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Abstract Macrozoobenthic soft-sediment communities
of central Arctic Kongsfjorden inhabiting six depth zones
between 5 and 30 m were sampled using SCUBA-diving
during June—August 2003 and analysed comparatively.
About 63 taxa were found, nine of which had not been
reported for Kongsfjorden and four for Svalbard. Suspen-
sion feeding or surface and sub-surface detritivorous poly-
chaetes and deposit-feeding amphipods were dominant.
Only 11 of the 63 taxa (45 species and additional 18 fami-
lies not further identified) inhabited the complete depth
range. Biomass ranged from 3.5 to 25.0 g ash free dry
mass m~> and mean Shannon diversity (Log e) was 2.06.
Similarity clustering from abundance and biomass data
showed a significant difference between the shallow station
(5 m) and the rest. The latter formed two sub-groups (10—
20 and 25-30 m). Depth is irrevocably correlated with ice-
scouring. Thus the differences in diversity together with the
predicted iceberg scour intensity support the ‘intermediate
disturbance hypothesis’ indicating that habitats impacted
by moderate iceberg scouring enable higher diversity. In
contrast, biotopes frequently affected only host pioneer
communities, while mature, less diverse assemblages domi-
nate depths of low impact.
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Introduction

Descriptions of species assemblages and biodiversity are
crucial to understand faunistic community modifications in
the frame of global and regional environmental changes.
Marine species diversity in the northern hemisphere gener-
ally declines from low to high latitudes (Thorson 1957;
Brattegard and Holthe 1997; Roy et al. 1998; Gray 2001).
However, environmental and biotope complexity may
favour biodiversity on small scale. Furthermore, intermedi-
ate biological and physical disturbance increases diversity
(Connell 1978; Connell and Keough 1985; Zacharias and
Roff 2001). In this vein coastal shallow water communities
are particularly attractive for biodiversity studies since
these sites are primarily affected by environmental changes
and serve as small-scale in situ laboratories (Dayton 1990;
Arntz et al. 1997).

Shallow coastal communities within the polar range
experience relatively constant temperatures and salinity,
but have seasonal pulses of primary production and silta-
tion. The light regime, currents and water depth are further
structuring factors. Water depth is important (e.g. Gutt et al.
1999; Sahade et al. 1998; Barnes and Brockington 2003)
however often superposed by other factors (Gulliksen and
Svensen 2004) like therewith-connected iceberg scouring.
As a disruptive force this has a huge structuring effect on
benthic communities, both in the Antarctic (e.g. Conlan
et al. 1998; Peck et al. 1999; Gutt 2001; Gutt and Piepen-
burg 2003) and the Arctic (e.g. Holte et al. 1996; Barnes
1999; Weslawski et al. 1999; Laudien et al. 2004). The
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impact on benthic communities varies, however, with lati-
tude, geography, depth, site exposure, local current regimes
and substrates reflected in a high variability both on tempo-
ral and regional scales.

The Arctic glacial Kongsfjorden (northwest Spitsbergen)
receives icebergs (including bergy bits sensu Armstrong
etal. 1966) calved from five tidewater glaciers (Liestgl
1988; Dowdeswell and Forsberg 1992) including Kongsb-
reen, which is the most active glacier in the Svalbard archi-
pelago (Lefauconnier etal. 1994). Regularly, icebergs
score the benthic realm leading to ploughing up of the sedi-
ment and thus strongly affecting the benthic faunal distribu-
tion and diversity in small-scale (e.g. Holte et al. 1996;
Wlodarska et al. 1996). Benthic soft bottom communities
populating these unstable bottoms at medium and deeper
zones have been described from several glacial or glacioflu-
vial fjords of Spitsbergen (e.g. Gulliksen etal. 1984;
Kendall and Aschan 1993; Wlodarska-Kowalczuk et al.
1998). However, information on benthic communities
inhabiting grounds shallower than 25 m is scarce and cov-
ers Hornsund and Skoddebukta (Gromisz 1983; Wlodarska
et al. 1996) whereas Sahade et al. (2004) analysed only soft
sediment macroepifauna of shallow Kongsfjorden. Descrip-
tions of macrozoobenthic infaunal communities of this
fjord exist from areas exceeding 30 m depth, available for
ship operations (Wlodarska-Kowalczuk et al. 1998, 2005;
Kendall etal. 2003; Wlodarska-Kowalczuk and Pearson
2004). Shallow water soft bottom macrofaunal communi-
ties have only recently received attention but, were not
sampled quantitatively (Kaczmarek et al. 2005).

With the present study we aim to quantitatively describe
macrobenthic soft-sediment epi- and infaunal associations
of six contiguous zones from 5 to 30 m. We compare the
taxonomic and zoogeographical composition, biomass and
diversity as well as feeding modes of the dominating spe-
cies. Dissimilarities in communities are determined by clus-
ter analysis using abundance and biomass data. Assuming
that biodiversity is modulated by iceberg scouring and in
line with the ‘intermediate disturbance hypothesis’ (Con-
nell 1978), benthic habitats impacted by moderate iceberg
scouring should enable higher diversity. In contrast, bio-
topes frequently affected by scouring should primarily host
pioneer communities.

Materials and methods

Study area

Sampling was carried out at Brandal (78°58.53'N,
11°51.35’E), a site located in central, glacial Kongsfjorden

(west coast of Spitsbergen, Arctic). The study area is situ-
ated on the north-eastern edge of the Brggger Peninsula,
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which forms the southern coast of the fjord. Kongsfjorden
has an extension of 20 km in length and between 4 and
10 km (at the mouth between Kvadehuken and Kapp Guis-
sez) in width. It reaches depths of ~350 m (on average
200-300 m). The fjord is directly connected with the North
Atlantic Ocean via the Kongsfjord-Renna trough (Bluhm
et al. 2001; Jgrgensen and Gulliksen 2001; Svendsen et al.
2002).

Semidiurnal tides of the fjord system range between 1.5
and 2 m and only weak currents prevail. Mean sea surface
temperature slightly exceeds 0°C, while maximal values
may reach 6°C in summer; the temperature at the 20 m iso-
bath is 3.6°C (Bluhm et al. 2001). During summer the 34
isohaline is located at 5 m depth. Icebergs and growlers are
present throughout the year and rarely exceed 20 m in
length or 5 m in height (Dowdeswell and Forsberg 1992). A
comprehensive description of the physical environment can
be found in Svendsen et al. (2002) and Hanelt et al. (2004);
ecological information on Kongsjorden is broadly compiled
in Hop et al. (2002).

Off Brandal (Fig. 1), the extensive flat soft-sediment bot-
tom of apparently uniform character slopes only slowly
within the first 50 m from the coast, followed by a steeper
incline. Sediments consist of a sand-clay mixture of quite
homogenous granulometric characteristics throughout the
fjord (Wlodarska-Kowalczuk and Pearson 2004) and
appear well oxygenated. In a nearby station (<1 km dis-
tance) M. Zajaczkowski (unpublished data, fide Wlodarska-
Kowalczuk and Pearson 2004) measured a POC/PON value
of 7.6, which indicates the existence of fresh marine detritus.
Irregularly ice-transported boulders can be found forming

e :Brandal

Fig.1 Landsat TM image of Kongsfjorden on Spitsbergen, Svalbard
archipelago (modified from Svendsen et al. 2002). The study site Bran-
dal, the village Ny-Alesund and transect A of Dowdeswell and Fors-
berg (1992, see Discussion) are indicated
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substrate for hard-bottom fauna and flora (e.g. Acrosipho-
nia aff. flagellata, Laminaria digitata and Phycodrys
rubens) communities in the soft bottom habitat (Whitting-
ton et al. 1997; Lippert et al. 2001).

Macrozoobenthos

Five replicated soft bottom samples were collected along
six isobathic transects (5, 10, 15, 20, 25 and 30 m) using
SCUBA-diving. A quadratic metal frame (20 cm side
length and 20 cm deep) was used to surround a small area
of soft bottom, which was thereafter removed by an airlift
system. This device was constructed using a pvc tube (6 cm
in diameter and 80 cm of length with an “n”-shaped end at
the upper edge), a compressed-air injection unit connected
to a 200 bar dive tank and an attached retaining bag
(0.5 mm mesh size). The collected material was immedi-
ately separated in the laboratory and species preserved in
70% ethanol. Thereafter, organisms were identified and
counted under a binocular microscope. Species accumula-
tion curves (sensu Gray 2001) were plotted to exploit the
cumulative number of different species observed—as each
a priori ordered new sample is added—against increased
sampling area. The plots indicate the minimum number of
cores needed to detect >90% of the soft bottom fauna
(Magurran 2004). After blotting on filter paper biomass
(including shells) of the different taxa was assessed from a
preserved sub-sample before drying to mass constancy at
60°C, estimations of the dry mass (DM) and ignition in a
muffle furnace at 500°C for 24 h for ash free dry mass
(AFDM). Percentages of species in comparison to the total
faunal abundances were estimated for the five bathymetric
zones separately. For each sample the Shannon—Wiener
diversity index (H', Loge) was determined from abun-
dance data. Thereafter, multivariate community analyses
were employed utilizing the PRIMER Version 6 package
(Clarke and Gorley 2006). Before calculating Bray—Curtis
similarities, data were square root transformed. Using
group average linkage, sample classifications were
achieved and thereafter samples related to each other iden-
tified based on the resulting dendrogram. By means of a
similarity analysis (one-way ANOSIM, 95% confidence
interval, Clarke and Gorley 2006) statistical differences
were identified. Thereafter, SIMPER (Clarke and Gorley
2006) was used to identify characteristic species, which are
contributing most to the statistical dissimilarity among
samples. Differences in species richness between the six
bathymetric transects were tested using one-way ANOVA.
Furthermore, species were classified into five feeding
modes (omnivores, carnivores, sub-surface detritivores,
surface detritivores and suspension feeders) according to
the literature (Syvitski et al. 1989; Aitken 1990; Gromisz and
Legezynska 1992; Schmid and Piepenburg 1993). Species

were assigned to four zoogeographical groups (Arctic, Arc-
tic-boreal, boreal and cosmopolitan) according to the litera-
ture (Gajewska 1948; Roézycki 1991; Weslawski 1991;
Anisimova et al. 1992; Gromisz and Legezynska 1992). All
data of this study are available via the internet (Herrmann
2004; Herrmann and Laudien 2004).

Results

Species-accumulation curves (sensu Gray 2001; Fig. 2)
show that the five replicates sampled were sufficient to
include >90% of the soft-sediment species as they already
level at 3—4 cores. Annelids comprise 79%, molluscs 11%,
crustaceans 8%, echinoderms 1%, and others (including
priapulids, sipunculids, anthozoans and ascidians) contrib-
ute less than 1% of the 45 known species and additional 18
families not further identified. Concerning the number of
individuals, annelids made up 84% of the specimens, mol-
luscs 10%, crustaceans 3%, echinoderms 1%, and others
<2%. Table 1 summarizes all taxa and their biomasses, also
showing that eleven species populated the full depth range
studied. The bulk of amphipods (80%) inhabited the 5 m
depth zone in association with the bivalve Cyrtodaria sili-
qua, which was only found at shallow depth. In contrast the
bivalve Ciliatocardium ciliatum, the gastropod Oenopota
sp. and the polychaetes Amphitrite cirrata and Orbinia sp.
only occurred at 30 m.

The SIMPER analyses revealed that Scoloplos armiger
(11-22%) and Dipolydora quadrilobata (14-31%) charac-
terize the community of all other depth zones, while the
shallow habitat was dominated by Crassicorophium crassi-
corne (32%) and Spio armata (26%). Euchone analis dom-
inated at 10 and 15 m (14 and 10%), S. armata at 10 and
20-30m (11-14%) and Chaetozone setosa at 20-30 m
(11-14%). Only five species were categorized as Arctic
species, 34 as Arctic-boreal, and 20 as cosmopolitans (three
taxa could not be classified). The whole depth range was
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Fig. 2 Species—accumulation curves of six depths (5-30 m) showing
that curves flatten out at 3—4 cores
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Table 1 Mean abundance (A, individuals m~2) and biomass (B, g AFDM m~2), nd not determined

Taxon Sm 10m 15m 20m 25m 30m

A B A B A B A B A B A B
Priapulida
Priapulus caudatus® 21 0.085 10 0.042 21 0.085 21 0.085
Sipunculida
Sipunculida indet. 10 n.d.
Anthozoa
Edwardsia fusca™® 63 8.682 10 1.447 10 1.447
Mollusca
Astarte borealis 10 3.104
Astarte sulcata™® 21 0.075 21 0.075 31 0.113 10 0.038
Axinopsida orbiculata® 10 0.003 10 0.003 271 0.073 10 0.003 302 0.081 326  0.087
Chaetoderma nitidulum® 10 n.d.
Ciliatocardium ciliatum® 13 n.d.
Crenella decussata® 21 0.001 313 0.148 448  0.196 73 0.051 156 0.077 273 0.129
Cryptonatica affinis® 10 0.012 21 0.024
Cylichna cf. arctica™® 52 0.060 21 0.024 73 0.083 52 0.060 10 0.012 26 0.030
Cyrtodaria siliqua®® 52 0.040
Hiatella rugosa®™® 42 0.635 52 0.005 135 0.040 115 0.203 39 0.005
Liocyma fluctuosa® 73 0.378 10 0.054 10  0.054 10  0.054
Macoma sp. 31 0.035 31 0.035 21 0.023 52 0.058 13 0.014
Montacuta sp. 94  0.011 42 0.029 78 0.008
Oenopota simplex™* 42 0.048 21 0.024 10 0.012 10 0.012
Oenopota sp.4 26 0.030
Polinices pallidus® 10 0.012 13 0.015
Serripes groenlandicusd 31 0.882 42 1.176 10 0.294 31 0.882
Thracia septentrionalis™ 10 0.002 10 0.002 10 0.002 10 0.002 13 0.003
Polychaeta
Ampharete cf. baltica 42 0.045 31 0.034 229  0.249 378 0.410
Amphitrite cirrata 13 1.679
Apistobranchus tullbergi® 10 n.d. 10 n.d. 65 n.d.
Brada villosa® 52 0.117 21 0.298 10 0.006 31 0.005
Chaetozone setosa’ 10 0.004 354 0.151 531 0.351 635 0.572 781 0.234 469 0.141
Chone sp. 10 0.073 42 0.291 52 0.363
Dipolydora quadrilobata® 73 0.012 1188  0.198 2344  0.390 1906  0.317 3583 0596 2018  0.336
Eteone spetsbergensis 10 0.127
Eteone flava 94 0.247 198  0.668 198  0.623 135 0.397 117 0.344
Euchone analis® 167 0435 1031 1.278 1000  1.039 365 0.540 167 0.208 117 0.146
Glycera capimtad 10 n.d.
Lumbrineris sp. 10 0.133 73 0.933 83 1.066 31 0.400 146 1.865 130 1.665
Maldanidae 1 indet. 31 0.299
Maldanidae 2 indet. 177 1.692 417  3.982 271 2.588 188 1.792 65 0.622
Marenzelleria wireni® 10 0.017 10 0.017
Ophelia limacina® 10 n.d. 52 n.d. 42 n.d. 21 n.d.
Ophelina sp. 10 nd. 83 n.d. 63 n.d. 10 nd. 73 nd. 39 nd
Orbinia sp. 13 0.259
Paraonidae indet. 10 nd.
Phyllodoce groenlandicad 52 1.935 42 1.781 10 0.393
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Table 1 continued

Taxon S5m 10m 15m 20m 25m 30m

A B A B A B A B A B A B
Polynoinae indet. 31 0.098 21 0.065 13 0.041
Praxillella praetermissa® 10 n.d. 31 n.d. 21 n.d.
Scalibregma inflatum 21 0.121 21 0.121 10 0.060 10 0.060 39 0.227
Scoloplos armiger® 83 0.138 1271 2.097 1927 1985 1906  2.217 1167  0.612 534 0.280
Sigalionidae indet. 21 0.344 10 0.172 13 0215
Spio armata 365 0317 385  0.335 323 0.281 750  0.652 1083 0.942 508  0.442
Spio filicornis 10 0.028 10 0.028 21 0.056 42 0.111
Travisia forbesii® 115 0.699 156 0.783 167  0.349 63 0.082 42 0.019 13 0.006
Crustacea
Anonyx nugaxd 63 0.167 10 0.066 10 0.066 26 0.165
Crassicorophium crassicorne™ 729 0.079 10 0.001
Onisimus edwardsi® 31 0.009 10 0.003 10 0.003 21 0.006
Paroediceros lynceus® 42 0.066 10 0.016
Protomedia sp.* 42 0.013 10 0.003 21 0.006 52 0.016
Priscilla armata® 52 0.011 10 0.002
Monoculodes sp. 31 n.d.
Ischyrocerus megalops 10 0.003 21 0.007
Synidothea nodulosa™* 21 0.048 31 0.071 21 0.048
Sclerocrangon boreas® 10 1.65
Echinodermata
Chiridota laevis 31 1.936 104 6.442 21 1.290
Holothuroidea indet. 10 n.d.
Ophiura robusta® 135  0.801 208 1.232 31 0.185 10 0.062
Ascidiacea
Pelonaia corrugata 21 0.830 31 1.246 10 0.415

# Taxon not reported for Kongsfjorden

® Taxon not reported for Svalbard according to Gulliksen et al. (1999), Kaczmarek et al. (2005) and http:/www.iopan.gda.pl/projects/biodaff/

EMBS-04.html

¢ Most likely Praxillella praetermissa (A. Bick, Univ. Rostock, personal communication)

d Referencexemplar (for numbers see Herrmann 2004) of the Museum fiir Naturkunde der Humboldt-Universitit zu Berlin

characterised by a similar zoogeographical species compo-
sition with around 8% Arctic representatives, 58% Arctic-
boreal and 34% cosmopolitans, which is consistent with
biogeographical relationships of macroalgae in the same
fjord (Wiencke et al. 2004).

The overall mean macrozoobenthos abundance was
6,296 individuals m~2 with minimal values at 5m depth
(2,260 individuals m~2 and 28 species), followed by the
30 m transect (5,443 individuals m~2 and 29 species).
Intermediate depths showed increased abundances and spe-
cies richness (10 m: 5,969 individuals m~2 and 42 species;
15m: 8,802 individuals m~2, 41 species; 20 m: 6,781
individuals m~2, 36 species; 25 m: 8,521 individuals m~>
and 35 species) (Fig. 3; Table 1). Species richness differed
significantly between the shallowest and the 10 and 15 m
transects, respectively (ANOVA, P < 0.05). Mean diversity
was 2.06 (0.12 SE), and ranged between 1.85 (0.28 SE) at

25m and 2.19 (0.29 SE) at 10 m. Highest evenness was
detected at 5m (0.82 &0.01 SE) and lowest at 25 m
(0.67 £ 0.02 SE). Minimal biomass was 3.5 g m~2 (5 m)
and maximum biomass 25.0 g m~2 (15 m) AFDM.

The cluster analysis of both abundance and biomass data
indicated a huge difference between the 5 m samples and all
other transects (Fig. 4, dendrogram for biomasses appears
similar and is therefore not shown). The latter group can be
sub-divided into the medium depth stations (10-20 m) and
the deeper stations (25, 30 m).

Discussion
The soft-sediment off Brandal, Kongsfjorden was inhabited

by 63 taxa. Nine of these had not previously been identified
and published for this fjord and four (the polychaete worm
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100

Marenzelleria wireni, the amphipod Priscilla armata and
the bivalves Hiatella rugosa, C. siliqua) had not been
reported for Svalbard yet. However, 45% of the present
taxa were also found inhabiting shallow soft bottoms
located between 5 and 50 m depth near Blomstrand Island
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(distance 5.6 km), Gluudneset (distance 6.3 km) and
Dyrevika-Conwaybreen glacial bay (distance 11.0 km)
(Kaczmarek et al. 2005). In spite of this, the common taxa
constitute a relatively low fraction (23%) of the 122 benthic
macroinvertebrates composing the soft bottom association
inhabiting the central Kongsfjorden coast recorded during
the previous study (Kaczmarek et al. 2005). The present
investigation, however, analysed the sand-clay bottom in a
narrower depth range (5-30m versus 5-50 m depth),
included a smaller sampling area (two orders of magnitude
less), sampled quantitatively by a suction device versus
dredging and did not aim to present an overall description
of the soft bottom benthos of Kongsfjorden. The main
objective of the study was to describe the fauna quantita-
tively and detect possible diversity dissimilarities between
bathymetric zones differently affected by ice-scouring.

Both shallow water surveys revealed that Axinopsida
orbiculata is an abundant bivalve, which was presently
found already at 5 m. However, this thyasirid bivalve
increased its density towards deeper stations. Hence, it was
also recorded on soft bottoms of Kongsfjorden between 50
and 70 m (Wlodarska-Kowalczuk et al. 1998) and characte-
rises the species association transitional between the glacial
bay community impacted strongly through inorganic sedi-
mentation and the associations inhabiting the central basin
and experiencing low levels of sedimentation (Wlodarska-
Kowalczuk and Pearson 2004; Wlodarska-Kowalczuk et al.
2005).

The present abundances of the polychaetes C. setosa and
Paraonidae indet. at 25 m (781 and 10 individuals m~?) are
in agreement with abundances of 739 and
11 individuals m~2, respectively, recorded in the deeper
study (Wlodarska-Kowalczuk etal. 1998). The former
polychaete species was the most abundant taxon in the shal-
low water dredging survey (Kaczmarek etal. 2005) but
ranked after D. quadrilobata, S. armiger and S. armata
only in fourth position in the present study. It can be found
throughout the fjord with increasing dominance towards
the glaciers (Wlodarska-Kowalczuk and Pearson 2004;
Wlodarska-Kowalczuk et al. 2005) and has been identified
as typical in open coastal glacial bays and fjords of Spits-
bergen (Kenall and Aschan 1993, Wlodarska-Kowalczuk
et al. 1998; Wlodarska-Kowalczuk and Pearson 2004). The
bivalves Macoma sp. and Liocyma fluctuosa were only found
in the present and previous shallow sub-tidal Kongsfjorden
study located further away from the main glacier outflows
(Kaczmarek et al. 2005). They were also recorded in Juli-
bukta, Skoddebukta and Bettybukta (Wlodarska-Kow-
alczuk etal. 1998) but not in the Kongsfjorden survey
carried out up to 1 nautical mile (nm) from the glacier
fringe. The distance of the sampling location in relation to
the glacier front may explain this pattern: both bivalves
require coarser sediments (Ockelmann 1958) and less turbid



Polar Biol

waters (Kaczmarek et al. 2005) and thus sites, where they
were observed are located at greater distance from the gla-
ciers (Brandal is ~8.5 nm off the glacier). Svendsen et al.
(2002) detected maximum fluxes of particulate inorganic
matter (PIM, 800 g m~> day~!) in front of the Kongsbreen
glacier fringe during a study conducted along Kongsfjor-
den. The sediment load dropped steadily with distance and
was lower than 20 g m~2 day~! at 5.5 nm from the glacier
margin. Sedimentation has been shown to have a structur-
ing effect on the distribution of macrobenthic communities
(Gorlich et al. 1987; Wlodarska-Kowalczuk and Pearson
2004; Wlodarska-Kowalczuk et al. 2005) and especially on
bivalves as inorganic material is particularly stressful to
most suspension feeders. It affects their feeding and respira-
tion by clogging the filtering organs and may hinder settle-
ment of larvae (e.g. Moore 1977). Similarly the polychaete
worms Ophelina sp. and Maldanidae 1 indet (unfortunately
only parts of the animals were available for taxonomy but
most likely they belong to Praxillella praetermissa,
A. Bick, personal communication) were abundant in the pres-
ent Kongsfjorden study and also occurred in fjords sampled
at a distance of at least 1.7 nm from the glacier front (Wlo-
darska-Kowalczuk et al. 1998). This is in line with the
observed decrease in species richness along the Kongsfjor-
den axis towards the glacial sediment source (Kaczmarek
et al. 2005). Similar patterns were found on the way to the
glacial margins or glaciofluvial outflows in Arctic fjords
both for soft and hard bottom communities (Farrow et al.
1983; Kendall 1994; Holte et al. 1996; Wlodarska et al.
1996) and for benthic decapods off the South Patagonian
Icefield (Mutschke and Gorny 1999). Likewise, in Potter
Cove (King George Island, South Shetlands), where a large
amount of PIM is washed from a glacier into the bay (Kl16-
ser etal. 1994), an ascidian dominated community is
substituting the high Antarctic sponge community, as the
former active filter feeders are able to irrigate their filtration
unit by mantel contraction in contrast to sponges, which
cannot effectively clean their filtering chambers (Sahade
et al. 1998).

The soft bottom fauna was dominated by polychaetes
and molluscs, both in species number (28 and 18) and indi-
viduals (4,544 and 820 individuals m~?). Crustaceans
inhabited the sediment only in lesser numbers (ten species,
78 individuals m~2) revealing a proportion of annelids :
molluscs : crustaceans = 8:5:2.9. In contrast to our results
and that of Gorlich et al. (1987) who also discovered low
percentages of crustaceans in glacier-impacted parts of
Hornsund, as did Holte etal. (1996) in Gronfjord and
Adventfjord, Kaczmarek etal. (2005) recorded a much
higher percentage of crustaceans during their dredging sur-
vey in Kongsfjorden. The latter sampled indeed a much
larger area and reached 50 m depth. For scarce and highly
mobile species like crustaceans, dredging might be an

appropriate tool (Syvitsky etal. 1989; Wlodarska et al.
1996; Kaczmarek et al. 2005). The shortcomings of this
method are, however, that it does not sample quantitatively
and the gear does not penetrate deeply enough into the sed-
iment to collect the majority of the burrowing animals
(Holme 1964). This is apparent through the observation
that although the sampling area exceeded the present one
by two magnitudes, the total number of all 11 common
polychaete species collected during the dredging-survey is
much lower compared to the present survey. The airlift sys-
tem operated by scientific divers as used during this study
may be a more adequate quantitative method compared to
grab-sampling. The latter method revealed even lower
proportions of crustaceans, though at deeper bottoms
(annelids : molluscs : crustaceans = 8:5:1; Wlodarska-
Kowalczuk et al. 1998) and did not sample any necropha-
gous amphipods (Wlodarska-Kowalczuk and Pearson
2004), although they were collected in the same area by
dredging (Kaczmarek et al. 2005).

The soft-sediment fauna is dominated by detritivorous
and suspension feeding polychaetes (D. quadrilobata,
S. armata and E. analis) and the sub-surface detritivorous
polychaete S. armiger, which was also the numerically
dominating species in a nearby intertidal and sub-tidal hab-
itat (Bick and Arlt 2005). Furthermore the surface detritivo-
rous and carnivorous amphipod C. crassicorne showed
high individual abundances. While ~73% of the fauna col-
lected in the inner basin (38—83 m) was deposit feeding and
sub-surface detritivourous (Wlodarska-Kowalczuk et al.
2005), this fraction diminished to 36% at the present site,
but at shallower depth (5-30 m) (Fig. 5). Furthermore, sus-
pension feeders became more dominant (from 20.5%, Wlo-
darska-Kowalczuk etal. 2005 to 27%, present study),
which may reflect the reduced impact of PIM sedimentation
compared to the areas near the glacier front. This observa-
tion is consistent with the common trend that deposit feed-
ers become more prominent with a declining distance to the
glacier fringe and intensified glacier activity (Farrow et al.

.
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Depth [m]

Fig. 5 Percentage of feeding modes of soft bottom macrobenthos at
six different depths (5-30 m) at Brandal (Kongsfjorden, Spitsbergen)
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1983; Syvitski etal. 1989; Wlodarska-Kowalczuk and
Pearson 2004).

Biomass was significantly higher compared to estimates
of Wlodarska-Kowalczuk et al. (1998) from their deeper
sampling (50-70 m), which was additionally closer to the
glacier front (51 and 248 g m~2 wet mass and 3.5 and
25.0 g m~2 AFDM: this study; 6 and 11 g m~2 wet formalin
mass: former study). This again supports the observation
that effects of sedimentation structure the faunal commu-
nity. Additionally, decreasing biomasses near the glacial
sediment source have also been related to a shortage of
food available to the sub-surface detritivorous fauna since
primary production is decreased and the proportion of
organic matter in the sediment reduced due to a high sedi-
mentation rate (Gorlich et al. 1987). The distinctive sam-
pling method (van Veen grab in the former study) and a
very small number of samples (N = 2) were also mentioned
by Kowalczuk et al. (1998) as possible reasons for underes-
timations. However, biomass estimates of the study includ-
ing 23 cores reaching 380 m revealed an even lower mean
biomass (4.34 £3.77 SD g m~2 wet formalin mass; Wlo-
darska-Kowalczuk et al. 2005). The present shallow-water
soft bottom biomass values are, however, about one order
of magnitude lower than estimates from hard bottom fauna
of Kongsfjorden (380-2,300 gm_2 wet mass; Jgrgensen
and Gulliksen 2001), which is to be expected since the soft
bottom species are relatively small sized.

Shannon diversity ranged between 1.85 and 2.19. Low-
est diversity was found in shallow areas and this value is in
agreement with 1.64 estimated for even shallower macrofa-
unal communities (<1 m depth, A. Bick personal communi-
cation) analysed by Bick and Arlt (2005). Our highest
values were estimated at 10 m. These results are in the
range of the dredging survey of Kongsfjorden (Kaczmarek
etal. 2005) and very compatible with estimates reported
from different Spitsbergen glacial or glaciofluvial bays
(Table 2). Dissimilarities in diversity of analogous habitats
have been explained again with variable inorganic sedi-
mentation rates (Kendall and Aschan 1993; Wlodarska
et al. 1996). However, differences detected during the pres-
ent study along the depth range between 5 and 30 m must
be the consequence of other factors since the maximum dis-
tance between the two outer transects was less than 100 m.
Thus, differences in sedimentation levels should be negligi-
ble and the present observations are somehow related to
water depth. Species richness (for 508 species pooled) of
the soft bottom fauna from the deeper Norwegian continen-
tal shelf is not correlated with water depth or median grain
size (Ellingsen 2002) and regression analyses indicated that
patterns of change in the macrofauna of Kongsfjorden were
unrelated to depth (38-380 m) (Wlodarska-Kowalczuk
etal. 2005). It is not clear if this result can be applied to
shallow water, because it is impossible to discriminate
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Table 2 Ranges of Shannon index (H', Log e), from different glacial
or glaciofluvial Spitsbergen bays at sampling depths ranging from 2 to
80 m, modified from Wlodarska-Kowalczuk et al. (1998)

Site Depth H’
Kongsfjord (present study) 5-30 1.85-2.19
Kongsfjord® 50-70 1.49
Kongsfjord® 5-50 0.57-2.84
Skoddebukta® 30-75 1.49-2.54
Yoldiabukta® 57-75 1.26-1.48
Julibukta® 30-50 2.22-2.30
Ekmanfjord® 30-55 2.22-231
Tempelfjord® 40-80 1.85-2.01
Bettybukta® 40-80 0.43-2.11
Sassenfjord! 30-95 2.6-2.9
Hornsund at Hyrnebreen® 5-53 0.7-1.38*
Hornsund at Storbreen® 18-37 1.2-2.07*
Skoddebukta' 2-60 0.38-2.49
Van Mijenfjord® 25-75 2-2.5%
Raudfjord® 25-75 2.7-3.2*
Adventfjord" 26-52 1.38-1.79

# Values taken from graphs

® Wlodarska-Kowalczuk et al. (1998)
¢ Kaczmarek et al. (2005)

4 Kendall and Aschan (1993)

¢ Gromisz (1983)

f Wlodarska et al. (1996)

& Gulliksen et al. (1984)

" Holte et al. (1996)

between water depth and the frequency and level of distur-
bance caused by iceberg scouring (which is irrevocably
correlated with water depth). Large scratches where the
benthos is gouged by grounded ice can be commonly
observed in the shallow part of the study site (personal
observation). Besides the erasure of the benthos, ice scour
also modulates the seafloor topography and bottom current
flow, changes the sediment characteristics and yields in
resuspension followed by sediment transport (Woodworth-
Lynas et al. 1991; Peck et al. 1999; Gutt 2001). Biological
ramifications are the drop out of benthic biomass, changes
in abundance and diversity patterns, and modified commu-
nity structure and function (Conlan et al. 1998; Gutt 2001;
Conlan and Kvitek 2005). The probability for an iceberg to
ground can be indirectly estimated from the relationship of
its freeboard and given assumptions regarding the shape
and density of the respective iceberg. For our study area
Dowdeswell and Forsberg (1992) observed along their tran-
sect “A” (Fig. 1) that the percentage of icebergs with a free-
board high enough to scour the ground at 5 m was 17%,
while 4% could plough the ground at 10-15 m depth and
only 0.5% could scour below 21 m (values taken from their
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Fig. 3). Although the scouring frequency was only esti-
mated indirectly it is highly correlated with depth, conse-
quently shallow zones are more frequently disturbed by
scouring than deeper areas.

The observed patterns of species richness (Fig. 6) sup-
port the ‘intermediate disturbance hypothesis’ (Connell
1978; Huston 1979). Figure 7 illustrates the distribution of
the observed total species numbers with scouring probabil-
ity calculated from Dowdeswell and Forsberg (1992). All
three parameters of the superimposed polynomial function
fitted to the data of the six depth zones are significant
(P < 0.02). This supports our hypothesis that zones scarcely
impacted by scouring show low species richness (SRg
sensu Gray 2000), which may be caused by competitive
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Fig. 6 Iceberg depth-frequencies (grey bars, calculated from Dowde-
swell and Forsberg 1992, their Fig. 3) and total number of soft bottom
taxa (open square) from Brandal

47
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Scouring probability

Fig. 7 Distribution of observed total species number with scouring
probability calculated from Dowdeswell and Forsberg (1992). Super-
imposed is the polynomial function fitted to the data (x = scouring
probability and y=total species number): y=35.01+
133.65x — 1794.23 (x — 0.05)%; R* = 0.96 following an idea of Brey
and Gerdes (1997), all three parameters are significant (P < 0.02)

exclusion of species, explaining the lower total number of
taxa at 30 m (29 species). With a rising, moderate intensity
and rate of scouring in intermediate water depths the com-
petition is relaxed and recolonization, first of species with
lecithotrophic or planktotrophic larvae (Bick and Arlt
2005) takes place, which is reflected in higher species rich-
ness (intermediate depth zones: 3542 species) and more
diverse living strategies. In frequently disturbed areas—
most icebergs ground in shallower areas, since the free-
board of the majority of icebergs is small—species start to
be eliminated by stress (5 m: 28 species) resulting again in
declining diversity and biomass (minimal biomass was
35gm~2 AFDM at 5m). The latter pattern is often
observed in areas severely disturbed (glacial sedimentation:
Wlodarska-Kowalczuk et al. 2005; fluvial sedimentation:
Aller and Stupakoff 1996; organic enrichment: Pearson and
Rosenberg 1978; fish trawling: Jennings et al. 2001; deep-
sea nodule mining: Ingole et al. 2001). Therefore, species
richness of the Kongsfjorden soft bottom community is
highest at intermediate levels of scouring impact assuming
that at medium depth the competition for space and food
(Wilson 1991) of dominating species is moderated by the
disturbance, which reduces the depression of sub-ordinate
species. Thus, species of a lower level in the competitive
hierarchy would reemerge (Valdivia etal. 2005). This
hypothesis is supported by observations from Barrow Strait
along the exposed coast of Cornwallis Island (high Arctic
Canada): Conlan and Kvitek (2005) analysed benthic com-
munities of a chronically, although infrequently scoured,
area and an ice-protected community comparatively and
revealed that the former was more species-rich, abundant
and massive. However, early and late colonists co-existed
throughout the 9 years of monitoring suggesting that the
higher recruitment rate of opportunists counterbalances the
enhanced competitive powers of later colonists (Reice
1994). The significant correlation of these community
parameters with the time elapsed after the disturbance (1.1
events km~! year™!) also supports the intermediate distur-
bance hypothesis, whereby succession occurs as the period
passed since the disturbance took place, creating high
diversity over all scours of different ages combined (Conlan
and Kvitek 2005).

Antarctic icebergs are much larger and scouring activity
reaches bottoms down to 400 m depths. The biological con-
sequences are nevertheless similar as in the high Antarctic,
too, communities belonging to a variety of simultaneous
stages of recolonization inhabit the impacted grounds and
thus beta-diversity increases on a larger scale (Gutt and
Piepenburg 2003). At Signy Island for example nearshore
diversity is greatest where scour frequency is moderate, i.e.
about once every 10 years (Barnes 1999).

Further chronic glacier related disturbances to the benthic
realm are natural glacial sedimentation accompanied by
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low input levels of organic material. Along Kongsfjorden
Wlodarska-Kowalczuk et al. (2005) showed that the num-
ber of species was highest in the zone, which was moder-
ately impacted. Here the faunal community consists of
small, disturbance-tolerant species and larger long-living
species preferably inhabiting undisturbed bottoms, a pattern
which is also consistent with the predictions of the interme-
diate disturbance hypothesis.

Future work should comprise sampling sites along a
larger depth scale and include the direct quantification of
disturbance resulting from scouring icebergs calved from
tidewater glaciers, before generality can be attached to our
results.
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