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SUMMARY  
During the past fifteen years, a number of initiatives were undertaken at national level to develop ocean 

forecasting systems operating at regional and/or global scales. The coordination between these efforts has been 
organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French 
MERCATOR project is one of the leading participants to GODAE. The MERCATOR systems assimilate a variety 
of observations in routine such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and 
salinity profiles, focusing on high-resolution scales of the ocean dynamics. 

The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication 
including Optimal Interpolation, Kalman Filtering and Variationnal methods, which are progressively deployed 
through the SAM (Système d’Assimilation MERCATOR) series. SAM-1 is based on the reduced-order optimal 
interpolation SOFA scheme which can be operated using “altimetry-only” or “multivariate” setup; it relies on the 
concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical 
contributions. The second release, SAM-2, is being developed to include new features from the SEEK filter (such as 
three-dimensional, multivariate error modes and adaptivity schemes). The third one, SAM-3, considers variational 
methods such as the incremental 4D-VAR algorithm.  

Most operational forecasting systems evaluated during GODAE are based on least-square statistical estimation 
concepts, assuming gaussian errors. In the framework of the E.U. MERSEA project, R&D activities are conducted 
to prepare the operational ocean monitoring and forecasting systems of the next generation. The research effort aim 
at the exploration of non-linear assimilation formulations to overcome the limitations of the current systems. This 
paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the EnKF filter and 
the SIR filter. 
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1. INTRODUCTION 

 
Operational Oceanography is an emerging field of activites that can be defined as the 

process of systematic and real-time monitoring and prediction of the state of oceans and 
coastal seas (including living resources), in a way that will promote and engender wide 
utility and availability of this information for maximum benefit to the community [Verron 
and Chassignet, 2005]. The scientific and technological feasability of operational ocean 
forecasting systems results from several factors:  

• the maturation of numerical models and computing techniques available to simulate 
the ocean circulation: substantial progress has been achieved especially in terms of model 
formulations, discretization techniques, numerical schemes, parameterization of sub-grid 
scale processes, coupling with the overlying atmosphere and sea ice etc. [Griffies et al., 
2005]; in addition, the growth of resources for high performance computing have permitted 
an increase of the spatial resolution to such an extent that, today, basin-scale models are able 
to resolve the mesoscale dynamics explicitly.  
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• the concerted effort of the nations to establish global ocean observing systems: 
during the past decade, major international programs took place in the World Ocean (e.g. the 
World Ocean Circulation Experiment) with the objective to better characterize the state of 
the global ocean; the contribution of satellite altimetry to that effort has been critical, 
providing for the first time a continuous and accurate observation of the surface signature of 
the ocean dynamics at global scale [Fu and Cazenave, 2001]. 

• the progress achieved in data assimilation techniques: the first application of data 
assimilation in oceanography dates back to the eighties, involving simple ocean models; 
then, the theoretical framework of data assimilation has been progressively adapted to meet 
the specific requirements of more sophisticated ocean models and observational data sets : 
major advances have been achieved to (i) adapt the assimilation algorithms to ocean systems 
of very large dimensions, (ii) develop sophisticated representations of the error statistics with 
primitive equation models, (iii) implement multivariate algorithms for assimilating several 
data types simultaneously, and (iv) extend the theoretical framework from linear to non-
linear problems [e.g. Verron, 1992 ; Blayo et al., 1997 ; De Mey 1997 ; Fukumori 2001 ; 
Evensen 2003; Brusdal et al., 2003].  

As a consequence of this overall progress, ocean forecasting in the meteorological sense 
is becoming a reality although this was not identified as a central issue in the early nineties. 
A number of initiatives were undertaken at national level to develop ocean forecasting 
systems operating at regional and/or global scales (e.g., MERCATOR in France, FOAM in 
the United Kingdom, MFS in Italy, TOPAZ in Norway, HYCOM and ECCO in the United 
States and BLUElink in Australia), and the coordination between these efforts started to be 
organized internationally through the GODAE (Global Ocean Data Assimilation 
Experiment) project [Smith, 2005]. One of the main GODAE objectives will be to compare 
the assimilation systems implemented operationally and evaluate their overall performances 
in real-time conditions. 

The French MERCATOR project [Bahurel 2005] is one of the leading participants to 
GODAE. The project was launched in 1995 by the major French agencies involved in 
oceanography. The MERCATOR system is based on two components, the ocean model and 
the remotely sensed (e.g. SST, altimetric data) and in situ (e.g. temperature and salinity 
profiles) observations, that are integrated through an assimilation system with the objective 
to provide the best possible description of the real ocean. The assimilation methods are all 
derived from least-square estimation principles. In the first part of this paper, the suite of 
assimilation tools implemented in the MERCATOR system will be reviewed and illustrated, 
focusing on the scientific developments that are conducted in R&D mode. 

The transition between the demonstration stage achieved so far by MERCATOR and the 
consolidation phase is being conducted through the european MERSEA project which 
represents the oceanic contribution to GMES (Global Monitoring for Environment and 
Security). In the second part of the paper, the research effort in data assimilation carried out 
in MERSEA will be discussed and illustrated. Following the pathway taken by NWP 
organizations, it is believed that a strong investment in R&D is necessary to support 
operational oceanography in the long-term, with strong beneficial feedback on the research 
side. The research directions described in Section 4 will be targetted to the exploration of 
new approaches focused on some non-linear aspects of data assimilation. 

 
 

2. THE  MERCATOR OPERATIONAL MONITORING AND FORECASTING SYSTEM 
 
Operational ocean prediction systems are being developed with a variety of objectives in 

mind, such as ocean current hindcasting and short-range forecasting, monitoring and 
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prediction of the surface layer’s properties, estimation of the thermodynamic state of the 
ocean for seasonal and climate predictions, production of retrospective analyses of the 
changing ocean, and representation of the backgroud physical environment which is critical 
to the functioning of marine ecosystems. 

The representation of the ocean state at eddy-resolving resolution is necessary to meet the 
requirements of end-users, but this is also fully justified from a scientific point of view. The 
dominant energetic activity of the mesoscale ocean, its non-deterministic nature and the 
interactions with the large-scale circulation are now well recognised properties, requiring 
sophisticated numerical models and assimilation methods that make the best use of sparse 
observations. To produce reliable forecasts, the models must be initialized with conditions 
that represent as accurately as possible the actual state of the ocean at eddy-resolving 
resolution. Fortunately, the arrival of satellite observations has played a pivotal role in the 
development of operational oceanography, providing the observational basis needed to 
respond appropriately to the « high-resolution challenge ». 

The MERCATOR system provides a full 3D depiction of the ocean dynamics and 
thermohaline circulation (temperature, salinity, currents, sea surface elevation,…), with a 
priority given to high resolution (eddy resolving) scales. Information is available on a near-
real-time and routine basis consisting of weekly analyses and 2-week forecasts, in addition to 
retrospective analyses performed in hindcast mode. 

The MERCATOR prototypes consist of an ocean model, different datasets that are 
assimilated and an assimilation system. The ocean model used today in MERCATOR is 
based on the rigid-lid version of the OPA-NEMO primitive equations model developed at the 
LOCEAN laboratory [Madec et al., 1998], and the transition to the free-surface version of 
the ocean code is underway. Surface forcing consist of daily fields of wind stress (i.e. the 
friction of the wind on the ocean surface), evaporation, precipitation, non-solar and solar heat 
fluxes provided by the European Center for Medium-range Weather Forecast (ECMWF) 
analyses and forecasts. The surface forcing includes a retroaction term in the net heat flux, 
based on the difference between the model Sea Surface Temperature (SST) and the weekly 
Reynolds SST product, in order to describe the coupling between the ocean and the 
atmosphere. The main river outflows are represented by an input of fresh water at the river 
mouth given by the climatological monthly data base from UNESCO [Vörösmarty et al., 
1996].  

Input data for the MERCATOR system include in situ as well as remotely sensed 
observations which are used for several applications: forcing, data assimilation, model 
verification and validation. Here we will focus on the data used for assimilation. Figure 1 
shows an example of data (observations of sea-level anomalies, temperature and salinity 
profiles) assimilated over a 7-day window and the resulting model state after assimilation. 
One can notice the high spatial coverage of the altimetric data (3 satellites are available, see 
Fig. 1a) and the relative scarcity of in situ data, especially salinity profiles (Fig. 1c). The 
continuous line in Figure 1b corresponds to XBT temperature profiles collected along 
shipping tracks. The analysed SST field which gathers information coming from both the 
model integration and the available observations is displayed in Figure 1d and shows 
important mesoscale structures.  

The system components are assembled into a hierarchy of prototypes and at present time, 
three prototypes are being used operationally: 

• The first prototype (noted PSY1) covers the North and Equatorial Atlantic with an 
intermediate resolution of 1/3° and 43 vertical levels distributed from 12 m at the surface to 
200 m at the bottom [Benkiran et al., 2005]; this model simultaneously assimilates “surface” 
data from SST and satellite altimetry and vertical temperature/salinity profiles ; the 
Mediterranean Sea is not explicitely included in the model domain, but its impact on the 
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North Atlantic basin is taken into account through a buffer zone covering the Gibraltar Strait 
and Alboran Sea. 

• The second prototype (noted PSY2) is a high resolution model (5 to 7 km horizontal 
resolution, 43 vertical levels from 6 m at the surface to respectively 200 m and 300 m at the 
bottom of the Mediterranean Sea and the Atlantic) covering North Atlantic basin from 9°N to 
70°N and Mediterranean Sea; this configuration is more specifically focused on mesoscale 
processes [Drillet et al., 2005]. It is intended to provide  boundary conditions for coastal 
modelling in European seas. Today, only altimetric data are assimilated in PSY2 but an 
upgrade is underway for incorporation of in situ data. The next version of the high resolution 
Atlantic model will design the future global high resolution model (1/12°) with a free 
surface, a partial step vertical coordinate, the atmospheric bulk formulae and a sea ice model. 

•  The third prototype (noted PSY3) is a global ocean configuration with an horizontal 
resolution of 2°x2°cos(latitude) and 31 levels on the vertical, that assimilates altimetric data 
only. There are 21 levels located in the top 1,000 meters of the water column, and the 
thickness of the levels varies from 10 m at the surface (within the first 100 m) to 500 m 
below the 3,000 m level ; a realistic topography based on the ETOPO5 bathymetric data base 
is used  [Ferry et al., 2005]. Every month, this prototype provides up-to-date estimates of 
oceanic initial conditions for seasonal climate predictions experienced in NWP centers. An 
upgrade in the resolution will be achieved soon for the global configuration from 2° to 1/4°.  

Figure 2 illustrates the spatial coverage of these models and the typical oceanic structures 
present in the numerical model outputs. 

 

 
Figure 1: Different kind of assimilated data for a particular week (a, b, c) and resulting sea surface temperature 
analysed by the MERCATOR North Atlantic (1/3°) prototype. Along track SLA data (Jason1, ERS2, GFO) (a), 
available temperature (b) and salinity (c) vertical profiles and analysed sea surface temperature (d). 

a) 

c) 

b) 

d) 
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Figure 2: Examples of Mercator Ocean system outputs. (a) Global Ocean (~2° model) Sea Surface Temperature 
field, Real-Time Analysis 1st June 2005 computed 1st June 2005; (b) North & Tropical Atlantic (1/3° model) 1000 m 
depth Salinity, 2-week forecast 15: June 2005 computed 1st June 2005; (c) Gibraltar strait (5-7 km model, ~1/15°) 
surface currents (note the presence of eddies); Real-Time Analysis 1st June 2005; (d) Mediterranean sea (5-7 km 
model, 1/16°) Temperature vertical section between Sète and Tunis (and surface current map) ; 2-week forecast 15 
June 2005 computed 1st June 2005. 

 

3. ASSIMILATION SCHEMES IN THE MERCATOR SYSTEM 

(a)  Incremental approach 
MERCATOR is developing a suite of assimilation tools (called "SAM" for Système 

d’Assimilation MERCATOR) of increasing complexity, from sub-optimal sequential 
schemes to variational methods. This incremental approach was adopted at the start of the 
project to conciliate the operational needs for high-resolution, the available computing 
resources and the feasability of sequential methods to assimilate altimeter data with 
mesoscale ocean dynamics [De Mey 1997]. In the long-term, high-performance computing 
resources are expected to increase, and R&D activities are conducted to anticipate the 
introduction of more elaborated techniques such as the variational method. 

The MERCATOR assimilation tools in place today find their roots in the theoretical 
framework of least-square statistical estimation. The first release, SAM-1 has been 
elaborated from an optimal interpolation scheme; SAM-1 is running on an operational real-
time basis since early days of year 2001. The second release, SAM-2, is considering a 
Singular Extended Evolutive Kalman (SEEK) filter analysis method; it has been evaluated 
and intercompared to SAM-1 in several hindcast experiments and will be integrated in the 
operational chain soon. The third one, SAM-3, is targetting more advanced approaches such 
as the 4D variational method and is still under construction in R&D mode. 

 

(a)

(b)

(d)

(c)
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(b) SAM-1 
The SAM-1 assimilation tool is based on the reduced order optimal interpolation method 

developed by De Mey and Benkiran [2002) and Demirov et al. [2003]. Two different 
versions of this tool are implemented in the MERCATOR prototypes. 

Version 1 (noted SAM-1v1) considers a vertical extrapolation scheme based on the 
Cooper and Haines [1996] method to assimilate observations of Sea-Level Anomalies 
(SLA).  The assimilation scheme is described in details in Ferry et al. [2005]. The algorithm 
starts by calculating an SLA increment from innovations collected over a one-week cycle 
(i.e. the difference between the along-track measurements and the model forecast at the 
corresponding time within the cycle), using the SOFA interpolation scheme and a 
background error covariance that is constant in time. The SLA increment is partitioned into a 
baroclinic and a barotropic contribution in proportions that are determined according to the 
behaviour of the model for the period and the location under consideration. The barotropic 
component is then converted into an increment of horizontal velocity and barotropic 
streamfunction of the model, while the baroclinic part is used to modify the thermohaline 
structure of the water column by lifting-lowering of isopycnals with the Cooper and Haines 
technique. This scheme relies on the idea that, in oceanic regimes where baroclinicity 
dominates, the sea level is closely related to the depth of isopycnals: the deeper the 
isopycnals, the higher the sea level. Conceptually, if the density changes as a result of 
temperature increase, the warming water (which is then less dense and takes up more room 
than cold water) produces higher SLA and conversely.  

 

Figure 3: Sea level (a) and isopycnals (b) at the Equator in the Pacific for 23 June 1993 as simulated by the 
MERCATOR coarse resolution global ocean analysis system. The model state before (respectively after) 
assimilation is represented by black (respectively red) lines. Sea level is in meter, isopycnals (water density minus 
1000) is in kg.m-3.   
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SAM1v1 has been implemented in the PSY2 and PSY3 prototypes. To illustrate the 
impact of SLA data on the oceanic state, Figure 3 represents the sea level and the isopycnals 
along the Equatorial Pacific between 180°W and 140°W, before and after assimilation of 
altimetric data for 22 June 1993. The figure shows that the assimilation induces an upward 
motion of the isopycnals in the central and eastern regions, and a downward motion in the 
western region. In terms of temperature, an upward isopycnal motion is equivalent to raise 
the isotherms or equivalently to cool the water at a fixed depth. The impact in terms of sea 
level is shown in Figure 3a: by decreasing the ocean heat content, the surface elevation is 
decreased in such a way as to better fit the observations.  

Although this approach gives satisfactory results to assimilate SLA data in sub-tropical 
and mid-latitude regions, the Cooper and Haines method cannot be easily extended to 
assimilate other observations like SST, or in situ temperature and salinity profiles with a 
primitive-equation model. In addition, the modelling error is not necessarily distributed on 
the vertical as a Cooper and Haines mode, and more complex error structures must be 
considered. A fully multivariate, multi-data version of the OI scheme was therefore 
developed to assimilate simultaneously in situ T/S profiles and along-track altimetric data. 

Version 2 (noted SAM-1v2) of the OI assimilation tool is based on the formulation 
described in De Mey and Benkiran [2002]. It has been running operationally since January 
2004 in the PSY-1 MERCATOR North Atlantic prototype at 1/3° and it should be 
transitioned to the PSY2 prototype very soon. The background error covariance is still 
constant, but the algorithm performs a reduced order optimal interpolation on the vertical by 
means of multivariate EOFs (Empirical Orthogonal Functions of barotropic stream function 
and vertical temperature and salinity profiles) computed from a prior model simulation. The 
update of the model state is then expressed as a sum of contributions from each EOF 
weighted by the product of the innovation and the Kalman gain in the reduced space. The 
number (~ a few tens) and shape of the vertical modes permitted by this approach can be 
adjusted regionally and seasonally, leading to a better representation of the local physics than 
with the uni-modal scheme implemented in SAM-1v1 [Benkiran et al., 2005]. A variant of 
this multivariate scheme has been implemented in the MFSPP  model of the Mediterranean 
Sea [Demirov et al., 2003], showing its capacity to accomodate a fairly wide spectrum of 
surface and sub-surface dynamical regimes. 

 
(c) SAM-2 

By construction, the SAM-1 algorithm assumes that the correlations can be separated into 
a product of horizontal and vertical correlations. The concept of separability is related to the 
predominant role of stratification and the very different scales involved horizontally and 
vertically in the open ocean. However, different behaviors can be expected near boundaries 
and coastal regions [e.g. Echevin et al., 2000]. These limitations motivated the development 
of a more advanced assimilation system, noted SAM-2, that doesn’t require the hypothesis of 
horizontal/vertical separability. 

The SAM-2 algorithm is inherited from the analysis scheme of the SEEK filter, which is 
a reduced-order Kalman filter introduced by Pham et al. [1998] in the context of mesoscale 
ocean models.  The error statistics of the SEEK filter is represented in a sub-space spanned 
by a small number of dominant error directions. The formulation of the assimilation 
algorithm relies on a low-rank error covariance matrix, which makes the calculations 
tractable even with state vectors of very large dimension. Several strategies can be adopted to 
initialize the vectors of the reduced basis. A method involving the computation of empirical 
orthogonal functions obtained from prior simulations (without assimilation) has been applied 
in the majority of case studies; this approach leads to corrections of the model trajectory that 
are multivariate and dynamically consistent. The extrapolation of the data from observed to 
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non-observed variables is performed along the directions represented by these error modes 
which connect all dynamical variables and grid points of the numerical domain. The 3D 
modal representation for the error statistics is intended to overcome some of the limitations 
of SAM1v2 in anisotropic and non separable regions of the world ocean such as shallow 
areas or in the surface layers.  

Unlike the original SEEK filter [Ballabrera-Poy et al., 2001], the variant of SAM-2 
which is considered here doesn’t evolve the error statistics according to the model dynamics 
[Testut et al., 2003]. This would require prohibitive costs given the size of the operational 
systems. However, some form of evolutivity of the background error is taken into account by 
considering different error sub-spaces for the four seasons. The error modes can be computed 
using different techniques: (i) EOFs of model states extracted from a prior model simulation 
(without assimilation), (ii) EOFs of system states extracted from a prior hindcast experiment 
(obtained, for instance, with SAM-1), or (iii) EOFs of the system tendencies that occur over 
weekly cycles. These various approaches have been tested recently, investigating their 
respective capacity to control the model trajectory with the PSY1 configuration. 

An issue of practical interest is the estimation of small correlations associated with 
distant variables. In order to prevent the data from exerting a spurious influence at remote 
distances through large-scale signatures in the EOFs, a simplification of the analysis scheme 
has been adopted by enforcing to zero the error covariances between distant variables which 
are believed to be uncorrelated in the real ocean. Previous experiments with the SEEK filter 
have shown that the local representation of the error sub-space is particularly effective for 
capturing the mesoscale features of the turbulent ocean (e.g. Penduff et al. [2002], 
Testut et al. [2003], Birol et al. [2005]). This simplification is implemented in SAM-2 by 
assuming that distant observations have negligible influence on the analysis. The global 
system is split into sub-systems, and for each of these the traditional analysis is computed. 
Only data points located within individual regions, centered on a sub-domain of one or 
several grid points to be updated, actually contribute to the gain. This approach can be 
understood as a tuning of the observation operator according to the sub-domain in question. 
The size of the regions is determined in such a way that the distribution of the observations 
available on the model domain always provides at least a few data points within each region 
of influence. The typical size of the regions of influence in the MERCATOR prototypes 
extend from about 200 to 500 km, i.e. several Rossby radii of deformation. 

The analysis step of the conventional Kalman Filter is reformulated to take advantage of 
the low-rank approximation, leading to more efficient inversions of the data in the reduced 
space than in the observation space [Brasseur 2005]. To minimise the computational 
requirements, the analysis kernel in SAM2 has been massively parallelized and integrated in 
a generic platform hosting the SAM-1 and SAM-2 kernel families. This platform is driven by 
the PALM software which makes the coupling between the model codes and the assimilation 
schemes more effective. This platform provides a technological capacity to extend the 
dimension of the error sub-space up to several hundred modes (typically 200 with the 
MERCATOR prototype configurations). 

As an illustration of the spatial properties of the background errors used in SAM-2, 
Figure 4 shows the representer function as defined by Echevin et al. [2000] for the sea 
surface temperature in two different regions: in the equatorial Pacific at 0°N, 140°W (PSY3 
configuration) and near the eastern Florida coast at 27°N, 80°W, in the sub-tropical Atlantic 
(PSY1 configuration). Based on model statistics reflected in the EOFs, the representer 
indicates how the model SST is modified by the assimilation of one single observation 1°C 
warmer than the model SST in the absence of observation error. In Figure 4a, the impact of 
this virtual observation extends eastwards and westwards (about ±10° of longitude) but also 
1° north and southward. The shape of the representer is slightly anisotropic, a nice feature 
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due to the EOF analysis of a “good” prior series of model states. In Figure 4b, the representer 
function exhibits a structure influenced by the Gulf Stream current which flows eastwards 
out of the Caribbean Sea and circulates northwards, following the American coast. The 
representer highest values are located near 27°N, 80°W with a meridional structure. Values 
greater than 0,5°C can be also found east of Florida, which may indicate that SST changes 
could be also due to surface heat fluxes at larger scale in this particular area. 

 
Figure 4: SST representer function of a +1°C sea surface temperature observation anomaly: (a) the representer is 
computed with respect to a SST point located at 0°N, 140°W (blue square), in the Central Pacific; (b) the representer 
is relative to a SST point located at 27°N, 80°W (blue square), in the Atlantic. The arrow indicates the Gulf Stream 
path.  

 
The SAM2 scheme has been tested in the PSY1 eddy-permitting North Atlantic 

configuration, assimilating a multivariate set of observations (along track altimetry, in situ 
temperature and salinity data, sea surface temperature). The estimation state vector  includes 
the temperature, salinity and barotropic height model variables, and a geostrophic adjustment 
is performed after each analysis step to extend the correction to the whole model state.   
Several hindcast experiments have been conducted during the year 2003 to validate the 
method with independent in situ temperature data. The skill of the assimilation is illustrated 
in figure 5, showing the vertical distribution of the misfit variance computed between 
independant (non-assimilated) temperature profiles and the climatology, the control run and 
the hindcast experiment. The model simulation without assimilation competes reasonably 
well with the climatology and improves the fit to the data in the sub-surface only. The 
assimilation improves the temperature field at all depths, with a significant reduction of the 
error in the thermocline. 

 

b) 

a) 
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Figure 5:  Variance of the temperature misfit (in °C2) between in-situ data and: (i) the climatology (orange - dashed 
line), (ii) the control run (blue line) and (iii) the assimilation simulation (red line) until 1000 meter depth during 
2003 over the North Atlantic. 

 
The performance of the assimilation to correct non-observed variables such as the surface 

currents has been verified too. Figure 6 shows the annual mean surface current computed 
from the hindcast experiment in the region of the Gulf of Mexico, displaying a much more 
realistic structure of the mean flow by comparison with typical representations obtained from 
simulations without assimilation.  

It is intended to elaborate the future MERCATOR prototypes (global ¼° and regional 
North Atlantic 1/12° resolution models) on the basis of the SAM-2 assimilation tool, and to 
pursue the development of the algorithm by improved temporal strategies such as the 
Incremental Analysis Updating method [Cosme et al., this issue] and new statistical 
parameterizations such as adaptive schemes [e.g. Brankart et al., 2003; Testut et al., 2003]. 
An extension to a wider variety of assimilation data types is also foreseen, in the perspective 
of new observing systems such as sea-surface salinity measurements from satellites with the 
forthcoming SMOS mission. 

 

 
Figure 6. Annual mean surface current (m.s-1) in the region of  Gulf of Mexico (Florida strait, Cap Hatteras, 
Yuccatan strait), computed  from a hindcast experiment performed during 2003 with SAM2. 
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(d) SAM-3 
As for the temporal dimension of the assimilation problem, a major simplification is 

considered in the SAM-1 and SAM-2 schemes since the analysis is performed at regular 
times intervals which do not necessarily correspond to the measurement times. This was 
identified as one of the major limitations of operational NWP systems, impacting sometimes 
severely the forecast performances. The 4D-VAR variational formulation developed with a 
global ocean model by Weaver et al. [2003] takes a rigorous account of the temporal 
dimension and has the additional advantage of computing increments that are consistent with 
the linearized model dynamics. The four-dimensional variational formulation is based on the 
minimization of a cost function that measures the weighted squared difference between 
observations (including a background state) and the model counterpart. The given solution is 
the closest model trajectory to the observations and is dynamically consistent with the 
linearized model equations and the background state. At a given time, this solution is 
constrained by both past and future observations available in the assimilation window. 

The development of a third type of assimilation tool (noted SAM-3) has been initiated in 
MERCATOR which relies on the OPAVAR system. The technical and scientific features of 
the algorithm are under investigation to assimilate in situ and altimetric data simultaneously 
with the PSY3 global ocean configuration. The variational approach is particularly well 
suited to control of the dominant processes taking place in the tropical region where 
equatorial waves can propagate over several grid points during an assimilation window. 

As a first evaluation of the sensitivity of the variational system to the prescribed error 
statistics, different hindcast experiments have been performed using SAM-3 in a 3D-VAR 
setup, assimilating temperature and salinity profiles in the PSY3 configuration with different 
distributions of observation error variance on the vertical.  A comparison has been made 
between a control run, a hindcast experiment perfomed period during the european ENACT 
project over the 1987-2001 using a constant observation error, and a new hindcast 
experiment with a depth-dependent observation error. The RMS misfit between the three 
experiments and the temperature and salinity profiles are shown in Figure 7. A further 
evaluation of the variational system will be conducted soon by comparing hindcast 
experiments performed with SAM-2 and SAM-3 in the PSY3 configuration. Some form of 
hybridation between the 4D-VAR and the SEEK filter is being considered, based on the 
approach proposed by Cosme et al. [this issue]. 

 
Figure 7: RMS misfit to observations in temperature (left) and salinity (right) for the control run (thin line), with a 
constant observation error profile (dashed line) compared to a depth dependent error (thick line). 
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4.  DEVELOPMENT OF AN ADVANCED ASSIMILATION CAPACITY IN MERSEA 
 

(a) The assimilation R&D effort in MERSEA 
Most operational forecasting systems in evaluation today, not only in MERCATOR but 

also in the FOAM, HYCOM and MFS projects, are based on simplified assimilation schemes 
such as reduced-order optimal interpolation (ROOI). These methods are fairly robust and 
require relatively few computer resources; however, they rely on quite severe assumptions 
about the error statistics which are rarely verified in reality; therefore, they cannot make 
optimal usage of all available observations to estimate the state of the ocean and predict its 
evolution. 

The ambition for the MERSEA will be to improve the existing assimilation tools 
implemented in the european forecasting system, with the aim to (i) address new issues 
which are particularly relevant for ocean forecasting at high resolution, such as the existance 
of non-linear processes and non-gaussian statistical behaviours, (ii) extend the assimilation to 
new data types such as sea-ice parameters or biogeochemical properties in coupled 
circulation/ecosystem models. The focus in MERSEA is set on fully multivariate 
assimilation methodologies with proven capabilities that have been developed and applied 
extensively in previous European operational oceanography projects [Brusdal et al. 2003]. 
Three classes of assimilation methods are being considered:  

• very computationally efficient multivariate statistical schemes (e.g. SAM-2 or the 
ensemble-based OI schemes) which use time invariant approximate error statistics; 

• advanced ensemble based methods (EnKF and SEEK) which can evolve the error 
statistics in time using non-linear models, and thereby provide realistic predictions of error 
statistics to be used in the analysis scheme. These have been demonstrated during the 
DIADEM experiment [Brusdal et al. 2003] and the EnKF is presently used in the TOPAZ 
system; 

• fully non-linear filters such as the SIR filter, which is a property conserving Monte-
Carlo method designed to handle non-Gaussian error statistics.  

The progress achieved in these different categories of schemes are illustrated here below 
in a number of case studies. 

 
(b) MERSEA developments with the SEEK filter 

Turbulent momentum, heat and fresh water fluxes at the air-sea interface (usually 
computed using bulk formulations) are one of the main sources of error in ocean models 
[Large 2005],  which strongly penalize the operational capacity to provide realistic forecasts 
of the thermohaline characteristics of the mixed layer and of the surface ocean currents. This 
problem is explored in the framework of MERSEA, in order to better understand the nature 
of these errors and improve our knowledge of the ocean-atmosphere fluxes by assimilation of 
oceanic observations. 

The starting point of this investigation is a reduced order Kalman filter or an optimal 
interpolation scheme (like the SAM-2 scheme or the SEEK filter with a pre-determined 
background error) in which the background error covariance matrix is represented by means 
of a set of 3D error modes (e.g. EOFs of the model variability) in the state space of the ocean 
model. The idea is then to augment the control space of the filter to include, in addition to the 
state variables, information about the air-sea fluxes. This information could be the fluxes 
themselves, or the atmospheric parameters from which they are computed. Instead, an 
approach is developed here that includes a selection of key parameters of the bulk formulae 
in the control vector, because (i) these parameters are likely to persist in time (the aim is to 
improve the forecast), (ii) they are expected to be controllable by ocean observations 
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(provided that the chosen parameters are linearly linked to the value of the flux), and (iii) 
they are assumed to be the real source of error [Large 2005] (in spite of a possible risk to 
compensate errors on the atmospheric parameters by correcting the bulk coefficients). 

In the example discussed here, only the sensible heat flux coefficient (CH) and the latent 
heat flux coefficient (CE) are included in the control vector. The procedure is tested using 
twin assimilation experiments with a similar model configuration as in the MERCATOR 
PSY3 prototype. The reference simulation (the true ocean) is a standard interannual 
simulation for the year 1993, with the original bulk formula: 

 
)( awHaS TTWCCQ −= ρ  

 
where aρ  is the air density, C is the air specific heat, W is the wind speed, Tw and Ta  are the 
sea-surface and air temperature, and 
 

),max( asEaL qqWCLQ −= 0ρ  
 

where L is the vaporisation latent heat, qs and qa are the surface and atmospheric specific 
humidities. CE and CH receive complex parameterizations depending, in particular, on the 
stability of the air column close to the sea surface. Figure 8 shows the value of CH in the 
reference simulation for January 31st, 1993. Synthetic observations of temperature and 
salinity profiles are then sampled from this reference simulation to be assimilated in a 
modified simulation in which the values of CE and CH are kept constant (CE=1.12  10-3 and 
CH=10-3). Hence, the experiment is built in such a way that the only source of error in the 
model is due to CE and CH. 

To perform the assimilation experiment with sequential corrections of the bulk 
coefficients, a relevant background error covariance matrix in the augmented control space 
has to be provided. For that purpose, an ensemble of ocean models was built using different 
values of CE and CH. From this ensemble of ocean models, an ensemble of 5-day forecasts 
was computed with a series of initial conditions distributed in time in 1993. The 5-day 
forecast period was chosen to correspond to the assimilation window of the sequential 
assimilation scheme. In that way, an ensemble of 5-day forecast anomalies (augmented with 
the CE and CH anomalies) was obtained, and the 20 dominant EOFs were used to 
parameterize the background error covariance matrix for the assimilation experiment. 
However, since in each member of the ensemble, the coefficients are constant horizontally, 
the resulting error covariance matrix is unable to represent correctly the horizontal 
correlation structure between CE and CH  errors and the ocean state error. If it is used as it is, 
the above covariance matrix can only generate corrections of CE and CH  that are constant 
over the world ocean. Hence, this ensemble will only be used to estimate the local 
multivariate correlation between the ocean state and the bulk coefficients while we will rely 
on the local SEEK algorithm [Brankart et al., 2003] to eliminate the long range correlation 
coefficients. In that way, local corrections of  CE and CH  will be obtained. 

Figure 8 illustrates the statistical analysis obtained for the augmented state vector after a 
5-day forecast from perfect initial condition, using temperature and salinity observations 
sampled from the reference simulation. The analyzed field for the latent heat flux 
coefficient (CE) is compared to the same field in the reference simulation. It shows that 
significant values of the bulk coefficients can be inferred from only temperature and salinity 
observations. This experiment is ideal in the sense that the only source of error are in CE and 
CH and the atmosphere and ocean initial conditions are both perfectly known, but it 
illustrates the theoretical possibility to estimate the turbulent air-sea flux bulk coefficients by 
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inverting oceanic observations. To go further, several questions need to be addressed : How 
many bulk parameters can be controlled using only oceanic observations? What is the impact 
of initial errors in the ocean state? In other words, is it possible to control the full system, i.e. 
the ocean state and the flux parameters, with the available ocean observation system ? 

 

Figure 8. Spatial distribution of latent heat flux coefficient : as obtained in the reference simulation (left pannel), and 
as reconstructed by the statistical analysis with the augmented state vector (right pannel). 

 
(c) MERSEA developments with the EnKF 

Statistical estimation techniques are based on a theoretical framework in the linear case 
while in the non-linear case one generally resorts to Monte-Carlo methods. In the two-step 
approach of sequential data assimilation, the Ensemble Kalman filter [Evensen 2003] 
performs a Monte-Carlo propagation step while the analysis step is based on the linear 
estimation. This linear analysis step is therefore optimal for multi-Gaussian distributed 
model state variables in all model grid cells. When this assumption is not respected, the 
linear analysis can result in a bias that is neither due to observation nor model bias but 
inherent to the estimation process. In Bertino et al. [2003], a common tool of geostatistics, 
the Gaussian anamorphosis, is suggested to extend the analysis step to a wider class of 
variables, those that can be transformed to multi-Gaussian by an individual non-linear 
transformation of each state variable. The resulting analysis of an ensemble of forecast states 
then allows non-linear estimation, and the method is not restricted to the sole EnKF but 
applicable to any sequential data assimilation method. Even if this approach assumes that the 
joint density function of transformed Gaussian variables will remain multi-Gaussian, the 
ability to reduce estimation biases related to non-Gaussian variables was illustrated on a 
simple 1-dimensional ecosystem model, on the ground that a non-linear transformation that 
excludes negative concentrations of ecosystem variables avoids the post-processing of 
negative estimates obtained by linear estimators, and cancels a large source of estimation 
bias [Bertino et al. 2003].  

In 3-dimensional physical ocean models the state variables are less characterized by the 
accumulation of zero values than the ecosystem variables, but some exceptions to the multi-
Gaussian assumption are clear: in variable vertical coordinate models (isopycnal or hybrid 
such as HYCOM), the layer thickness is a state variable with positive values and obviously 
does not fit in the Gaussian framework. Thus the TOPAZ system (Arctic component of the 
MERSEA system, based on HYCOM and the EnKF) has applied a lognormal law to the 
layer thickness error fields instead of a Gaussian law at the initialization of the EnKF. This 
avoids the need to post-process negative initial layer thicknesses and the introduction of non-
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differenciable fields. The lognormal law has however not proved satisfactory in the analysis 
step because of local particular cases. The very thin model layers in regions of strong 
gradients or of outcropping create spurious ensemble correlations. Further, the layer 
thickness distribution presents some diracs in the regions transitioning form isopycnal layers 
to fixed z-levels. There the lognormal law does not seem more appropriate than the Gaussian 
and it seems that an anamorphosis of hybrid layer thicknesses should be adapted by regions 
rather than applied globally. The use of a linear multivariate update in fixed coordinate 
models appears more satisfactory since all state variables (velocities, temperature and 
salinity) seem reasonably Gaussian. However, the counterpart is that a multivariate linear 
analysis cannot conserve non-linear relationships between these variables (i.e., density), so 
that non-linear transformations might be considered even for Gaussian state variables. A 
natural extension of this idea would be the assimilation of categorical variables by analogy 
with plurigaussian conditional simulations [Armstrong et al.  2001] assuming underlying 
Gaussian variables which classes determine different categories. 

 
(d) MERSEA developments with the SIR filter 

The Sequential Importance Resampling (SIR) filter is an ensemble-based Monte Carlo 
method similar to the Ensemble Kalman Filter (EnKF). However, the SIR updates 
probabilities of the ensemble members and not the ensemble states themselves. This 
difference makes the SIR filter to be a truly variance minimizing scheme, which can be 
easily applied for non-linear systems with any probability density function (pdf) that is not 
necessarily Gaussian.  

Such a method just perfectly suits the problem of data assimilation into strongly non-
Gaussian ecosystem models that MERSEA needs to investigate. Monitoring the ocean 
environment indeed requires not only physical but also ecosystem models. Although 
significant advances have been made in recent years, understanding and modelling the 
complex processes in ecosystems requires an integrated approach based on observed data. 
MERSEA will contribute to progress by developing an advanced biogeochemical model to 
be coupled with the global circulation model. 

The SIR filter has been used successfully for simultaneous state and parameter estimation 
in a relatively simple ecosystem model with 15 poorly-known model parameters [e.g. Losa et 
al., 2003]. The observations came from the Bermuda Atlantic Time-series Study data set, i.e. 
real observations were used. The obtained model solution agreed reasonably well with the 
data, even with independent (not assimilated) ones. The model parameters however revealed 
strong seasonal variations, which may point to possible uncertainties in parameterization of 
biological processes. This motivated us to try to estimate the model noise level in the data-
assimilation scheme also. 

In general, the magnitude of the noise level is very difficult to determine. Usually, it is 
based on ‘educated guesses’. On the one hand this is satisfactory because it is here where 
scientific intuition comes in. On the other hand, a more objective way of determining it is 
desirable. Furthermore, there is no a priori reason why the model noise should not be time-
dependent.  

In Sequential Importance Resampling (SIR) the pdf of the ecosystem model is 
represented by a finite number of ensemble members. By integrating the ensemble forward 
in time, subject to model noise, the evolution of the pdf with time is simulated. As soon as 
observations are present each ensemble member is weighted by the 'distance' to these 
observations. To be more precise, the weight iw  for ensemble member iψ  is calculated from 

∑
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i
i

i
i dp

dp
w
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which follows directly from Bayes theorem (see e.g. Kivman, 2003; Losa et al., 2003; Van 
Leeuwen, 2003). )( idp ψ  is the pdf of the observations given this ensemble member i. The 
specific form for this pdf will be presented below. This leads to a weighted ensemble, and 
each moment, like the mean of the pdf, or its variance, is calculated using the weighted 
members.  

After several updates of the ensemble by observations some ensemble members get 
relatively high weight, while the weight of others becomes negligible. This leads to a 
reduction of the effective size of the ensemble. To avoid this, the ensemble is resampled after 
each update, to give each member equal weight again. This resampling can be done in 
several ways. Here we used the weights as probabilities on the members, and draw a new 
ensemble from the resulting probability, with replacement1.  

The result of the resampling is an ensemble of the same size, in which some ensemble 
members are identical, and other have disappeared from the ensemble. This new ensemble is 
then integrated forward in time to the next observation time, where the weighting and 
resampling is repeated. To increase the spread in the resampled ensemble jittering is 
sometimes applied, in which identical members are slightly perturbed. No general rule exists 
on the size and form of the perturbations. In the experiments described here some jitter is 
applied to the parameter values of identical members. 

The SIR filter has been implemented for estimating poorly-known biological parameters 
of an ecosystem model developed by Drange [1996] which describes the dynamics of 
phytoplankton, zooplankton, bacteria, dissolved inorganic nitrogen - presented by nitrate and 
ammonium - and particular and dissolved organic matter within the upper mixed layer. The 
ecosystem model was constrained by BATS data, in particular, by nitrate, chlorophyll, 
dissolved organic nitrogen and carbon concentrations observed for the period from 
December 1988 to January 1994. A number of  biological parameters  have been adjusted.  

It is worth noting that the experiment is very similar to those designed and discussed in 
detail in the study by Losa et al. [2003]. Thus, an initial ensemble of 1000 particles is drawn 
randomly from an exponential distribution 

)exp()(
a
aaa −=p  

where a  is equal to a first guess. Then, each ensemble member evolves according to the 
model equations with some random model (system) noise added to the model at every time 
step of the integration. In the study by Losa et al. [2003], model noise was estimated simply 
by “trial- and error”. Here, the level of the system noise is implemented as 9 additional 
parameters added to 15 biological parameters to be optimized. At the analysis step, when 
filtering the ensemble, the observation errors are assumed to be Gaussian distributed, which 
leads to weights of the following form 

( )2250 sdCw ii )(.exp ψ−−= , 
where 2s  is the variance of the observation. 

As mentioned above, jitter is applied to all the optimized parameters of the resampled 
ensemble to avoid ensemble collapse. The jittering procedure is as follows. If, at an analysis 
step, some parameter values a are resampled many times, a uniform pdf is created in the 
interval (a- nearest smaller value, a+ nearest higher value), and new parameter values are 
drawn from this uniform density.  

Figure 9 (upper panel) depicts the temporal evolution of one of 15 optimized model 
parameters (red solid curves), obtained from the experiment with the variable level of the 

                                                
1 It has been shown that this procedure introduces extra variance in the ensemble [Liu and Chen, 1998], 
which can be minimized by other, even more efficient resampling procedures. 
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model noise, against previous estimates of the same parameters (black solid curves) when the 
model-noise level is constant in time Losa et al. [2003]. One can see that the previous 
estimates revealed quite strong seasonal variations and trends, which are difficult to 
understand, while optimizing the model noise has allowed one to get model parameter values 
almost constant in time. The temporal variations are present on the bottom panel of figure 9, 
which depicts the model noise variance over the period 1989-1994.  
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Figure 9: The evolution of the estimates for one of the optimized biological model parameters (upper panel) and 
model noise variance (bottom panel). All the parameters are normalized with respect to their initial values. 

 
The results obtained with the SIF filter show that strong seasonal variations found in 

estimated model parameters can be linked to errors in the model equations and forcing fields. 
It is worth noting, that in reality some of the biological parameters may vary in time as they 
may depend on a number of environmental conditions (the water temperature, for instance). 
Such dependencies however are not parameterized properly yet. 

In principle one would like to run the SIR-scheme with parameter and noise estimation 
along with the biogeochemical model. Unfortunately, that is too expensive in operational 
mode. A practical implementation is to estimate from a long hindcast the seasonal 
dependence of the model parameters and the noise level. In operational mode, the 
biogeochemistry model is then run with these seasonally varying parameters, and a 
realization of the model noise from the appropriate noise level at that time instant. More 
research is needed to find the optimal strategy. 

 
 

5. CONCLUSIONS  
In this paper, an overview has been given of the progress made in the field of ocean data 

assimilation in the perspective of operational monitoring and forecasting systems. In the 
MERCATOR context, advantage is taken from the whole spectum of complexity that 
assimilation methods can offer to provide the best possible depiction of the ocean in space 
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and time. Through the MERSEA project, a transition is underway from OI-type statistical 
schemes to more advanced methods which can address non-linear processes more rigorously. 

The GODAE initiative has contributed to establish a feedback loop in the oceanographic 
community, which guarantees a coherent progress between upstream research, R&D 
activities, operational applications, and the users. This is also pivotal ambition of the 
MERSEA project. The expected benefit will be to improve the quality standards of 
operational products and services, and thereby strengthen the credibility in, and sustainability 
of operational oceangraphy through the users’satisfation. 
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