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ABSTRACT. Five statistical techniques to determine peaks in ice-core time series are presented and
compared. The ice-core time series, representing different signal characteristics, comprise electrical
conductivity measurements (ECM), dielectric properties (DEP) and sulphate. Three techniques (I–III)
utilize all the data in the time series to estimate significant thresholds for identifying peaks. Technique IV
applies a moving window and conducts a statistical inference within the defined window. In technique V,
a family of smoothed estimates of the ice-core time series is produced, and statistical tests are performed
on the significant changes in the derivative of the estimates. The correction of the significance level, �,
due to multiple tests is introduced and implemented in techniques II–V. The threshold obtained by
techniques I–III is determined by the influence of the error term on the global variance estimate, whereas
the threshold of IV is determined by the data within the window. The success of identifying peaks with
technique V is dependent on the redundancy in the data, i.e. the sampling rate. It is concluded that
techniques II and III are superior to the other techniques due to their simplicity and robustness.

1. INTRODUCTION
Data in the form of time series obtained from ice cores have
proved to be valuable high-resolution climate records (e.g.
Delmas, 1992; EPICA community members, 2004). The goal
of most data processing is to retrieve relevant information
from a dataset in an objective and reproducible way. Useful
signals might be obtained in both the time and frequency
domains. Depending on the time-scale of interest, longer
trends and events on short time-scales may have different
significance in a study. The identification of peaks (episodic
events) in ice-core time series is of fundamental interest with
respect to finding dating horizons such as volcanic tracers.
These horizons are important tie points both for dating by
annual-layer counting and for depth–age modelling. Once
the volcanic peaks are identified and dated, a volcanic
chronology may be established. In addition, based on the
chronology, a mass-balance record may be established for
an area (Karlöf and others, 2000; Hofstede and others,
2004). To identify the processes behind the recording of a
signal in the snow, it may require objective processing to be
reproducible. For example, sulphuric acid is the most
important component of volcanic deposits in the snow.
Explosive eruptions emit sulphur, which is transformed to
sulphuric acid in the atmosphere. However, background
aerosol mainly derived from marine biogenic activity also
contributes to the recorded signal. As the marine signal has
high year-to-year variability (Legrand, 1995), it might
obscure the correct peaks and make them difficult to
unambiguously identify.

Ice-core and other geophysical records can be divided
into a dynamical part (Dt ) and a noise part (Nt ) expressed as
Xt ¼ Dt þNt . The fundamental challenge is then to separate
the significant dynamical part from the noise. In this study,
the dynamical part is a peak. Moreover, the dynamical part
has a background level, and it is the significant deviations
from this background level over a finite length in time (or
ice-core depth) that are defined as peaks.

In the last two decades, many studies have been
performed to either determine volcanic peaks to establish
a mass-balance record, when the peaks are known and
dated independently (e.g. Oerter and others, 1999, 2000;
Karlöf and others, 2000; Hofstede and others, 2004) or
establish a volcanic chronology when the core has been
dated by other means (e.g. Legrand and Delmas, 1987;
Moore and others, 1991; Delmas and others, 1992; Cole-
Dai and others, 1997; Traufetter and others, 2004). The
techniques presented here, as well as earlier work (e.g.
Delmas and others, 1992; Mayewski and others, 1993;
Zielinski and others, 1994; Fischer and others, 1998; Karlöf
and others, 2000), first attempt to define a background,
which in turn is subtracted from the original time series. The
residuals, i.e. the high-frequency part of the original time
series, are subjected to a different statistical treatment in
order to define a threshold for a peak. Both multivariate
discriminant analysis and simpler variance-based thresholds
have been proposed (e.g. Delmas and others, 1992; Zielinski
and others, 1994; Cole-Dai and others, 1997). The different
studies have made use of different filtering techniques
to define the background level: spline-based methods
(Zielinski and others, 1994), median filter (Fischer and
others, 1998) or Savitsky–Golay filter (Karlöf and others,
2000). Regardless of which filtering technique has been
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used, the primary objective of the filtering is to define the
background level by filtering out climate and measurement-
induced trends as well as blocking periods shorter than the
episodic event of interest. Filtering is not a fully objective
procedure, as the correct choice of filter lengths, i.e. cut-off
frequencies, requires good knowledge of the data and is
dependent on the skill of the operator. However, it is a very
important part of successful data processing.

In this paper, we examine and evaluate five different
statistical techniques for the selection of thresholds for peak
signals in ice-core data. The motivation for doing so is to
investigate whether objective and robust techniques in the
future could be established as standards for finding peaks in
palaeoclimatic records. The techniques presented in this
paper identify events of significant amplitude in ice-core
records. The time series contain peaks of volcanic origin, but
the presented techniques may have merit for other data
when studying short-scale anomalies in other environmental
records. In this paper, there is no attempt to describe the
origin of the events.

2. DATA DESCRIPTION
Three different time series, electrical conductivity measure-
ments (ECM), dielectric properties (DEP) and ion chemistry
(SO4

2–) from one medium-length (~2500 years; 160m) ice
core, have been used to implement the techniques (Fig. 1).
The solid conductivity of the ice cores has been measured
with ECM (Hammer, 1980) and DEP (Moore and Paren,
1987; Moore and others, 1989; Moore, 1993; Wilhelms and

others, 1998). The measurements were sampled semi-
continuously, with an interval of 2mm for the ECM and
5mm for the DEP. They were performed in an excavated
freeze laboratory at the drilling site. The DEP measuring
electrode was 10mm and the measurements were per-
formed at 250 kHz (Hofstede and others, 2004). Both ECM
and DEP measurements have been normalized to –158C.
The sulphate data were sampled adjacently with a length of
50mm, and the sulphate content was determined by ion
chromatographic analysis at the Alfred Wegener Institute,
Bremerhaven, Germany. For details on the measurement
set-up see Traufetter and others (2004) and references
therein.

In this study, ECM represents a densely sampled signal
with a low-frequency trend and low signal-to-noise ratio
(S/N). That is, relatively high noise is obscuring the
dynamical part of the signal. DEP represents a densely
sampled smooth signal with high S/N. The low-frequency
trend in the ECM signal is probably an effect of increased
density down-core. The raw DEP record shows a similar
low-frequency trend, but since the relation between ice
capacitance and density is relatively well understood it has
been corrected for.

The sulphate data are derived from samples cut from the
ice core, and each piece represents a data point, so they are
not as densely sampled as the electrical data. This way of
sampling leads to a low-pass filtered version of the under-
lying sulphate signal.

3. CRITERIA FOR THRESHOLD SELECTION
In this section, we present five different techniques for
determining thresholds for peak detection in ice-core
records. The first three techniques use all the available data
to estimate a global threshold, whereas the latter two
techniques are based on local estimation of the threshold via
windowing and local smoothing.

In four of the techniques a bandpass filter operation is
performed before the statistical test is applied. This is done
to improve the S/N, to eliminate natural and measurement-
induced variations in background values with time. This
operation is important for data sampled semi-continuously
like the DEP and ECM. For sampling techniques where
adjacent samples of a finite (longer) length are obtained, the
sampling procedure naturally performs a low-pass filtering.
Due to this low-pass filtering, some of the noise artefacts
have been removed. The purpose of the bandpass filtering
process is to enhance the features of interest by blocking
short and long wavelengths.

Technique I: normalized amplitudes
This method has previously been described in Karlöf and
others (2000) and applied in Karlöf and others (2005). The
records were first low-pass filtered, then we subtracted the
low-pass filtered data from the original data, thus creating
de-trended, high-pass filtered versions (Fig. 2). A first-order
Savitsky–Golay filter was used because of its documented
good performance in retaining peaks when smoothing data
(Press and others, 1992). This removes unknown low-
frequency relationships, such as the density effect on the
ECM signal in the measurements (Karlöf and others, 2000).
Finally, the residual was low-pass filtered at a higher cut-off
frequency (called high-pass filter in Karlöf and others,
2000), and the bandpassed output was used for further

Fig. 1. Raw data of sulphate, DEP and ECM used to evaluate the
compared methods (Hofstede and others, 2004).
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analysis (Fig. 2). This bandpass routine has been used for all
methods except method V. The output was then normalized
to one standard deviation (1�), and peaks having positive
amplitude over 2� were considered for dating purposes.
This technique is adapted from Delmas and others (1992),
Mayewski and others (1993), Zielinski and others (1994)
and Cole-Dai and others (1997), and defines a volcanic
signal to be a spike larger than the normal background, i.e.
mean plus standard deviation. The filtering technique
described is different from that used in the other studies.
The variance (�2) is estimated as the mean squared
deviation from the mean, and the whole dataset was
included in estimating the variance, i.e. the peaks were not
omitted. This leads to an increase in � and therefore a
higher and more conservative threshold value. Thus, we can
summarize the test in the following way: the significant
threshold (ST) is

STI ¼ 2� �̂s þ �xs, ð1Þ
where �xs is the mean of the bandpass filtered signal xs and �̂s

is the estimated standard deviation of xs.
This method has proven successful, but the fact that we

are not correcting for multiple testing, and that we need to
make a subjective decision on the best smooth, can be
considered as weaknesses. The method is also biased since
we are assuming more or less the same amplitude of the
episodic events throughout the period covered.

When many hypotheses are tested (multiple testing), the
probability of falsely rejecting the null hypothesis (e.g.
erroneously detecting a peak) increases sharply with the
number of hypotheses. The number of hypotheses in our
case is the number of samples in the dataset. An unguarded
use of single-inference procedures, where we control the
level of the test for each single test, results in a greatly
increased false-significance rate when the number of tests
is large. This is the problem of multiple testing, and instead
of controlling the level for each test, one would like to
control the false rejection of the null hypothesis for the
entire collection (or family) of tests that makes up our
experiment.

Technique II: normalized amplitudes using a
difference variance estimate and correcting for
multiple testing
This technique involves the same smoothing operation and
test statistics as for technique I, but with a correction of the
significance level since multiple testing is performed.
Moreover, a new, more conservative way of calculating the
variance (Var(xi)), is presented. In our new procedure, this
variance is related to the difference between values of
adjacent indices, Var xi � xi�1ð Þ.

We have:

Varðxi � xi�1Þ ¼ VarðxiÞ þ Varðxi�1Þ � 2Covðxi, xi�1Þ
¼ 2VarðxiÞ � 2�ðxi, xi�1ÞVarðxiÞ
¼ 2VarðxiÞ 1� �½ �: ð2Þ

Thus, it follows from Equation (2) that

VarðxiÞ ¼ Varðxi � xi�1Þ
2 1� �ð Þ , ð3Þ

where the autocorrelation � is estimated from x. The
technique relies on applying Equation (2) in an area of the
time series where the adjacent differences of neighbouring

values are due only to noise, and no peaks are present. The
method presented in Godtliebsen and Øigård (2005)
suggests how this can be done, and we use their suggestion
to obtain a global estimate of the variance of xi, i.e.V̂ar xið Þ.
Thus, V̂ar xið Þ ¼ �̂2 and the threshold STII is found by
correcting the threshold level for multiple testing with the
assumption of a normal distributed error term

STII ¼ �̂� ��1 1þ 1� �ð Þ1n
2

 !
, ð4Þ

where ��1 is the inverse of the normal distribution and n is
the number of observations in x. As discussed in section 4,
the assumption of normal distribution can be strengthened
by taking the logarithm of the time series.

The rationale for correcting for multiple testing is as
mentioned above, based on the assumption that the more
tests we perform, the more likely it is to erroneously detect
a peak.

Our hypothesis test is based on testing

H0: the peak amplitude is not significantly higher than
the background

against the alternative hypothesis,

H1: the peak amplitude is significantly higher than the
background.

We define � as the probability (P) of falsely rejecting the null
hypothesis. Namely,

Pðreject H0 when H0 is correctÞ ¼ �:

Consequently,

Pðnot rejecting H0 when H0 is correctÞ ¼ 1� �:

When performing multiple tests we define the following
events:

Ai ¼ not reject H0 in test i for i ¼ 1, . . . , n,

where n is number of tests performed and, hence, equal
to number of observations in x. To obtain an overall

Fig. 2. (a) The original data (light shade) and its low-frequency
component (black). (b) The high-pass residuals (light shade) and the
Savitsky–Golay bandpass filtered residual (black).
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significance level equal to �when n tests are performed, we
must have

PðA1,A2, . . . ,AnÞ ¼ 1� �:

If we assume that the tests are independent, we have

P ðA1Þn ¼ 1� �:

For each test we have

Pðnot rejecting H0 in test i when H0 is correctÞ ¼ 1� �0:

Hence, it follows that

1� �0ð Þn¼ 1� � , ð5Þ
which means that

�0 ¼ 1� 1� �ð Þ1n: ð6Þ
Thus, for each test we use, under the assumption of a

normally distributed error term, the quantile

q ¼ ��1 1� �0

2

� �
¼ ��1 1þ 1� �ð Þ1n

2

 !
ð7Þ

will be the new quantile which corrects for multiple test-
ing. Here n is the number of tests, and n is the number
of observations in x in this case (Chaudhuri and Marron,
1999).

The variance calculated this way is lower than the
variance calculated in technique I. Note, however, that by
correcting for multiple testing, a threshold, motivated from
more accepted principles in statistics, is achieved (Fig. 3).

Technique III: normalized amplitudes using median
variance estimate and correction for multiple testing
A robust way of estimating the variance is to estimate it via
the median, i.e.

medvar ¼ median xs � xs,med
�� ��, ð8Þ

and then correct for multiple tests in the following way:

STIII ¼ medvar��1 1þ 1� �ð Þ1n
2

 !
: ð9Þ

Here n has the same interpretation as in Equation (7). This
estimation of the variance has been used previously in
geophysical applications to detect volcanic peaks in non-
sea-salt sulphate records of Greenland ice cores (e.g. Fischer
and others, 1998). However, they did not correct for
multiple testing. Moreover their method was applied as
a running analysis only on data with a high S/N (see
method IV). Their method can be summarized as

ST ¼ runmed þ kMAD, ð10Þ
where runmed is a running median filter, k is an empirically
found parameter and should be compared with Equation (7),
and MAD is the same as medvar. Thus, instead of using a
Savitsky–Golay bandpass filter they used a low-pass median
filter.

Technique IV: a local window version
By applying either technique II or III locally, we obtain
techniques that circumvent problems with non-stationarity
in variance leading to a biased threshold towards higher
peaks and thus rejecting peaks of less magnitude (Fig. 4).
These smaller peaks may also be significant but they might
have a smaller magnitude due to the way they have been
recorded in the snow. This might be explained by changes in
snow deposition pattern over time. This process is something
techniques I–III do not account for.

Here we propose a technique based on a rectangular
window of a certain size that is run over xs, and the variance
and threshold is estimated within the window in the same
way as described in Equations (8) and (9). However, n now
represents the part of xs contained in the window. The major
disadvantage of this technique is the loss of data at the start
and end of the time series. One way to partially circumvent
this is to pad mirrored versions of x and run the window over
the ‘edges’. Of course the threshold will be affected by the
end effects, but the threshold obtained will aid in guiding the
analyst’s interpretation of these areas. The influence of end
effects on the threshold will not reach further into the record
than the window length at each end. Moreover, the
influence decreases with distance from the start and end.

Fig. 3. Example of bandpassed version of the Savitsky–Golay filtered
sulphate data. The horizontal line indicates the level of the
threshold as estimated with technique II. All peaks having ampli-
tude over the threshold are considered.

Fig. 4. Technique IV applied on bandpass filtered DEP data. Again
all peaks having amplitude over the wiggly line are considered.
Technique III is used within the window to do the statistical
inference.
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When choosing the window length, the following consid-
erations should be accounted for: First, sufficient data points
need to be covered in the window to allow for proper
statistics. As a rule of thumb, we suggest that the window
should always be greater than 30 observations. Second, the
length of the window should be shorter than the distance
between two adjacent peak events of the record. This
minimizes the risk of biasing the threshold due to adjacent
peaks of different amplitude.

Technique V: scale-space analysis of ice-core records
In this technique the estimation of variance for the threshold
determination is replaced by an estimation of the signifi-
cance of the derivative. A peak is defined where the sign of
the derivative is changed more or less simultaneously over a
number of scales. We apply a scale-space technique
described in Godtliebsen and Øigård (2005) to analyze the
ice-core records. The technique first obtains a family of
smoothed estimates of the ice-core records for various
degrees of smoothing. Next, the derivatives of the estimates
are studied, and the testing is now concerned with whether
the derivative of a smoothed estimate has zero crossings, i.e.
the sign of the derivative is changed. When the derivative is
significantly greater than zero, this means that the ice-core
records are increasing. When the derivative is significantly
below zero, the ice-core records are decreasing. When the
derivative is not significantly different from zero, the ice-
core records are flat. A peak is detected where the sign of the
derivative is changing for estimates of various degrees of
smoothing. We will not go into detail concerning the
method, but only give an outline of the procedure. See
Godtliebsen and Øigård (2005) for a thorough description of
this technique.

The procedure is as follows:

Obtain smoothed estimates of the ice-core record.

Estimate the derivative of the ice-core time series over
several scales. In this case the physical scale is in metres
along the ice core.

Perform statistical tests on the derivative to check
whether it is greater than zero, below zero or not
significantly different from zero.

The above-mentioned procedure is repeated for a whole
range of different degrees of smoothing (scales). The idea is
to view the ice-core time series at different degrees of
resolution. For small smoothing parameters, i.e. small scales,
we zoom into the ice-core time series and investigate local
behaviour, i.e. short time-scales. For larger smoothing
parameters, i.e. large scales, we zoom out of the ice-core
records and investigate the global behaviour, i.e. the overall
trend of the time series. The output of the method is a feature
map, which is a greyscale map as a function of location
(time) and scale (degree of smoothing) (Fig. 5). This feature
map is a graphic illustration of the dynamic behaviour of the
ice-core records, and can be interpreted as follows. When
the derivative is significantly greater than zero, the feature
map is flagged black at this particular location and scale.
When the derivative is significantly below zero, the feature
map is flagged white at this particular location and scale.
When the derivative is not significantly different from zero,
the feature map is flagged grey at this location and scale.
Thus, a peak will be detected in the areas where the map
shows a transition from black to white.

4. RESULTS, DISCUSSION AND EVALUATION OF
PERFORMANCE
When evaluating the technique the following criteria were
considered:

1. Number of peaks identified by the technique.

2. The ability to find ‘known’ peaks in the datasets.

For the technique to perform satisfactorily we decided that it
should be able to detect the peaks of Krakatau, Indonesia
(AD 1883), Tambora, Indonesia (AD 1815), the quadruple
peak around AD1254 and the large-amplitude peak dated to
364 BC (Zielinski and others, 1994). In the current datasets
this corresponds to depths of 12, 18, 57 and 147m
respectively. In general, there are four factors that determine
the amplitude of the signal peak recorded in an ice core:

1. Strength of source. The signal needs to be strong enough
to change the local atmospheric concentrations in order
to make a significant imprint in the record.

2. Short residence time to create localization in the peak.
Longer residence times might be recorded as a trend
rather than a peak since the fallout time is extended with
longer residence time in the atmosphere.

3. Deposition of particulate needs to occur at the drill site
during the atmospheric residence time.

4. Limited post-depositional redistribution of the snow.
Post-depositional redistribution may either erode the
snow in which the signal is contained or lead to a mixing
of snow from different precipitation events. Both
processes may lead to a decrease in amplitude.

Techniques I–III provide different ways of estimating the
variance of the dataset. Techniques II and III also correct the
threshold for multiple testing. The techniques that use all the

Fig. 5. Highlighted section of the result from implementation of
technique V on the DEP record. (a) A family of smoothed records.
(b) Areas of significant positive or negative derivative as function of
depth and scale. Dark grey indicates significant positive, light grey
indicates significant negative and white indicates derivative not
significantly different from zero. A peak is defined in the transition
from dark grey to light grey, and the transition has to be clear over
several scales (�) (Godtliebsen and Øigård, 2005).
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data are sensitive to long-period trends. This is partly
handled by the elimination of trends through bandpass
filtering of the data prior to analysis. This is one major
disadvantage of these techniques, as successful bandpass
filtering of the input data before the analysis is dependent on
the user’s knowledge of the dataset. If the peaks in the
dataset are of variable amplitude, the first three methods are
biased towards selecting large-amplitude events. There are
variations in the level of estimated threshold values between
methods I–III and the respective data series (Table 1). The
reason for this variation is that the error or noise term in the
respective data series influences the determination of
variance in each method. The low-S/N ECM signal gives
lowest ST by technique I and highest by technique III,
whereas for the high-S/N signals like DEP and sulphate the
picture is reversed. Technique II has a ST between III and I
for all three data series. That is, how conservative a method
is with respect to ST is determined by the noise character-
istics of the recorded signal under consideration. Technique
II seems to be least susceptible to this effect (Fig. 3).

A more important comparison than the ST level, and
which also allows comparison with the other two methods,
is the number of peaks detected and the ability to detect
defined reference peaks. For techniques I–III the number of
detected peaks is directly related to the threshold level
(Table 2). However, the detection of the defined reference
peaks indicates the ability to detect peaks of variable
amplitude. The reference peak with the smallest amplitude
(Krakatau 1883) is the one that is missed by techniques I, III,
IV and V, but not in all three records (Table 3). The reason
why technique II captures this peak in all three records is
simply the low variability of threshold level compared with I
and III.

Technique V identifies a similar number of peaks in DEP
to the other techniques. This is not the case for the sulphate
data, probably because of their smaller sample size. As
mentioned before, each sample of the sulphate data is a
mean value over a finite length (5 cm) of the ice core. This
gives fewer samples along the record, but each sample has a
higher ‘degree of freedom’ (df). A mean of several samples
has higher df than each individual sample contributing to
the mean. Technique V does not take this into account, but
treats the data as if they consist of a lower number of
samples. This leads to the possibility of fewer peaks being
identified. This effect is naturally handled by the other
techniques that base the threshold on the variance, as the
variance naturally decreases with longer samples (higher df
per sample), or, more precisely, low-pass filtering with lower

cut-off frequency gives lower variability for this type of
signal. Technique V does not work satisfactorily on the low-
S/N record represented by ECM data. Many peaks are not
well defined, probably for two reasons. First, as there is more
noise in these data it is naturally more difficult to define a
significant slope of the derivative. Second, as this dataset is
sampled very densely, not only does it contain more high-
frequency noise but also the peaks are not as sharp as those
of a dataset containing fewer samples. This also leads to less
defined peaks in technique V. Technique IV (Fig. 4) is the
least conservative method with respect to the number of
peaks identified, whereas V is the most conservative for
records of fewer samples as well as for the low-S/N ECM
record.

The sulphate and DEP records are weakly log-normal
distributed (Fig. 6). Thus, by log-transforming these data the
assumptions of normal distribution are strengthened. For
technique I this results in less conservative thresholds, with
more peaks identified. Techniques II and III are more
conservative and thus identify fewer peaks. However, the
reference peaks are all identified. As anticipated, technique
IV shows, within the window, the same pattern as
techniques II and III. The performance of technique V is
not changed for the log-transformed DEP records compared
to the non-transformed data, whereas for the transformed
sulphate data it fails. This is probably due to the influence of
low S/N or low sample rates, both of which contribute to the
difficulties in defining significant derivatives.

Techniques I–III are very quick and easy to implement,
and no subjective choices need to be made except for the
bandpass filtering. However, they suffer from the fact that
they take all the data into account in the variance estimate,
and thus are somewhat biased towards large-amplitude
peaks. Technique IV suffers slightly from a longer compu-
tational time and the additional decision on the optimal
window size, whereas technique V is computationally slow
for large datasets and dependent on ‘large’ transitions in the
values to efficiently define the position of zero derivative of
the peak. Another disadvantage with technique V is that
asymmetric peaks with a long tail (on the ‘younger’ side)
might hamper its ability to define a significant slope of the
derivative. However, the idea of looking for significant peaks
at several time-scales, not only the scale defined via a static
filter routine as for the other techniques, the colour map
presentation (Fig. 5) and the ability of the method to take the
shape of the peak into consideration are compelling aspects
of the scale-space approach.

It should also be noted that a direct implementation of a
derivative method like SiZer (Chaudhuri and Marron, 1999)
has been tried. However, it did not yield satisfactory results,
primarily because the events we are trying to identify are
present on such short scales that proper analysis of the
significance of the slope of the derivative is prevented.

Table 1. Summary of significant thresholds (ST). Note the
differences in threshold level due to how the different types of
recorded signals interact with the threshold estimation

Technique STECM STDEP STsulphate

mA Sm–1 ppb

I 1.0265 5.98�10–6 70.21
II 1.0570 5.63�10–6 51.5
III 1.1799 5.17�10–6 45.24
IV 1.0862* 4.69�10–6* 41.54*

V N/A N/A N/A

*Mean value of STIV. N/A, not applicable.

Table 2. Number of peaks identified by each method

I II III IV V

ECM 32 32 22 21 11
DEP 35 36 42 44 42
SO4

2– 22 41 47 49 16
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All the techniques reveal whether a peak deviates
significantly from the background. Only technique V takes
into account the shape of the peak. Further, no inference is
made on the origin of the peak. Knowledge of the underlying
physical process is required to assess correctly the sig-
nificance and origin of the peak. Peaks found in time series
such as those used in this study are believed to have a
volcanic origin (Hammer, 1980; Moore and others, 1989;
Clausen and others, 1997). However, to be able to address
that question, other methods need to be used based on
historical data on eruptions, location and magnitude of
source (Delmas and others, 1985) and trace element
analyses of fine ash (Palais and others, 1990). In addition,
only peaks that are identified in all of the available records
should be considered (Zielinski and others, 1994; Karlöf and
others, 2000).

5. CONCLUSION
Five techniques for determining significant peaks are
compared. Technique II shows less variation in its estimates
of threshold than techniques I and III. Techniques I–III are
easy and quick to implement, once the data have been
bandpass filtered. Technique IV is a local implementation of
II and III, and is preferred if one assumes that the record is
affected by changes in variance over time (non-stationarity
in variance). Technique V is recommended when one
considers the shape to be more important than the ampli-
tude of the peak; however, one drawback is the long
computational time compared with the other methods. For
most situations technique II or III is recommended.

This study has shown that there are obvious advantages in
using a statistical approach to find peaks in ice-core records.
A further advantage if such methodology can be standard-
ized is that intercomparison of different ice cores can be
done much more accurately than today. Moreover, since the

methods we have compared identify different numbers of
peaks, it is important to use patterns of several peaks when
trying to line up events between different stratigraphy
records.
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