
Review

Sensitivity of the Early Life Stages of Macroalgae from the Northern
Hemisphere to Ultraviolet Radiation†

Michael Y. Roleda*1,2, Christian Wiencke3, Dieter Hanelt4 and Kai Bischof5

1Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Marine Station,
Helgoland, Germany

2Institut für Polarökologie, University of Kiel, Kiel, Germany
3Alfred Wegener Institute for Polar and Marine Research, Section Seaweed Biology, Bremerhaven, Germany
4Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
5Department of Marine Botany, University of Bremen, Bremen, Germany

Received 17 August 2006; accepted 3 October 2006; published online 10 October 2006; DOI: 10.1562 ⁄ 2006-08-17-IR-1005

ABSTRACT

The reproductive cells of macroalgae are regarded as the life

history stages most susceptible to various environmental stresses,

including UV radiation (UVR). UVR is proposed to determine

the upper depth distribution limit of macroalgae on the shore.

These hypotheses were tested by UV-exposure experiments,

using spores and young thalli of the eulittoral Rhodophyceae

Mastocarpus stellatus and Chondrus crispus and various sublit-

toral brown macroalgae (Phaeophyceae) with different depth

distribution from Helgoland (German Bight) and Spitsbergen

(Arctic). In spores, the degree of UV-induced inhibition of

photosynthesis is lower in eulittoral species and higher in

sublittoral species. After UV stress, recovery of photosynthetic

capacity is faster in eulittoral compared to sublittoral species.

DNA damage is lowest while repair of DNA damage is highest in

eulittoral compared to sublittoral species. When the negative

impact of UVR prevails, spore germination is inhibited. This is

observed in deep water kelp species whereas the same UVR doses

do not inhibit germination of shallow water kelp species. A

potential acclimation mechanism to increase UV tolerance of

brown algal spores is the species-specific ability to increase the

content of UV-absorbing phlorotannins in response to UV-

exposure. Growth rates of young Mastocarpus and Chondrus

gametophytes exposed to experimental doses of UVR are not

affected while growth rates of all young kelp sporophytes

exposed to UVR are significantly lowered. Furthermore, mor-

phological UV damage in Laminaria ochroleuca includes tissue

deformation, lesion, blistering and thickening of the meristematic

part of the lamina. The sensitivity of young sporophytes to DNA

damage is correlated with thallus thickness and their optical

characteristics. Growth rate is an integrative parameter of all

physiological processes in juvenile plants. UV inhibition of

growth may affect the upper distribution depth limit of adult life

history stages. Juveniles possess several mechanisms to minimize

UVR damage and, hence, are less sensitive but at the expense of

growth. The species-specific susceptibility of the early life stages

of macroalgae to UVR plays an important role for the

determination of zonation patterns and probably also for shaping

up community structure.

INTRODUCTION

Marine macroalgae or seaweeds play important ecological

roles as the nutritional base in marine communities, both in the
rocky intertidal and subtidal zones. The lush blades of canopy-
forming underwater kelps and their labyrinth holdfast support

different marine communities by providing food for herbiv-
ores, a physical structure for shelter, protection from predators
and nurseries for many marine animals.

Ecological effects of global environmental changes, partic-

ularly global warming and the increase inUVR caused by ozone
depletion still raise considerable concern. In the last 20 years,
the effects of increasing UVR on aquatic primary production

and its role in shaping seaweed community and depth distribu-
tion limits have been extensively studied (1,2). However, most
of these studies were conducted on adult plants.

Physiological studies on the early life stages of macroalgae
in response to environmental stress are wanting. Upon release,
propagules of different macroalgal species can be suspended in

the water column by turbulent mixing. Within the euphotic
layer, they are potentially exposed to high solar radiation.
Residence time in the water column, sinking velocity and their
capability to cope with light stress can influence spore viability.

Surviving propagules can then be laterally dispersed by
currents across the expanse of the vertical littoral zone. Settled
spores at great depths or under algal canopies receive low light

levels suitable for germination and growth. Settlement in the
eulittoral zone can expose new recruits to air during low tides
and to the whole spectrum of solar radiation, which may

contribute to the postrecruitment mortality and exclude
sensitive species from higher positions on the shore.

Survival of early transitional life history stages (e.g. spores,
sporelings and germlings) is therefore the most critical phase
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leading to the successful formation of benthic populations and
determines the upper depth distribution limits of the adult life
history stages (3–5). Susceptibility to UVR can, however, be
counterbalanced by protection strategies such as avoidance,

screening, photochemical quenching and repair (6). Avoidance
strategies include habitat selection by recruiting under the
canopy of adult sporophytes, circadian rhythms by phasing

cellular activities sensitive to light at night (7), seasonality of
reproduction and diel periodicity in spore release (8,9). UV-
screening includes extracellular (cell wall) and intracellular

mechanisms (UV-absorbing compounds). UV-absorbing com-
pounds include mycosporine-like amino acids (MAAs),
phlorotannins and scytonemin which partially provide screen-

ing against UV-A and UV-B, and are found in Rhodophyta,
Phaeophyta and cyanobacteria, respectively (10–12). UV-B
induced DNA damage is repaired through photo-reactivating
light (13).

This review focuses on the physiological constraints of the
early life stages of representative red and brown macroalgae on
the Helgoland and Spitsbergen shoreline. The effect of UVR

was measured on several physiological responses such as
photosynthesis, germination, growth, DNA damage and repair
and synthesis of UV-absorbing compounds. Empirical data are

presented to support our hypothesis that the susceptibility of
the early life history stages to UVR may determine the upper
depth distribution limit of the mature sporophytes.

BIOGEOGRAPHIC DISTRIBUTION AND
ZONATION PATTERN

Mastocarpus stellatus Stackhouse (Guiry) and Chondrus cris-
pus Stackhouse are morphologically similar and closely related
representatives of the red algal order Gigartinales, distributed

along the North Atlantic coast and co-inhabit the rocky
eulittoral and upper sublittoral zone (14). In the sublittoral,
distribution of kelps on Helgoland is characterized by the
occurrence of Laminaria digitata (Hudson) Lamouroux in the

upper sublittoral whereas L. saccharina (Linnaeus) Lamou-
roux and L. hyperborea (Gunnerus) Foslie grow in the mid and
lower sublittoral, respectively (Fig. 1a). The southern distri-

bution of Laminaria ochroleuca de la Pylaie is reported along
the coast of South and North Atlantic (15,16), and the
Mediterranean (17).

Seaweeds in the Arctic have a circumpolar distribution and
most species are also found throughout the temperate North
Atlantic (14). The kelp forest of Kongsfjorden, Spitsbergen
(Svalbard) is structured by the annual kelp-like Saccorhiza

dermatodea (Bachelot de la Pylaie) J. E. Areschoug (Tilopteri-
dales), and the perennial Laminariales Alaria esculenta
(Linnaeus) Greville, L. digitata and L. saccharina growing in

this sequence down to about 10 m (18). The endemic Arctic
species L. solidungula J. Agardh occurs predominantly in the
inner zone of the fjord at great depths (Fig. 1b).

Recruitment of macroalgae in coastal environments can be
influenced by several abiotic stress factors such as temperature,
solar radiation, nutrients and their synergistic effects (19,20).

Their survival is further controlled by demographic factors,
competitors and grazers (21,22), and a combination of both
abiotic and biotic factors (23). Stress tolerance and survival
strategy is therefore important in shaping up the community

structure and zonation pattern.

LIFE HISTORY

Seaweed life histories follow different patterns. Most red

seaweeds have a complex triphasic life history involving the
alternation of generation consisting of gametophytic, carpo-
sporophytic and tetrasporophytic stages. Carposporophytes

are minute plantlets or life history stages formed inside the
female gametophyte after fertilization. The red alga M.
stellatus has a heteromorphic life history where the nonmotile
carpospore produces a crustose tetrasporophytic crust previ-

ously referred to the genus Petrocelis (24). In C. crispus, the
tetrasporophytic and gametophytic generations are isomor-
phic. A typical alternation of a haploid gametophyte with a

diploid carposporophyte, and a diploid tetrasporophyte is
indicated in this species (25).

Large brown seaweeds of the order Laminariales have a

heteromorphic life history with an alternation of macroscopic
sporophytes and microscopic gametophytes. The sporophyte
develops sporangia which divide meiotically producing flagel-

lated haploid zoospores. Zoospores are released and upon

Figure 1. Upper depth distribution of investigated macroalgal species
in Helgoland, North Sea (a) and Kongsfjorden, Svalbard (b).
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settlement develop into microthalli which bear the gametangia.
Sexual reproduction involves signalling chemicals that induce
sperm release from antheridia and subsequent chemotactic
orientation of sperms towards the luring eggs (26,27). Spor-

ophytes are differentiated into holdfast, stipe and lamina while
gametophytes are undifferentiated and are filamentous and
creeping.

UV RADIATION AND HIGH LIGHT STRESS

Solar radiation is the primary source of energy for photoau-

totrohic organisms to synthesize organic compounds. Photo-
synthesis is a dynamic process which can acclimate to
variations in light intensity and spectral quality (28,29).

Short-term light fluctuations elicit fast and reversible reactions
such as fluorescence or heat dissipation, e.g. via the xantho-
phyll cycle which is considered a major photoprotective

process, or energy redistribution between the two photosys-
tems (30). Under long-term light stress, proteins specific for
light-induced stresses in photosynthetic organisms (early light-

induced proteins) play a role in photoprotection (31). Anti-
oxidant enzymes, lipid-soluble antioxidants inside cellular
membranes (e.g. carotenoids), and water-soluble reductants
found in the cytosol are defenses against forms of reactive

oxygen (32).
Under strong light, photo-oxidative damage impairs the

function of PSII. Photodamage is controlled by the steady-

state oxidation-reduction level of the primary quinone accep-
tor (QA). As the reduction state of QA linearly increases with
irradiance, the probability of photodamage increases under

strong light (33). While light damages PSII directly, oxidative
stress during photosynthesis has been demonstrated to sup-
press the de novo synthesis of proteins, in particular, newly

synthesized D1 protein, which is required for the exchange of
the damaged reaction center protein in PSII (34,35). Photo-
damage mainly occurs in seaweeds growing in the lower
sublittoral zone when exposed to high irradiances. These

species have a lower ability to downregulate photosynthesis
through photoprotection or photoregulation processes (36).

Since the detection of stratospheric ozone depletion over

Antarctica in the early 1980s, a yearly net springtime loss of
60–70% had been a recurring phenomenon that intensifies
ambient UV-B radiation on the biosphere (37,38). Moreover,

the area affected by ozone depletion has expanded to five-fold
over the past decades in continental Antarctica. In the Arctic,
springtime stratospheric ozone depletion was also detected
recently at a less severe loss of up to �20–25% (39,40). Ozone

loss of �6% has also been reported in the mid latitudes (41).
The increasing UVR on the earth’s surface caused by
stratospheric ozone depletion has been documented in the

polar and temperate regions (42,43).
The underwater UV environment in Helgoland and Kongs-

fjorden has been distinctly characterized. The seawater at

Helgoland strongly attenuates UV-B radiation so that the 1%
depth for 305 nm radiation is at 1 m during spring and
summer. Measurements with a biospherical spectrometer

showed that the 1% depths for UV-A wavelengths at 320,
340 and 380 nm are 2.0, 2.6 and 4.6 m, respectively (44). This
is attributed to the high phytoplankton stocks in coastal North
Sea water (45) and the strong tide flows and currents also

contribute to the re-suspension of sediments (46). During

Arctic spring in Kongsfjorden, the water body is in compar-
ison much clearer and the 1% depth of UV-B radiation can
even be at about 13 m depth (47). However, as UV-irradiance
impinging on the water surface in the Arctic is much lower

than at the temperate Helgoland, the threshold irradiance still
affecting plant productivity was only at about 5–6 m depth in
spring, comparable to the biologically-weighted 1% UV-B

penetration (4–7 m) reported by Wiencke et al. (4). Melt-water
input during Arctic summer increases water turbidity and
UVR attenuation so that the 1% level also decreases to about

6 m depth (47).
UV-B radiation has several effects on the physiology and

productivity of marine macrophytes. The negative impact of

exposure to UVR includes: inhibition of photosynthesis and
eventual photodamage to the photosynthetic apparatus (48);
protein breakdown and the loss of specific enzymatic or
biological function (49); damage to microtubules causing

inhibition of nuclear division (50); formation of cyclobutane
pyrimidine dimers (CPDs) in the DNA, inhibiting genome
replication and expression (13,51); absorption by aromatic

sulfhydryl-containing biomolecules causing direct molecular
damage (52); and production of reactive oxygen species
responsible for oxidative damage within the cell (53).

PHOTOSYNTHESIS OF REPRODUCTIVE
CELLS

The physiology of light harvesting, changes in photosynthetic
efficiency and kinetics of photosynthetic recovery in spores
were measured by in vivo fluorescence changes of photosystem

II (5,54,55). Spores isolated from plants inhabiting different
tidal zones were found to be low light adapted. Saturation
irradiance of freshly released spores of different kelp species

showed minimal Ik values (photon fluence rate where initial
slope intersects horizontal asymptote of the curve) values
ranging from 20–40 lmol photons m)2 s)1 among temperate
species (5) and 13–18 lmol photons m)2 s)1 among Arctic

species (55). Furthermore, optimum quantum yields (Fv ⁄Fm)
of Gigartinales carpospores and Laminariales zoospores
decreased already after 1 h exposure to photon flux densities

(PFD) of 56 and only 22 lmol photons m)2 s)1 PAR,
respectively (5,54). Increasing dose of PAR, as a function of
exposure time, further depressed the Fv ⁄Fm. Across the

different light treatments, the highest photosynthetic efficiency
was observed in the eulittoral C. crispus and lowest in the
sublittoral Laminaria hyperborea (Fig. 2).

Ultraviolet radiation contributes significantly to photoinhi-

bition and no recovery was observed in the photosynthetic
efficiency of spores exposed to highest UV-A and UV-B doses
among the lower sublittoral temperate L. hyperborea from

Helgoland (Fig. 2) and Arctic L. saccharina fromKongsfjorden
(55). The first attempt to study the kinetics of photosynthetic
recovery in brown algal zoospores showed a fast phase in S.

dermatodea which indicates a reduction in the photoprotective
process while a slow phase in L. saccharina indicates recovery
from severe photodamage (55). Differences in P (PAR), PA

(PAR + UV-A) and PAB (PAR + UV-A + UV-B) sensitiv-
ity of optimum quantum yield are presumably caused by the
degree of damage to PSII components versus the xanthophyll
cycle-mediated downregulation of PSII (56). UV radiation

depresses photosynthetic performance mainly by damaging the
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oxidizing site and reaction center of Photosystem II (12,57,58).
Slow photosynthetic recovery can reduce the accumulation of
photosynthetic products disabling cellular division and delay-

ing the initiation of germination in reproductive cells.

PHOTOSYNTHESIS OF JUVENILE SEAWEEDS

Unlike spores, photosynthetic efficiencies of juvenile seaweeds
exposed to experimental irradiance of PAR alone were not
photoinhibited while a decrease in photosynthetic efficiencies

was also observed in juvenile plants exposed to PAR supple-
mented with UV-A and UV-A + UV-B (54,59). Partial and
complete acclimation to UVR by repeated exposure was,

however, observed in juvenile plants of L. ochroleuca and in
M. stellatus (Fig. 3) and C. crispus (54) respectively. Acclima-
tion of photosynthesis to UVR has been previously reported in

sporophytes of Arctic Laminariales (60,61). Among different
kelp species, the higher susceptibility of the deep sea species to
photoinhibition is attributed to its limited de-epoxidation
capacity and reduced xanthophyll-cycle pool size compared to

the shallow water species (62).
In Mastocarpus and Chondrus, the complete acclimation of

photosynthesis in young gametophytes of these species after

3 days of repeated UVR exposure (54) contradicts the previous
study of Bischof et al. (63). They reported a reduction in
photoinhibition but no acclimation throughout the 5 days

repeated exposure to PAB. This difference may be attributed
to the higher experimental UV irradiance used in their study,
which was twice the intensity applied here. PAR:UV-B ratios

in both experiments are unrealistic.
UV-B radiation has more direct effects on the photosyn-

thetic apparatus. Part of the D1 ⁄D2 heterodimer, the major

structural complex within PSII are degraded (64). Inactivation
of oxygen-evolving complex is induced by blue light as well as
UV light while red light inactivates the photochemical reaction
center (65). UV-A radiation, on the other hand, was found to

be damaging for PSII by decreasing the electron flow from
reaction centers to plastoquinone (58) affecting electron
transport both at the water oxidizing complex and the binding

site of the QB quinine electron acceptor (57). UVR is also
reported to decrease the pool size of carbon fixation enzymes
such as carbonic anhydrase (66) and ribulose-1, 5-bisphos-

phate carboxylase ⁄oxygenase (Rubisco) (67,68). Although
some algae are able to partially acclimate to chronic UVR
exposure, growth and tissue morphology can be affected under
UVR exposure (59).

Figure 2. Mean optimum quantum
yield (Fv ⁄Fm) of spores during treat-
ment (left column) to different doses of
photosynthetically active radiation
(PAR = P), PAR + UV-A (PA) and
PAR + UV-A + UV-B (PAB) in
Mastocarpus stellatus (Ms), Chondrus
crispus (Cc), Laminaria digitata (Ldig),
L. saccharina (Lsac) and L. hyperborea
(Lhyp) expressed as percentage of con-
trol. Corresponding photosynthetic
recovery (right column) after 48 h
postculture in dim white light (10 lmol
photon m)2 s)1). Vertical bars are
standard deviations (SD, N = 5).
Composite of and modified from Refs.
(5,54).
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PHOTOSYNTHETIC AND ACCESSORY
PIGMENTS

Sensitivity of photosynthetic and accessory pigments to UVR
is species specific and dose dependent. Chlorophyll a contents

in both eulittoral species Mastocarpus and Chondrus were not
negatively affected by UVR but instead showed an increasing
content when PAR was supplemented with UV-A and

UV-A + UV-B (54). Among the different kelp species inves-
tigated, significantly lower pigment concentrations (Chl a, Chl
c1, fucoxanthin and b-carotene) were observed in young L.

ochroleuca sporophytes exposed to 1.1 · 104 J m)2 daily UVR
dose (59). Young Laminariales sporophytes from Helgoland
and Spitsbergen exposed to 0.9 · 104 J m)2 daily UVR dose

showed insignificant differences in Chl a contents compared to
plants exposed to PAR alone (69–71). The insignificant
differences between treatments suggests that the young spor-
ophytes were able to synthesize new pigments to replace

degraded chlorophylls. However, in situ seasonal variation in
pigment concentration of Arctic L. saccharina collected before,
during and after ice break up showed decreasing chlorophyll a

concentration coinciding with increasing underwater radiation.
Chlorophyll a concentration did not increase when melting
snow contributed to water turbidity and reduction in under-

water radiation (72) suggesting irreparable degradation of
pigments after exposure to high light intensity or photo-

adaptation of light absorption. Field material collected on
Spitsbergen showed bleaching of young L. saccharina recruits

at 4 m depth after prolonged exposure to ambient solar
radiation during sea-ice break up (S. Kremb, personal
communication). Pigment damage can result either (1) when

protein-based pigments absorb UV energy directly and
undergo photochemical degradation; (2) by photosensitizer
action; or (3) oxygen radical production in addition to singlet

oxygen (6).
Accessory pigments such as carotenoids are involved in

several aspects of photosynthesis such as light absorption and

energy transfer to the reaction center complex and protection
of the photosynthetic apparatus from damage by strong
illumination. In Chondrus, the higher contents of total carot-
enoids measured under PAB (54) could be related to its

photoprotective role (73). Accumulation of carotenoids spe-
cifically in response to UV radiation has been reported in
cyanobacteria and chlorophytes (74,75). This mechanism can

protect the photosynthetic apparatus facilitating acclimation
of photosynthesis and growth to UVR. Among Laminariales,
the tissue absorption peaks in the Soret region (400–540 nm)

(69–71) are characteristic of carotenoids in antenna complexes
of higher plants (76,77). Among the natural solar radiation-
acclimated young wild sporophytes, the higher absorption in
this region could imply some photoprotective role of carote-

noids.

Figure 3. Time series of the circadian
pattern of the mean effective quantum
yield (DF ⁄Fm¢) of juvenile sporophytes
and gametophytes during the light
phase of the 16:8 h light:dark photo-
period. PFD is 40–50 lmol photons
m)2 s)1. Vertical bars are standard
deviations (SD, N = 5). Composite of
and modified from Refs. (54,59).
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PHYSODES AND UV-ABSORBING
COMPOUNDS IN SPORES

Spectral analysis of zoospore suspensions of the three Helgo-
landic Laminaria species (5) and the Arctic S. dermatodea,

A. esculenta and L. digitata showed strong absorption in the
UV waveband (78) characteristic of phlorotannins. The
occurrence of phenolic compounds in reproductive cells of

brown algae has been previously reported (79–81). The
absorption spectra show an increasing absorbance from
300 nm to the shorter UV-C waveband comparable to that
of isolated phlorotannins from Fucus gardneri Silva exhibiting

a peak at 265 nm (82). This compound was invoked to play a
role in UV protection because its synthesis is inducible by
UVR (11,83). Induction of phlorotannin synthesis in kelp

zoospores is, however, species specific and is not only inducible
by UV-B radiation but also by PAR and UV-A (78,84, M. Y.
Roleda, C. Wiencke and U. H. Lüder unpublished).

Additional microscopic observations showed an increase in
the number and size of phlorotannin-containing physodes after
UV exposure in S. dermatodea which contribute to UVR

protection against cellular damage and enhance germination
rate (3). Considering the uneven localization of UV-sunscreen
within the planktonic spores (85), phlorotannin-containing
physodes in zoospores provide restricted efficiency for a single

cell (84). Within a plume of zoospores, however, each cell can
screen each other and protect the lower layer of spores from
excessive radiation (78). Exudation of phlorotannins from

macroalgal tissue released into seawater can also reduce the
impact of UV-B exposure to UV-sensitive kelp meiospores
(86). Although exocytosis of phlorotannin-containing phy-

sodes from S. dermatodea zoospores into the medium was not
microscopically observed, the increase in absorption after
exposure to PA and PAB compared to P and dark control

shows indirect evidence of this process (84). In carpospores of
Mastocarpus and Chondrus, traces of shinorine were observed
(G. Kräbs and M. Y. Roleda, unpublished). Whether carpo-
spores produce sufficient MAAs to achieve the same degree of

UV protection to that of the foliose gametophytes remains to
be studied.

THALLUS MORPHOLOGY AND OPTICAL
CHARACTERISTICS

Increasing thallus thickness minimizes UVR effects as the

outer cell layers shade inner cells and in terms of longer
pathlength for UVR absorption (87). Translucence or opacity
of thallus influences reflection, attenuation, scattering, absorp-

tion or transmittance of UV radiation (88). Optically dark
pigmented field-grown Laminariales sporophytes show strong
absorbance in the UV waveband (69–71), characteristic of the

UV-absorbing phlorotannins accumulated within the outer
cortical layer of the thalli of Laminariales (89,90). UVR can,
therefore, be attenuated by cellular UV-absorbing compounds

and cell walls of the epidermal tissue effectively reducing UV
fluence before reaching physiological targets. Phlorotannins
are reported to have several ecological functions (11). It is
known that the production of this compound (as herbivore

deterrent, antibacterial agent or as UV screens) involves
energy cost at the expense of growth (70). Its synthesis could
be in response to specific environmental cues or stress factors

and is allocated for different functions between different kelp
species.

Peaks of the presumptive UV-screening substance at the
UV-C region might provide no complete protection against

UV-B radiation. The absorption shoulder >265 nm can,
however, enhance the UV-B tolerance of a plant. Furthermore,
it is thought that absorption of tissue-bound phlorotannins

might shift to different peaks compared to extracted com-
pounds. Further studies are needed to address this question.

Cultured young gametophytes of M. stellatus are thicker

than C. crispus (54). Initial MAA concentrations in M.
stellatus were approximately six-fold higher than in C. crispus,
among individuals of the two species collected simultaneously

from the same location. After repeated UV-exposure, a 56%
increase in MAAs was found in C. crispus, while inM. stellatus
the concentration increased by 68%. Interestingly, the MAA
shinorine seems to play a crucial role in acclimation to

UV-exposure, as the increase in total MAA content in C.
crispus was almost exclusively attributed to the de novo
synthesis of shinorine, which was not detected in the specimens

prior to experimental UV-exposure. Moreover, shinorine was
the only MAA detected in M. stellatus (63). It is assumed that
the thicker thallus and higher load of MAAs in M. stellatus

play a role in UV-tolerance and thus enables M. stellatus to
proliferate at higher shore levels.

UV-B-INDUCED DNA DAMAGE AND REPAIR

The UV-sensitivity of the investigated Gigartinales carpo-
spores and Laminariales zoospores is related to the vertical

and depth distribution of the foliose gametophytes and adult
sporophytes, respectively. At higher UV-B doses, lesser
amounts of CPDs were observed in eulittoral species Masto-

carpus and Chondrus spores compared to spores of the
sublittoral kelp species (Fig. 4).

Life stage-dependent susceptibility to UV-B-induced DNA
damage was observed in both groups of macroalgae tested.

DNA damage occurred in carpospores of Mastocarpus and
Chondrus but not in their foliose gametophytic stages. This is

Figure 4. UV-B-induced DNA damage (induced cyclobutane pyrim-
idine dimers per million nucleotides) in Gigartinales carposopores and
Laminariales zoospores. Species are Mastocarpus stellatus (Ms);
Chondrus crispus (Cc); Laminaria digitata (Ldig); L. saccharina (Lsac);
and L. hyperborea (Lhyp). Vertical bars are standard deviations (SD,
N = 3). Figure redrawn from Refs. (5,54).
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plausible because both species co-inhabit the eulittoral, phys-
iologically and genetically acclimated to the full solar radi-
ation. The lower DNA damage and effective DNA damage
repair mechanism in carpospores of Mastocarpus enhance its

recruitment success to the upper eulittoral zone. Zoospores of
the sublittoral Laminariales from Helgoland (L. digitata,
L. saccharina and L. hyperborea) (5) and Spitsbergen

(A. esculenta and L. digitata) (M. Y. Roleda, C. Wiencke
and U. H. Lüder, unpublished), as well as the Tilopteridales S.
dermatodea (84) are also more susceptible to UV-B-induced

DNA damage compared to young sporophytes (69–71). The
numbers of CPDs observed in Helgolandic Laminaria zoo-
spores exposed to 8 h UVR are 18.6 ± 4, 30.8 ± 8 and

49.8 ± 6 CPD Mb)1 in L. digitata, L. saccharina and
L. hyperborea, respectively (5). These values are higher
compared to their respective young sporophytes exposed for
18–21 days of repeated 6 h daily UVR at 2.5 ± 1, 11.7 ± 3

and 3.4 ± 2 CPD Mb)1, respectively (71).
Among the spores investigated, less genetic damage is

incurred in diploid carpospores compared to haploid zoo-

spores. Haploid zoospores are, however, more efficient in
DNA damage repair (91). In Antarctic Gigartina skottsbergii,
diploid carpospores likewise incurred less UV-B-induced

CPD compared to haploid tetraspores of the same species
(M. Y. Roleda, unpublished). Long and Michod (92) reported
that haploid cells are efficient replicators, while diploid cells
are resistant to damage. Mathematical models suggest that

sexual organisms can combine the advantage of both ploidy
states: spending much of its life cycle in the haploid state, then
fusing to become diploid. During the diploid state DNA

damage can be repaired, as there are two copies of the gene in
the cell and one copy is presumed to be undamaged (92).
Significant removal of CPDs indicating repair of DNA damage

was observed in all species investigated after recovery in low
white light. DNA damage repair could either be mediated by
light-dependent photolyases or light-independent nucleotide

excision repair (13,93) and recombination repair (73).
Tissue DNA damage among juvenile Laminariales sporo-

phytes is not related to the depth distribution of the adult
sporophytes. Multicellular juvenile thalli possess several pro-

tective mechanisms to minimize UVR damage and, hence, are
differentially less sensitive but at the expense of growth. The
tissue CPD content is dependent on the thallus thickness

(Fig. 5) and optical property (69–71). Increasing thallus
thickness and opacity (in relation to available cell-bound
UV-absorbing compound) minimize UVR effect where outer

phlorotannin-rich cortical layer can selectively filter short
UV-wavelength from reaching the UV-sensitive targets
(i.e. chloroplast). An inverse relationship between thallus
thickness and remaining DNA damage was observed inde-

pendently between the Laminaria species from Helgoland and
Spitsbergen. The lower sublittoral but thick species L. hyper-
borea and L. solidungula were found to have lower remaining

DNA damage. UV protection through increased thallus
thickness and higher content of UV-absorbing compounds
led however to a growth reduction in both species. In general,

there is no linear correlation between thallus thickness and
DNA damage. In other species investigated, the thick but
translucent S. dermatodea sustained more DNA damage

compared to the thin but opaque A. esculenta and the darkly
pigmented Laminaria species.

SPORE GERMINATION

Low PFD of PAR (10–20 lmol photons m)2 s)1) is optimal

for germination in spores. Germination capacity is moreover
constrained by the harmful effects of UVR. Laboratory studies
showed that a higher biological effective dose is needed to

inhibit 50% germination rate (BED50) in the eulittoral
Mastocarpus and Chondrus (54) compared to the sublittoral
Laminaria species from Helgoland (5).

Field exposure of zoospores to ambient solar radiation for

24–45 h showed that preexposure to low PAR in the labor-
atory and to different PFDs of high PAR in the field did not
inhibit spore germination (4). This shows that spores can

acclimate to a wide range of PFDs or that photosynthetic
efficiency was able to recover after photoinhibition. Ecologic-
ally, the recovery process depends on the settlement of spores

to suitable low-light environment. Exposure to the full solar
spectrum in the water column and postcultivation in the
laboratory at low-light condition, simulating low-light field
microenvironment upon settlement, did not affect germination

of the upper-sublittoral S. dermatodea. At approximately the
same UV dose, germination of A. esculenta was susceptible to
UVR while germination of the mid-sublittoral L. digitata was

totally terminated. At a lower UV dose, germination of L.
digitata was still sensitive to UVR. Persistent exposure to
ambient solar radiation for an extended period of time,

however, might exhibit a different effect on germination.
Results of our laboratory and field studies showed that the

susceptibility of spores to UVR contributes to the determin-

ation of the upper depth distribution limit of the adult
macroalgae (3–5,55,94). A previous study on the susceptibility
of Helgolandic Laminaria spores to UVR reported no differ-
ence between species (95). This is attributed to the two- to

four-fold higher levels of UV-A and UV-B radiation that was
supplemented to about 35–50 lmol photons m)2 s)1 of PAR
(UV: PAR ratio = 1.525). Higher order of magnitude in

UVR: PAR ratio has been reported to intensify the UV effect
on plants (96,97), which may magnify the effect on one species
and at the same time obscure its effects between species.

Comparison between experimental treatments showed that the
6 h UVR applied by Dring et al. (95) is equivalent to

Figure 5. Relationship between average thallus thickness and remain-
ing issue DNA damage in cultured juvenile brown macroalgal
sporophytes from Helgoland and Spitsbergen after 18–21 days of
repeated daily 6 h UVR exposure and 18 h recovery (6:8:4 h light:-
dark:light cycle). Species are Laminaria digitata (Ldig); L. saccharina
(Lsac); L. hyperborea (Lhyp); Saccorhiza dermatodea (Sder); Alaria
esculenta (Aesc); and L. solidungula (Lsol). Vertical bars are standard
deviations (SD, N = 3 for DNA damage; N = 10 for thallus
thickness). Composite of and modified from Refs. (69–71).
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3.54 · 105 J m)2, a dose higher compared to the 16 h
PAR + UV-A + UV-B treatment (3.32 · 105 J m)2) applied
in our study (5). Consequently, the study of Dring et al.
observed lower germination rate in L. digitata (ca 20%) and

L. hyperborea (<10%) compared to our study (UVR:PAR
ratio = 1.257) on the same species with germination rate of
27.6% and 20.1% respectively. Higher UVR dose (5.46 ·
105 J m)2, UVR:PAR ratio = 1.523) was also used by
Wiencke et al. (3), which resulted in <1% germination in
Arctic L. digitata and L. saccharina. However, it may be

possible that the Arctic population of these two Laminariales
is more susceptible to UVR compared to their cold temperate
counterparts.

The high UVR:PAR ratio applied in the laboratory exhibit
an additional UV-B effect on photosynthesis and germination
(3,5,94). Higher ambient PAR in the field can enhance UV
tolerance of zoospores by increasing the activity of photorepair

enzymes (98). Moreover, there seems to be a UV-exposure
threshold to effect a negative impact on the germination of
kelp zoospores. In all species, preexposure to lower doses of

ambient solar radiation at 2 and 4 m depths did not affect the
germination capacity of zoospores. At higher doses of ambient
solar radiation at 1 and 2 m depths, there was no additional

UV-B effect on the viability of the zoospores. In all cases the
viability was the same after exposure to the PA and PAB
condition in the field. Damage to carbon fixation in the cells
was found to be higher under the UV-A waveband in marine

diatoms (58). It is further indicated that localized damage of
carbon fixation on the acceptor side of the PSII reaction
centers is induced by UV-A (57,58).

GROWTH OF JUVENILE SEAWEEDS

Growth rates of juvenile seaweeds showed variable response to
UVR. Exposure to the light spectrum did not affect growth
rate of M. stellatus while a minimal effect was observed in C.
crispus (Fig. 6). The growth rates of young Laminariales

sporophytes were, however, significantly reduced under UVR.
The sensitivity of growth as an integrative parameter of all
physiological processes shows a relation to the depth distribu-
tion pattern of the species investigated (Fig. 6).

Long-term exposure to UVR resulted in tissue deformation
and damage in juvenile L. ochroleuca (59). This characteristic
tissue damage and morphological deformation were still

undocumented and unreported in seaweeds exposed to UVR.
This is probably because previous growth studies on young
Laminaria sporophytes were too short to induce tissue injury

(e.g. 2–3 weeks) (95,99). However, pronounced tissue necrosis
and loss of parts of the thalli was reported in the Arctic
Laminaria solidungula J. Agardh after 1 week of daily exposure

to 18 h UVR (100). On the other hand, UVR-induced injuries
on plant tissue have been reported in terrestrial flora. This
includes reduced leaf area, blistering and epidermal deforma-
tion, lesions, increased leaf thickness and photomorphogenesis

(101–103). In this regard, long-term growth measurements and
observation on morphological integrity of the tissue present a
more holistic indication of the negative impact of the stress

factor.
A simple growth model: G = P ) R ) L, follows a growth

differentiation balance, where growth increment over time (G)

is a function of the rate of biomass production through gross
photosynthesis (P) and loss due to respiration (R) and tissue
loss or decay (L) (104). Under high light intensity and UVR,
photoinhibition of photosynthesis already decreases potential

carbon acquisition (P) into plant dry matter (G) (105). Dark
respiration (R) represents the energy used to synthesize new
biomass (growth respiration) and that used to maintain

metabolic activity (maintenance respiration). Exposure to
UVR causes cellular, enzymatic and molecular damage which
could further increase loss due to respiration (R) by diverting

more photosynthate for repair and defense (i.e. production of
secondary metabolites). Energy demands for repair and
protection may divert photosynthate at the expense of growth.

CONCLUSIONS AND FUTURE PERSPECTIVES

Different studies presented in this review have shown that

young gametophytes of Mastocarpus and Chondrus are less
susceptible to the detrimental effects of UVR compared to
their reproductive cells. Carpospores of Chondrus were,

however, more sensitive to UVR compared to carpospores of
Mastocarpus. The protection strategies in Mastocarpus to
counterbalance UV damage contribute to its successful
recruitment and colonization of the eulittoral area on Helgo-

land. In the sublittoral, the sensitivity of spores of the different
Laminariales species studied is related to the upper depth
distribution limit of the adult sporophytes in Helgoland and

Spitsbergen. Among Laminaria species from Helgoland, effi-
cient DNA damage repair and recovery of the PSII damage in
the upper sublittoral L. digitata zoospores contributed to their

germination success. In Spitsbergen, the same response was
observed in the zoospores of the upper sublittoral S. derma-
todea. The presence of UV-screening substance characteristic

of phlorotannins further contributed an effective protection in
the zoospores of the upper sublittoral species in both bioge-
ographic regions.

Zoospores are capable of dispersal, settlement, attachment

and development into new recruits across the area of the

Figure 6. Growth rates in juvenile Gigartinales gametophytes and
Laminariales sporophytes exposed to the whole light spectrum
(PAR + UV-A + UV-B) expressed as percent of control (PAR =
P). Species are Mastocarpus stellatus (Ms); Chondrus crispus (Cc);
Laminaria digitata (Ldig); L. saccharina (Lsac); L. hyperborea (Lhyp);
Alaria esculenta (Aesc); and L. solidungula (Lsol). Inset individual
thallus is typical seaweed morphology used for the experiments.
Vertical bars are standard deviations (SD, N = 5 for gametophytes;
N = 3 for sporophytes). Composite of and modified from Refs.
(54,69–71).
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vertical tidal zones. Settlement of young recruits in the
eulittoral is critical because they are exposed to ambient
environmental stress conditions. The recruitment success of
individuals growing to adult sporophytes is therefore depend-

ent on the sensitivity or tolerance of the young Laminaria
species. Juvenile Laminariales sporophytes possess several
protective mechanisms to minimize UVR damage but at the

expense of growth. The long-term effects of UV exposure to
macroalgae are better studied by measuring growth and
morphological integrity as integrative parameters of all cellular

processes rather than photosynthetic performance alone.
To estimate the ecological impact of enhanced UVR,

seasonal variation in solar radiation has to be related to the

reproductive seasonality of kelps as well as the diel periodicity
in zoospore release (8,9). The distinct reproductive seasons of
Helgolandic Laminaria spp. is remarkable compared to other
populations of the same species. L. digitata plants from Nova

Scotia are found to be fertile throughout the year (106). To
ensure reproductive success, propagule production synchron-
ized with the onset of favorable environmental conditions (e.g.

light, photoperiod or temperature) (107–109). The summer
reproductive season of the upper sublittoral L. digitata would
suggest that sporogenic tissues as well as zoospores of this

species could tolerate or possess effective protective mecha-
nisms against high solar radiation. On the other hand, winter
reproduction in the lower sublittoral L. hyperborea is thought
to be a strategy to avoid reproductive failure due to the relative

sensitivity of their zoospores to high PAR and UVR.
Despite the artificial laboratory irradiance condition used in

the different studies, it was observed that UVR affects growth

and the response is related to the depth distribution in the field.
Synergistic effects might exist between high PAR and UV. The
irradiance of the UV wavebands used in these experiments is

comparable with those occurring in nature, thus, the results are
worthwhile for modelling UV-effects under natural conditions
even if strong PAR is missing. This study presents a piece of

the puzzle which may lead to an explanation why zonation
occurs in the observed pattern in the field.

Results obtained from single-factor experiments impose
strict limits in making ecological inferences. Further studies

should look into the interactive effects of multiple stressors.
For example, environmental variables such as temperature and
UVR are changing simultaneously around the globe. These

two factors have been found to induce interactive and
independent effects on germination and growth in the early
life stages of two multicellular marine algae (110). Moreover,

net biological effects of UVR, which are a function of both the
rate of UVR-induced damage and the rate at which that
damage is repaired, is mediated by temperature and vice versa
(110). For example, DNA repair rates in Palmaria have been

shown to increase with increasing temperature (93), while
sensitivity of Fucus germlings to UV-B radiation is enhanced
with increasing temperature (111).

The use of sunshine simulators with a realistic PAR-UV
ration will yield more ecologically relevant data regarding
DNA damage repair, germination and growth of early life

stages of macroalgae. As the studied macroalgal species are
important primary producers in inshore coastal ecosystems
serving as food for herbivores and as habitats for many

organisms, changes in their depth and geographic distribution
under a scenario of climate change due to stratospheric ozone

depletion and global warming can entail significant ecological
domino effects.
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2. Bischof, K., I. Gómez, M. Molis, D. Hanelt, U. Karsten, U.
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68. Bischof, K., G. Kräbs, C. Wiencke and D. Hanelt (2002) Solar
ultraviolet radiation affects the activity of ribulose-1,5-biphos-
phate carboxylase-oxygenase and the composition of photosyn-
thetic and xanthophyll cycle pigments in the intertidal green alga
Ulva lactuca L. Planta 215, 502–509.

69. Roleda, M. Y., D. Hanelt and C. Wiencke (2005) Growth kin-
etics related to physiological parameters in young Saccorhiza
dermatodea and Alaria esculenta sporophytes exposed to UV
radiation. Polar Biol. 28, 539–549.

70. Roleda, M. Y., C. Wiencke and D. Hanelt (2006) Thallus mor-
phology and optical characteristics affect growth and DNA
damage by UV radiation in juvenile Arctic Laminaria sporo-
phytes. Planta 223, 407–417.

71. Roleda, M. Y., D. Hanelt and C. Wiencke (2006) Growth and
DNA damage in young Laminaria sporophytes exposed to
ultraviolet radiation: Implication for depth zonation of kelps on
Helgoland (North Sea). Mar. Biol. 148, 1201–1211.

72. Aguilera, J., K. Bischof, U. Karsten, D. Hanelt and C. Wiencke
(2002) Seasonal variation in ecophysiological patterns in
macroalgae from an Arctic fjord. II. Pigment accumulation and
biochemical defence systems against high light stress. Mar. Biol.
140, 1087–1095.

73. Roy, S. (2000) Strategies for the minimisation of UV-induced
damage. In The Effects of UV Radiation in the Marine Environ-
ment (Edited by S. de Mora, S. Demers and M. Vernet), pp.
177–205. Cambridge University Press, Cambridge.

74. Buckley, C. E. and J. A. Houghton (1976) A study of the effects
of near UV radiation on the pigmentation of the blue-green alga
Gloeocapsa alpicola. Arch. Microbiol. 107, 93–97.

75. Goes, J. I., N. Handa, S. Taguchi and T. Hama (1994) Effect of
UV-B radiation on the fatty acid composition of the marine
phytoplankter Tetraselmis sp.: Relationship to cellular pigments.
Mar. Ecol. Prog. Ser. 114, 259–274.

76. Pascal, A., C. Gradinaru, U. Wacker, E. Peterman, F. Calkoen,
K.-D. Irrgang, P. Horton, G. Renger, R. van Grondelle, B.
Robert and H. van Amerongen (1999) Spectroscopic character-
ization of the spinach Lhcb4 protein (CP29), a minor light-har-
vesting complex of photosystem II. Eur. J. Biochem. 262, 817–
823.

77. Croce, R., G. Cinque, A. R. Holzwarth and R. Bassi (2000)
The Soret absorption properties of carotenoids and chloro-
phylls in antenna complexes of higher plants. Photosyn. Res.
64, 221–231.

78. Roleda, M. Y., M. N. Clayton and C. Wiencke (2006) Screening
capacity of UV-absorbing compounds in spores of Arctic Lam-
inariales. J. Exp. Mar. Biol. Ecol. 338, 123–133.

79. Schoenwaelder, M. E. A. and M. N. Clayton (1998) Secretion of
phenolic substances into the zygote wall and cell plate in embryos
of Hormosira and Acrocarpia (Fucales, Phaeophyceae). J. Phy-
col. 34, 969–980.

80. Schoenwaelder, M. E. A. and M. N. Clayton (1998) The secre-
tion of phenolic compounds following fertilization in Acrocarpia
paniculata (Fucales, Phaeophyta). Phycologia 37, 40–46.

81. Schoenwaelder, M. E. A. and M. N. Clayton (2000) Physode
formation in embryos of Phyllospora comosa and Hormosira
banksii (Phaeophyceae). Phycologia 39, 1–9.

82. Henry, B. E. and K. L. van Alstyne (2004) Effects of UV radi-
ation on growth and phlorotannins in Fucus gardneri (Phaeo-
phyceae) juveniles and embryos. J. Phycol. 40, 527–533.

83. Pavia, H., G. Cervin, A. Lindgren and P. Åberg (1997) Effects of
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