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ABSTRACT

Seismic stratigraphic studies and scientific drilling of the Antarctic continental
margin have yielded clues to the evolution of Cenozoic climates, depositional
paleoenvironments and paleoceanographic conditions. This paper draws on studies
of the former Antarctic Offshore Stratigraphy Project and others to review the
geomorphic and lithostratigraphic offshore features that give insights into the
long-duration (m.y.) and short-term (k.y.) changes that document the great
variability of Cenozoic Antarctic paleoenvironments. The lithologic drilling
record documents non-glacial (pre-early Eocene) to full-glacial (late Pliocene to
Holocene) times, and documents times of cyclic ice-sheet fluctuations at k.y.
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scales (early Miocene to Pliocene and Holocene). Times of significant change in
types and/or amounts of glaciation are also seen in the offshore lithologic record
(early Oligocene, mid-Miocene, early Pliocene). Seismic data illustrate large-scale
geomorphic features that point to massive sediment erosion and dispersal by ice
sheets and paleoceanographic processes (e.g. cross-shelf troughs, slope-fans, rise-
drifts). The commonality of these features to East and West Antarctica since late
Eocene time points to a continent that has been intermittently covered, partially to
completely, by glaciers and ice sheets. The greatest advances in our understanding
of paleoenvironments and the processes that control them have been achieved from
scientific drilling, and future progress depends on a continuation of such drilling.
Citation to regional-section information: Regional-section authors, 2008, In
Cooper et al., Cenozoic climate history from seismic-reflection and drilling
studies on the Antarctic continental margin, In: F. Florindo and M. Siegert
(Eds). Antarctic Climate Evolution, Developments in Earth and Environ-
mental Sciences, Vol. 8, Elsevier, 537p.

Citation to general summary: Cooper, A.K., G. Brancolini, C. Escutia, Y.
Kristoffersen, R. Larter, G. Leitchenkov, P. O’Brien, W. Jokat, 2008,
Cenozoic climate history from seismic-reflection and drilling studies on the
Antarctic continental margin, In: F. Florindo and M. Siegert (Eds).
Antarctic Climate Evolution, Developments in Earth and Environmental
Sciences, Vol. 8, Elsevier, 537p.

5.1. Introduction

The Antarctic continental margin is a tectonic collage of former rifts and
subduction zones that are covered by sediments deposited when the adjacent
continent was free of regional glaciers (i.e. ‘pre-ice-sheet’ times) and when
glaciers extended onto the margin (i.e. glacial times). Since the 1960s, many
seismic surveys and sea-floor cores and a few drill cores have been acquired on
the continental margin to decipher the Cenozoic and earlier history of
Antarctica’s paleoenvironments and paleoclimates – a history hidden onshore
in sediments now unreachable beneath the Antarctic Ice Sheet. This chapter
summarizes principally key results of seismic and drilling studies for proximal
parts of the continental margin done from 1989 to 2004 by the multinational
Antarctic Offshore Statigraphy project (ANTOSTRAT) to decipher Antarctic
Ice Sheet history. We include some findings of the successor Antarctic Climate
Evolution project (ACE) that includes the Cenozoic Antarctic Stratigraphy
and Paleobathymetry project (CASP), to create a unified circum-Antarctic
stratigraphy from all existing seismic and rock-core data (Davey and Cooper,
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2007). Our summary complements istotopic and ice-rafting studies for
distal parts of the margin and abyssal areas (e.g. Warnke et al., 1996;
Zachos et al., 2001). We first describe work in five geographic sectors of the
margin, and then summarize key results for the entire margin.
Multichannel seismic (MCS) reflection data, the principal tool for deep

stratigraphic studies of the continental margin, have been recorded by more
than 15 nations (Fig. I-1). Many topical MCS studies with maps of select
regional data exist (see citations in regional sections below), but few
comprehensive data compilations are either published or openly accessible.
Notable exceptions are drilling results (e.g. Deep Sea Drilling Project, Ocean
Drilling Program, Cape Roberts Project, ANDRILL and other drilling
projects), MCS data compilations in the Antarctic Seismic Data Library
System (e.g. www.scar-sdls.org; Wardell et al., 2007), a few Antarctic and
regional geosciences atlases (e.g. Hayes, 1991; Cooper et al., 1995), online
Figure I-1: Map showing locations of tracklines for multichannel seismic-
reflection data on the Antarctic continental margin as of late 2006 (from
Wardell et al., 2007). Regions are RS, Ross Sea; WL, Wilkes Land; PB,

Prydz Bay; WS, Weddell Sea; AP, Antarctic Peninsula.



118 A. K. Cooper et al.

Author's personal copy
data centres (e.g. World Data Center) and select discussions of Antarctic
margin databases (e.g. Anderson, 1999).
In general, Antarctica had a relatively warm climate and normal-water-

depth continental shelf (i.e. like low-latitude continental shelves today) in
earliest Cenozoic and Late Cretaceous times – conditions that differ from the
polar climate of the latest Cenozoic, with its thick ice sheet and an
abnormally deep-water-depth and landward sloping shelf (e.g. Cooper et al.,
1991b; Anderson, 1999). Ice has played an important role in continental
margin evolution by eroding onshore areas (formerly with vegetation) and
discharging the debris into the sea, where ocean currents distribute it to the
continental shelf, slope and rise. At times the ice has strongly eroded parts
of the shelf. Tectonic processes, principally variable thermal and flexural
subsidence and uplift, have also modified the margin morphology and hence
stratigraphy (e.g. ten Brink et al., 1995).
Offshore Antarctic stratigraphic studies have thus focused on mapping

geomorphology and seismic facies of characteristic features (e.g. shelf-edge
fans/deltas, mound deposits, unconformities, etc.), and using the limited core
and downhole data to decipher their depositional paleoenvironments and
relation to nearby ice, if any. Such features help to infer and establish where
and when non-glacial and glacial processes acted (e.g. Cooper et al., 1991b).
Drilling is the only way to ‘ground truth’ the regional seismic surveys (i.e. via
a direct tie of lithologic facies to seismic facies), and to provide the age
and biostratigraphic control needed to decipher depositional and climatic
paleoenvironments (e.g. Barker and Camerlenghi, 2002; Cooper and
O’Brien, 2004). The following regional subchapters have been written by
the regional experts listed. Their bibliographic citations are augmented in a
‘selected reference’ section that provides additional background on the prior
studies done by the Antarctic geoscience community.
5.2. Ross Sea (G. Brancolini and G. Leitchenkov)

The Ross Sea has four large sedimentary basins with thick Cenozoic sequences
that record the proximal paleoenvironmental histories of the East and West
Antarctic Ice Sheets (Cooper and Davey, 1985; Cooper et al., 1991b, c). Here,
ice-sheet evolution is linked to the Cenozoic uplift histories of the
Transantarctic Mountains andMarie Byrd Land. Offshore, the West Antarctic
Ice Sheet (WAIS) flows across the Eastern basin, and the East Antarctic Ice
Sheet (EAIS) passes over the Transantarctic Mountains and flows across the
Victoria Land basin, the Northern basin and the Central trough (Fig. RS-1).



Figure RS-1: Map showing the structural framework of the ross sea. The
limits of the basins are based on the depositional limits of the seismic Sequence
RSS-1. VL, Victoria Land; VLB, Victoria Land basin; NB, Northern basin;
CoH, Coulman high; CH, Central high; CT, Central trough; EB, Eastern
basin; WAIS, West Antarctic Ice Sheet; EAIS, East Antarctic Ice Sheet. The
heavy dashed line marks the postulated boundary between East Antarctic Ice

Sheet and West Antarctic Ice Sheet drainage.
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Numerous seismic studies have been done in the Ross Sea region since the
1960s, with more than 45,000 km of MCS reflection data collected since 1980
(Hinz and Block, 1984; Sato et al., 1984; Cooper and Davey, 1987; Hinz and
Kristoffersen, 1987; Zayatz et al., 1990; Brancolini et al., 1991) (Fig. RS-2a),
to provide tectonic and deep stratigraphic control. A large number of single-
channel seismic (SCS) surveys have also been conducted for greater
resolution of the shallow subsurface (Fig. RS-2b). Drilling at several sites
by DSDP (Deep Sea Drilling Project, Hayes and Frakes, 1975), DVDP (Dry
Valley Drilling Project, McGinnis, 1981), MSSTS (McMurdo Sound
Sediment and Tectonic Study, Barrett, 1986), CIROS (Cenozoic Investiga-
tion in the Western Ross Sea, Barrett, 1989) and CRP (Cape Roberts Project,



Figure RS-2: (A): Multichannel seismic-reflection surveys in the Ross Sea
(modified from Brancolini et al., 1995). Some of these data are available in
digital format from Cooper et al. (1995) and others from the Antarctic
Seismic Data Library (Childs et al., 1994; Wardell et al., 2007). (B) Single-
channel seismic surveys in the Ross Sea (modified from Barrett et al., 1999).
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Figure RS-3: Correlation of Ross Sea area drilling and seismic stratigraphy
with global oxygen isotope (Miller et al., 1987) and eustacy (Haq et al., 1987)
curves (modified from Brancolini et al., 1995; Cooper et al., 1995). Regional
erosional unconformities in Oligocene and younger sections are interpreted to

be due in part to sub-ice erosion, especially in late Neogene time.
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Cape Roberts Science Team, 1998, 1999, 2000, 2001) ANDRILL (Antarctic
geological Drilling, Naish et al., 2007; Florindo et al., 2008; Harwood et al.,
2008) provides geologic ground truth data (Fig. RS-3). A regional seismic
stratigraphy has been derived by the ANTOSTRAT project with seismic
sequences and unconformities tied to drilling data (Fig. RS-3; Cooper et al.,
1995).
Ross Sea seismic data are used by many to infer glacial sedimentary

processes (e.g. Cooper et al., 1991b; Alonso et al., 1992; Anderson and
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Bartek, 1992; Shipp et al., 1994; Brancolini et al., 1995; Cochrane et al., 1995;
De Santis et al., 1995; Bartek et al., 1996; De Santis et al., 1999; Bart et al.,
2000; Bart, 2003; Chow and Bart, 2003; Accaino et al., 2005). Characteristic
features and inferred processes in Oligocene and younger strata include:

1. Landward-deepening seafloor of the continental shelf with broad (up to
100 km wide) cross-shelf troughs and banks formed by ice-stream erosion
and deposition, respectively.
2. Numerous regional seismic unconformities believed to result from erosion
of the continental shelf by grounded ice sheets.
3. Steep prograding sedimentary sequences (i.e. foreseest dips more than 51 and
eroded topset strata) interpreted as ice-proximal till deltas from grounded ice.
4. Wedge-shape, non-reflective units interpreted as ‘till tongues’ deposited by
grounded ice.
5. Shallow sediment with high velocities, considered due to overcompaction
by grounded ice.

The seismic stratigraphy and drilling help establish ice-sheet evolution in
the Ross Sea region, and are discussed below for four key intervals.
5.2.1. Pre-Ice-Sheet (Pre-Late-Oligocene Time)

This period includes seismic sequence RSS-1 between the acoustic basement
and unconformity RSU-6 (Fig. RS-3, Foldouts RS-1 and RS-2) and, in the
Victoria Land basin, acoustic units V4 and V5 (Cooper et al., 1987).
Acoustic basement rocks have been sampled at two sites, and are

Palaeozoic Beacon Formation rocks at the CRP-3 site adjacent to the coast
(Cape Roberts Science Team, 2000) and are inferred palaeozoic and
Cretaceous igneous and metamorphic rocks at DSDP Site 270 in the centre
of the Ross Sea (Hayes and Frakes, 1975). The basins are believed to hold
sedimentary rocks of Cretaceous and younger age (Hinz and Block, 1984;
Cooper et al., 1991c), but Sedimentary rocks older than late Eocene have not
been cored by drilling. Upper Eocene sediments have been cored in the
CIROS-1 drillhole in McMurdo Sound (Coccioni and Galeotti, 1997;
Fielding et al., 1997; Hannah et al., 1997; Monechi and Reale, 1997). The
presence of ubiquitous lonestones (Barrett, 1989) testifies that glaciers
(but not necessarily continent-size ice sheets) were calving at sea-level then.
Eocene erratic rocks are found in coastal areas (Levy et al., 1995), and

have flora indicating cool, but not glacial, climates in the McMurdo area
(Stillwell and Feldmann, 2000). Offshore basin analysis, mainly from MCS
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reflection data, suggests that in Cenozoic pre-ice-sheet times, the Ross Sea
was dissected by high-standing subaerial ridges, now seen as the buried
Coulman high and Central high (De Santis et al., 1995). Prior outcropping of
these ridges is suggested by the presence of regoliths above the basement at
DSDP Site 270 (Hayes and Frakes, 1975).
5.2.2. Early Glacial (Late Oligocene to Early Miocene)

This period includes seismic sequences RSS-2 and -3 (Fig. RS-3 and Foldouts
RS-1 and RS-2). Sedimentary rocks from this period were recovered at
CIROS-1, and CRP-1, -2 and -3, and MSSTS-1 drilling sites in the McMurdo
Sound area. Such rocks include compacted diamicton indicative of deposition
by/under grounded ice, as well as mud and ice-rafted debris (IRD) indicative
of open-water environments (Barrett, 1986; Barrett, 1989; Hannah, 1994;
Cape Roberts Science Team, 2001), in lower Miocene sediments at CRP 2/2A
sites. Compacted diamicton and mud layers at site CRP-1, vary with uniform
cyclicity, and document systematic oscillation of the EAIS size (Naish et al.,
2001). The oscillations are at orbital periodicities similar to those recorded by
isotope studies in distal deep-ocean sediments.
Seismic facies along the border of the Victoria Land basin suggest that

tidewater glaciers all along the Transantarctic Mountains intermittently
extended onto the continental shelf and carried abundant glacial sediment to
the sea (Brancolini et al., 1995; Bartek et al., 1996; Henrys et al., 2001).
In the eastern Ross Sea, at DSDP Site 270, Nothofagus-dominated flora in

lower Miocene sediments (Kemp and Barrett, 1975) are similar to those
recovered in McMurdo Sound drillcores (Hill, 1989; Mildenhall, 1989;
Askin and Raine, 2000), and indicate cool-temperate climates during
interglacial periods. DSDP Site 270 also recovered lower Miocene ice-
proximal glaciomarine sediments from the early Miocene section, but the size
and character of the ice sheet that deposited these sediments is debated.
Anderson and Bartek (1992) suggest, based on high-resolution single-
channel seismic data and drill cores, that by late Oligocene to early Miocene
time, the continental shelf was deeply scoured and foredeepened (i.e.
landward dipping) by a massive ice sheet. In contrast, Brancolini et al. (1995)
and De Santis et al. (1995), utilize regional stratigraphic maps (Cooper et al.,
1995) and their seismic facies analyses to postulate that, during the same
period the Central high was partly exposed and partly covered by small
subpolar ice caps (i.e. subpolar as defined by Anderson and Ashley, 1991).
A semi-quantitative evaluation of the water depth of the Eastern basin
during the early Miocene, based on the backstripping of the seismic section
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in Foldout RS-1, indicates that the foredeepeened profile of the Eastern
basin was only attained after middle Miocene time (De Santis et al., 1999).
The end of this early glacial period is marked by a change in reflection

geometries beneath the outer continental shelf (Foldouts RS-1 and RS-2)
from principally aggrading (RSS-2 and -3) to principally prograding,
(RSS-4). Cooper et al. (1991b) postulate that this change marks the start
of grounded-glacier advances to the shelf edge and erosion of a normal-
water-depth shelf by episodic grounded ice.
5.2.3. The Ice-Sheet Development (Mid-Early Miocene to Early Pliocene)

This period includes seismic sequences RSS-4, -5 and -6 (Fig. RS-3 and
Foldouts RS-1 and RS-2). Sediment from these sequences was recovered
at DSDP Sites 271, 272 and 273, MSSTS-1 and DVDP 10/11.
The early-middle Miocene is postulated to have been a time of major ice

buildup of ice in the Ross Sea region, and the carving of the first deep
troughs, similar in size to the present ice streams, across the continental shelf
(Anderson and Bartek, 1992). Bart (2003) and Chow and Bart (2003)
recognize at least two major WAIS expansions during the early part of the
middle Miocene and five in the entire Miocene. These expansions suggest
that either portions of the West Antarctic land elevation were above sea-level
and/or the air and water temperatures were sufficiently cold to support a
marine-based ice sheet.
Drill cores from the middle Miocene have been recovered at DSDP Sites 272

and 273 (Hayes and Frakes, 1975; Savage and Ciesielsky, 1983; Leckie and
Webb, 1986), and consist of diatom-bearing sediments interpreted as waterlain
tills and proximal- to distal-glacimarine deposits (Hambrey and Barrett, 1993).
Upper Miocene rocks are missing from all continental shelf drill cores,

except in the McMurdo Sound region (MSSTS-1, DVDP-10 and -11 drill
sites), where glaciomarine diamictites (tillites) and terrestrial strata are
found. These deposits are interpreted as having originated from glaciers
flowing out of the Transantarctic Mountains (Powell, 1981; Barrett, 1986;
Ishman and Webb, 1988; McKelvey, 1991).
The recent ANDRILL drilling on the Ross Ice shelf, near McMurdo

Sound (MIS project; Naish et al., 2007), recovered a 1,284m long core that
records Antarctica’s history over the last 14 million years. The core indicates
periods of ice-sheet growth, advancing over the drill site and then retreating
again to allow the open-marine conditions to return. More than 60 of these
advance-retreat cycles are present in the core.
On the outer continental shelf and upper slope, well-stratified seismic

sequences inferred to be of late Miocene age (i.e. RSS-6) are present in the
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Northern and Eastern basins, but the sequences are thin or absent on
the inner shelf (Cooper et al., 1995). In both basins, these sequences are
characterized by steeply prograding clinoforms with relatively thin or eroded
topset beds and a major seaward shift of the palaeo-shelf edge (Foldouts
RS-1 and RS-2). The sequences are thought to have been deposited by
intermittent grounded ice sheets carrying sediment to the continental shelf
edge (Bartek et al., 1991; Cooper et al., 1991b; Anderson and Bartek, 1992).
5.2.4. The Polar Ice Sheet (Early Pliocene Through Quaternary)

This period includes seismic sequences RSS-7 and -8 (Fig. RS-3) and
seismic units 1–7 of Alonso et al. (1992) and Anderson and Bartek (1992)
(Fig. RS-4a and b). Pliocene sediment has been recovered at drill sites in the
Taylor Valley (DVDP-10 and -11) and on the continental shelf at DSDP
Sites 271 and 273. DVDP drill cores contain sediments deposited by the
Taylor Glacier, while the sparsely sampled Pliocene deposit at DSDP 271
and 273 contains diatomaceous glaciomarine strata (Hayes and Frakes,
1975). These rocks imply that warmer interglacial conditions than today
existed at that time (Anderson and Ashley, 1991).
Seismic sequences of inferred Pliocene through Quaternary age occur in the

EAIS drainage in the Northern basin, where they are up to 800m thick in the
till delta fan system (Cooper et al., 1995). In the Eastern basin, Pliocene
through Quaternary age strata lie within the WAIS drainage and are more than
1,000m thick (Cooper et al., 1995). Detailed seismic stratigraphic analyses
from the Eastern basin margin (Fig. RS-4a; Alonso et al., 1992; Fig. RS-4b;
Anderson and Bartek, 1992), recognize a major change in the seismic character
of the Pliocene deposits. Up-section, the seismic unit thicknesses decrease, the
geometry of the sequences changes from principally progradational to
aggradational, and numerous widespread glacial erosion surfaces are seen.
These features indicate more frequent grounding events on the continental shelf
and increased subglacial till deposition relative to basal transport of sediments
to the grounding line. Bart et al. (2000) and Anderson et al. (1992) suggest that
on at least eight occasions during Pliocene to Quaternary times, the East and
West Antarctic Ice Sheets were much larger than today. The frequent and
extensive grounding events on the outer continental shelf contradict the widely
held view that the land-based EAIS was relatively stable and the largely
marine-based WAIS was relatively dynamic (Bart and Anderson, 2000).
The last glacial maximum (LGM) in the Ross Sea has been studied

using seafloor cores, subbottom and swath bathymetry data (Thomas and
Bentley, 1978; Kellogg et al., 1979; Denton et al., 1989; Leventer et al., 1993;
Brambati et al., 1994; Hilfinger et al., 1995; Kellogg et al., 1996; Licht et al.,



Figure RS-4: Seismic-reflection profiles across the Eastern basin (A) and the
Northern basin (B), illustrating the Neogene stratigraphic sections (from
Anderson and Bartek, 1992). The shelf margin delta fan complex shown is a
common feature in the seismic data from the continental margin and
characterizes deposition close to the ice-sheet grounding line. See Fig. RS-1

for location.
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1996; Cunningham et al., 1999; Domack et al., 1999; Licht et al., 1999;
Shipp et al., 1999; Alley and Bindschadler, 2001). Radiocarbon dates
from diamictons and sediment composition, indicate that ice-free conditions
existed on the inner shelf at times during the period from 60 to 10ka, and that
the ice sheet was present between 26.5 and 19.5 ka. (Domack et al., 1999). The
maximum ice-sheet expansion in the LGM is still debated: Kellogg et al.
(1996) place the grounding line at the continental shelf edge, Domack et al.
(1999) put it just north of the Coulman Island and Licht et al. (1999) interpret
that it was about 100 km south of Coulman Island. The last retreat of the
grounding line occurred in the western Ross Sea around 11ka at a rate of
about 100m/year, and the grounding line reached its present position about
6 ka (Domack et al., 1999; Shipp et al., 1999).
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5.3. Wilkes Land (C. Escutia and P. O’Brien)
5.3.1. Acoustic Stratigraphy

The approximately 1,500 km long Wilkes Land segment of the continental
margin (Fig. WL-1) formed during the Cretaceous separation of Australia
and Antarctica (Cande and Mutter, 1982; Veevers, 1987; Sayers et al., 2001;
Colwell et al., 2006; Leitchenkov et al., 2007; O’Brien and Stagg, 2007).
The stratigraphy of the margin is known mainly from the seismic

stratigraphic interpretation of numerous MCS surveys (Sato et al., 1984;
Wanneson et al., 1985; Tsumuraya et al., 1985; Eittreim and Hampton, 1987;
Ishihara et al., 1996; Tanahashi et al., 1997; Brancolini and Harris, 2000;
Stagg et al., 2004a, b); complemented by surface sediment cores (Domack
et al., 1980; Payne and Conolly, 1972; Domack, 1982; Tsumuraya et al.,
1985; Hampton et al., 1987; Ishihara et al., 1996; Tanahashi et al., 1997;
Brancolini and Harris, 2000; Leventer et al., 2001; Escutia et al., 2003;
Michel et al., 2006); and limited deep geological sampling recovery at DSDP
Sites 268 and 269 (Hayes and Frakes, 1975). The best-surveyed area is the
eastern Wilkes Land margin (EWL) from the Adélie Coast to George V
Land. West of this area (the western Wilkes Land margin-WWL), Japan and
Russia collected widely spaced seismic lines that were then augmented during
the 2001–2002 Australian Antarctic and Southern Ocean Profiling
(ASSOPP) Project (Stagg et al., 2004a, b; Leitchenkov et al., 2007).
5.3.1.1. Pre-ice-sheet stratigraphy

Along the Wilkes Land margin syn- and post-rift sedimentary rocks reach
thicknesses of more than 7 km (Stagg et al., 2004a, b). Pre-Eocene syn-rift
strata are about 3 km thick and are highly variable in seismic character, with
discontinuous, faulted, and tilted strata onlapping the flanks of the acoustic
basement (Eittreim and Smith, 1987; Eittreim, 1994; De Santis et al., 2003;
Stagg et al., 2004a, b; Leitchenkov et al., 2007).
The thickest (at least 9 km) depocentre of post-rift sedimentary rocks is

located in the WWL off the Bud Coast (Close et al., 2007). In the EWL post-
rift strata are up to 5 km thick across the Wilkes Land continental shelf,
slope and rise (Eittreim and Smith, 1987; Hampton et al., 1987; Wannesson,
1990; Tanahashi et al., 1994; De Santis et al., 2003). These strata are well-
layered on the continental rise and become less stratified and more
discontinuous landward (Eittreim and Smith, 1987; Eittreim, 1994;
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Figure WL-2: Multichannel seismic line WEGA W21 and line drawings of
multichannel seismic profiles IFP 107 and WEGA W35 showing the overall
architecture of the Wilkes Land margin from the continental shelf to the
continental rise (modified from Escutia et al., 2005). See Fig. WL-1 for

location of the seismic lines.
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De Santis et al., 2003). A prominent regional unconformity (WL-U3) within
the Cenozoic post-rift section beneath the continental shelf (Fig. WL-2) is
believed to be due to erosional processes related to the first advance of
grounded ice sheets onto the continental shelf (Eittreim and Smith, 1987;
Tanahashi et al., 1994; Eittreim et al., 1995; Escutia et al., 1997; Escutia
et al., 2005). The pre-ice-sheet strata below unconformity WL-U3, where
resolvable, are flat-lying and less stratified than glacial strata above the
unconformity.
Pre-ice-sheet rocks have been dredged from the Wilkes Land continental

shelf and slope. On the inner shelf, Mesozoic sediments have been exposed
via erosion by late Cenozoic glaciers near the Mertz ice tongue. Lignite
was recovered (Mawson, 1940, 1942), and lower Cretaceous brecciated,
carbonaceous siltstone was cored (Domack et al., 1980). Other dredge
samples in the area, acquired by Leventer et al. (2001), include sedimentary
clasts of Paleogene lignites with reworked Early Cretaceous flora. On the
upper continental slope off Terre Adélie, Sato et al. (1984) dredged samples
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of locally derived Oligocene and Miocene limestone and undated sedimen-
tary, metamorphic and igneous rocks of mostly ice-rafted origin.
5.3.1.2. Continental shelf glacial stratigraphy

Glacial sequences on the shelf thicken seaward in prograding wedges
(Fig. WL-2). The sequences are deeply eroded by broad troughs that cross
the shelf. The troughs are interpreted as the erosional paths of ice streams
during times of glacial maxima (Eittreim et al., 1995). Foreset strata are
commonly truncated at or near the seafloor beneath the troughs (Fig. WL-2).
Topset strata form the banks adjacent to the troughs. Ice is inferred to have
moved slowly over bank areas and rapidly in the troughs. Geometry of strata
in buried troughs on the shelf suggests to some (Eittreim et al., 1995; Escutia
et al., 2000) that the locations of ice streams and their erosional troughs and
banks have shifted during consecutive glacial advances.
Regional glacial seismic sequences and unconformities defined by different

workers (Table WL-1) in the EWL were renamed and in some cases redefined
by De Santis et al. (2003). On the shelf, sequences are truncated by two
Table WL-1: Summary of the terminology assigned in previous publications
to the inferred wilkes Land glacial sequences and their bounding

unconformities (updated from Escutia et al., 2005). Unconformities (tied
with lines) and sequences (in between these lines) are listed from younger at

the top to older.
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regional unconformities, WL-U3 and WL-U8 (Wannesson et al., 1985;
Eittreim and Smith, 1987; Hampton et al., 1987; De Santis et al., 2003), and
the erosion is thought to result from grounded ice sheets moving across the
continental shelf (Tanahashi et al., 1994; Eittreim et al., 1995; Escutia et al.,
1997; Escutia et al., 2005). Eittreim et al. (1995) calculated erosion of 300 to
600m of strata below WL-U3. Sequences below WL-U8 are dominantly
aggradational and sequences above are principally progradational. For
unconformity WL-U8, Eittreim et al. (1995) estimated erosional truncation
of 350 to 700m of sediment. Unconformity WL-U8 marks changes in the
geometry of the outer shelf progradating wedges, from shallower dips below
WL-U8 to steeper dips above (foreset slopes up to about 101).
During the open-marine Holocene, thick laminated diatom mud and oozes

were deposited in deep (W1,000m) inner shelf basins, such as for example the
Adélie Drift (Costa et al., 2007). Based on AMS radiocarbon dates, this drift
has accumulation rates on the order of 20–21m/k.y. Opal, Ti and Ba time-
series show decadal to century variance suggestive of solar forcing and El
Niño Southern Oscillation (ENSO) forcing (Costa et al., 2007).
5.3.1.3. Continental slope glacial stratigraphy

Although partly obscured by seafloor multiples, the stratigraphy of the
continental slope consists of seaward-dipping reflectors (Eittreim and Smith,
1987; Hampton et al., 1987; Eittreim et al., 1995). Prograding strata above
the WL-U8 unconformity downlap and pinch out at the base of the
continental slope, but deeper units (i.e. between WL-U8 and WL-U3)
continue across the margin (Hampton et al., 1987; Eittreim et al., 1995;
Escutia et al., 1997; De Santis et al., 2003) (Fig. WL-2).
Sediments forming prograding foresets were delivered directly to the outer

shelf and upper slope as deforming tills at the base of ice streams at times of
glacial maxima (Eittreim et al., 1995). Ice-stream delivery of a large volume
of unconsolidated sediment to the steep slope resulted in sediment failures
that led to the development of large chaotic deposits at the base of the
paleoslope foresets (Eittreim et al., 1995; Escutia et al., 2000; De Santis et al.,
2003; Escutia et al., 2007). More-recent slope strata are dissected by
erosional submarine gullies (Eittreim et al., 1995) and slope canyons (Escutia
et al., 2000).
Sea-floor sediment cores from the continental slope contain debris-flow

units and numerous hiatuses. The oldest sediment has been dated as late
Miocene in age, indicating that gravity flows have been a dominant slope
process since at least this time (Escutia et al., 2003).
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5.3.1.4. Continental rise glacial stratigraphy

On the EWL continental rise, strata above the WL-U3 unconformity include
six glacial-related seismic units, WL-S4 to WL-S9 (De Santis et al., 2003;
Donda et al., 2003) (Table WL-1, Fig. WL-3). The two deepest units, WL-S4
and WL-S5, consist of stratified and continuous reflectors that onlap at
the base of the slope (Escutia et al., 1997; Donda et al., 2003). Acoustic
signatures of isolated channel-levee complexes that characterize turbidite
deposition are first observed up-section within unit WL-S5 (Escutia et al.,
1997; Escutia et al., 2000; Escutia et al., 2002; Donda et al., 2003). During
deposition of units WL-S6 and WL-S7, channel-levee complexes became
widespread and turbidity flows were the dominant process building the
sedimentary ridges on the rise. Wavy reflectors that are characteristic of
bottom contour-current deposition occur on the lower rise in unit WL-S6
and on the upper rise in WL-S7. Within Unit WL-S8, there is evidence for
bottom contour-current and turbidite flows, but WL-S8 mostly infills
previous depressions (Escutia et al., 1997; Escutia et al., 2000; Escutia et al.,
2002; Donda et al., 2003). Unit WL-S9 is a discontinuous unit on the rise,
and, where present, comprises channel and levee complexes and layered
reflectors (Donda et al., 2003). Recent studies on the WWL margin glacial
strata show a similar evolution of the glacial sedimentary sequences (i.e.
increased proximal turbidite facies up-section and influence of bottom-
contour-current deposition) above unconformities ‘eoc’ (Close et al., 2007)
and WL3 (Leitchenkov et al., 2007), which correlate with WL-U3 on the
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EWL. Between 1101 and 1301 large debris-flow deposits are also reported
forming throughout the Miocene (Donda et al., 2007a, b).
5.3.2. Drilling on the Wilkes Land Margin

DSDP Leg 28 drilled Sites 268 and 269 on the continental rise and abyssal
plain, respectively, to determine the geologic and climate history of
Antarctica and the Southern Ocean (Hayes and Frakes, 1975). The drill
cores document that extensive Antarctic glaciation began at least by
Oligocene to early Miocene time, and that water temperatures were cool-
temperate in the late Oligocene and early Miocene and cooled during the
Neogene, presumably as glaciation intensified.
DSDP Site 268 was drilled to a subbottom depth of 474.5m in 3,544m

water depth with total core recovery of 14% (Hayes and Frakes, 1975).
Three units were described, based on lithologies and amounts of diatoms,
nannofossil ooze and ice-rafted pebbles and granules (Hayes and Frakes,
1975). Piper and Brisco (1975) interpreted the two deeper units to be
contourites, based on the character of silt laminae. The shallowest of the
three units, dated as Pliocene and Quaternary, was interpreted as turbidites,
based on a high content of silty clay with common silt laminae and fine-sand
beds 2–20 cm thick. Hayes and Frakes (1975) infer that the deepest lower
Miocene and Oligocene unit was deposited when the ice sheet first advanced
onto the shelf. Water at that time was warm enough to support calcareous
biogenic sedimentation, but ice-rafting and contourites provide evidence for
nearby ice on East Antarctica and for bottom currents, possibly generated by
cold bottom water production associated with a limited ice shelf or tongue
(Hayes and Frakes, 1975).
DSDP Site 269 was drilled to a subbottom depth of 958m in a water depth

of 4,285m and with 42% recovery of Eocene to recent rocks (Hayes and
Frakes, 1975). The section consists predominantly of silts and clays with
variable amounts of microfossils. Diatom oozes and diatom mud dominate
the upper half of the section, which is dated as Quaternary to Late Miocene
in age (Hayes and Frakes, 1975). In the lower half, which is late Miocene to
early Miocene and Oligocene in age, diatoms are absent but calcareous
nannofossils are found in trace amounts. Similar to DSDP Site 268, there is a
transition in facies at DSDP Site 269 from more distal facies in the lower part
of the core to more proximal facies near the surface. Piper and Brisco (1975)
interpret this facies change as resulting from substantial increased supply
of sand and coarse silt and clay from the Antarctic continent, possibly in
response to prograding of the continental margin.
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5.3.3. The Inferred Long-Term Record of Glaciations

Investigators interpret the WL-U3 unconformity as having been eroded
during the first grounding of an ice sheet on the continental shelf (Tanahashi
et al., 1994; Eittreim et al., 1995; Escutia et al., 1997; Escutia et al., 2005),
either about 40m.y. ago (Eittreim et al., 1995) or 33.4–30Ma (Escutia et al.,
2005) (Table WL-2). Above WL-U3, early glacial strata (e.g. likely glacial
outwash deposits) were provided by fluctuating temperate glaciers, and were
deposited as low-dip-angle prograding foresets. The increase in stratal dips
across unconformity WL-U8 in the prograding wedge at the shelf edge is
interpreted to record a glacier-regime change from intermittent fluctuating
glaciers to persistent oscillatory ice sheets, either on the Late Miocene
(Escutia et al., 2005) or about 3Ma (Rebesco et al., 2006) (Table WL-2). The
steep foresets above WL-U8 likely consist of ice proximal (i.e. waterlain till
and debris flows) and open-water sediments deposited as grounded ice sheets
Table WL-2: Continental shelf and rise stratigraphy and inferred East
Antarctic Ice Sheet evolution in the Wilkes Land margin and timing of

events.
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extended intermittently onto the outer shelf – similar to sediments recovered
from ODP Site 1167 on the Prydz Trough fan (O’Brien et al., 2001).
On the continental rise, the up-section increase in the energy of the

depositional environment in units WL-S5 to WL-S7 (i.e. seismic facies
indicative of proximal turbidites and of bottom-contour-current deposition)
likely resulted from enhanced shelf progradation. Maximum rates of
sediment delivery to the rise appear to have occurred during the development
of units WL-S6 and WL-S7, which is inferred to have been during the
Miocene (Hayes and Frakes, 1975; De Santis et al., 2003; Escutia et al.,
2005). During deposition of WL-S8 and WL-S9, sediment supply to the
lower continental rise decreased and depocentres shifted landward to the
base of the slope and outer shelf (Escutia et al., 2002; De Santis et al., 2003;
Donda et al., 2003; Escutia et al., 2005; Rebesco et al., 2006). Inferred age for
Units WL-S8 and WL-S9 is Pliocene to Recent (De Santis et al., 2003).
Sequence WL-S9 was deposited under a polar regime with a persistent
ice sheet during the Pliocene–Pleistocene. At that time, most sediment
delivered to the margin was trapped on the outer shelf and slope, forming
steep prograding wedges, with some sediment bypassing the slope in
channelized turbidity currents (Escutia et al., 2002; De Santis et al., 2003;
Escutia et al., 2005).
During the Holocene open-water interglacial thick sections of diatom mud

and oozes are deposited in deep inner shelf basins (Costa et al., 2007). These
sediments hold an ultra-high-resolution record of climate variability likely by
solar and ENSO forcing.
5.4. Prydz Bay (P. O’Brien and G. Leitchenkov)

Prydz Bay is a re-entrant in the East Antarctic margin, and overlies a rift
structure that extends about 500 km into the interior of the continent. The
rift has channelled drainage at least since the Early Cretaceous (Fig. PB-1;
Arne, 1994) and presently controls the Amery Ice Shelf drainage system,
which drains more than 16% of East Antarctica. This drainage basin
includes the Gamburtsev Mountains, a subglacial range in which the
Cenozoic ice sheet may have nucleated. Its long history, thick sediment and
Cenozoic outcrops in the flanking Prince Charles Mountains have made
Prydz Bay a likely site for preserving palaeo-climate records. Seismic surveys
by Australia, Russia, Japan and the US and two ODP Legs 119 and 188
(Fig. PB-1), plus field studies and exposure dating, have provided an
extensive picture of palaeo-climate evolution of the region.
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5.4.1. Pre-Ice-Sheet (Pre-Late Eocene)

The Lambert Graben and Prydz Bay basin formed during the Carboniferous
or Permian (Arne, 1994; Lisker et al., 2005) and were depocentres in pre-ice-
sheet times. Seismic data from the Prydz Bay shelf show pre-ice-sheet
sequences of parallel, moderately continuous reflectors (Figs. PB-2 and PB-3).
ODP Sites 740, 741 and 1166 penetrated pre-ice-sheet sediments that were
deposited in fluvial to fluvio-deltaic environments. ODP Site 740 intersected
interbedded sandstone, siltstone and mudstone with reddish coloration
(Shipboard Scientific Party, 1989), interpreted as fluvial flood plain deposits
(Turner, 1991). The red coloration suggests a seasonal fluctuating rainfall
regime but the age of this unit remains unknown (Truswell, 1991). It could be
as old as Triassic, based on the presence of Triassic sediments in the northern
Prince Charles Mountains (Leitchenkov, 1991; McLoughlin and Drinnan,
1997a, b). However Leitchenkov (1991) identified a thick (up to 5 km),
faulted and high-velocity (up to 5.2 km/s) unit on multichannel data
underlying these red beds. This sequence predates the main phase of
breakup-related crustal extension, leading him to correlate the deep unit with
Permian-Triassic sediments of the northern Prince Charles Mountains
(Leitchenkov, 1991). If so, then the red beds in ODP Site 740 are likely Early
Cretaceous or Late Jurassic in age.
ODP Sites 741 and 1166 intersected Cretaceous sediments beneath the

Cenozoic section. The Cretaceous comprises interbedded dark siltstone and
Figure PB-2: Diagramatic section across Prydz Bay shelf and slope based on
Russian seismic lines SAE 32002 and RAE 4005. K1 are Cretaceous

sediments. Location shown in Fig. PB-1.



Figure PB-3: Seismic section between ODP sites 742 and 1166. Sequence
PS2A2 comprises fluvio-deltaic sands of late Eocene age. Sequence PS2A1
overlies an erosion surface and comprises late Eocene marine muds with
lonestones. Location shown in Fig. PB-1 (modified from Erohina et al., 2004).
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sandstone with minor coal of probable delta plain to lagoonal origin. The
ODP Site 1166 section is Turonian-Santonian(?), whereas ODP Site 741
recovered an older section of middle Aptian sediment (Fig. PB-3). Macphail
and Truswell (2004) describe the palynomorphs from ODP Site 1166, and
interpret the assemblage as indicating a conifer-dominated woodland vegeta-
tion, consistent with a cool, humid climate.
The continental rise seaward of Prydz Bay contains up to 5 km of post-rift

sediments (Figs. PB-2, Foldouts PB-1 and PB-2; Mizukoshi et al., 1986,
Stagg et al., 2004a, b). The lowermost seismic stratigraphic unit has parallel,
mostly continuous reflectors typical of deep-ocean deposition that probably
occurred during pre-ice-sheet times (Mizukoshi et al., 1986; Kuvaas and
Leitchenkov, 1992; Kuvaas et al., 2005).
5.4.2. Early Glacial (Late Eocene)

In Prydz Bay, ODP Sites 739, 742 and 1166 recovered sediments deposited
immediately before major glaciation (Barron et al., 1991; Cooper and
O’Brien, 2004). The lithologies vary from dark siltstones to poorly sorted
sands and bedded mudstone with lonestones. Seismic sections show that the
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sands overlie an undulating erosion surface, suggesting a period of erosion,
possibly related to a relative low stand of sea-level (Erohina et al., 2004,
Fig. PB-3). The sand unit fines up-section into the mudstone, which contains
lonestones, marine diatoms and dynocysts (Shipboard Scientific Party,
2001a). Strand et al. (2003) interpret the sand unit as a fluvial to delta plain
channel deposit. They found sand-grain surface textures that suggest erosion
and breakage by glaciers, implying the presence of at least valley glaciers in
the hinterland of Prydz Bay. The overlying mudstone with lonestones
suggests a marine transgression, with floating ice as a feature of the resulting
shallow embayment.
Macphail and Truswell (2004) report palynomorphs in the fine-grained

units that indicate a late Eocene age (middle Nothofagites asperus zone),
representing an age range from 33.9 to 39.1Ma. This age overlaps with the
age suggested by diatoms in the transgressive mudstones (33–37Ma,
Shipboard Scientific Party, 2001a). Macphail and Truswell (2004) also
propose that the palynological assemblage was derived from a flora similar
to stunted Nothofagus rainforest scrub, and consisted of ground-hugging
plants and canopy trees about 1m high. Today, such floras occur outside of
Antarctica at higher altitudes, where cool temperatures limit tree growth.
Therefore, the Prydz Bay flora reflects a cool to cold environment at sea-
level. More precise temperature estimates are not possible because the plants
present were tolerant of a wide range of conditions (Macphail and Truswell,
2004).
5.4.3. Ice-Sheet Development (Oligocene–Miocene)

The older glacial section of the shelf comprises tabular units that pinch out
shoreward due to inner-shelf erosion, and that extend seaward into
prograding slope deposits (Cooper et al., 1991a). Palaeo-shelf edges for
these units are better defined up-section as foreset strata steepen seaward
(Fig. PB-2, Foldout PB-1). Shelf drilling (ODP Sites 739, 740, 741, 742 and
1166) recovered probable subglacial and glacimarine diamicts, with thin
interbedded diatomaceous mudstones deposited during warm episodes
(Hambrey et al., 1991; Erohina et al., 2004). The drilling and seismic
evidence indicates glacial advance well across the Prydz Bay shelf during cold
episodes, probably reaching the shelf edge. Over-compacted horizons
indicate periods of glacial erosion and ice loading during the early Oligocene,
Miocene and Plio-Pleistocene (Solheim et al., 1991; Shipboard Scientific
Party, 2001a). Before the late Miocene, the Prydz Bay shelf prograded
uniformly across its width, with the bulk of the ice and entrained sediment
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coming from the southern end of the bay (i.e. from the Lambert Graben).
The Prydz Bay continental slope became progressively steeper from the early
phase of glaciation in early Oligocene time, to reach angles of as much as 81
on the present slope (Foldouts PB-1 and PB-2).
On the continental rise, a pre-ice-sheet unit is overlain by one exhibiting

channel-levee geometries. The nature of the change in geometry and the
tracing of reflectors to the shelf drilling suggest that this change originated
from the glacial expansion and increased sediment supply in the early
Oligocene (Kuvaas and Leitchenkov, 1992). Overlying the channel-levee
complexes are sequences that include thick mounds and sediment waves
suggestive of contourite deposition, in addition to turbidite channels and
associated levees formed by intensified down-slope and along-slope currents
in the early Miocene (Fig. PB-2, Foldout PB-2).
ODP Site 1165 (Leg 188) drilled 999m with 69% recovery into a thick

mound of lower Miocene and younger contourite sediments with turbidites
only in the upper 5m (Cooper and O’Brien, 2004). The hole penetrated the
base of the mounded sequences, which was still of early Miocene age
(Handwerger et al., 2004). The drilling confirmed the seismic interpretation
that deposition of the thick contourite mounds had commenced by at least
early Miocene time, but sediments above and below the surface were typical
contourites – fissile claystones with abundant silt laminae (Handwerger et al.,
2004). Therefore, there was no obvious lithological change in the hole to
suggest a reason for the change from low relief submarine fans to highly
mounded deposits, previously inferred to be mixed turbidite-contourites.
ODP Site 1165 intersected a surface that can be mapped along the rise,

and that marks a middle Miocene (14–16Ma) change in sedimentation
from laminated contourites to hemipelagic and pelagic facies (Cooper and
O’Brien, 2004). Also, minerals and fossils recycled from shelf deposits first
appear, suggesting the start of intense erosion by ice and overdeepening of
the shelf. At this time, sedimentation rates slow more rapidly at the drill site,
falling from 100m/m.y. in the early Miocene to 37m/m.y. in the mid-
Miocene to 10m/m.y. during the Plio-Pleistocene (Shipboard Scientific
Party, 2001c; Florindo et al., 2003; Fig. PB-4).
On shorter time scales, Grützner et al. (2003) examine the proportions of

terrigenous sediment and biogenic opal in ODP Site 1165 between 3.4 and
7.6Ma. They find high opal content from 5.8 to 5.2Ma, which they relate to
reduced sea ice and increased productivity. They also identify terrigenous
intervals with high sedimentation rates from 7.2–6.6Ma and 5.2–4.8Ma,
which they interpret as indicating high erosion rates and a fluctuating ice sheet
under the influence of obliquity forcing. Grützner et al. (2003) also report
cyclic variations in sediment composition and physical properties that have



Figure PB-4: Age-depth model for ODP Site 1165 from Shipboard Scientific
Party (2001c) showing rapid sedimentation during the early Miocene,

reducing rapidly through the late Miocene to Pliocene.
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spectral peaks atB94, 41, 31, 21, and 18k.y. cycles. Williams and Handwerger
(2005) report that geophysical log parameters detect cycles of biogenic and
terrigenous input at periods of B15–23 and B135k.y., probably representing
Milankovich-scale forcing of paleoenvironmental processes. Uncertainty in the
age model of the hole prevents them from exact matching of peaks.
5.4.4. The Polar Ice Sheet (Late Miocene(?)–Pleistocene)

In the early Pliocene, ice flow regimes changed and ice was focused into an
ice stream on the western side of the bay, cutting a cross-shelf trough, the
Prydz Channel. The ice stream delivered basal debris to the shelf edge, where
the debris built a trough mouth fan on the upper continental slope (Prydz
Channel Fan, O’Brien and Harris, 1996; O’Brien and Leitchenkov, 1997;
O’Brien et al., 2004). On the banks adjacent to Prydz Channel, vertical
aggradation of subglacial debris produced tabular units while glacial erosion
overdeepened the inner shelf.
Two ODP holes were drilled into the continental slope. ODP Site 743 was

drilled to 98 mbsf into the eastern, steep part of the slope, and recovered
diamict. ODP Site 1167 was drilled to 447.5 mbsf into the Prydz Fan, and
recovered muddy, pebbly sands and diamicts deposited by slumping of
subglacial debris interpreted to have originated at the ice grounding line
at the shelf edge (Foldout PB-2, O’Brien et al., 2001; Passchier et al., 2003).
ODP Site 1167 also recovered thin mudstone units deposited during periods
of reduced ice extent (Shipboard Scientific Party, 2001b, Passchier et al.,
2003). More than 90% of the fan was deposited before the mid Pleistocene,
and there were only three advances of the Amery Ice Shelf to the shelf edge
in the late Pleistocene (O’Brien et al., 2004). Clay mineralogy, magnetic
properties and clast composition at ODP Site 1167 show changes suggesting
that the Pleistocene peak of erosion and ice volume in the Lambert-Amery
drainage system occurred in the early Pleistocene (O’Brien et al., 2004).
Oxygen isotope measurements on foraminifera from ODP Site 1167 also
suggest that sedimentation was reduced after the mid-Pleistocene, with
the last ice advance to the shelf edge at about Marine Isotope Stage 16
(612–698 ka; Lisiecki and Raymo, 2005). However, the stratal record is
fragmentary because hiatuses are common, which leads to a tentative
identification of isotope stages (Theissen et al., 2003). During the mid-to-late
Pleistocene, ice advances were less extensive. During the last glacial cycle, the
Amery Ice Shelf grounded only 100 km north of the present ice shelf edge
and far from the continental shelf edge (Domack et al., 1998; O’Brien et al.,
1999) (Fig. PB-1).
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On the continental rise, sedimentation rates decreased through the
Pliocene and Pleistocene because less detritus was eroded from the continent
and because sediment was deposited on the upper slope in front of the Prydz
Channel. The inferred early Pliocene base of the Prydz Channel Fan is the
prominent unconformity mapped by Mizukoshi et al. (1986, Reflector A)
and O’Brien et al. (2004, Reflector PP-12).
Drilling and seismic evidence indicate that glaciers advanced to the edge

of the Prydz Bay shelf in cold episodes during the Pliocene and early
Pleistocene, yet evidence of warm episodes also exists. Sediments in the
Prince Charles Mountains indicate open-water fjordal environments in the
Miocene to Pliocene (Hambrey and McKelvey, 2000; Whitehead et al., 2003,
2004). Lower Pliocene marine diatomite in the Vestfold Hills, on the eastern
side of Prydz Bay, contains evidence of temperatures 41C warmer than today
(Whitehead et al., 2001). ODP Site 1167 includes a thin mudstone horizon at
217 mbsf with calcareous nannoplankton not presently found in Prydz Bay
(Shipboard Scientific Party, 2001b), suggesting warmer conditions at about
1.1Ma (Pospical 2004; Lavelle, personal communication, 2001). These
occurrences indicate warmer episodes when the Amery Ice Shelf edge
retreated several hundred kilometres inland from its present position, and
warmer water intruded Prydz Bay.
5.4.5. Prydz Bay Summary

Seismic interpretation and drilling data reveal that the glaciation of Prydz Bay
started in the latest Eocene. At that time, Prydz Bay was occupied by a fluvio-
deltaic plain covered with stunted cool-temperate vegetation. Rivers flowing
through the Lambert Graben were fed by glaciers in the hinterland. The sea
transgressed across the plain and floating ice delivered dropstones to the
shallow embayment. The embayment became glaciated in the early Oligocene,
with ice-sheet-scale glaciers depositing subglacial till, and glacimarine diamicts
when the ice was not grounded. The ice was probably wet-based. In the early
Miocene, a large temperate to polythermal ice sheet advanced and retreated
across the embayment, supplying large quantities of detritus to the continental
rise, where the detritus was deposited in large mounds.
The mid-Miocene was marked by the start of a cooling trend and the

development of a thicker, colder and more erosive ice sheet. Shelf over-
deepening began, but progressively less detritus was delivered to the
continental rise. In the early Pliocene, ice flow became concentrated on the
western side of the bay in an ice stream that deposited sediment in a trough
mouth fan. During warm phases, open-water extended landward as far as the
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northern Prince Charles Mountains. Ice volumes and depths of erosion
reached a peak in the mid Pleistocene and the cold, polar ice sheet was
established. The Amery Ice Shelf no longer grounded at the shelf edge in
Prydz Channel during glacial episodes.
5.5. Weddell Sea (Y. Kristoffersen and W. Jokat)

The principal features in the Weddell Sea sector relevant to resolving the
Antarctic paleoclimate and paleoceanographic history are prograding
wedges of glacigenic sediments along the entire margin, a major trough-
mouth fan (Crary Fan), and numerous sediment drifts on the slope and in
the deep basin, particularly along the western and northwestern side of the
Antarctic Peninsula. Ice sheet flow-line patterns suggest that the continental
margin of the eastern and southern Weddell Sea east of 451W receives
drainage from the EAIS, whereas the continental margin west of 451W
receives drainage from the WAIS (Fig. WS-1).
Figure WS-1: Track lines of multichannel seismic data in the Weddell Sea and
locations of ODP drill sites. Bathymetry after Schenke et al. (1998). Areal
extent of proximal and distal deposits of the Crary Trough Mouth Fan are
outlined by light brown shaded area. True extent of sediment drifts in the
southwestern and western Weddell Sea is poorly defined due to lack of data

coverage. CTMF, Crary Trough Mouth Fan; EE, Explora Escarpment.
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5.5.1. The Regional Seismic and Geologic Database

Modern geophysical data in the Weddell Sea comprise about 45,000 km of
MCS lines from surveys principally by German, Norwegian and Russian
research institutions since 1976 (Fig. WS-1). ODP drilled four sites in the
Weddell Sea during ODP Leg 113, and ODP Site 693 on the Dronning Maud
Land continental slope has been the most useful for stratigraphic calibration
(Figs. WS-1 and WS-2). Prior to the deep drilling, stratigraphic studies in the
region were conducted by Elverhøi and Maisey (1983), Hinz and Krause
(1982), Hinz and Block (1984), Haugland et al. (1985) and Hinz and
Kristoffersen (1987). Correlations with ODP Site 693 were made by Miller
et al. (1990), Kuvaas and Kristoffersen (1991), Moons et al. (1992), Michels
et al. (2002) and most extensively by Rogenhagen et al. (2004) (Fig. WS-2).
5.5.2. Acoustic Stratigraphy of the Shelf/Slope/Rise Environment-Spatial and
Temporal Characteristics

The continental shelf of the Weddell Sea is characterized by a prograding
wedge of glacigenic sediments more than 1 km thick below the shelf edge
(Fig. WS-3). The wedge downlaps onto older units, which are characterized
by rather uniform thickness in the down-slope direction (Fig. WS-3a).
Wedge deposition is a first order result of massive transport of unsorted
texturally immature sediments by advance of a grounded ice sheet to the
shelf edge (Barker et al., 1998). The acoustic response of coarse sediment
in proximal positions below the shelf and uppermost slope is one of
discontinuous reflection events. Continuity and definition of acoustic
stratification improve in the down-slope direction as a result of progressive
sorting and increased relative abundance of finer material. The shelf edge
may appear rectilinear, but the three-dimensional wedge architecture in the
eastern Weddell Sea reveals an amalgation of adjacent small discrete cones of
glacial sediments sourced by smaller ice streams (Kristoffersen et al., 2000).
The spectrum of cones reflects broad scale expansion of the EAIS, but
adjacent cones may or may not be coeval. Topsets of the prograding wedge
are generally truncated at the seabed. Shelf aggradation is indicated in the
southern Weddell Sea west of the Crary Trough, but the vast shelf area west
of 451W has not been accessible for seismic surveys (Fig. WS-1).
The maximum thickness of prograding units below the mouth of the Crary

Trough and also below the shelf north of Lyddan Ice Rise is more than
3 km (Rogenhagen et al., 2004). ODP Site 693 (Fig. WS-2) provides local



Figure WS-2: Stratigraphic summary column. Modified from Rogenhagen
et al. (2004).
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Figure WS-3: (a) Seismic line AWI-90110 across the Dronning Maud Land
margin showing the prograding wedge (modified from Michels et al., 2002).
(b) Seismic line AWI-97051 across the Larsen Shelf and Slope, showing the
prograding shelf and sediment drift on the lower continental slope (modified

from Michels et al., 2001). Profile locations are in Fig. WS-1.
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Figure WS-4: Seismic line NARE-8517 across the prograding Crary Trough
Mouth Fan (modified from Kuvaas and Kristoffersen, 1991). Profile location

is in Fig. WS-1.
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calibration of the acoustic section (Miller et al., 1990), but regional
extrapolations are inhibited along-slope by numerous canyons, and are
inhibited down-slope by the steep Explora Escarpment (Fig. WS-1). The
Crary Fan, a regional feature at the mouth of the Crary Trough, is associated
with large channel/levee complexes, which extend up to 1,000 km to the
north into the basin (Figs. WS-1, WS-4 and Foldout WS-1). Initial fan
evolution is correlated with the resumption of sediment deposition above an
Albian-early Oligocene hiatus at ODP Site 693 (Reflector W4).
Sediment drifts are common within the Neogene stratigraphic interval

along the continental slope (Fig. WS-1) in the western Weddell Sea (Michels
et al., 2001; Maldonado et al., 2005).
5.5.3. The Weddell Sea Pre-Ice-Sheet Depositional Environment

Acoustic stratigraphic information on the shelf is limited to subbottom
depths comparable to the local water depth due to severe multiple reflections
(e.g. Fig. WS-3). The pre-ice-sheet Cenozoic shelf edge was more than 10 km
landward of its current position along the Dronning Maud Land continental
margin (Kristoffersen et al., 2000), and 70 km to the south (Fig. WS-4) in the
southern Weddell Sea (Kuvaas and Kristoffersen, 1991). The shoreward
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shift in the western Weddell Sea is unknown. The deeper strata below the
continental slope (i.e. below W4) appear unstructured throughout. The older
sediments are thickest (5–8 km) below the Larsen Shelf in the western
Weddell Sea (Rogenhagen and Jokat, 2000), and may be up to 15 km thick
along the front of the Ronne and Filchner Ice shelves (Leitchenkov and
Kudryavtzev, 2000). In the central Weddell Sea Basin, the pre-Oligocene
section of inferred turbidites is more than 1 km thick, and thins by basal
onlap towards the margins to less than 0.5 km (Rogenhagen et al., 2004).
High seasonal variations in sea-surface temperatures and a well-developed
seasonal thermocline characterized the early Paleogene Weddell Sea
(Kennett and Barker, 1990). On Maud Rise, siliceous biogenic facies began
to replace carbonate facies during the latest Eocene-earliest Oligocene
(Kennett and Barker, 1990). A possible early Cenozoic seaway between East
and West Antarctica could have been up to 700m deep, and may have
persisted into the Oligocene if no WAIS was present (Lawver and Gahagan,
2003). At ODP Site 693 on the middle continental slope, middle lower
Oligocene and younger glacial sediments are separated by a hiatus from
Albian radiolarian diatomite and claystones (i.e. Reflector W4). The
unconformity may represent non-deposition and/or mild erosion (Kennett
and Barker, 1990).
5.5.4. Change from Non-Glacial to Glacial Conditions

Sediment fluxes on high latitude continental margins are closely connected to
climate extremes. In the Weddell Sea, environmental change is manifested
by a basin-wide change in acoustic character within the sedimentary section
(Reflector W4) at about 1 s TWT below the sea bed (Rogenhagen et al.,
2004). Younger deposits in the basin have finely laminated continuous
acoustic stratification, and geometries on the slope are in the form of
channel/levee complexes over a wide range of spatial scales. The change in
depositional environment is interpreted to have originated from an increased
sediment flux, caused by increased erosion of the continent and increased
down-slope transport. At ODP Site 693 on the middle continental slope, the
acoustic change correlates stratigraphically with resumed preservation of
lower Oligocene sediments. The deposits include rounded dropstones in
lower Oligocene (32–33Ma) diatom muds, a signal of the first presence of
glaciers on the adjacent parts of East Antarctica (Kennett and Barker, 1990).
Subsequent early Miocene sedimentation rates at this site were low (7m/Ma).
A more dramatic change in sediment flux to the margin is documented by a
threefold increase in sedimentation rate (to 24m/m.y.), when sedimentation
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resumed following a hiatus that spanned the middle Miocene. Increased
sediment input is related to expansion of ice on the East Antarctic continent.
The hiatus at ODP Site 693 correlates with a regional acoustic reflection
event (W5) identified below the continental slope and rise along the entire
Weddell Sea margin (Rogenhagen et al., 2004). Shelf progradation
accelerated dramatically along the eastern and western margins of the
Weddell Sea (Fig. WS-3), with grounded ice extending to the shelf edge in
the late Miocene (Michels et al., 2001; Michels et al., 2002). A range of
contourite drifts formed on the slope and rise in the northwestern Weddell
Sea (Michels et al., 2001; Maldonado et al., 2005). Sedimentation rates at
ODP Site 693 reached 60m/m.y. in the early Pliocene, and subsequent
Quaternary sedimentation rates were reduced to 16m/m.y. (Gersonde et al.,
1990). Sediment input to the margin in the southeastern Weddell Sea was
focused toward a trough mouth fan. The Crary Fan began to expand at
the time of change to a glacial environment (above Reflector W4, Fig. WS-4
and Foldout WS-1), and major channel/levee complexes evolved in three
phases. The last of these three phases (Reflector W5, Fig. WS-4 and
Foldout WS-1) was from the late Miocene on (Kuvaas and Kristoffersen,
1991; Moons et al., 1992).
5.5.5. The Glacial/Interglacial Environment

The change from a glacial to an interglacial environment was associated with
major changes in sediment flux. Average sediment deposition on the eastern
Weddell Sea margin (101W) during the last two climatic cycles (300 k.y.)
varies from 5 cm/k.y. on the upper slope to over 1 cm/k.y. on the lower slope
(Grobe and Mackensen, 1992). Sedimentation was most rapid during the
beginning of interglacials, with rates on the middle slope four to five times
higher than during glacials. We note, however, that the grounded EAIS only
reached the mid-shelf in this area during the LGM (Kristoffersen et al.,
2000). Sediment input in the southern Weddell Sea was focused in the Crary
Trough Mouth Fan (Figs. WS-1, WS-4 and Foldout WS-1). The fan
comprises large channel-levees on the flanks of deep-water channels, such as
the Cold Water Channel and the Deutschland Channel (Foldout WS-1).
Grounded ice reached the shelf edge at the trough mouth during the last
glaciation (Bentley and Anderson, 1998), and deposition on the levees (in
water depths of 2,000–3,000m) ranged from 100–200 cm/k.y. during the
LGM to a few cm/k.y. during the present interglacial (Weber et al., 1994).
Episodic sediment transport into the basin also occurred by mass flows
during interglacials, probably as partial collapse of the deposits on the upper
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continental slope. A 90-m-thick sandy turbidite unit was deposited
within 0.5m.y. during the early Gilbert Chron (4.8Ma) at ODP Site 694
(Fig. WS-1), and may be the distal expression of mass wasting events on the
continental slope in the southwestern Weddell Sea (Shipboard Scientific
Party, 1988). Also, major early Pliocene drawdown of East Antarctic ice is
postulated to have triggered extensive mass flows that originated from the
Crary Trough Mouth Fan (Bart et al., 1999).
In the western Weddell Sea, upper Miocene and younger sediments (above

Reflector W5) are mostly drift deposits that reach a thickness of more than
1 km below the middle slope, seaward of the Larsen Shelf (Rogenhagen and
Jokat, 2000; Michels et al., 2001; Maldonado et al., 2005). Present and past
bottom currents circulated in nearly the opposite direction to channel
transport, and cross-channel flow was in the same direction as the Coriolis
force acting on down-slope turbidity currents in the southern Weddell Sea.
Sediments scavenged from turbid channel flow by cross-channel bottom
currents sourced the benthic boundary layer and enhanced formation of
sediment drifts along the western and northern Weddell Basin. The actual
drift distribution was mainly controlled by the physiography of the basin
and bottom current flow directions (Maldonado et al., 2005). These drifts
represent a storehouse of paleoceanographic and climatic proxies not yet
sampled by scientific drilling.
5.5.6. Continental Margin Sediments and Ice-Sheet History

The mass balance of the EAIS, the nature of the substratum and the
continental topography, particularly in the coastal region, determine
sediment input to the continental margin. Enhanced input of sediments to
the continental margin at ODP Site 693 in the eastern Weddell Sea and
development of a prograding wedge started in the latest Miocene and peaked
during the earliest Pliocene (Gersonde et al., 1990). The seismic tie between
ODP Site 693 and the southern Weddell Sea is uncertain, but Kuvaas and
Kristoffersen (1991) suggest that fan development started in the southern
Weddell Sea by the early Oligocene (above Reflector W4, Fig. WS-4 and
Foldout WS-1), and that about two-thirds of the sediment thickness at the
mouth of the present Crary Trough was already in place by the late Miocene
(i.e. below Reflector W5). Channel-levee complexes have migrated eastward
on the Crary Trough Mouth Fan, and late Miocene and younger deposition
constructed a third major channel-levee complex and deposited about 1 km
of sediments below the trough mouth (Fig. WS-4 and Foldout WS-1). These
age relations imply that the principal input of sediments from East
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Antarctica to the Weddell Sea margin from the early Oligocene to the late
Miocene originated from a glaciated interior of the continent via the Crary
Trough, and that there was effectively no input along the Dronning Maud
Land margin. At this point, the significance of a local thickness maximum of
glacial sediments north of Lyddan Ice Rise (Rogenhagen et al., 2004) is
unclear. The EAIS expanded to the Dronning Maud Land margin during the
latest Miocene–earliest Pliocene and formed a prograding wedge below
the continental shelf and slope. Sea ice cover has prevented acquisition of the
seismic data from west of 451W and north of the Ronne Ice Shelf (Fig. WS-1)
needed to study the depositional geometries of sediments originating from
the catchment area of the WAIS. Data from this area also are needed to
study the relation between eastern and western sediment source regions.
Moraine complexes on the shelf in the eastern Weddell Sea suggest that the

EAIS was grounded on the mid-shelf and did not reach the shelf edge during
the LGM (Kristoffersen et al., 2000), except at the mouth of the Crary
Trough (Bentley and Anderson, 1998).
5.6. Antarctic Peninsula (R. Larter)

Cenozoic tectonic processes have diversely affected the Antarctic Peninsula
region and its climate record. Hence, we separately discuss four main subregions.
5.6.1. The Eastern Margin

This subregion includes the Weddell Sea margin of the Antarctic Peninsula
and Larsen Basin (Fig. AP-1). Persistent sea ice covers the region (Gloersen
et al., 1992), hence relatively few research cruises have been conducted here.
Macdonald et al. (1988) used regional geologic and aerogeophysical data to
infer that a large Mesozoic–Cenozoic sedimentary basin extends B700 km
south from James Ross Island. Four main seismic stratigraphic units are
identified from SCS reflection data on the shelf and upper slope (Anderson
et al., 1992; Sloan et al., 1995; Fig. AP-2): Unit 4: acoustic basement
interpreted as Jurassic and younger volcanic rocks; Unit 3: seaward-dipping
reflections interpreted as Late Cretaceous to Oligocene marine shelf deposits,
the older part of which are coeval with those on nearby Seymour Island; Unit
2: prograding sequences with truncated foresets that downlap onto Unit 3,
and that are thought to have been deposited by multiple advances
of grounded ice across the shelf in the Miocene and early Pliocene;



Figure AP-1: (a) Track lines of multichannel (thick lines) and single-channel
(thin lines) seismic data in the Antarctic Peninsula region, DSDP and ODP
drill sites (filled circles, annotated with site numbers) and SHALDRIL sites
(open squares). SHALDRIL sites are only marked where either W10m
subseafloor penetration was achieved or pre-quaternary sediments were
recovered. Bathymetric contours are at 1,000m intervals down to 4,000m,
with 500m contours included locally on the shelf. Bathymetric data are
based on Smith and Sandwell (1997) east of the Peninsula and north of 621S.
Bathymetry for most of the area west of the Peninsula is from Rebesco et al.
(1998), the exception being the 500m contours in the southern Belling-
shausen Sea, which are from Ó Cofaigh et al. (2005). To the east of the
Peninsula, 500m contours south of James Ross Island (JRI) are based on
figures in Evans et al. (2005), and the 500m contour north of James Ross
Island is based on multibeam echo sounding data maps produced from data
collected on RV Nathaniel B. Palmer Cruises 0003 and 0107. Bold line is
location of seismic profile in Fig. AP-2. SOM: South Orkney Microcontinent;
JB: Jane Basin; PB: Powell Basin; BS: Bransfield Strait; RT: Robertson
Trough. (b) Expanded map of the northern Antarctic Peninsula with
SHALDRIL site numbers labelled (I/II indicates first/second cruise). Same
bathymetry contours shown as in (a), except 500m contours around JRI

omitted. SSI: South Shetland Islands.
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Unit 1: aggrading reflections interpreted as deposits from fluctuating
dynamic ice sheets in the Pliocene and Pleistocene.
MCS reflection data show at least 8 km of sediment at the base of the

continental slope, overlying likely Early Cretaceous age basement (Barker
and Lonsdale, 1991). The northern continental slope has plastered contourite
drift deposits up to 900m thick, thought to have been deposited by north-
flowing glacially influenced bottom currents. Pudsey (2002) suggests that
drift deposition began in the early Miocene at the onset of bottom water
flow, or in the latest Miocene at the onset of volumnious glacially derived
sediment supply to the western Weddell Sea.
Late Quaternary shelf sediments have been sampled by seafloor coring

(e.g. Domack et al., 2001a, b, 2005; Pudsey and Evans, 2001; Pudsey et al.,
2001; Brachfeld et al., 2003; Evans et al., 2005). These researchers infer that
grounded ice converged into major ice streams and advanced to the shelf
edge during the LGM, that the Prince Gustav Sound Ice Shelf collapsed and
reformed in the mid-Holocene, and that the recent collapse of the Larsen B
Ice Shelf is unprecedented during the Holocene. Recent drilling by the
SHALDRIL project has obtained the first samples from older sequences
(Shipboard Scientific Party, 2005, 2006; Anderson et al., 2006, 2007).
Figure AP-2: Single-channel seismic line across the eastern margin of the
Antarctic Peninsula at 65115uS, collected on RV Nathaniel B. Palmer in 1993.
Line drawing interpretation shows the internal geometries and boundaries
(dashed lines) between the main seismic units. Vertical exaggeration at the
seafloor is 82:1. Adapted from Sloan et al. (1995). Line location is shown in

Fig. AP-1.
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Sequences drilled by SHALDRIL are principally shallow marine sands,
sandy and silty muds, and pebbly muddy sands from neritic environments,
with mollusc shells distributed throughout the cores. The cores are dated as:
late Eocene to early Oligocene, Oligocene, middle Miocene, early Pliocene
and Holocene.
5.6.2. The South Orkney Islands Region

This subregion includes the South Orkney Microcontinent (SOM) and the
adjacent deep-water Jane and Powell basins (Fig. AP-1). The SOM extends
about 350 km from east to west and 250 km from north to south, and is
underlain by Mesozoic metamorphic and sedimentary rocks (Thomson,
1981; Dalziel, 1984). Offshore, the SOM includes four Cenozoic sedimentary
basins (King and Barker, 1988) with up to 5 km of sediment (Harrington
et al., 1972; Busetti et al., 2001, 2002). Powell Basin (up to 3,600m deep)
formed as the SOM rifted and drifted away from the tip of the Antarctic
Peninsula in late Eocene to late Oligocene time (King and Barker, 1988;
Lawver et al., 1994; Coren et al., 1997; Eagles and Livermore, 2002).
Opening of Jane Basin (up to 3,300m deep) probably began slightly later
(Lawver et al., 1991, 1994), and may have continued until the middle
Miocene according to Maldonado et al. (1998).
From SCS data on the SOM, King and Barker (1988) defined pre-rift, syn-

rift, and post-rift units. The post-rift sediments are less than 1 km thick (e.g.
Busetti et al., 2001, 2002) and were drilled at ODP Site 695 (1,300m water
depth) and ODP Site 696 (600m water depth) (Fig. AP-3). They comprise
Oligocene or early Miocene to Quaternary terrigenous sediments, with rare
coarse-grained IRD until the late Miocene (B8.7Ma) and common IRD
thereafter. Middle Miocene to Quaternary sediments are hemipelagic and
diatomaceous muds and oozes (Barker et al., 1988a, b). ODP Site 696 also
sampled syn-rift Eocene sandy mudstones (Sequence 2) that have nannofossil
assemblages and clay minerals suggesting a relatively warm climate, and
palynoflora indicating temperate beech forests and ferns on West Antarctica.
Drilling results suggest intermittent glaciation with little sea ice during most
of the Miocene and a persistent ice cap to sea-level on West Antarctica since
the late Miocene. Herron and Anderson (1990) place the maximum late
Quaternary grounding line advance at the 300m isobath, and consider open-
marine conditions to have existed over the SOM since 6,000 y. B.P. based on
SCS and seafloor core data.
In Powell Basin, post-early-rift sediments are up to 3 km thick. King et al.

(1997) identified two seismic units with low reflectivity below and high



Figure AP-3: Part of seismic line AMG845-18, showing the setting of ODP
Site 696 in relation to the seismic units (S1–S3) described by King and Barker
(1988). Vertical exaggeration at the seafloor is 3.3:1. Adapted from Barker

et al., 1988a. ODP Site 696 location shown in Fig. AP-1.
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reflectivity above. They interpret the change as recording the onset of
glacial–interglacial cyclicity in the supply of coarse detritus to the basin in
the late Miocene. A similar upward change in reflectivity is observed in Jane
Basin (Maldonado et al., 1998). The reflectivity change may also be due to
silica diagenesis (e.g. Lonsdale, 1990; Volpi et al., 2003). Maldonado et al.
(2006) identify five seismic units in Jane and neighbouring ocean basins,
and relate changes in seismic characteristics to variations in bottom water
flow since the middle Miocene. ODP Site 697 was drilled in Jane Basin
(Fig. AP-1) to B323mbsf, and recovered mainly early Pliocene and younger
hemipelagic sediments with IRD throughout; however, IRD is abundant
only near the base of the sequence (Barker et al., 1988a, b). Other seismic
studies of Powell Basin (e.g. Kavoun and Vinnikovskaya, 1994; Coren et al.,
1997; Viseras and Maldonado, 1999) focus on the post-early Oligocene rift
history of the basin, but are limited in paleoclimate interpretations by the
lack of drilling data.
5.6.3. The South Shetland Islands Region

This subregion includes the Bransfield Strait and the continental margin
around the South Shetland Islands (Fig. AP-1). Bransfield Strait is a 2,000m
deep rift basin that is actively extending at 7mm/y. (Dietrich et al., 2004).
The time of initial extension and the oldest age of basin sediments
are uncertain, but may be 4Ma (Barker and Dalziel, 1983) or B6Ma
(Larter and Barker, 1991a). Gambôa and Maldonado (1990) speculate that
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Bransfield Strait may have opened earlier, during the early Miocene, and
have been continuous with mid-shelf basins to the southwest.
From MCS data, Gambôa and Maldonado (1990) identify ‘rift’ and ‘drift’

sequences in Bransfield Strait. ‘Drift’ sequences prograde the shelf and are
about 1 km thick. In SCS data, Jeffers and Anderson (1990) define four
glacio-eustatic sequences within the ‘drift’ sequences, and interpret all four
sequences as being younger than 3Ma. Prieto et al. (1999) use different SCS
data to define eight seismic units that comprise interfingering slope and
basinal deposits within the ‘drift’ sequences. They interpret the slope units
as having been deposited directly from grounded ice during glacial periods,
and interpret the basinal units as having been deposited by mass flow
processes during deglaciations and interglacial periods.
From SCS data, Banfield and Anderson (1995) identify sediment mound

features that they infer to be glacial grounding moraines in up to 1,000m
water depth on the southeastern flank of Bransfield Strait. They speculate
that mounds at B700m depth mark the maximum advance during the
LGM. Deep troughs with mega-scale lineations are incised into the shelf and
are interpreted as the paths of palaeo-ice streams (Banfield and Anderson,
1995; Canals et al., 2002).
MCS profiles across the continental slope NW of the South Shetland Islands

reveal a forearc basin, with more than 1.5 km sediments, that is bounded to the
NW by a small accretionary prism (Maldonado et al., 1994a, b). The prism
overthrusts trench-fill sediments that may have been deposited rapidly and are
up to 1km thick (Maldonado et al., 1994a, b; Kim et al., 1995).
Other seismic-reflection surveys have been done in the region by British,

Polish, German, Spanish, US, Italian, Chinese and Korean research groups,
but published results focus on the tectonic evolution of the region and
tectonic processes (Barker, 1976; Guterch et al., 1985; GRAPE Team, 1990;
Acosta et al., 1992; Henriet et al., 1992; Grad et al., 1993; Barker and Austin,
1994, 1998; Bochu et al., 1995; Gràcia et al., 1996; Jin et al., 1996; Jin and
Kim, 1998; Prieto et al., 1998; Jin et al., 2002), on gas hydrates (Lodolo et al.,
1993, 2002; Tinivella et al., 1998, 2002; Jin et al., 2003), and on a large
submarine slide (Imbo et al., 2003).
Swath bathymetry data exist over most deep-water parts (W1,000m) of

Bransfield Strait (Lawver et al., 1996; Gràcia et al., 1997). Along Boyd Strait,
‘bundle structures’ and mega-scale glacial lineations occur and confirm
palaeo-ice stream flow during glacial periods (Canals et al., 2000;
COHIMAR/SEDANO Scientific Party, 2003). MCS data along outer Boyd
Strait reveal glacial progradation of the margin (Maldonado et al., 1994a, b),
and deep-tow boomer profiles reveal a glacier grounding zone wedge near the
shelf edge (Vanneste and Larter, 1995).
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The only scientific drilling in the South Shetland Islands region was done
at SHALDRIL-I Site 1 in Maxwell Bay (Fig. AP-1), where an expanded
sequence of Holocene diatomaceous muds, B105m thick, overlying a clay-
rich diamicton was sampled (Shipboard Scientific Party, 2005).
5.6.4. The Pacific Margin

The Pacific margin includes the region southwest from the South Shetland
Islands to 701S and 801W. This is a former active margin where ridge-crest
segments were progressively subducted (Larter and Barker, 1991a; Henriet
et al., 1992), followed by 1–4m.y. of uplift and then long-term subsidence
(Larter and Barker, 1989, 1991b; Anderson et al., 1990; Gambôa and
Maldonado, 1990; Bart and Anderson, 1995, 1996, 2000; Larter et al., 1997).
Seismic profiles show that outer shelf sequences are separated from NW-SE
trending mid-shelf basins by the Mid-shelf High (MSH) (Kimura, 1982;
Anderson et al., 1990; Gambôa and Maldonado, 1990; Larter et al., 1997).
Several research groups have conducted seismic studies in the area

(Kimura, 1982; Larter and Barker, 1989, 1991b; Anderson et al., 1990;
Gambôa and Maldonado, 1990; Henriet et al., 1992; Bart and Anderson,
1995, 1996, 2000; McGinnis and Hayes, 1995; Rebesco et al., 1996, 1997,
2002, 2006; McGinnis et al., 1997; Larter et al., 1997; Jin et al., 2002; Jabaloy
et al., 2003; Hernández-Molina et al., 2006a). Cenozoic sequences have been
drilled at DSDP Site 325 (Hollister et al., 1976) and at multiple sites during
ODP Leg 178 (Barker et al., 1999).
Evidence of Oligocene glaciation exists on King George Island

(Birkenmajer, 1991; Dingle and Lavelle, 1998; Troedson and Smellie,
2002), but offshore the first ice sheets on the Pacific margin are inferred
from early Miocene IRD at DSDP Site 325 (Fig. AP-1). The oldest sediments
from ODP Leg 178 are drift deposits at ODP Site 1095, dated at 9.6Ma,
where all cores show glacial influence and sedimentation rates decrease
steadily from the late Miocene to the Quaternary. From seismic studies,
Rebesco et al. (1996, 1997, 2002) suggest that sediment drift deposition
began around the middle Miocene, with most growth in the late Miocene.
However, Hernández-Molina et al. (2004, 2006b) describe a buried sediment
drift of early Miocene age (Fig. AP-1). Uenzelmann-Neben (2006) also
interprets depositional patterns of early Miocene continental rise sediments
as reflecting bottom current influence, but infers a different flow direction.
A regular supply of both glacially derived terrigenous sediments and
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interglacial biogenic sediments has reached the continental rise since at least
the middle Miocene.
The outer continental shelf is underlain by depositional sequences that

thicken seaward (Larter and Barker, 1989, 1991b; Anderson et al., 1990;
Gambôa and Maldonado, 1990; Larter and Cunningham, 1993; Bart and
Anderson, 1995; Table AP-1). Aggrading sequences (S3) without a distinct
paleo-shelf edge (PSE) are unconformably overlain by prograding sequences
(S2, S1) with an abrupt PSE (Foldout AP-1). The change occurs at the S3/S2
boundary of Larter and Barker (1989, 1991b) and is observed all along the
Pacific margin (Anderson et al., 1990; Bart and Anderson, 1995, Larter et al.,
1997; Jin et al., 2002) and west along the margin of the Bellingshausen and
Amundsen Seas (Nitsche et al., 1997). Drilling at ODP Sites 1097 and 1103,
although with very poor recovery, suggests that the change occurred between
8 and 6Ma (Iwai and Winter, 2002; Bart et al., 2005). Cores from S3 are
diamictons with interbedded mudstones and graded sandstones, interpreted
by Eyles et al. (2001) as continental slope deposits, although seismic profiles
suggest a palaeo-shelf to slope transition further offshore. Cores from S1 and
the upper part of S2 show abundant evidence for having been deposited
subglacially (Eyles et al., 2001).
Larter and Barker (1989, 1991b) and Larter et al. (1997) interpreted the

S3/S2 boundary as representing the onset of frequent advances of grounded
ice to the palaeo-shelf edge. However, Bart and Anderson (1995) and Bart
et al. (2005, 2007) suggest that palaeo-ice streams cut erosional troughs
within S3 and hence existed earlier than the S3/S2 boundary. Although
equivocal, the boundary could represent a change in the typical extent of
glacial advances, in the dynamic behaviour of ice sheets that advanced onto
the shelf, or in the way the ice transported sediments (Larter et al., 1997;
Hernández-Molina et al., 2006a).
Going up-section above the S3/S2 boundary, foreset stratal dips

generally increase and PSE progradation in individual sequences decreases
(Foldout AP-1). The regional S2/S1 boundary within the upper sedimentary
section may have been produced by ice-sheet erosion during glacial periods
and lower sea levels after the Late Pliocene increase in the volume of
Northern Hemisphere ice sheets (Larter and Barker, 1989, 1991b). By seismic
correlation acrossW100 km to ODP Site 1101, Rebesco et al. (2006) estimate
an age of B3Ma for a boundary that they identify as S2/S1. However, this
boundary marks a change in stratal geometry that is generally characteristic
of S3/S2, and Larter (2007) suggests that it probably corresponds to this
earlier unconformity.
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Mid-shelf basins contain up to 2 km of sediment in a broad synform that is
truncated at shallow depth beneath the seafloor (Kimura, 1982; Anderson
et al., 1990; Gambôa and Maldonado, 1990; Larter et al., 1997), making the
succession accessible to shallow drilling. However, these sediments have not
been sampled, except for the thin Quaternary cover. Basin sediments are
probably all Tertiary and may be as young as early Miocene off Adelaide
Island, and middle Miocene off Anvers Island (Larter et al., 1997). The inner
shelf is mostly shallower than 200m, but has deep troughs, such as the
Palmer Deep where ODP Sites 1098 and 1099 were drilled in 1,400m of
water. Holocene successions B47 and B108m thick were recovered at ODP
Sites 1098 and 1099, respectively (Shipboard Scientific Party, 1999; Domack
et al., 2001; Ishman and Sperling, 2002; Leventer et al., 2002; Shevenell and
Kennett, 2002).
Swath bathymetric data show seafloor features of subglacial origin on the

shelf (Ó Cofaigh et al., 2002; Dowdeswell et al., 2004; Amblas et al., 2006),
and confirm that a grounded ice sheet with ice streams extended to the shelf
edge during the LGM (Pudsey et al., 1994; Larter and Vanneste, 1995).
Seafloor core data indicate that retreat of the ice sheet from the outer and
middle shelf after the LGM occurred between 18,500 and 13,000 cal. y. B.P.
(Pudsey et al., 1994; Heroy and Anderson, 2005).
5.7. Other Sectors of the Antarctic Continental Margin

Other sectors of the Antarctic margin, than the five ANTOSTRAT
project working areas discussed above, have been studied more fully
than previously during the past 5–7 years, in a time of renewed interest in
MCS studies of the continental margin. These regions include similar
geomorphic and stratigraphic features. Although we do not include them
in the discussion below due to space considerations, we include here
representative citations to some of the studies published for the Belling-
shausen and Amundsen seas (Hollister et al., 1976; Tucholke and Houtz,
1976; Tucholke, 1977; Kimura, 1982; Yamaguchi et al., 1988; Cunningham
et al., 1994, 2002; Gohl et al., 1997, 2007; Nitsche et al., 1997, 2000;
Wellner et al., 2001, 2006; Lowe and Anderson, 2002; Ó Cofaigh et al., 2005;
Dowdeswell et al., 2006; Evans et al., 2006; Scheuer et al., 2006a, b;
Larter et al., 2007; Uenzelmann-Neben et al., 2007) and for offshore areas
of Queen Maud Land and Enderby Land (Kuvaas et al., 2004a, b, 2005;
Hinz et al., 2005; Stagg et al., 2004a, b; Leitchenkov et al., 2007; Solli et al.,
2007a, b, c).
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5.8. Discussion

Our discussion focuses on integrating key observations and inferences from
the Antarctic continental margin to summarize a Cenozoic glacial history
from the stratigraphic record. We recognize the limitations of the seismic and
drilling data sets used. Seismic data image regional and up-section changes,
but only provide a relative history of inferred events and processes. Drilling
data provide a defined stratigraphic history, but one that is valid only at the
local drilling site. There is an extensive published literature that illustrates
the large spatial and temporal variability of features and processes at various
scales, depending on the resolution and extent of data analysed. We
selectively discuss the widespread seismic stratigraphic variations and the
long- and short-period geologic transitions in cores, all of which point to a
varied history of non-glacial and glacial events on the continental margin.
The discussion is necessarily condensed due to the great breadth of the topics
and the limited space herein.
We abbreviate offshore geographic regions as: Ross Sea (RS), Antarctic

Peninsula (AP), Weddell Sea (WS), Prydz Bay (PB) and Wilkes Land (WL),
and prefix these abbreviations with east (E) and west (W), such as western
Ross Sea (WRS) (Fig. I-1).
5.8.1. Regional Seismic Stratigraphic Variations: Similarities and Differences

Stratigraphers have long recognized sedimentary sequences and bounding
regional unconformities in seismic-reflection data across the Antarctic
continental margin (e.g. Hinz and Block, 1984; Wannesson et al., 1985; Hinz
and Kristoffersen, 1987; Cooper et al., 1995). These sequences, principally of
inferred Cenozoic age, commonly have similar seismic geometries around
Antarctica (e.g. Cooper et al., 1991b; Anderson, 1999). Some geometries are
unique to polar continental margins, whereas other geometries are like those
of low-latitude non-polar margins (e.g. Hinz and Block, 1984; Bartek and
Anderson, 1991; Table D-1). A unified circum-Antarctic seismic stratigraphy
does not exist, but an International effort to compile one via the CASP project
is in progress (Davey and Cooper, 2007). Numerous separate and sometimes
different seismic stratigraphies exist for various localities.
Many seismic features have been cited to suggest intermittent ice on the

Antarctic margin (Table D-1), but those giving the strongest evidence for ice
are the regional seismic unconformities, the broad erosional troughs and
depositional banks on the continental shelf, and the large-scale fans and



Table D1-1: Common large-scale geomorphic and seismic stratigraphic
features of the Antarctic continental margin (listed by location and

decreasing inferred age).

Feature Regions Processa Timingb

Continental shelf

A. Deep regional

seismic unconformities

on the shelf (lower

B1/3 of sedimentary

section)

PB, RS Eustacy Cretaceous to late

Oligocene (?)

B. Shallow regional

seismic unconformities

on the shelf (upper

B2/3 of section)

All Ice-sheet erosion late Oligocene (?)

and younger

C. Prograded and

aggraded sequences

under the outer shelf

All Sediment carried to

the shelf by

glaciers

Oligocene and

younger

D. Mound features with

chaotic seismic facies

All Ice-sheet deposition late Oligocene and

younger

E. Broad cross shelf

troughs and adjacent

banks

All Ice-stream erosion early Miocene and

younger

F. Overdeepened and

foredeepened

continental shelf

All Ice-sheet erosion mid-Miocene and

younger

Continental slope

G. Regional seismic

unconformities

All Bottom currents Cretaceous and

younger

H. Massive sediment

fan on the slope at the

outlet of a broad

cross-shelf trough

PB, WS Sediment deposited

at shelf edge by

one broad ice

stream

early Oligocene and

younger (WS);

early Pliocene and

younger (PB)

I. Steep slopes and

migrating high-relief

channels

All Bottom currents

with coarse

sediment

Oligocene and

younger

J. Variable size sediment

fans on the upper

slope at mouths of

seafloor and buried

troughs.

WL, RS,

AP

Sediment deposited

at shelf edge by

multiple ice

streams

late Miocene and

younger

Continental rise

K. Regional seismic

unconformities

All Bottom currents and

diagenesis

Cretaceous and

younger
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Table D1-1: (Continued ).

Feature Regions Processa Timingb

L. Large sediment drift

features

All Bottom currents and

downslope

sediment supply

early Miocene and

younger

M. An up-section

landward shift of

depocenters from rise

to slope.

All Reduction of

sediment supply to

rise

mid-Miocene and

younger

aThe principal process is listed – others such as lithospheric loading, sediment loading, paleoceanographic

processes, diagenesis, etc. are also commonly involved.
bInitiation time of features varies in different regions.
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prograding deposits on the continental slope at the mouths of the shelf
troughs. These features are observed on all sediment-covered segments of the
Antarctic margin, in East and West Antarctica, and principally occur in the
upper part of the stratigraphic section. These features are increasingly
common up-section, indicating more abundant glacial events more recently.
The ubiquitous overdeepened and foredeepened depth profile of the
continental shelf is the ultimate evidence of sustained strong glacial erosion
of the entire Antarctic margin.
Ten Brink et al. (1995) modelled the geometries of the seafloor and

stratigraphic sections on the continental shelf and upper slope, incorporating
lithospheric, glacial and eustatic processes in the models. They showed that
multiple advances and retreats of grounded ice sheets across the continental
shelf, coupled with redistribution of sediment from onshore and shelf areas
to the continental slope, are required to match the observed geometries.
Eustatic and paleoceanographic processes are important for sediment
redistribution, especially on the continental slope and rise, but are not
sufficient by themselves to explain the shelf erosion and prograding
geometries beneath the outer continental shelf. Bartek et al. (1991) illustrated
that the stratal signatures of the Oligocene and younger sections in the
eastern Ross Sea (i.e. unconformities and prograding sections) are similar to
those of low-latitude non-polar margins, indicating that the Neogene stratal
signature results from glacio-eustatic fluctuations.
Seismic data provide a relative history of increasing circum-Antarctic

glacial events, as noted above, but drilling and seafloor coring provide the
only absolute age control and ground truth of glacial lithologies and
processes. Definitive ages are limited due to the small number of cored sites,
which in turn are biased toward sampling of shallow younger sections.
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The lithostratigraphic record from proximal drilling and dredging on the
Antarctic margin ‘establishes’ a general history (at the drill sites) of no
regional glaciers in Cretaceous and earlier times on the shelf (PB, RS, WL)
and on the slope (WS). Evidence of glacial episodes is first seen in the late
Eocene to early Oligocene as diamicts from grounded ice on the shelf
(PB, RS) and from glacial erratics on the slope (WS). Upper Oligocene
glacial marine deposits are sampled on the shelf (RS) and slope (WS). Lower
Miocene sections show increasing evidence of ice and deep-ocean currents,
with IRD and sediment drifts on the rise (PB, WL, AP, WS?) and glacial
marine sediments and diamicts on the shelf (RS). The middle Miocene has an
increased glacial hemipelagic signature on the rise (PB), and glacial marine
deposits on the shelf (RS). The late Miocene and early Pliocene were times of
enhanced glacial activity, as recorded by: (1) shelf deposits of glacial diamicts
(PB, AP) and glacial marine sediments (RS, AP); (2) glacial marine sediments
on the slope (WS, WL); and (3) rise deposits of glacial hemipelagics
(PB, WL, RS, AP) and turbidites (WL, WS, AP). Upper Neogene deposits
are principally glacial on the shelf (PB, RS, AP), slope (PB, WS) and rise
(PB, WL, RS, AP, WS). Based on recovered drill cores and Antarctic
Peninsula coastal geology, the general history of events for East and West
Antarctica is essentially the same since the early Oligocene. However, the
middle Miocene and Oligocene history for offshore West Antarctica is
based on only two Ross Sea DSDP cores (Hayes and Frakes, 1975) and two
tentatively dated SHALDRIL cores from the western Weddell Sea
(Anderson et al., 2006; Shipboard Scientific Party, 2006).
The above general history at the sparse drill sites has been greatly expanded

by many investigators who have traced seismic unconformities and seismic
stratigraphic units from core sites and rare onshore sedimentary sections up to
hundreds of km to infer ages and lithofacies for key stratigraphic features
listed in Table D-1. The expanded seismic stratigraphic history includes
inferences of the following (although uncertainties about these inferences are
inherently greater than the uncertainties about ages at drillsites):

� A pre-ice-sheet to early-glacial period (Cretaceous to early Oligocene): On
the inner and mid shelf, variable seismic facies (WRS, PB), narrow channel
geometries (PB) and sea-floor dredged/cored rocks indicate the presence of
pre-ice-sheet subaerial, fluvial and shallow marine environments in the
Cretaceous. These are unconformably overlain (WRS, PB) by upper Eocene
to lower Oligocene early glacial sediments. This transition, from pre-ice-sheet
to early glacial conditions, has not been sampled elsewhere on the shelf.
Beneath the slope and upper rise, thick sediment sections are observed
(all areas), but are not yet well imaged and mapped in most areas.
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� Aggrading shelf period (Oligocene): On the shelf, stratal geometries in
drilled Oligocene glaciomarine sections mostly aggrade the PSEs in PB and
ERS, but PSEs appear to prograde where the shelf is strongly uplifted and
eroded (WWS). Aggrading PSE geometries occur in unsampled areas of the
outer shelf (WL, AP). On the slope, geometries show high-relief paleo-slope-
canyons (PB, WL, RS, WS), and in the WS, deposition of the massive Crary
Fan (WS) began. On the rise, seismic facies indicate higher energy
depositional environments with paleo-channel-levee systems first developing
(PB, WL, RS, AP, WS). Where drilled (PB, WL, RS), lithologies from this
period have glacial components indicating onshore glaciers. Backstripping
calculations indicate normal shelf water-depths (PB, RS).

� Uniform prograding shelf (early and middle Miocene): In many regions,
seismic sequences uniformly prograde the continental shelf edge, with an
up-section increase in the dips of foreset-beds (glaciomarine deposits) and
variable erosion of topset strata (with diamicton) (PB, WL, RS, AP, WS).
Sea-level stratigraphic control began to shift to ice-dominated stratigraphic
control, with documented cyclic shelf erosion by grounded ice sheets. Initial
regional erosion and overdeepening of East Antarctic shelves commenced
(PB, RS, WL). Slope geometries indicate canyon shifting and infilling
(PB, WL, RS) and fan growth (WS), with rise geometries showing the
construction of large drift mounds (WWS, PB, WL, AP) and channel-levees
(WL, WS, AP, PB). Abundant contourite deposits (PB, AP) with some
turbidites (AP, WL) are documented. Glacial and interglacial
sediment volumes decreased on the rise (PB, AP), but increased on the
slope (WS).

� Local and focused prograding shelf (late Miocene to Pleistocene): A
prominent regional unconformity occurs in the late Miocene to early
Pliocene across all margin segments (PB (A, PP12); WL (U8); RS (U2); AP
(BGMS) WS (W5)). The unconformity marks a circum-Antarctic change
from areas of uniform PSE progradation to local-arcuate and broadly
focused PSE progradation into small and/or overlapping upper-slope fans
(e.g. QML, WL, AP) and broad trough-mouth fans (e.g. PB, WS) lying at or
near the end of cross-shelf troughs. Strong regional shelf erosion, by both
narrow and wide ice streams early in this period, was followed by regional
deposition of topset banks composed principally of glacial diamicton
(PB, AP, WL, WS?) and glacial marine (RS) sediment. Periods of pelagic
sedimentation on the shelf indicate open water and sea ice. On the slope,
foreset dips steepened as fans formed above the unconformity. On the rise,
sedimentation rates decreased (PB, AP) and depocentres shifted progres-
sively landward, moving from the rise to beneath the slope (PB, WL, AP,
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WS, AP?). Stratigraphic control was dominated by episodic grounded ice,
with sediment deposition by ice and sediment distribution by ocean-currents.

� Sediment drape (late Pleistocene and Holocene): Thin well-layered acoustic
units commonly infill shelf depressions and drape across the slope and rise
(All regions). These units provide a record of pelagic sedimentation from
the last few interglacial and glacial periods. Deep inner-shelf basins, in
particular, trap Holocene biogenic sediments with that were deposited at
very high sedimentation rates; these biogenic sediments yield an ultra-high-
to high-resolution (i.e. decadal to millennial) record of climate variability
(AP, WL, PB).
5.8.2. Long- and Short-Period Transitions in the Geologic Record

The seismic stratigraphic record provides a regional framework that
illustrates distinct changes in the morphology of the Antarctic margin over
the last 60m.y. Drill cores provide the direct ‘ground truth’ geologic record
of both long-period (m.y.) and short-period (k.y.) transitions (Table D-2).
Some of the transitions in drill cores are reflected in the seismic stratigraphic
framework and others are not. All transitions, however, are important in
deciphering Antarctic paleoenvironments. In this discussion, we focus on
lithostratigraphic changes in drill cores, and leave the discussion of isotopic,
biostratigraphic and other relevant variations to authors of other chapters of
this book. Our intent is to use the proximal lithostratigraphic drilling record
from the continental margin to independently evaluate paleoenvironmental
history, where possible.
Drill cores from two segments of the continental shelf provide a general

lithostratigraphic framework for the long-period systematic transition from
non-glacial (Mesozoic) to fluctuating glacial and interglacial (late Cenozoic)
paleo-depositional environments. At the mid-shelf of Prydz Bay, cores
document the changes from subaerial non-glacial (Cretaceous) to fluvial/
lagoonal early glacial (late Eocene) to shallow marine early glacial (early
Oligocene) to subglacial deep shelf (early Pliocene) to interglacial open-
marine (Holocene) conditions. A similar transition is documented in the
Ross Sea (McMurdo Sound), from subaerial non-glacial (Mesozoic) to
shallow marine early glacial (early Oligocene) to fluctuating subglacial and
marine glacial (early Miocene to Holocene) to interglacial open-marine
(Holocene) environments. Large hiatuses exist in the shelf cores.
Improved resolution of the continuity and timing of changes is seen in drill

cores from the continental rise, where geologic continuity and core recovery



Table D2-2: Lithostratigraphic transitions in the geologic records from drill
cores from the antarctic margin (listed by duration and decreasing inferred

age).

Feature Regions Processa Timing

Long-period changes (m.y.)

On the shelf: up-section

lithologic changes from

alluvial to fluvial to

shallow marine to marine

glacial to subglacial

PB Subsiding graben/

shelf with

increasing ice to

the shelf

Cretaceous to

Pliocene

On the rise, sedimentation

rates of hemipelagic

sediments decrease

smoothly while on the

slope, sedimentation

rates increase stepwise

(i.e. in distinct

stratigraphic units)

PB, AP,

WS

Likely decrease in

onshore sediment

supply coincident

with a shift in

deposition from

the rise to the slope

early Miocene to

early Pliocene

On the rise, up-section

increases in IRD, diatom

content; shift kaolinite

and glauconite

PB Erosion of shelf

basins by

grounded ice

sheets

middle Miocene

(B17–14m.y.)

Short-period changes (k.y.)

On the inner shelf: cyclic

changes from diamict

(glacial) to glacial marine

(interglacial) facies (in

early Miocene at

Milankovitch

frequencies)

RS Glaciers fluctuating

onto and off the

shelf during glacial

and interglacial

times

early Oligocene to

middle Miocene

On the rise: cyclic changes

from terrigenous (glacial)

to biogenic (interglacial)

facies at Milankovitch

(PB) and similar variable

(AP) frequency

PB, AP Glaciers fluctuating

onto and off the

shelf during glacial

and interglacial

times

early Miocene to

early Pliocene

On the slope: shift in

glacial sediment clast

type: sandstone to granite

PB Likely change in ice

source area:

offshore to

onshore?

Between 1.1Ma and

780 k.y.

aThe principal process is listed.
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are greater than from the shelf or slope. On the rise, there is a distinct
up-section change in seismic character from well layered below to channel-
levy development above (all areas) that is widely inferred due to a large influx
of sediment when onshore ice sheets initiated in late Eocene to early
Oligocene time. Here, the pre-ice to glacial transition has not yet been
sampled by drilling. Yet, higher in the stratigraphic section of the rise, drill
cores show a clear long-term parabolic decrease in the sedimentation
rates within sediment drift deposits from the early Miocene (PB: 10-fold
decrease) and the late Miocene (AP: 6-fold decrease) to the present. The large
decreases occurred when the PSEs were prograding over distances of several
tens of kilometres and aggrading up to several hundred metres, although the
detailed timing of the prograding and aggrading is unknown. Regardless, the
distinct changes in geometries of seismic sequences beneath the outer
paleoshelves in PB and AP are not seen as abrupt changes in sediment
deposition rates on the rise. Drilling on the slope (WS) shows large
incremental increases in sedimentation rates for this same general period
(i.e. early Miocene to early Pliocene), indicating that sediment coming from
the shelf may not have reached the rise. The decreases in sedimentation rates
on the rise may also reflect a decrease in the amount of sediment being
eroded from onshore and shelf areas.
A notable long-term transition occurs in middle Miocene sediments

(17–14Ma) from the rise (PB). Up-section increases in IRD, diatom content,
and recycled organic matter, along with changes in the types of clay and the
first appearance of glauconite, point to greater ice nearby and initial erosion
of shelf sedimentary basins. Evidence for strong erosion on the shelf is
also seen in truncated foreset strata beneath the outer PB paleo-shelf. RS
shelf drill cores are marked by a long hiatus, from mid- to late-Miocene.
The hiatus and truncated shelf reflectors point to an increase in shelf erosion
and overdeepening in the RS, similar to the erosion recorded on the rise
at PB.
Short-period fluctuations in shelf and rise drill cores provide the strongest

evidence that erosion onshore and on the shelf by fluctuating grounded ice
sheets was the mechanism for sediment supply and distribution by glacial
processes, as inferred from seismic-reflection data. On the RS shelf, cyclic
fluctuations in glacial diamict and interglacial glaciomarine lithofacies at
Milankovitch frequencies are documented for lower Miocene nearshore
facies at the front of the Transantarctic Mountains, and resulted from ice
advancing onto and retreating off the shelf at this time (Naish et al., 2001).
On the rise (PB and AP), alternating dark- and light-coloured lithofacies
with varying amounts of terrigeneous (dark) and biogenic (light) components
are described throughout the lower Miocene to lower Pliocene intervals from
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visual observation of cores, downhole logging and physical properties
measurements (PB); similar compositions variations are described from
upper Miocene to Pliocene intervals in the AP. The facies are inferred to be
of glacial and interglacial origin, respectively, and occur at Milankovitch
frequencies in PB and similar order-of-magnitude frequencies in AP. Hence,
drilling on the rise in East Antarctica and in West Antarctica has provided
similar geologic evidence for fluctuating ice sheets on the shelves during the
period of principal shelf progradation and aggradation – from the early
Miocene to the early Pliocene.
The geologic transition in the late Miocene to the early Pliocene is the

initiation of broad and narrow shelf troughs and widespread banks, lobes
and upper-slope fans along the Antarctic margin (all areas); this transition is
difficult to see in drill cores, but has been imaged seismically. On the rise (AP,
PB), sedimentation rates decrease uniformly during this period and
lithologies (e.g. clays, IRD, etc.) do not show systematic long-term changes.
However, seismic geometries beneath the adjacent continental shelves show
abrupt changes to rapidly prograding sections (S2/S3 beneath AP; PP-12
beneath PB). Elsewhere, drilling information is insufficient to explain
why large geomorphic changes on the shelf, probably due to changes in
glacial regime, are not reflected in the rates or types of sediment delivered to
the rise.
5.8.3. Sea-Level and Ice-Volume Changes

Lithostratigraphic data from Antarctic margin drill cores show clear
evidence on the shelf (PB, RS) for linked sea-level and ice-volume changes.
This is best shown in the Oligocene through early Miocene record of cyclic
glacial and interglacial lithologies near the coast in Cape Roberts cores
(WRS) (Barrett, 2007). Lithostratigraphic data from the slope (PB) and rise
(PB, AP) show additional direct evidence for cyclic ice-volume changes.
Seismic-reflection data provide indirect evidence across the entire margin for
the linked sea-level and ice-volume fluctuations that have been noted by
many investigators and have been modelled in the RS (Bartek et al., 1991)
and presented conceptually for all margins (ten Brink et al., 1995). The
Antarctic drill cores are too limited, however, to establish the timing,
magnitude and extent of individual ice sheet advances onto the continental
shelf, other than for the LGM.
A comparison of the Antarctic margin proximal stratigraphic record with

the global record of sea-level variations (and linked ice-volume variations)
from coastal onlap, backstripping, and isotopic records since the middle



Figure D-1: Graph showing sea-level and isotope curves and principal
stratigraphic events for the Antarctic continental margin. Curves are from
Miller et al. (2005). Events are from text and Tables D-1 and D-2. Curve A is
for benthic foraminifera. Curve B is derived from stratigraphic backstripping
(W9M.a.) and isotopic measurements (0–9M.a.); Curve C is from Haq et al.
(1987). Curves B and C have different sea-level change scales. For some
periods, Antarctic stratigraphic events correlate with isotopic shifts (e.g. PB:
early Oligocene unconformity and first ice sheets at the coast and mid-
Miocene lithology changes and ice buildup) and with the Haq Curve (e.g.
mid-to-late Miocene shelf erosion and early Pliocene and younger slope fan

development with long-term sea-level lowerings).
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Eocene is shown in Fig. D-1. Large differences appear between the global
sea-level curves (see Miller et al. (2005) for the explanation), yet the Antarctic
stratigraphic features can potentially be linked to parts of all of the curves
principally because of the current uncertainty in ages of Antarctic features,
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especially for the Paleogene. The closest links of Antarctic features with the
global curves are:

� Late Eocene and early Oligocene lowering of sea-level (first glaciers into PB
and RS), followed by sea-level rise in the early Oligocene (flooding of PB).
� A long period from the Oligocene into the late Miocene of cyclic sea-level,
seen in cyclic coastal deposits (WRS) and as glacial/interglacial rise-drift
deposits (PB, AP)
� Abrupt sea-level lowering in the middle Miocene, seen in lithologies of
rise-drift deposits (PB), followed by further sea-level lowering (with ice
buildup) and enhanced erosional deepening and prograding of continental
shelves by glaciers (as seen in seismic profiles from all areas).
� The systematic decrease in sea-level (and increase in ice) from the mid-
Miocene to the present that corresponds with the decrease in sedimentation
rates on the rise and increase in sedimentation rates on the slope. This is most
pronounced since early Pliocene time, when an extensive system of shelf
erosional troughs and upper-slope fans developed.

Greater resolution of the link between ice-volume variations and sea-level
changes requires further drilling on the Antarctic margin.
5.9. Summary

The Antarctic continental margin holds a thick Cenozoic sedimentary
section that is characterized by both long-period and short-period
lithostratigraphic transitions, which are seen locally in drill cores and
regionally in seismic-reflection data. Age resolution is inadequate to link
individual stratigraphic events, but is sufficient to make general statements
about glacial history. The transitions point to the last 40m.y. being a period
of increasing glaciation and sediment distribution by glacial processes via
short-period fluctuations (e.g. Milankovitch frequencies) of grounded ice
sheets across the continental shelf and accompanying sea-level changes. The
proximal history is generally similar to that of distal proxy records from
isotopic studies in adjacent ocean basins (e.g. Zachos et al., 2001) and from
stratigraphic studies on low-latitude continental margins (e.g. Miller et al.,
2005, 2000). Key inferences from the Antarctic margin for the Cenozoic,
based on published data and inferences from extensive seismic-reflection and
limited drilling records, are:

� Although tectonic histories differ around the Antarctic margin, similar
geomorphic features (e.g. overdeepened and foredeepened seafloor; broad
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erosional troughs, sediment fans and drift mounds) are seen everywhere on
the margin, as a result of ubiquitous fluctuating glaciers eroding and
distributing sediments.
� East and West Antarctic margin segments may have similar glacial
histories, based on similar geomorphologies and known ages offshore for
glacial strata. Current differences result partly from lack of sufficient drilling
into likely Paleogene offshore sections beneath the margin.
� Seismic geometries and facies from all segments of the continental margin
show evidence for up-section increases in the dynamic movement of sediment
across the margin (e.g. shelf troughs, slope sediment fans, channel-levee
systems) and along the margin (e.g. rise-drift deposits), reflecting increased
glacial and ocean current activity from the Oligocene to the present.
� Stratal geometries of the continental shelf and slope were controlled
principally by eustatic changes (with ice fluctuations) from the Paleogene to
about the middle Miocene, and thereafter principally by fluctuating
grounded glaciers (in tandem with sea-level changes) on the shelf, leading
to the overdeepening and foredeepening of the shelf.
� Extensive prograding and aggrading of the continental shelf from the early
Miocene to the latest Neogene is the principal result of sediment dispersal by
ice sheets during glacial and interglacial periods at near-Milankovitch
periodicities, as documented from drilling of drift deposits on the continental
rise in East Antarctica (PB) and West Antarctica (AP), and from near-
coastal sequences (RS).
� The principal locus of sediment deposition on the margin has shifted from
the outer rise (and beyond) during the Paleogene, to the inner rise and slope
in the early Miocene to early Pliocene, and to the mid slope thereafter. The
depocentre shift reflects the increases in glacial activity (and increases in
ocean currents) and decrease in sediment being supplied due to erosion of
onshore and shelf areas.
� Specific circum-Antarctic glacial events in the evolution of the margin
include: first glaciers at the coast and initiation of channel-levee systems on
the rise and the Crary Fan (early Oligocene); fluctuating glaciers, initial rapid
progradation of the continental shelf, and initial growth of drift mounds and
large levees on the rise (early Miocene); onshore ice buildup and initial
overdeepening of the continental shelves (middle Miocene); dynamic ice
movements and initial widespread development of cross-shelf troughs and
upper-slope fans (early Pliocene); widespread deposition of biogenic
interglacial sediment in deep inner-shelf troughs (Holocene).

Additional advances in our understanding of Antarctica’s glacial history
and the varied effects of ice sheets on the paleoceanographic and
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lithostratigraphic processes of the Antarctic continental margin can only be
achieved through additional offshore deep stratigraphic drilling studies, such
as the current IODP, ANDRILL and SHALDRIL projects.
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Coast, Antarctica. In: D. E. Hayes (Ed.). Antarctic Oceanology II. American
Geophysical Union,Washington, DC, Antarctic Research Series, Vol. 19, pp. 59–69.
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de Gardeano, C., Somoza, L., Suriñach, E., & Vásquez, T. (2003). The transition
from an active to a passive margin (southwestern end of the South Shetland
Trench, Antarctic Peninsula). Tectonophysics, 366, 55–81.

Jacobs, S. S., Amos, A. F., & Bruchhausen, P. M. (1970). Ross Sea oceanography
and Antarctic bottom water formation. Deep Sea Res., 17, 935–962.

Jahns, E. (1994). Evidence for a fluidized till deposit on the Ross Sea continental
shelf. Antarct. J. U.S., 29, 139–141.

Jeffers, J. D. (1988). Tectonics and Sedimentary Evolution of the Bransfield Basin,
Antarctica. M.A. Thesis, Rice University, Houston, TX, 142 pp.

Jeffers, J. D., & Anderson, J. B. (1990). Sequence stratigraphy of the Bransfield
Basin, Antarctica: Implications for tectonic history and hydrocarbon potential.
In: B. St. John (Ed.). Antarctica as an Exploration Frontier–Hydrocarbon
Potential, Geology and Hazards. American Association of Petroleum Geologists,
Tulsa, OK, Studies in Geology, Vol. 31, pp. 13–29.

Jeffers, J. D., Anderson, J. B., & Lawver, L. A. (1991). Evolution of the Bransfield
basin, Antarctic Peninsula. In: M. R. A. Thomson, J. A. Crame, & J. W. Thomson
(Eds). Geological Evolution of Antarctica. Cambridge University Press, New York,
pp. 481–485.

Jin, Y. K., & Kim, Y. (1998). A Crustal Model and its Tectonic Implication on the
Evolution of the Pacific Margin of the Northern Antarctic Peninsula. Memoirs
of NIPR Special Issue. National Institute of Polar Research, Tokyo, Vol. 53,
pp. 203–213.

Jin, Y. K., Kim, Y., Kim, H.-S., & Nam, S. H. (1996). Preliminary results of seismic
survey in the Central Bransfield Strait, Antarctic Peninsula. In: Proceedings of
NIPR Symposium on Antarctic Geosciences, Vol. 9. National Institute of Polar
Research, Tokyo, pp. 141–149.

Jin, Y. K., Larter, R. D., Kim, Y., Nam, S. H., & Kim, K. J. (2002). Post-
subduction margin structures along Boyd Strait, Antarctic Peninsula. Tectono-
physics, 346, 187–200.

Jin, Y. K., Lee, M. W., Kim, Y., Nam, S. H., & Kim, K. J. (2003). Gas hydrate
volume estimations on the South Shetland continental margin, Antarctic
Peninsula. Antarct. Sci., 15, 271–282.

Johnson, G. L., Vanney, J.-R., Elverhøi, A., & LaBrecque, J. L. (1981). Morphology
of the Weddell Sea and southwest Indian Ocean. Dtsch. Hydrogr. Z., 34, 263–272.



204 A. K. Cooper et al.

Author's personal copy
Johnson, G. L., Vanney, J. R., & Hayes, D. (1982). The Antarctic continental shelf:
review paper. In: C. Craddock (Ed.). Antarctic Geoscience. University of
Wisconsin Press, Madison, WI, pp. 995–1002.

Kagami, H., Kuramochi, H., & Shima, Y. (1991). Submarine canyons in the
Bellingshausen and Riiser-Larsen Seas around Antarctica. In: Proceedings of the
NIPR Symposium on Antarctic Geosciences, No. 5, pp. 84–98.

Kaharoeddin, F. A., Eggers, M. R., Graves, R. S., Goldstein, E. H., Hattner, J. G.,
Jones, S. C., & Ciesielski, P. F. (1979). ARA Islas Orcadas Cruise 1277 Sediment
Descriptions. Sedimentology Research Laboratory Contribution, Vol. 47. Florida
State University, Tallahassee, 108 pp.

Kaharoeddin, F. A., Eggers, M. R., Goldstein, E. H., Graves, R. S., Watkins, D. K.,
Bergen, J. A., Jones, S. C., & Cassidy, D. S. (1980). ARA Islas Orcadas Cruise
1578; Sediment Descriptions. Sedimentology Research Laboratory Contribution,
Vol. 48. Florida State University, Tallahassee, 162 pp.

Kamenev, E. N., & Ivanov, V. L. (1983). Structure and outline of geologic history
of the southern Weddell Sea Basin. In: R. L. Oliver, P. R. James, & J. B. Jago
(Eds). Antarctic Earth Science. Cambridge University Press, New York,
pp. 194–196.

Kaul, N. (1992). High resolution seismics and stratigraphy off Kapp Norvegia,
Antarctica. Z. Geomorphol., 86, 105–112.

Kavoun, M., & Vinnikovskaya, O. (1994). Seismic stratigraphy and tectonics of the
northwestern Weddell Sea (Antarctica) inferred from marine geophysical surveys.
Tectonophysics, 240, 299–323.

Keany, J. (1978). Paleoclimatic trends in early and middle Pliocene deep-sea
sediments of the Antarctic. Mar. Micropaleontol., 3, 35–49.

Kellogg, D. E., & Kellogg, T. B. (1987). Microfossil Distributions in Modern
Amundsen Sea Sediments. Mar. Micropaleontol., 12, 203–222.

Kellogg, T. B. (1987). Glacial-interglacial changes in global deepwater circulation.
Paleoceanography, 2, 259–271.

Kellogg, T. B., & Kellogg, D. E. (1988). Antarctic cryogenic sediments: Biotic and
inorganic facies of ice shelf and marine-based ice sheet environments.
Palaeogeogr. Palaeoclimatol. Palaeoecol., 67, 51–74.

Kellogg, T. B., Truesdale, R. R. S., & Osterman, L. E. (1979). Late Quaternary
extent of the West Antarctic Ice Sheet: New evidence from Ross Sea cores.
Geology, 7, 249–253.

Kellogg, T. B., Kellogg, D. E., & Stuiver, M. (1990). Late Quaternary history of the
southwestern Ross Sea: Evidence from debris bands on the McMurdo Ice Shelf,
Antarctica. In: D. H. Elliot (Ed.). Contributions to Antarctic Research I.
American Geophysical Union, Washington, DC, Antarctic Research Series,
Vol. 50, pp. 25–56.

Kellogg, T. B., Hughes, T., & Kellogg, D. E. (1996). Late Pleistocene interactions of
East and West Antarctic Ice Flow regimes: Evidence from the McMurdo Ice
Shelf. J. Glaciol., 42(142), 486–500.



Cenozoic Climate History from Seismic Reflection and Drilling Studies 205

Author's personal copy
Kemp, E. M., & Barrett, P. J. (1975). Antarctic glaciation and early Tertiary
vegetation. Nature, 258, 507–508.

Kemp, E. M., Frakes, L. A., & Hayes, D. E. (1975). Paleoclimatic significance of
diachronous biogenic facies, Leg 28. In: D. E. Hayes, L. A. Frakes, et al. (Eds).
Initial Reports of the Deep Sea Drilling Project. US Government Printing Office,
Washington, DC, Vol. 28, pp. 909–917.

Kennedy, D. S. (1988). Modern Sedimentary Dynamics and Quaternary Glacial
History of Marguerite Bay, Antarctic Peninsula. M.A. Thesis, Rice University,
Houston, TX, 203 pp.

Kennedy, D. S., & Anderson, J. B. (1989). Glacial-Marine sedimentation and
Quaternary glacial history of Marguerite Bay, Antarctic Peninsula. Quat. Res.,
31, 255–276.

Kennett, J., & Barker, P. (1990). Latest Cretaceous to Cenosoic climate and
oceanographic developments in the Weddell Sea, Antarctica: An ocean-drilling
perspective. In: P. F. Barker, J. P. Kennett, et al. (Eds). Proceedings of the Ocean
Drilling Program, Scientific Results, Vol. 113, pp. 937–960.

Kennett, J. P. (1966). Foraminiferal evidence of a shallow calcium carbonate
solution boundary, Ross Sea, Antarctica. Science, 153, 191–193.

Kennett, J. P. (1977). Cenozoic evolution of Antarctic Glaciation, the Circum-
Antarctic ocean, and their impact on Global paleoceanography. J. Geophys. Res.,
82, 3843–3860.

Kennett, J. P. (1978). Cenozoic microfossil datums in Antarctic–sub-Antarctic deep-
sea sedimentary sequences and the evolution of southern ocean planktonic
biogeography. In: N. Ikebe (Ed.). Correlation of Tropical Through High Latitude
Marine Neogene Deposits of the Pacific Basin. Stanford University Publications.
Geol. Sci., 14, 30–31.

Kennett, J. P., & Vella, P. (1975). Late Cenozoic planktonic foraminifera and
paleoceanography at DSDP Site 284 in the cool subtropical South Pacific.
In: J. P. Kennett, R. E. Houtz, et al. (Eds). Initial Reports of the Deep Sea
Drilling Project. US Government Printing Office, Washington, DC, Vol. 29,
pp. 769–799.

Kennett, J. P., & Shackleton, N. J. (1976). Oxygen Isotopic evidence for the
development of the Psychrosphere 38 Myr ago. Nature, 260, 513–515.

Kennett, J. P., & Hodell, D. A. (1993). Evidence for relative climatic stability of
Antarctica during the Early Pliocene: A marine perspective. Geogr. Ann., 75A,
205–220.

Kim, Y., Kim, H.-S., Larter, R. D., Camerlenghi, A., Gambôa, L. A. P., &
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Foldout RS-1: ‘Type section’ from the Eastern basin (modified from Cooper et al., 1995). The section is a compilation of seismic lines BGR-7 and IFP-208. RSS-1 are inferred pre-ice deposits, RSS-2 and -3 are early-glacial glaciomarine deposits, RSS-4, -5 and -6 are glaciomarine deposits of the ice-sheet growth phase,
and RSS-7 and -8 are glaciomarine deposits of the polar ice-sheet phase. See Fig. RS-1 for location.
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Foldout RS-2: ‘Type section’ from the Northern basin (modified from Cooper et al., 1995). The stratigraphy and origin of sediments are similar to those for the ‘type section’ in the Eastern basin (Foldout RS-1). RSS-1 is a basin-fill sequence, RSS-2 and -3 mostly aggrade, RSS-4, -5 and -6 mostly prograde and have with eroded topset beds,
RSS-7 and -8 have aggrading geometries. See Fig. RS-1 for location.
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Foldout PB-1: Seismic sections from eastern Prydz Bay (Section B-Bu). In the bay, Cenozoic sediments overlie Cretaceous (Surface K) and older sequences resting on basement. The shelf edge and upper slope prograded seaward through time becoming steeper. The slope and rise overlie a thick post-rift section, the latest parts of which are turbidite
(inferred) and contourite (drilled) sequences deposited since the onset of glaciation. Location shown in Fig. PB-1.
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Foldout PB-2: Seismic sections from western Prydz Bay (Section A-Au). The very thick post-rift section includes thick contourite (drilled) and turbidite (inferred) mounds with mudwaves in places. The upper slope comprises the Prydz Channel Fan and the shelf shows progradation but only limited topset thickness. The base of Prydz Channel Fan is
Reflector A of Mizukoshi et al. (1986) and PP-12 of O’Brien et al. (2004). Location shown in Fig. PB-19.
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Foldout WS-1: Seismic line NARE-8508 along the front of the Crary Trough Mouth Fan, showing fan architecture (modified from Kuvaas and Kristoffersen, 1991). Profile location is in Fig. WS-1.
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Foldout AP-1: Seismic line BAS878-19 across the Antarctic Peninsula Pacific margin, showing the shelf basin, prograding wedge and continental rise sediments between the continental slope and DSDP Site 325. A buried, early Miocene sediment drift is observed beneath the central rise (Hernández-Molina et al., 2004, 2006b), but this line lies between
two of the large drifts that have developed since the start of the middle Miocene (Rebesco et al., 1996, 1997, 2002). Oceanic basement ages are from Larter et al. (1997). Vertical exaggeration at the seafloor is 23:1. Inset in upper right shows an interpretation of major features. Inset in lower left shows line location.
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