmental drivers such as warming, acidification, hypoxia and others (bottom) act 1939 

directly on organisms and indirectly affect processes on higher levels, shaping the 1940 

characteristics resulting at each level of description (right). Higher-level processes are 1941 

aggregate descriptions of processes on lower levels, and this framework is proposed to 1942 

represent an easily observable and quantifiable description, but alternative descriptions 1943 

are possible (e.g., recruitment can be described as the product of growth, foraging and 1944 

mortality of early life stages, and evolution is the product of individual plasticity, 1945 

acclimation and adaptations, and population adaptation). For details on processes and 1946 

effects, see section two. 1947 

 1948 
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