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Perspectives
• Implementation of superimposed ice formation into the model to 
understand the process of superimposed ice formation and to 
generalize results

• Application of the  parameterization on regional scales (e.g. with 
BRIOS), trace sea ice floes through winter/summer transition

• Combine model results with remote sensing observations to map 
occurrence of superimposed ice in both Polar Regions

• Observation of superimposed ice formation during
the field experiment Ice Station POLarstern
(ISPOL) 2004 / 2005 (Weddell Sea)

- Detailed and interdisciplinary measurements 
- Generalize results for both Polar Regions  

• Superimposed ice forms from fresh water during each melting season

• Superimposed ice contributes to sea ice mass balance

• Superimposed ice delays the decrease of albedo through extension of 
ice cover lifetime 

• Formation of superimposed ice can be associated with gap layers,
which serve as an habitat for biological communities (algae)

• Superimposed ice may be mapped from satellites

• Successful modeling of snow processes during melting season

SEBISUP
(Surface Energy Budget 
and its Impact on
SUPerimposed ice 
formation) 

May 16  – June 06 2002
May 15  – June 05 2003

Fig. 2: Photograph  of a vertical thick-section showing 
the typical sequence of metamorphic snow, 
superimposed ice and sea ice (right) as well as their 
characteristic properties (above). The scale is in cm.

Metamorphic snow

Superimposed ice

Sea ice

Sea ice plays a key role within the global climate system. It 
covers some 7% of earth’s surface and posesses a strong 
seasonal cycle. Snow on sea ice even amplifies the importance 
of sea ice in the coupled atmosphere-ice-ocean system, because 
it dominates surface properties and energy balance (incl. albedo).

Several quantitative observations of summer sea ice and its snow
cover show the formation of ‘superimposed ice’ and a gap layer 
underneath, which was found to be associated to high standing 
stocks of algae. Superimposed ice forms from the refreezing of 
snow melt / fresh water (Fig. 1+2).

Here we present properties of melting snow (Fig. 4-6), processes 
of superimposed ice formation based on field measurements and 
ice-laboratory analysis (Fig. 7-10), as well as first results from a 
numerical model (Fig. 11+12).

Fig. 1: Different observations of superimposed ice 
and associated phenomena:

a: Slice of superimposed ice (ca. 45 mm thick; 
May 31 2002).

b: Deteriorated superimposed ice, showing huge 
granular crystals (ca. 40 mm thick; June 03 2002). 

c: Superimposed ice (between red arrows) on a 
tilted floe of Antarctic sea ice (comp. to Fig. 2).

d: Superimposed ice floating on Kongsfjorden, 
Svalbard, while sea ice underneath is already 
molten (ca. 30 mm thick; June 2002).

e: Superimposed ice on top of a slush filled gap 
layer, lateral extension of several m².

f: High standing stocks of biological organisms 
associated with the gap layer (green / brown layer) 
underneath superimposed ice.
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Fig. 3: Map of Kongsfjorden, 
Svalbard, showing the measurement 
sites on the fast ice in 2002 and 
2003. The dashed lines indicate the 
fast ice edge at the beginning and 
end, respectively, of the observation 
period derived from aerial photos.

Fig. 6: Spectral and integral albedo during the observation period in 2002. During late 
winter conditions (day 141, May 21) albedo was around 0.9 for all wavelengths. The 
onset of snow melting increased the wetness within the snow cover, hence albedo of 
infrared wavelength (>900nm) decreased (day 149, May 29), whereas the visual surface 
appears very similar (comp. a & b). During the melt season (day 151, May 31) albedo 
decreased below 0.7 for all wavelengths, which changes surface characteristics 
significantly (c).
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Fig. 7: Vertical thin section of a typical layered sample of superimposed ice under 
crossed polarizers (a) and plain light (b) (June 03 2003). Larger grains near the surface 
result from subsequent melt-freeze cycles. Such thin sections were used to derive grain 
size distributions as shown in Fig. 9. 
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Fig. 4: Radiation balance of both field experiments. In 
2002 an increase of incoming long-wave radiation (on 
day 147, May 27) led to an all day long positive radiation 
balance and initiated melt onset. 
A comparison to 2003 shows, that both years were 
characterized by extremely different weather and 
radiation characteristics, which  enables the study of melt 
processes and superimposed ice formation under 
variable meteorological boundary conditions.

Fig. 9 (left): Histogram of grain size 
distribution of selected samples. 
Maximum grain size increases and 
the curves become flatter and wider 
with time. Corresponding mean 
grain sizes are highlighted in Fig. 8. 

Fig. 8 (right): Mean grain size of 
superimposed ice samples. Grain 
sizes increase due to re-
crystallization related to daily 
melting and refreezing. Grain size 
distributions of highlighted 
samples are shown in Fig. 9.

Fig. 5: Thickness of snow and superimposed ice. In 
2002 all snow was transformed into superimposed ice 
during the observation period, whereas in 2003 
superimposed ice formation lasted over a longer time 
span, such that even on day 155 (June 4) a rest of 
extremely metamorphic snow  was left.

Fig. 10: Distribution, shape and size of air bubbles (green) within superimposed ice. Both re-
constructions from X-ray micro-tomography images (40 µm resolution) show how inhomogeneous 
superimposed ice is on micro-scales. Superimposed ice bulk density is 881 kg/m³ (n = 13 samples).
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Initialization: SEBISUP 2002 (snow and ice data):
- 2 sea ice layers (Σ 60 cm thick, 840 kg / m³, -1.9 °C)
- 9 snow layers (Σ 23 cm thick, 200 - 450 kg / m³, -6.3 

to -3 °C, grain diameter 0.5 to 5 mm)

Forcing: 10 min meteorology (SEBISUP or Koldewey data)
Fig. 12 a: Comparison of snow thicknesses from field measurements (red dots) and model results 
(each black line represents the surface of a snow layer). 
b: Snow and ice temperatures. Each line represents one model layer (1=bottom, 11=top). The figure 
shows the pronounced diurnal cycle.
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Fig. 11: Time series of snow 
wetness during melt seasons 
within the last decade based 
on meteorological obser-
vations in Ny Ålesund. 
These model results show, 
how increasing wetness within 
the snow cover, due to 
atmospheric warming, causes 
a decrease of total snow 
thickness. The sea ice 
underneath the snow cover is 
not presented here.
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