

On the drivers of phytoplankton blooms in the Antarctic seasonal ice zone: a GCM approach

Marc Taylor, Martin Losch, Astrid Bracher

Alfred-Wegener-Institute for Polar and Marine Research, Bussestrasse 24, D-27570 Bremerhaven, Germay German Research Foundation funded project "BiPhyCoSI" (Investigation of Bio-Physical Coupling in the Seasonal Ice Zone)

50

40

30

20

10

observation

remote

with

days

Introduction

• The Antarctic seasonal ice zone (SIZ) has been found to support spring phytoplankton blooms on orders of magnitude greater than in neighboring open ocean waters.

Table 1. MITgcm

Abbreviation	Variable	Units
CHLA	Surface Chlorophyll α	mg m⁻³
MLD	Mixed layer depth	meters
PAR	Integrated photosythetically	mol photons m ⁻² sec ⁻¹

°C

psu

mmol m⁻³

mmol m⁻³

p-value

< 0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

946

4998

495

647

102

96

117

- Hypothesis Melting sea ice creates a shallow, stable pycnocline where phytoplankton communities can develop in the high-light, high-nutrient conditions.
- Approach Ocean modeling may help elucidate the drivers of bloom dynamics due to difficulties of remote and *in situ* observation in the SIZ (Fig. 1).

Figure 1. Fraction of days with remote estimates of Chl α from *1997-2007. Black dashed isocline indicates maximum* extent of the SIZ for the entire period.

Methods

• Simulations - Conducted with the Massachusetts Institute of

Figure 3. Example of fitted smooth terms predicting the CHLA time series from other covariates at a single grid location. GAM prediction shown as blue dots in CHLA time series.

- Technology Global Circulation Model (MITgcm) coupled with the Carbon and Nitrogen Regulated Ecosystem Model (CN-REcoM).
- Focus areas Well correlated SIZ sub-areas to remotely-sensed estimates (Fig. 2).
- Analysis Variable fields were subjected to an Empirical Orthogonal Function analysis (EOF) to extract the dominant temporal signal. Signals were then analyzed with a Generalized Additive Model (GAM) to assess their importance on phytoplankton dynamics (Fig. 3).

Figure 4. Explained variance of the *leading EOF for* each variable field.

Results

- Leading EOFs explain a large percent of each variable's spatio-temporal dynamics due to the relatively small spatial extent of sub-areas (Fig. 4).
- GAM results support the hypothesis that physical conditions best explain blooms dynamics (*i.e.* MLD, PAR) while nutrient limitation is of lesser importance (*i.e.* DIN, DSI, DFE) (Fig. 5).

indicate areas of strong correlation among all three fields.

Nine sub-areas were selected for further statistical analysis (bottom right). Black dashed isocline shows the maximum extent of the SIZ.

Figure 5. Log likelihood ratios of GAM model term *inclusion. All terms* are significant at *the <<0.001 level.*

Climate Dynamics Section, Alfred-Wegener-Institute for Polar & Marine Research

Email: mtaylor@awi.de