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Abstract The impact of Arctic radiosonde observations on the forecasting of the 2012 early August Arctic
cyclone AC12—the “strongest” since records began—has been investigated using an observing system
experiment (OSE). An atmospheric ensemble reanalysis (ALERA2) was used as the control experiment (CTL) to
reproduce the development of the Arctic cyclone and surrounding large-scale atmospheric fields. The OSE
applies the same reanalysis as the CTL except for the exclusion of radiosonde observations from the German
icebreaker Polarstern, which cruised near Svalbard during mid-July to early August 2012. Comparison of
the two reanalyses revealed a difference in the upper tropospheric circulation over northern mid-Eurasia, just
before the Arctic cyclone developed, in the form of a stronger tropopause polar vortex in the CTL. This
indicated that the upper tropospheric field in the CTL had greater potential for baroclinic instability over
mid-Eurasia. Ensemble predictions were then conducted using the two reanalyses as initial values at which
the tropopause polar vortex approached northernmid-Eurasia. The CTL prediction reproduced the formation
of the Arctic cyclone, but the OSE shows a significantly weaker one. These results indicate that the improved
reproduction of upper tropospheric circulation in the Arctic region due to additional radiosonde observations
from a mobile platform was indispensable for the prediction of AC12. In particular, observations being
acquired far from the Arctic cyclone affect the prediction of the cyclone via the upper tropospheric circulation
in the atmospheric west wind drift.

1. Introduction

On the broad scale, the atmosphere in the northern polar cap region can be considered as a massive
low-pressure system. This low corresponds to a colder tropospheric air mass relative to the tropical and
midlatitude regions, which affects midlatitude weather whenever it seeps out to lower latitudes [e.g., Mori
et al., 2014; Shoji et al., 2014]. In terms of large-scale atmospheric dynamics, the variability of this low is
sometimes interpreted as the Arctic Oscillation (AO) [Thompson and Wallace, 1998] and/or North Atlantic
Oscillation (NAO) [Ambaum et al., 2001]. The AO/NAO exists in all seasons and even though its amplitude
becomes smaller in summer relative to winter [Barnston and Livezey, 1987; Thompson and Wallace, 2000], its
variability and influence on various atmospheric phenomena can be said to exist perennially. Therefore, an
understanding of the dynamics of the low is important in explaining various weather and climate patterns.

The massive low is composed of inherent, multiscale cyclones of the order 100–10,000 km rather than a
single coherent structure. Of the inherent cyclones, two types are worthy of particular attention: the
tropopause polar vortex (TPV) [Cavallo and Hakim, 2009, 2010, 2012] and the Arctic cyclone [Tanaka et al.,
2012]. Because both types have large amplitude with a radius of 500–1000 km and are long-lived features
that persist for more than ~10 days, they exert considerable influence on weather and climatic patterns.

TPVs are cyclones at the tropopause in the Arctic region that are characterized by relatively high potential
vorticity or low potential temperature. They occur frequently along Arctic coastal regions, especially along the
northwestern coast ofGreenlandandalong the coast of northern Siberia [Cavallo andHakim, 2009]. Forexample, a
TPV sometimes appears in awesterly jet as a trough, affectingmidlatitudeweather bymeandering in thewesterly
jet and/or modifying the baroclinicity [e.g., Bosart et al., 1996], which consequently affects surface cyclones.

Arctic cyclones appear at sea level over the Arctic Ocean, originating over the Arctic Ocean or subtropical
oceans (North Atlantic and Pacific) or continents (Eurasia or North America). Similar to TPVs, some Arctic
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cyclones persist for more than 10days [Simmonds and Rudeva, 2012; Tanaka et al., 2012], which is considerably
longer than the lifetime of surface cyclones in other latitudes. Such persistence implies that Arctic cyclones
have unique dynamical properties; however, their mechanisms and dynamics have received little attention. A
small number of investigations have stemmed from sparse data observed over the Arctic Ocean. However, the
focus on Arctic climate change has partly led to more intensive observations, which together with significant
developments regarding reanalysis data, will enable investigations into the mechanisms of Arctic cyclones
[Tanaka et al., 2012; Aizawa et al., 2014].

Zhang et al. [2004] investigated the seasonal climatology of Arctic cyclones. Arctic cyclones occur in all
seasons and the number of cyclones is almost the same in summer and winter; however, locally, the number
of cyclones originating from the North Pacific, Eurasia, and North America in summertime is larger. They
also found that the intensities and durations of Arctic cyclones in summer are generally stronger than in
winter. More recently, Simmonds et al. [2008] investigated the climatology and trends of Arctic cyclones by
applying their cyclone-tracking method to three reanalysis data sets. Although they found that the total
number of cyclones in winter is larger than that in summer, summer Arctic cyclones are still numerous and
very active over the Arctic Ocean. These results imply that summertime cyclone activity has greater impact
on the climate and weather of the Arctic region, and therefore, they are worthy of investigation.

The summertime climate and weather in the Arctic have received increasing attention because of their
influence on Arctic sea ice reduction in summer and vice versa. The Arctic region has been experiencing rapid
warming and changes of the climatic fields in the region have caused a retreat of sea ice. Therefore, the
mechanism of how atmospheric pressure systems interact with sea ice is important. Previous studies have
shown that reduction in sea ice is linked to climatic changes, not only in the Arctic but also in midlatitude
regions via changed large-scale atmospheric circulations [Honda et al., 2009; Inoue et al., 2012; Rinke et al.,
2013; Cohen et al., 2014; Mori et al., 2014; Vihma, 2014]. Nonetheless, there remain many ambiguities
regarding the mechanism, which numerous studies have recently attempted to clarify [Screen and Simmonds,
2013; Screen et al., 2013; Screen et al., 2014; Sato et al., 2014; Simmonds and Govekar, 2014]. From a local
viewpoint, consideration of the impacts of synoptic-scale atmospheric phenomena has been focused on sea
ice reduction on seasonal scales [Simmonds and Rudeva, 2012; Zhang et al., 2013], and even on sea ice
variations on synoptic scales. One of the most important synoptic-scale phenomena is the Arctic cyclones
because they are more intense and have longer durations. Therefore, the behavior and predictability of these
cyclones should be investigated rigorously.

As a first step, the mechanism of formation of Arctic cyclones would be worth investigating because this
is related directly to their numbers and climatology. Although some unique mechanisms have been
proposed for the formation of Arctic cyclones [e.g., Tanaka et al., 2012; Aizawa et al., 2014], an orthodox
mechanism for the formation of extratropical cyclones, namely baroclinic instability in a baroclinic zone,
can be adopted for their formation [Simmonds and Rudeva, 2012]. Such a baroclinic zone is formed in
summer over Eurasia owing to the land-sea contrast, making this one of the main regions for Arctic cyclone
genesis [Serreze and Barrett, 2008]. However, studies on the formation of Arctic cyclones, especially in
summer, are limited in comparison to other extratropical or tropical cyclones. Therefore, in this work, a
descriptive and predictive study of the formation of summer Arctic cyclones was conducted through a case
study of a most intense one, using data analyses and forecasting experiments.

The investigated case focuses on the Arctic cyclone AC12, which occurred in early August 2012. AC12 is
given the adjective “great” because its surface central pressure was the lowest of any Arctic cyclone
during August since records began in 1979 [Simmonds and Rudeva, 2012; Nishii et al., 2015]. During August
2012, the extent of the Arctic sea ice plummeted to new record low, such that its relationship with the
cyclone is also a subject of interest [Zhang et al., 2013; Simmonds, 2015]. Regarding the formation and
development mechanisms of Arctic cyclones, Simmonds and Rudeva [2012] suggested the importance
of an upper level trough or TPV to the intense deepening of the surface cyclone, i.e., AC12. In other
words, the surface features of AC12 would be developed by mutual interaction with the TPV via
baroclinic instability. To quantify the significance of the TPV in the formation and development of
AC12, a comparison of atmospheric circulations in which the reproduction of the TPV differs would be
useful. Reproduction of atmospheric fields can be controlled by using our developed data assimilation
system (introduced in section 2.1) and by conducting an observing system experiment (OSE), which is a
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reanalysis generated by a data assimilation system within which specific observations are added or
excluded. Here reproducibility is defined as the impact that specified observations have on resolving a
feature in reanalysis data. Reproducibility is calculated as the difference between the CTL and
OSE (CTL�OSE).

In a related study using an OSE, Inoue et al. [2013] reported that additional radiosonde data over the Arctic
region in the fall 2010 had a considerable impact on reproducibility of the upper level circulation. They
suggested that the use of observational data nearby of an Arctic cyclone [Inoue and Hori, 2011], obtained by
the Japanese research vessel Mirai, exerted an influence on the reproducibility of the entire Arctic and
midlatitude atmospheric circulations via the upper troposphere. They revealed the importance of additional
radiosonde observations in the Arctic region to the reproducibility of large-scale atmospheric circulations;
however, the impact on synoptic-scale disturbances remains unknown. Hence, comparisons of upper
tropospheric circulation fields with differing reproduction, obtained by an OSE, could clarify the contribution
of the TPV to the AC12 disturbance. Motivated by the earlier studies listed above, we examined the impact of
extra radiosonde observations over the Arctic region on the forecast of one of the most extreme
disturbances, AC12.

In this study, twice-daily radiosonde observations performed by the German research vessel Polarstern from
mid-July to August of 2012 near Spitsbergen Island (Svalbard) were used. In mid-July, the TPV that influenced
the development of AC12 was located over Svalbard [Simmonds and Rudeva, 2012]; hence, additional
observations could influence the reproducibility and prediction of the cyclone’s development. It should be
mentioned that the locations of the observations were far upstream from the position of AC12 at its mature
stage (Figure 1); therefore, the impact of the observations, if any, must have had a remote effect on the
development of the cyclone.

To conduct the OSE and quantify their impact, the Polarstern radiosonde data were excluded from an
ensemble data assimilation system called ALEDAS2 [Enomoto et al., 2013], which is composed of the
Atmospheric GCM for the Earth Simulator (AFES) [Ohfuchi et al., 2004; Enomoto et al., 2008; Kuwano-Yoshida
et al., 2010] and the local ensemble transform Kalman filter (LETKF) [Hunt et al., 2007; Miyoshi and Yamane,
2007]. Reanalysis data sets generated by the system excluded the Polarstern radiosonde data and were
used as the OSE reanalysis and by ALEDAS2 as the control (CTL) in data analyses and ensemble forecast
experiments. These experiments are described in the following section.

2. Data and Methods
2.1. Ensemble Reanalysis: ALERA2

First, we observe the temporal evolution of AC12 via realistic reanalysis data. As the reference reanalysis
(CTL), the AFES-LETKF experimental ensemble reanalysis version 2 (ALERA2) data set produced with
ALEDAS2 was used. The ALERA2 data set encompasses the period from January 2008 to December 2012
and thus includes the period for which AC12 occurred. ALEDAS2 comprises AFES for forecasts and LETKF
for analyses. In the forecast step of ALEDAS2, an ensemble forecast is conducted with AFES of which a
horizontal resolution is T119 (triangular truncation with truncation wave number of 119, 1° × 1°) and
vertical levels are L48 (σ-level, up to about 3 hPa). The horizontal resolution of AFES is relatively modest for
Arctic cyclones, although higher-resolution reanalysis systems would of course better represent the
cyclones [Tilinina et al., 2014]. The sea surface temperature and the sea ice thickness were prepared from
the National Oceanic and Atmospheric Administration daily 1/4° OISST (optimal interpolation sea surface
temperature) version 2 [Reynolds et al., 2007]. In the analysis step, observations are assimilated into the
ensemble forecast with LETKF; observations were prepared from PREPBUFR data sets compiled by the
National Centers for Environmental Prediction (NCEP) and archived at the University Corporation for
Atmospheric Research (UCAR). The summary of the configuration of ALEDAS2 is presented in Table 1. Note
that the CTL is the same reference reanalysis as used in Inoue et al. [2013]. Further details regarding
ALERA2 and ALEDAS2 are described by Enomoto et al. [2013]. In the following, it is found that the CTL
(ALERA2) can reproduce the time evolution of AC12 and the surrounding large-scale circulation fields.
Large-scale (environmental) and synoptic fields of AC12 formation in the CTL are examined via data
analyses in section 3.
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An advantage of using ALERA2 is that it enables OSE, through which the impacts of specific observations can
be quantified and thus the reproducibility of atmospheric fields controlled. The specific observations used for
AC12 were the Polarstern radiosondes detailed in section 4. Details of the OSE for AC12 are also in section 4.

2.2. Forecast Experiments

Forecast experiments of AC12 formation are conducted following the data analysis, to examine our hypothesis
that TPV reproducibility is important in forecasting AC12. The forecast model (AFES) is the same model used in
ALEDAS2, which is also used to create ALERA2 (Table 1). Therefore, the forecast results can be compared with
the CTL. Also, ensemble forecasting provides uncertainty.

As initial values in the experiments, ALERA2 (CTL or OSE) are used. That is, the forecast experiments use the
framework of ALEDAS2 execution without data assimilation. The reanalysis OSE in which the Polarstern
radiosonde observations were not assimilated were also used as initial values. We compare forecast results
from the CTL with those from the OSE and can therefore estimate the impact of the radiosonde observations
on the AC12 forecast. Results of the forecast experiments are described in section 5.

3. Large-Scale and Synoptic Fields in ALERA2

We first checked whether the CTL could reproduce “real” atmospheric fields. Based on Simmonds and Rudeva
[2012], who highlighted the importance of the TPV for the surface development of AC12, we verified the
reproduction of the large-scale and synoptic fields in the CTL at both the tropopause and the surface. Note

Figure 1. Locations of radiosonde observations performed by the Polarstern (red dots) during 13–29 July 2012, sea level
pressure at 00:00 UTC on 6 August 2012, in ERA-Interim (ERAI), and sea ice concentration on 6 August 2012, in AMSR2.
Area defined by yellow line near Svalbard indicates the averaging region used for Figure 11.
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that Simmonds and Rudeva [2014] further revealed that TPVs were involved with almost all of 60 intense
Arctic cyclones. The large-scale fields were compared with ERA Interim (ERAI) [Dee et al., 2011] data in both
the upper and lower troposphere. Figure 2 shows the 10 day averaged upper level geopotential height and
sea level pressure (SLP) fields in CTL and ERAI. It can be seen that the circulation fields in CTL correspond
well with those in ERAI. Although SLP in the CTL near the pole shows weaker amplitude than in the
ERAI (Figures 2c and 2d), it reflects the underestimation of the amplitude of AC12 in the CTL, rather than a
difference in the environmental field of AC12. This could be caused by the shortage of satellite observations
in the NCEP PREPBUFR assimilated in the CTL and the resolution of the GCM used for ALEDAS2: The
resolution of ERAI is T255L60 [Dee et al., 2011], which is horizontally more than twice that of ALEDAS2.
However, the atmospheric pattern in the CTL is generally reproduced as well as in the ERAI. Tracks of the
centers of AC12 and the TPV are also shown in Figure 2. The centers are detected by minimum points of SLP
and 300hPa geopotential height (Z300) at each time interval in the prescribed region (60°N–90°N, 90°E–120°W).
Note that the centers of the TPV and the surface cyclone generally move from west to east. Overall, the tracks
of the TPV and AC12 are similar in both the CTL and the ERAI. AC12 develops from two different surface
cyclones that later merge during this time period. The first surface cyclone, over the Arctic Ocean, moves
from west to east during 2–4 August, corresponding to the northern course. The second surface cyclone
emerges over mid-Eurasia on 3 or 4 August and moves toward the northeast and then the north,
corresponding to the southern course. The first cyclone merges with and is absorbed by the second on
5 August 2012. With regard to the discussion on the formation of AC12, it is considered not essentially
problematic that the northern course in the CTL is somewhat different to that in the ERAI, because the first
cyclone is absorbed and thus is subordinate to the second surface cyclone that is AC12. These processes
are explained further in the description of the synoptic field. Therefore, it is concluded that CTL reproduces
the environmental fields of AC12 satisfactorily. Therefore, CTL is treated as a reanalysis representative of the
real atmosphere.

In the following, the time evolutions of AC12 and the TPV are described as synoptic fields. The developing
and mature stages of AC12 with the TPV are then considered in Figure 3. The two stages are separated
as follows: The developing stage is considered as the period from 1 to 4 August and the mature stage as
5–9 August. In the developing stage, the surface cyclone of AC12 formed over mid-Eurasia near the Laptev
Sea at around 12:00 UTC on 3 August and then moved to northern East Siberia. At this time, two surface
cyclones existed: AC12 over the Eurasian continent and another preexisting cyclone over the Arctic
Ocean. It can be seen that AC12 displays a west-tilted structure with an upper tropospheric trough, which is
typical of baroclinic instability, and thus, its amplitude increased. The upper tropospheric trough is the TPV

Table 1. Configuration of ALEDAS2 for Reanalysis Data Set ALERA2 and Ensemble/Deterministic Prediction System
(EPS/DPS) for Forecast Experiments

ALEDAS2

Atmospheric GCM AFES
Dynamical core Spectral, Eulerian, and primitive equation
Horizontal resolution T119 (~1° × 1°)
Vertical levels L48 (σ level, up to about 3 hPa)
Boundary conditions OISST daily 1/4°
Data assimilation method LETKF
Ensemble size 63
Observations NCEP PREPBUFR
Data assimilation window 6 h

Ensemble Prediction System (EPS) and Deterministic Prediction System (DPS)

EPS DPS
AGCM AFES (T119L48)
Boundary conditions OISST daily 1/4°
Ensemble size 63 1
Initial condition ALERA2 ERA Interim
Start date 00 UTC 3 August 2012
Length of forecasts 5 days
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originating upstream at Svalbard [Simmonds and Rudeva, 2012]. AC12 then absorbed the other surface
cyclone and in the mature stage, and the cyclone’s structure became equivalent barotropic with the TPV as
it traversed the Arctic Ocean: This is indicative of the vertical vortex coupling mechanism proposed by
Aizawa et al. [2014] and Simmonds and Rudeva [2014], which can lead to rapid intensification of Arctic
cyclones. However, clarifying this mechanism is beyond the scope of this paper, since we focus on the
formation of AC12 prior to the rapid intensification. AC12 has its minimum SLP during the equivalent
barotropic phase of its lifecycle, which is a characteristic similar to that of the mature extratropical cyclone
structure reported by Čampa and Wernli [2012]. The SLP minimum of AC12 might be accomplished by the
superposition of the TPV and the surface cyclone.

Time sequences of the vertical (potential) temperature distribution of AC12 are shown in Figure 4. We see that
the vertical distribution is substantially different between the developing and mature stages. In the former
stage (before 5 August) when AC12 traversed the Eurasian continent, it did not have the upper tropospheric

Figure 2. Time-averaged (a and b) 300 hPa geopotential height (Z300;m) and (c and d) sea level pressure (SLP; hPa) during 1–10 August 2012, in the ALERA2 ensemble
means (CTL) and ERAI.White dots indicate the centers of the surface cyclone (AC12) and TPV between00:00UTC 2 August and 18:00UTC 9 August at 6-hourly intervals.
See text for more details.
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warm core corresponding to the descending region of lower stratospheric air due to a tropopause folding,
i.e., the TPV. This indicates that the TPV departed from the AC12 surface cyclone locations; AC12 and the
TPV formed a baroclinic structure. In the mature stage (after 5 August) when AC12 was over the Arctic
Ocean, it had the upper tropospheric warm core, so it became vertically coherent and equivalent
barotropic with the TPV. AC12 also had a lower tropospheric cold core during this stage, implying strong
static stability near the tropopause; i.e., there was high potential vorticity air corresponding to the TPV in
the upper troposphere [Tanaka et al., 2012; Aizawa et al., 2014].

Figure 3. Time evolutions of AC12 and the TPV in the (top) developing and (bottom) mature stages for Z300 (m) and SLP (hPa) in CTL.
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Through the two stages, we focus on the baroclinic growth of AC12 over the Eurasian continent during the
developing stage, i.e., the formation of AC12. Because baroclinic instability requires an upper tropospheric
trough, the TPV that acts as the trough is essential for the formation of AC12. A PV-θ view (where PV and θ are
potential vorticity and potential temperature, respectively) [Hoskins, 1991] is introduced to investigate the
baroclinic growth (Figures 5 and 6). In the beginning, the vertical layer of the tropopause is specified. In a
large-scale vertical distribution of Ertel PV and θ (Figure 5), we see that the location of the (dynamical)
tropopause between 13 July and 9 August is at 2 PVU (potential vorticity unit), 320 K, or 300 hPa. This is
because above this PV surface, vertical gradients of PV or θ are dense, so the TPV is on this PV surface.

Figure 4. (a) Daily positions of AC12 centers as dots and (b) temporal evolution of daily vertical temperature distribution at the centers. Dot colors in Figure 4a
indicate dates as in legend. Shades and contours in Figure 4b show temperature anomalies from zonal averages (K) and potential temperature (θ; K) at the
centers, respectively.

Figure 5. Pressure-time cross section of potential vorticity (PV, contours; PVU) and θ (shading; K) averaged to the north of 60°N.
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Temporal evolution of the dynamical
tropopause (2 PVU surface) θdt and
surface θ are displayed (Figure 6). In the
developing stage, surface θ in Eurasia
shows a strongmeridional gradient in a
baroclinic band due to the thermal
contrast between the warm Eurasian
continent and cold Arctic Ocean
[Serreze et al., 2001]. Just before the
surface cyclone starts to develop (about
3 August), a low θdt trough at the
tropopause, which is the TPV near the
Kara Sea, elongates southward from
the large-scale low-θdt air extending
zonally across the north polar cap
region and touches the baroclinic zone.
Subsequently, the surface cyclone
begins to develop and move northeast
along the band, together with the TPV.

Thus, the circulation of the upper
troposphere in the polar region
substantially contributes to the
development of AC12 at the surface.
In turn, it is suggested that the
reproducibility of the TPV, originating
from the large-scale, low-θdt air that is
connected directly with the Svalbard
region and observed by the Polarstern,
can affect the prediction of the
formation of the AC12.

4. Observing System
Experiment (OSE)

Inoue et al. [2013] showed through
their OSE study that additional
radiosonde observations in the Arctic
region during fall 2010 altered upper
troposphere reproduction there. This
finding implies that such additional
observations during AC12 could
improve TPV reproduction, which
would be important in the formation of
AC12. Additional observations were
made by the Polarstern during July and
August 2012 in the Arctic region.

We therefore conducted an OSE similar
to Inoue et al. [2013] and estimated the

impact of the radiosonde observations on TPV reproduction, i.e., we controlled that reproducibility.
Afterward, we examine the importance of the TPV in forecasting AC12.

4.1. Radiosonde Observations by R/V Polarstern

The Polarstern conducted cruises near Svalbard from 13 to 29 July 2012 (ARK-XXVII/1 and ARK-XXVII/2) and
over the Arctic Ocean from 2 August to 8 October 2012 (ARK-XXVII/3). During the cruises, GPS radiosonde

Figure 6. Snapshots of θ at 2 PVU (θdt, shading; K) and surface θ (contours; K)
in developing and mature stages of AC12.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022925

YAMAZAKI ET AL. ©2015. American Geophysical Union. All Rights Reserved. 9



observations (Vaisala RS92-SGPW) were performed routinely twice daily at around 05:00 and 11:00 UTC
[König-Langlo, 2012]. All sounding data were sent to the Global Telecommunication System, suggesting that
the upper tropospheric environment is better represented by observations in the reanalysis field, e.g.,
ERAI. To verify the reproduction of the tropopause in the CTL at the observation points, we compared CTL
with the radiosonde observations using the time-height cross section of the air temperature during the
observation period at the grid point nearest the ship positions (Figure 7). From the radiosonde data
(Figure 7a), we found high θ (>320 K) near 300 hPa with some temporal variation in the vertical, which
correspond to the tropopause (Figure 5). In the CTL (Figure 7b), the tropopause was reproduced at the right
time. In addition, a comparison of the CTL with the ERAI (Figure 7c) showed that they had similar structures
and time evolutions.

It is important to emphasize that the locations of soundings during 13–29 July (i.e., over the Fram Strait) were
far from the position of the mature AC12 (Figure 1). Therefore, an evaluation of the impact of the sounding
data on the reproducibility of AC12 using ALEDAS2 was considered worthwhile.

Figure 8 displays the environmental pattern for which AC12 developed in the CTL. The horizontal distribution
of θdt (Figure 8a) shows a band of relatively low θdt air centered poleward of the Eurasian coast, and
covering Svalbard and northern Russia. There are two important points regarding this low-θdt air. The first is
that the iso-θdt areas near the observation points (Svalbard) are ventilated toward Russian coastal regions
facing the area of Arctic Ocean in which AC12 developed and became most intensified. As advection
moves air parcels over one of the areas in several days, the observationally adjusted fields from Polarstern
could impact the environment around which AC12 developed. The second point is that the PV gradients
near the observation points are also connected with the location of AC12 at 300 hPa (Figure 8b). Rossby
waves are focused along horizontal PV gradients, which are relatively high near the tropopause, and act to
propagate energy downstream along this gradient. Hence, the large-scale structure of AC12 implies that
the atmospheric circulation around Svalbard remotely connected with that around the Russian coastal
region where the TPV became apparent in the upper level PV and θ field.

In this study, we prepared two sets of experimental reanalyses. The first was the CTL, which assimilated
sounding data from Polarstern as well as routine observations (NCEP PREPBUFR), and the second was the OSE,
which assimilated the same observations but excluded the 39 Polarstern soundings (from 11:00 UTC 13 July to
11:00 UTC 29 July 2012, and from 11:00 UTC 3 August to 11:00 UTC 9 August 2012) [König-Langlo, 2012].

By comparing the CTL with OSE reanalyses, the impact of the radiosonde observations on AC12 can be
investigated. The difference between the reanalysis fields is expected to be small because both assimilate the
same quantity of data, except for the few Polarstern observations.

4.2. Comparison of the Reanalyses

Acomparisonof the reanalyses shows that thedifferencesbetweenAC12 (surface cyclone) andTPVamplitudes
are in the range of ~1 hPa and~10m, respectively (Figure 9), which are small with respect to the deviations of
synoptic time scales or zonal asymmetries. Both the CTL and OSE reproduce the time evolutions of the

Figure 7. Vertical profiles: (a) radiosonde observations, (b) ALERA2 (CTL) analysis ensemblemean, and (c) ERAI potential temperature θ (K) at the observation locations
of Polarstern. Vertical and horizontal axes indicate pressure (hPa) and time, respectively.
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amplitudes and they present similar tracks for AC12 and the TPV (not shown). However, in the different
patterns of upper tropospheric circulation between the CTL and OSE, the TPV in the CTL is stronger than in
the OSE at the developing stage (1–4 August) over mid-Eurasia, which is where and when AC12 starts to
develop by baroclinic instability (Figure 10a). This pattern in turn implies that baroclinicity in the CTL is
stronger than in theOSE for the development of AC12. Because theTPV in the CTL is stronger (with lower θdt)
throughout the entire developing stage (2–5 August; Figure 10b), the stronger baroclinicity would bemainly
caused by the difference in TPV strength.

The Eady growth rate, similar to Simmonds and Rudeva [2012], was calculated on jet core positions defined by
wind speed maxima at 300 hPa over mid-Eurasia (Figure 10c). As expected, the Eady growth rate in the CTL is
stronger than in the OSE on 2 August (0–24 h in relative time), just before the baroclinic growth of AC12
(Figure 9a). In summary, the CTL field has greater potential than the OSE for the baroclinic growth of AC12.

We verified which atmospheric fields of the CTL and OSE were more realistically simulated by comparing
them with ERAI. Averaged vertical temperature errors of the CTL and OSE, relative to ERAI, were compared
over the area of the Polarstern observations (shown in Figure 1), which is the region where the difference
between the CTL and OSE was expected to originate (Figure 11).

The errors of both reanalyses look similar compared to ERAI, especially with regard to the positive temperature
bias in the middle troposphere (Figures 11a and 11b). Although a similar bias has been found even in a
regional forecastingmodel [Cavallo andHakim, 2010], such abias could also stem frommodel biases over the
data-sparse regions [Wesslén et al., 2014]. However, this bias does not stem from the Polarstern observations
because it is common to both reanalyses. More importantly, a persistent negative temperature bias at the
tropopause was found in the OSE from 20 to 27 July, which was not present in the CTL. Therefore, it can be
concluded that the tropopause in the CTL is more realistically simulated than in the OSE during this period.

The average difference between the CTL and OSE over the same region (Figure 11c) shows large impacts in
the upper troposphere, especially during mid-July. The large impacts near the tropopause are of the
same characteristics as the OSE result of Inoue et al. [2013]. Furthermore, impacts of the observations persist
even after July 29 when observations were suspended; July observations could influence on AC12 in
early August.

Because a bias corresponds to an anomaly compared to the “real” field, i.e., ERAI in this case, it might
transfer eastward via the upper tropospheric circulation by advection or propagation. In the OSE, the
persistent bias at the tropopause could affect reproducibility downstream of the observation area, such as
for the TPV over mid-Eurasia. Thus, in the OSE, the TPV might not be reproduced well; however, bias in the
CTL has no effect because the CTL has a realistic tropopause during this period.

Figure 8. (a) Time-averaged θdt (K) and (b) effective β (PVU deg�1; meridional gradients of PV) and winds (m s�1) at 300 hPa during 13 July to 6 August 2012, in CTL
reanalysis. Red cross symbols in Figure 8a indicate locations of radiosonde observations during 13–29 July 2012.
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We examine how the errors propagated downstream by observing the difference (response) between the
CTL and OSE (CTL�OSE). The difference of the θdt field between the CTL and OSE is shown in Figure 12 for 21
July through 3 August, the period during which the persistent bias exists and just before AC12 starts
to develop. A large-scale positive θdt response exists, corresponding to the positive geopotential height
response in the upper troposphere over the Svalbard region (Figure 12b). There is a negative θdt response
downstream because of propagation of the bias. The positive θdt response stems from the negative
persistent bias of the OSE in Figure 11b, because the CTL is more realistic over this region. The negative θdt
response is just over central Eurasia. This response corresponds to the negative Z300 anomaly (pattern) of
the TPV during the developing stage of AC12 (Figure 10a), because a negative θdt anomaly conversely
corresponds to a negative geopotential height anomaly as in Figure 12b. Thus, it can be concluded that in
the CTL, the TPV is stronger and more realistic during the developing stage of AC12 than in the OSE. This
difference originates from the temperature bias at the tropopause in the OSE over the Svalbard region, where

Figure 9. Time evolutions: (top) SLP (hPa) of the surface cyclone (AC12) center and (bottom) Z300 (m) of the TPV center in
the CTL (red) and OSE (blue) analysis ensemble means. Light and thin lines show the time evolutions for 63 ensemble
members. The centers of AC12 and the TPV are shown in Figure 2. The horizontal axis shows time (hours) relative to
00:00 UTC 2 August 2012.
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Figure 10. (a) Average differences (shading) and fields in the CTL (contours) in Z300 (m) between CTL and OSE during
developing stage (1–4 August). A spherical triangle (square in a cylindrical map projection) shown by dashed black line
indicates region for piecewise PV inversion. Same as Figure 9 but for (b) the area-average θdt within radius of 500 km
centered on the TPV centers and (c) Eady growth rates (day�1) at the jet core centers in the CTL (red) and the OSE (blue).
See text for more details.
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the Polarstern observations have direct impact on improved simulation of the atmospheric circulation.
Furthermore, these results indicate that errors in the reproducibility of the tropopause would propagate
rather than be advected via the PV gradient on the tropopause (Figure 8b).

To further demonstrate the error propagation, time sequences of the negative θdt response at Svalbard and
positive θdt response in central Eurasia region are shown. Since air parcels move along an iso-PV surface
under adiabatic conditions such as the upper troposphere, we only focus on area averages on the
dynamical tropopause there (Figures 13a and 13b). The average regions for the positive and negative
θdt responses are defined as the zones bounded by 70°N–90°N and 0°E–40°E, and 70°N–90°N and
80°E–120°E, respectively. The former is called the upstream region and the latter the downstream
region. Additionally, a time sequence of average zonal wind across the region intermediate to those
two regions (70°N–90°N, 20°E–100°E) is shown (Figure 13c) to estimate the error propagation speed.

The responses/errors (CTL�OSE) over the upstream and downstream regions are quantified by the
difference in kinetic energy DKE between CTL and OSE as

DKE≡
1
2

uCTL � uOSEð Þ2 þ vCTL � vOSEð Þ2
h i

; (1)

where u and v are the zonal and meridional winds, respectively, and subscripts CTL and OSE indicate the
reanalyses. Temporal DKE evolution in the two regions indicates that the response (DKE) in the upstream

Figure 11. Area-averaged vertical distributions of temperature differences (errors; shading; °C) between the (a) CTL and (b) OSE against ERAI (CTL or OSE� ERAI) and
PV (PVU), averaged over the Polarstern observation area during 00:00 UTC 13 July to 00:00 UTC 3 August 2012. The area is indicated by the yellow outline in Figure 1.
The tropopause is indicated by the red lines (2 PVU surface), and the black lines indicate the 3 PVU surface. (c) Same as Figure 11a but for temperature difference
between CTL and OSE (CTL�OSE).
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region precedes by about 1–3 days than that in the downstream region (Figure 13a), suggesting that the
response to the Polarstern observations over the Svalbard region modified the response over central Eurasia.
The lag between the two responses is consistent with the propagating time scale of wind speeds ~6 to
12m s�1 (Figure 13c) or a group velocity speed generally faster than the wind speeds [e.g., Hoskins and James,
2014] at 80°N (i.e., ~3 to 1.5 days). The responses persist after 29 July as in Figure 11c.

Figure 13b shows area-average θdt in both regions. We see that the responses in these regions are
anticorrelated and thus show opposite temperature responses at the tropopause. This result supports that
the responses/errors propagated rather than advected. In addition, the responses keep the same polarities
after 21 July, indicating that the errors propagated as a forced, stationary Rossby wave from a wave source
of the Polarstern observation points. We can also see in Figure 13c that wind speeds in the CTL and OSE
are almost the same, implying that a response would act as a perturbation in the tropopause, which
is compatible with the linear theory of Rossby wave propagation. In summary, we conclude that errors
without the observations over the Svalbard region could propagate as a stationary Rossby wave
downstream of the central Eurasia region.

5. Forecast Experiments

Apart from data analyses described above, we conducted forecast experiments. Because the CTL and OSE are
reanalysis data sets, they can be used as initial values for these forecast experiments. A 5 day integration was
performed in the experiments.

Figure 12. Same as Figure 10a but for (top) θdt (K) and (bottom) geopotential height (m) anomalies (CTL�OSE) on the
2 PVU surface, averaged from 00:00 UTC 21 July to 00:00 UTC 3 August 2012.
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Since both the CTL and OSE are the ensemble reanalyses with 63 members, we made ensemble forecasts
with the same members, called CTLEPS (Ensemble Prediction System from the CTL reanalysis) and OSEEPS
(Ensemble Prediction System from the OSE reanalysis). In addition, other initial values were used for the
forecast experiments, that is, ERAI andmodified CTL for which some parts of PV distributions in the upper and
lower troposphere replaced those in the OSE.

All experiments used the same forecast model (AFES) with the same configuration for ALEDAS2. Thus, only
initial values were different in all the experiments. The experiment with the ERAI initial condition had a single
forecast and not an ensemble, so we call this experiment the Deterministic Prediction System (DPS) instead of
EPS. Details of the experiments are summarized in Table 1.

Figure 13. Temporal evolution of area-averaged differences between CTL and OSE (CTL�OSE) in (a) kinetic energy of

the differential wind speeds 1
2 uCTL � uOSEð Þ2 þ vCTL � vOSEð Þ2
h i

(m2 s�2) at 2 PVU; (b) θdt (K) over the upstream region

of 70°N–90°N and 0°E–40°E (black) and the downstream region of 70°N–90°N and 80°E–120°E (red); and (c) area-averaged
zonal winds uCTL and uOSE at 2 PVU in CTL (solid green curve) and OSE (dashed green) across the intermediate region of
70°N–90°N and 20°E–100°E between the upstream and downstream regions. All temporal evolutions were filtered with
3 day running average to reduce noise.
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5.1. Forecasts From CTL and OSE Reanalyses

Ensemble forecasting experiments, using the CTL and OSE as the initial values, were conducted to clarify the
impact of the small amplitude difference between the CTL and OSE reanalysis fields on the prediction of
AC12. The atmospheric fields of the CTL and OSE at 00:00 UTC on 3 August 2012 were used as the initial
values for the forecasting experiments, because soon thereafter, AC12 began to develop by baroclinic
instability. The experiments using the CTL and OSE as the initial values are hereafter called the CTLEPS and the
OSEEPS, respectively.

Figure 14 shows that in comparison with the CTL, the CTLEPS fields of Z300 and SLP can reproduce the
developments of the TPV and AC12 for 2 and 3day forecasts. In the Z300 field, the CTLEPS captures the
southward intrusion of the TPV over mid-Eurasia near the Laptev Sea, and thus the ensuing baroclinic instability.
In the SLP field, amplification of AC12 can be found in the CTLEPS, similar to the CTL. Although their central
positions appear different, AC12 trajectories in the CTLEPS and CTL are similar. Hence, the CTLEPS reproduces well
the formation of AC12 and its surrounding circulations in the upper and lower troposphere reasonably well.

Figure 15 shows that the OSEEPS field cannot capture well the formation of AC12. In this figure, the difference
in reproduction (reproducibility) between the CTLEPS and OSEEPS is identified as the difference of the CTLEPS
against the OSEEPS (CTLEPS�OSEEPS). In the SLP field (Figures 15c and 15d), the amplitude of AC12 is
smaller by ~7.5 hPa in the OSEEPS than in the CTLEPS. Moreover, because the central positions of AC12 in
the CTLEPS and OSEEPS are almost the same, the difference in the SLP reproduction does not indicate a
difference in AC12 position between the CTLEPS and OSEEPS. In the Z300 field (Figures 15a and 15b), a
negative reproducibility appears at the TPV, which implies that the baroclinic instability necessary for the
formation of AC12 is significantly weaker in the OSEEPS.

We examined time sequences of AC12 vertical distribution in the CTLEPS and OSEEPS (Figure 16). By
comparing the reanalysis CTL, both the CTLEPS and OSEEPS reproduce the baroclinic structure in the

Figure 14. Z300 (m) and SLP (hPa) at (a and c) 00:00 UTC 5 August and (b and d) 6 August 2012 of the CTL analysis ensemble mean (contours) and CTLEPS ensemble
mean (shading) fields. The dates for the CTLEPS indicate valid dates, i.e., the dates 5 and 6 August correspond to the 2 and 3 day forecasts, respectively.
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developing stage as well as the warm core in the upper troposphere and cold core in the lower [Tanaka et al.,
2012] in the mature stage. Also, cyclone tracks in both experiments are well reproduced. There is a marked
difference between the CTLEPS and OSEEPS in the strength of the warm core around 6 August, when AC12 just
became equivalent barotropic. The warm core corresponds to the TPV and the marked difference is in its
strength. Because the TPV originally developed with AC12 by baroclinic instability during the developing
stage (Figure 15), we conclude that AC12 formation in the OSEEPS from this instability is substantially weaker
than that in the CTLEPS. Note that although another process might exist to develop the TPV together with
baroclinic instability, as suggested by Tanaka et al. [2012] who highlighted the merging of smaller-scale
mesocyclones, such a process could support baroclinic instability because the process could act to enforce
the surface cyclone (AC12) and/or the TPV.

Temporal evolution of AC12 amplitudes in the CTLEPS and OSEEPS is depicted in Figure 17. The time evolution
in the CTLEPS reproduces the amplification and time sequence of AC12 in the CTL reanalysis, whereas the time
evolution in the OSEEPS does not reproduce the amplification. As discussed above, because almost all
ensemble members of the centers of AC12 (surface cyclone) in the CTLEPS and OSEEPS are located close to
each other throughout the entire 5 day integration (not shown), the AC12s in these EPSs have different
amplitudes rather than different positions. Because the amplitude in the OSEEPS is smaller than in CTLEPS and
temporal evolution in the former is significantly different than that in the latter, we conclude that the OSEEPS
cannot simulate well the AC12 formation.

Although the CTLEPS successfully reproduces the formation of AC12, its rapid intensification (e.g., minimum
value of central SLP) is too weak compared with the CTL, in which SLP reached ~974 hPa and maintained this
value during 6 and 7 August. One reason may be that the surface cyclone with the weaker amplitude over
the Arctic Ocean merges with AC12 in the CTLEPS (Figure 14c). Because AC12 has a barotropic structure
during the mature stage (after 6 August), its intensification by the horizontal vortex merger [Aizawa et al.,
2014] may be weaker in the CTLEPS.

Figure 15. Same as Figure 14 but for the differences in Z300 (m) and SLP (hPa) between the CTLEPS and the OSEEPS (CTLEPS�OSEEPS; shading). The contours indicate
the OSEEPS fields. Black and red cross symbols are the TPV and the AC12 centers in the CTLEPS and the OSEEPS, respectively.
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We further conducted a deterministic (single) forecasting experiment using AFES with the same configuration
as the CTLEPS, except for using ERAI as the initial values (Table 1). This experiment is denoted ERAIDPS. It is
found that the time evolution in the ERAIDPS reproduces the amplification as well the CTLEPS does, which
implies that a realistic representation of the large-scale upper tropospheric circulation in the Arctic region is
crudely important for the prediction of disturbances such as strong Arctic cyclones.

The small amplitude, but large-scale reproducibility between the CTL and OSE in the initial fields during
the initial developing stage cause large prediction errors for AC12. The results show that the radiosonde
observations by Polarstern, which causes realistic reproduction of the large-scale upper tropospheric
circulation in the Arctic region, had significant impact on the prediction of AC12.

5.2. Relative Importance of the Reproducibility of the TPV and Surface Baroclinicity

One question to be answered is whether reproducibility in the upper troposphere (TPV) is more important
than that in the lower troposphere (surface baroclinicity) for the prediction of AC12. This was examined by
isolating the reproducibility stemming from the TPV and surface baroclinicity between the CTL and OSE. As

Figure 16. Same as Figure 4 but for the ensemble mean fields of (a and b) CTLEPS and (c and d) OSEEPS, except that shading in Figure 16d indicates difference
between CTLEPS and OSEEPS (CTLEPS�OSEEPS).

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022925

YAMAZAKI ET AL. ©2015. American Geophysical Union. All Rights Reserved. 19



the focus of this work is on the reproducibility at the upper troposphere, in association with the additional
radiosonde observations, answering the above question makes our conclusions more robust.

Forecasting experiments similar to the CTLEPS were performed, except the reproducibilities in the initial
values between the CTL and OSE (CTL�OSE) were subtracted individually in the upper or lower troposphere
over mid-Eurasia where AC12 started to develop. That is, the TPV or surface baroclinicity in the CTL (initial
value) was replaced by that in the OSE. Through the experiments, the relative contributions of the TPV and
surface baroclinicity reproducibilities to the prediction of the development of AC12 in the CTLEPS were
estimated. Before the forecasting experiments were performed, the reproducibilities between the CTL and OSE
at the initial values were determined, in terms of PV and θ, which are useful for decomposing the atmosphere
into areal “partitions” [Bishop and Thorpe, 1994]. Figure 18 shows the meridional-vertical cross sections of
the differences in the triangle region (mid-Eurasia) displayed in Figure 10a, which is when and where AC12
started to develop. It can be seen that both the PVand θ fields have relatively large reproducibilities around and
over the tropopause and near the North Pole. AC12 developed at around 75°N (i.e., the Russian coast) and
the differences in the upper troposphere relative to the lower troposphere at this latitude are large.

To conduct the forecasting experiments, the initial values of wind, geopotential height, and temperature
fields stemming from the reproducibilities of the TPV and surface baroclinicity (anomalies) were required.
To obtain the fields, a piecewise PV inversion was conducted [Davis and Emanuel, 1991]. The method is
based on two ideas concerning PV. The first considers that PV or the surface θ can be decomposed into
some partitions related to region or amplitude and thus can be superimposed [Bishop and Thorpe, 1994].
The other considers that PV and the surface θ can be converted into wind, temperature, and geopotential
fields balanced with them (the PV “invertibility principle” [Hoskins et al., 1985]), which is the PV inversion
process. Following the two ideas, the reproducibility is divided into two partitions of the upper and lower
troposphere over mid-Eurasia. The former is related to the difference of the TPV between the CTL and
OSE, while the latter is that of the surface baroclinicity. By treating the reproducibilities of the pieces as a PV or
surface θ anomaly, differences in thewind, temperature, and geopotential anomaly fields with respect to their
initial values can be obtained, which correspond to the reproducibility of the TPV (upper troposphere) or
surface baroclinicity (lower troposphere). The two pieces were divided as follows. We used the difference in
the PV and surface θ between the CTL and OSE at 00:00 UTC on 3 August. The upper piece was the difference
of PV between heights of 500 and 100 hPa over mid-Eurasia (the triangle region in Figure 10a), and the
lower piece was the difference of PV between heights of 925 and 600 hPa and θ at 1000 hPa (the surface). For

Figure 17. Same as Figure 9a but for the CTL Ensemble Prediction System (CTLEPS) experiment (red) and the OSEEPS (blue).
Light and thin lines indicate temporal evolutions of all 63 ensemble members of CTPEPS (red) and OSEEPS (blue). The thick red
and blue lines indicate the ensemble means of minimum SLP at AC12 centers of the ensemble members. Time evolutions in
the CTL reanalysis (black) and ERAI Deterministic Prediction System experiment (ERAIDPS, green) are also shown.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022925

YAMAZAKI ET AL. ©2015. American Geophysical Union. All Rights Reserved. 20



each piece, the PV value out of its heights and region was set to 0. For the PV inversion process to obtain the
balanced fields, we used a quasi-geostrophic (QG) PV framework. Details of this approach are provided in the
Appendix A.

Figure 19 shows the balanced fields with the upper and lower PV and surface θ anomalies. It can be seen that
the upper anomaly contributes to the westerly flow in the upper troposphere over central Eurasia and thus
intensifies the baroclinicity, whereas the lower anomaly contributes little to the change in baroclinicity in
either the upper or the lower troposphere.

Balanced fields for each anomaly (reproducibility of the TPV or the surface baroclinicity) were subtracted
from the initial values of the CTLEPS at 00:00 UTC on 3 August. These subtracted values were used as the
initial values for the forecasting experiments of the CTLEPS, in which the upper and lower level circulations

Figure 18. Same as Figure 10a but for pressure-latitude cross sections of the reproducibilities (CTL�OSE) of the zonally averaged (a) PV (PVU) and (b) θ (K) over the
triangle region shown in Figure 10a. Contours are for 1–10 PVU and 275–400 K.

Figure 19. Geopotential height (shading; m) and wind (vectors; m s�1) anomaly fields “induced” by (balanced with) the
(a and b) upper PV (the upper anomaly; see text for more details) and (c and d) lower PV and surface θ (the lower
anomaly) anomalies at 00:00 UTC 3 August 2012. The fields are at 300 and 850 hPa.
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over mid-Eurasia were replaced by the OSE. Hereafter, the former experiment is denoted as the sup-upp
Exp (experiment suppressing the upper anomaly) and the latter as the sup-low Exp (experiment
suppressing the lower anomaly). Our goal is to determine which experiment the development of AC12
is suppressed.

The time evolution of the amplitude of AC12 in the sup-upp Exp is significantly different from the CTLEPS,
while that in the sup-low Exp is not (Figure 20). Although AC12 developed in both Exps during the early
developing stage (until 72 h), the amplitude in the sup-upp Exp subsequently becomes weaker compared
with the CTLEPS. However, the time evolution in the sup-low Exp is similar to that in the CTLEPS. Therefore, the
reproducibility of the TPV is more important than that of surface baroclinicity for predicting the development
of AC12. This result again supports the assertion that additional radiosonde observations can affect the
prediction of the surface AC12 via the upper tropospheric circulation.

6. Conclusions

The impact of radiosonde observations in the Arctic region on the prediction of the “great” August 2012
Arctic cyclone (AC12) is assessed using an observing system experiment (OSE). The observations were
performed by the German research vessel Polarstern cruising near the Svalbard during mid-July to early
August 2012. For the experiment, an atmospheric ensemble reanalysis (ALERA2) was used as the control
experiment (CTL), which could satisfactorily reproduce AC12 and the large-scale surrounding fields. The OSE
used the same reanalysis data as the CTL, except that the OSE did not include the radiosonde observations
from the Polarstern.

The formation of AC12 reflected typical baroclinic growth in mid-Eurasia, where baroclinicity is large
because of the thermal contrast between thewarm Eurasian continent and cold Arctic Ocean. When the AC12
started to develop, a TPV supported the baroclinic growth. The TPVwas advected from a northern region with
high-PV and triggered baroclinic instability when it arrived over the baroclinic zone of mid-Eurasia. AC12
developed by moving northeastward along the zone and it matured after encountering the Arctic Ocean.

The CTL and OSE reanalyses were compared to evaluate the impact of the radiosonde observations on AC12.
A small amplitude difference in the reproduction (reproducibility) of the TPV was found between them. The
TPV was not reproduced as well in the OSE, with a weaker amplitude of the TPV when AC12 started to
develop. The CTL fields showed conditions more favorable for baroclinic instability. In addition, the CTL was

Figure 20. Same as Figure 17 but for the experiment suppressing the upper anomaly (sup-upp Exp, green lines) and the
sup-low Exp (purple lines). See text for more details. Light and thin lines indicate temporal evolutions of ensemble members.
Black lines indicate the time evolutions of the CTLEPS (solid) and OSEEPS (dashed) ensemble means.
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more realistic at the tropopause than the OSE was. The reproducibility between the CTL and OSE (CTL�OSE)
at the tropopause propagated from the upstream region where the observations were performed by the
research vessel Polarstern.

The impact on forecasts of AC12 was examined using ensemble forecast experiments. These experiments
were conducted using the CTL and OSE as initial values just before AC12 started to develop. The forecast from
the CTL reproduced the formation of AC12 by baroclinic instability, while that from the OSE produced a
significantly weaker cyclone. To establish that the reproducibility of the TPV was more important for the
prediction of AC12 than the surface baroclinicity in the lower troposphere, the relative contributions to
the AC12 development of the reproducibilities of the upper and lower troposphere (between the CTL and
OSE) were quantified using sensitivity forecast experiments. In the sensitivity experiments, the initial values in
the upper or lower troposphere were replaced by the OSE values using the piecewise PV inversion method.
The results showed that the reproducibility of the TPV was more important for the prediction of the
development of AC12.

In summary, the radiosonde observations performed by the Polarstern were essential for the prediction of
AC12. Even though the observations were taken far from the location of AC12, they remotely affect the
predictions of AC12 via the reproducibility of the large-scale upper tropospheric circulation in the Arctic
region. One suggestion from the present study is that upper air measurements by radiosondes are
important for reproducing Arctic atmospheric circulations, by adding significant vertical information
compared to Arctic drifting buoys on the surface [Inoue et al., 2009]. As sea ice cover prevents cruises on
the Arctic Ocean during winter, more intense vertical profile and upper air observations in the Arctic coastal
regions seem eligible.

Through this study, it is established that even a few radiosonde observations from one research vessel can
have considerable influence on the forecasting of an Arctic cyclone, which was one of the most intense
disturbances in thepolar region since records began. Evennow, fewupper air observations are performedover
the Arctic region due to the limited number of observing stations or cruises of research vessels that can launch
radiosondes [Lüpkes et al., 2010]. An increase in the number of such observations could improve the prediction
and reproduction of individual disturbances and climatic fields within the Arctic region, as well as those in
lower latitudes [Inoue et al., 2013; Jung et al., 2014]. Such an improvementwould be very helpful for future polar
and global climate research, as mentioned in the introduction. Another possibility is for predicting the
feasibility and effectiveness of the Northern Sea Route [Khon et al., 2014] on weather and synoptic time scales.
Successful forecasting of an Arctic cyclone would especially aid cruises along the route.

Appendix A: Piecewise Quasi-Geostrophic PV Inversion Method

The balanced fields with the PV and the surface θ anomaly fields were obtained using the PV inversion
method within the quasi-geostrophic (QG) framework [Takaya and Nakamura, 2005]:

ψ ≡ L�1
g q ¼ ∇2 þ f 20

ρ0

∂
∂z

ρ0
N2

∂
∂z

� �� ��1

q; (A1)

where ψ and q are the stream function and QG PV anomalies, respectively, and L�1
g indicates the inverse

Laplacian-like operator, ∇2 is the Laplacian operator in spherical coordinates, f 20 is the Coriolis parameter at
75°N, ρ0 = ρs exp(�z/Hs) (ρs= 1.452 kgm�3), z=�Hs ln(p0/p) (where Hs=7025m, p0 = 1000 hPa, and p is
pressure at each level), and N2 ¼ R=Hs dθ=dz

� �
exp �κz=Hsð Þ (R=287 J K�1 kg�1, κ = 0.286, and θ represents

potential temperature at each level averaged over the northern side of 60°N). Here ψ =ϕ/f0, where ϕ is the
geopotential anomaly. For the inversion procedure, the spherical harmonic expansion was adopted, as in
Takaya and Nakamura [2005]. The triangular truncation used here is 95 (approximately 1.25° intervals).
Calculation of the inversion was performed over the entire globe and within the heights between 1000 and
10hPa. The lateral boundary condition was set to be periodic prescribed by the spherical harmonic expansion,
and the upper boundary (at 10hPa) was set to be zero θ anomaly (homogeneous Neumann condition), i.e., ∂ψ/∂
z=0, respectively. The lower boundary (at 1000hPa) condition was the homogeneous Neumann condition
for the upper piece, and the inhomogeneous condition, in which the reproducibility of the surface θ between
the CTL and OSE, was given for the lower piece. Note that the lower boundary condition employed here was
that commonly used for the piecewise PV inversion method [e.g., Davis and Emanuel, 1991].
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