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Abstract

The Kara Sea is one of the arctic marginal seas strongly influenced by fresh water and river suspension. The highly

seasonal discharge by the two major rivers Yenisei and Ob induces seasonal changes in hydrography, sea surface

temperature, ice cover, primary production and sedimentation. In order to obtain a seasonal pattern of sedimentation in

the Kara Sea, sediment traps were deployed near the river mouth of the Yenisei (Yen) as well as in the central Kara Sea

(Kara) within the framework of the German–Russian project ‘‘Siberian River run-off; SIRRO’’. Two and a half years of

time-series flux data were obtained between September 2000 and April 2003 and were analyzed for bulk components,

amino acids, stable carbon and nitrogen isotopes as well as sterols and fatty acids.

Sediment trap data show that much of the annual deposition occurred under ice cover, possibly enhanced by

zooplanktonic activity and sediment resuspension. An early bloom of ice-associated algae in April/May occurred in the

polynya area and may have been very important to sustain the life cycles of higher organisms after the light limitation of

the winter months due to no/low insolation and ice cover. The strong river input dominated the months June–August in

the southern part of the Kara Sea. The central Kara Sea had a much shorter productive period starting in August and was

less affected by the river plumes. Despite different time-scales of sampling and trapping biases, total annual fluxes from

traps were in the same order of magnitude as accumulation rates in surface sediments. Terrestrial organic carbon

accumulation decreased from 10.7 to 0.3 gCm�2 a�1 from the riverine source to the central Kara Sea. Parallel to this,

preservation of marine organic matter decreased from 10% to 2% of primary productivity which was probably related to

decreasing rates of sedimentation.
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1. Introduction

About 10% of the global freshwater discharge
occurs in the Arctic Ocean (Aagaard, 1994). More
than one-third of it is discharged into the Kara Sea
(Fig. 1), mainly via the Yenisei and Ob, the second
and third largest arctic rivers transporting annually
about 1000 km�3 water (Milliman and Meade, 1983;
Telang et al., 1991). The associated supply of more
than 22� 106 t a�1 of sediment, estimated at the
northernmost gauging stations is small compared to
rivers of similar size from lower latitudes (Milliman
and Meade, 1983). Low total suspended matter
(TSM) concentrations in addition to low concentra-
tions of the dissolved fraction are due to arctic
climate and the related limited vegetation and land
use in the catchment (Holmes et al., 2002). Change
in land use and global warming have recently
increased nutrient concentrations and water dis-
charge in arctic rivers (Peterson et al., 2002). Partial
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Fig. 1. Map of trap locations in the Kara Sea and isohalines

(in psu) of compiled summer salinities (Dmitrenko et al., 1999).

Kara-01: Kara Sea 01; Yen-2, Yen-04: Yenisei 02 and 04.
melting of the permafrost soils may further increase
nutrient and suspended matter concentrations in the
near future (Syvitski, 2002) leading to enhanced
productivity in the arctic coastal seas also stimu-
lated by longer ice-free periods.

It was one of the aims of the multidisciplinary
Russian–German research project ‘‘Siberian River
run-off (SIRRO)’’ to understand the role of river
supply for the recent sedimentation processes in the
Kara Sea (Stein et al., 2003). Sediment traps were
deployed in order to obtain information about
processes taking place during the winter and spring
season when ice cover or ice melt make the area
difficult to access. The data presented here are the
first seasonal particle flux data of high resolution
from the southern and central Kara Sea and provide
three records of seasonal changes in vertical fluxes
to its deep saline water layer.

2. Materials and methods

2.1. Study area

Hydrography of the Kara Sea has a climatically
induced high seasonality. The southern Kara Sea is
ice free only from mid-July to mid-October (Pavlov
and Pfirman, 1995) (www.aari.nw.ru). The central
and northern Kara Sea remain ice covered until the
end of August in most years. Maximum river
discharge occurs in June (Fig. 2a), both, on and
under the ice with the peak being more pronounced
in the Yenisei than in the Ob (Meade et al., 2000).
The high discharge period is characterised by strong
stratification with warmer and less saline surface
water and a deep salt wedge intruding into the
estuaries (Harms et al., 2003). The thermohalocline
separating surface and deep water masses is situated
at about 6–8m in the inner Kara Sea and can be at
20m water depth in the offshore areas (Pavlov and
Pfirman, 1995; Shmelkov et al., 2002). In summer
the average salinity is around 10 in the surface
waters of the estuaries and increases to 430 in the
northern Kara Sea (Fig. 1) whereas in winter the
river plume water mass is restricted to a narrow belt
along the coast line (Pivovarov et al., 2003).

Long-term records of freshwater and suspended
matter discharges are available from several hydro-
graphic stations along both rivers (Bobrovitskaya
et al., 1997; Meade et al., 2000; Holmes et al.,
2001). TSM supply to the Kara Sea after dam
constructions in the upper reaches of the rivers was
estimated as 4.2� 106 t a�1 at Igarka for the Yenisei

http://www.aari.nw.ru
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and 16.2� 106 t a�1 at Salekhard for the Ob
(Bobrovitskaya et al., 1996). Both northernmost
gauging stations are about 600 km south of the
rivers mouths (Fig. 1). A recent calculation of TSM
and particulate organic carbon (POC) fluxes at
the river mouths suggests a TSM discharge by the
Yenisei (5� 106 t sediment a�1) comparable to the
above earlier estimate from Igarka indicating that
the lower Yenisei is mainly a by-pass system
(Gebhardt et al., 2004). The Ob discharge reaching
the Kara Sea (3.76� 106 t a�1) appears to be only
about one-fourth of the amount discharged at
Salekhard, which may be due to deposition in the
Ob Bay (Gebhardt et al., 2004). Flood events
occurring about every 10 years (Bobrovitskaya
et al., 1996) may, however, periodically transport
this material to the Kara Sea (Gebhardt et al.,
2004). Most of the TSM and organic matter
reaching the Kara Sea is deposited as a thick
sediment package extending from the estuaries to
about 741N (Dittmers et al., 2003). This region was
named the ‘‘marginal filter’’ as flocculation and
deposition may remove most of the river contami-
nants from the water column and thus prevent their
export to the central Arctic Ocean (Lisitzyn, 1995).
Several studies based on stable isotopes and
biomarkers showed that most organic matter
preserved in the sediments of the southern Kara
Sea was of terrestrial origin (Fahl et al., 2003;
Fernandes and Sicre, 1999; Krishnamurthy et al.,
2001). These findings are similar to those on other
Arctic shelves such as the Beaufort Sea (Goni et al.,
2005).

Enhanced primary productivity is mainly re-
stricted to the short ice-free period in late summer
or may take place in the polynya area (Wassmann
et al., 2004) which is situated in the southern Kara
Sea north of the fast ice zone (Harms et al., 2000).
Primary productivity can attain rates of more than
200mgCm�2 d�1 north of the areas of high
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turbidity from river suspension (Vedernikov et al.,
1995; Vinogradov et al., 2000). Timing of ice break
up and ice drift varies interannually and is largely
controlled by winds that together with seasonal
river discharge make the whole Arctic a region of
very patchy and variable primary production and
POC export during the season of sufficient light
and ice-free conditions (Wassmann et al., 2004).
Vinogradov et al. (2000) estimated a total primary
production of 20� 106 t C a�1 for the entire Kara
Sea. Nöthig et al. (2003) and Deubel et al. (2003)
found large interannual differences not only in total
biomass but also in spatial distribution and
composition of phyto- and zooplanktonic commu-
nities in the Kara Sea—evidently driven by the
timing and amount of river run-off. Short-term trap
deployments showed that plankton blooms with
very high fluxes of fresh organic matter can occur
off the river mouths in late summer when river
discharge is reduced (Gaye-Haake et al., 2003;
Hirche et al., 2006).

The processes described above result in a complex
structure and variable distribution of water masses
in the Kara Sea characterised by different tempera-
tures, nutrient and oxygen concentrations (Pivovar-
ov et al., 2003). Sedimentation processes in the Kara
Sea can, therefore be expected to be very complex
and variable depending on river discharge, ice
conditions, water mass distribution and circulation.

2.2. Sampling

Samples were obtained at a southern (Yen) and
northern (Kara) location (Fig. 1) using two cylind-
rical sediment traps (Hydrobios, Kiel, Germany,
http://www.hydrobios.de) equipped with, respec-
tively 24 and 12 collection cups. The height of the
collecting cylinder is 90 cm, the diameter of its
opening area is 14 cm. Sampling intervals varied
from 6.5 to 56 days according to the expected
variations in particle fluxes in order to collect
material sufficient for analyzes. The Yen 02 trap
was deployed from September 2000 to August 2001
at a depth of 20m at 741 00.280N, 80100.450 E; total
water depth was 31m. The Kara 01 trap was
deployed from September 2001 to August 2002 at
76112.080N, 75145.30E at a water depth of 54m.
Total water depth was 73m at this location. A
second trap system moored at the Yen site (Yen 03)
did not collect samples due to water inflow into the
electronic housing. The Yen 04 deployment
(74100.11450N; 80119.46130E) had a trap depth of
29m and a total water depth of 40m and collected
10 samples from October 2002 to April 2003 until
water flowed into the electronic housing and
stopped further sampling. Aanderaa current meters
RCM 9 were deployed at trap depths from
September 2001 to April 2002 at the Yen and Kara
stations (Yen 03, Kara 01) and from October 2002
to April 2003 at the Yen station (Yen 04).

After recovery trap samples were immediately
cooled at 4 1C until further processing. Before
splitting into aliquots by a rotary splitter, swimmers
were picked out. Aliquots for geochemical analyses
were filtered on preweighed polycarbonate filters
(0.45 mm) and dried at 40 1C. For analyses samples
were removed from the filters and ground in an
agate mortar. Yen 02 samples number 7–18 were
filtered on GFF filters of which small portions were
cut out and used for analyses. Biogenic Opal could
not be determined on these samples

2.3. Methodological limitations of sediment trap

experiments

Trapping efficiencies depend on sediment trap
geometry, current speeds, particle size and tilt of
traps (Gardner, 1999; Gust et al., 1992; Gust and
Kozerski, 2000). Generally, cylindrical traps seem to
collect more material with increasing current speeds
(Gust et al., 1996). Flux amounts are also affected
by active swimmers which die from the trap poison
and add to the material caught in traps (Lee et al.,
1988, 2000). Furthermore, the solubilization of
collected particles in sampling cups strongly affects
shallow traps (Antia, 2005). Solubilization within
the first few days of storage in the sampling cups
may reduce carbon as well as other biogenic element
fluxes considerably (Kähler and Bauerfeind, 2001).
This may not only change the quantity but also
the quality of fluxes (Antia, 2005). Kähler and
Bauerfeind (2001) did, however, not find an effect
on the seasonality of fluxes and composition as
recorded in traps suggesting that the solubilization
takes place immediately and is insignificant after the
first few days. Except for a careful picking of
swimmers from trap samples we did not correct for
these biases but evaluate them in the discussion.

2.4. Analytical procedures

2.4.1. Bulk components

Total carbon and nitrogen were measured by a
flash combustion CNS Carlo Erba 1500 analyzer

http://www.hydrobios.de
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(Erba Science, Milan, Italy). The precision of this
method is 0.15% for carbon and 0.005% for
nitrogen. C/N-ratios were calculated on a molar
basis. Carbonate percentages were determined by a
Wösthoff Carmhograph 6 (Bochum, Germany) of
all suspended matter samples from 1999, all sedi-
ment samples from 1997 and all trap samples as well
as selected sediment and suspended matters samples
from the subsequent sampling campaigns. The
standard deviation of results is 1%. All carbonate
measurements were below 0.2%. As this is very
close to the detection limit we further assumed that
total carbon equals organic carbon. Biogenic opal
was determined photometrically in a modified
version of the method of Mortlock and Froehlich
(1989). All bulk components are presented as
weight%.

2.4.2. Amino acids (AA) and hexosamines

Total hydrolysable AA were analyzed with a
Pharmacia LKB Alpha Plus 4151 AA Analyzer
(Freiburg, Germany). After hydrolysis of 30–40mg
for sediments and 2–4mg for sediment trap material
with 6N HCl for 22 h at 110 1C an aliquot of the
hydrolyzed sample was evaporated to dryness in a
rotary evaporator. To remove acid the sample was
taken up in deionised water three times and
evaporated to dryness. The sample was then taken
up in a citrate buffer of which 50 ml were injected
into the Amino Acid Analyzer. Separation was
carried out by a cation exchange resin (type
475–6 mm) from which the momomers were eluted
with citrate buffers of different concentrations, pH
and at different temperatures. After elution a
reagent containing phthaldialdehyde was added
which reacted with amino acids forming a fluor-
escent complex. Fluorescence intensity was mea-
sured with a Shimadzu FLD-6A fluorescence
detector (excitation wavelength: 350 nm; fluorescent
wavelength: 450 nm). AA concentrations were
quantified by comparison with an AA standard
(SIGMA AA-S-18) which was run after every eighth
sample. Duplicate analysis resulted in a relative
error of 4% for total AA.

In addition to the total concentrations specific
AA ratios were used as indicators of organic matter
degradation intensity. The ratio of the aromatic AA
tyrosine and phenylalanine to the non-protein
amino acids b-alanine and g-aminobutyric acid
(RI; Jennerjahn and Ittekkot, 1999) is higher when
organic matter is fresher as the aromatic AA are
among the most labile whereas the latter are the
most stable AA. Similarly, the ratio of aspartic acid
to X -alanine was often used to determine the relative
state of degradation as the latter is probably the
degradation product of aspartic acid or may not be
taken up by organisms as it is not among the
essential AA (Ittekkot et al., 1984; Lee, 1988; Lee
and Cronin, 1982, 1984).

The molar percentages of the 14 protein AA were
used to calculate the degradation index (DI)
developed by Dauwe and Middelburg (1998) and
Dauwe et al. (1999) which assesses the diagenetic
alteration of a sample by comparing it to a set of 28
samples of different degradation states and environ-
ments. Molar percentages of individual AA are
standardised by the mean and standard deviations
of the 28-sample data set. The DI then integrates the
AA weighed by the factor coefficients for the first
axis of the principal component analyses (PCA) of
Dauwe et al. (1999) according to the formula:

DI ¼
X

i

vari �AVGvari

STDvari

� �
fac:coef :i,

where vari is the original mole percentage of each
AAi, AVGvari and STDvari are the mean and
standard deviations and fac.coef.i is the factor
coefficient of the first axis of the PCA of Dauwe
et al. (1999). The DI thus represents the cumulative
deviation with respect to an assumed average molar
composition with negative values indicating more
and positive values less degradation than the
average.

The DI of Dauwe et al. (1999) is based on a set of
marine samples whereas our samples include soil,
freshwater and brackish samples. We, therefore,
carried out a factor analysis on our set of samples
using the program SPSS 15.0. Prior to performing
the factor analysis on mol% of amino acids and
other variables they were standardised by subtract-
ing the mean of all values from individual results
and dividing by the standard deviation of all
measurements.

2.4.3. Stable isotopes

d15N and d13C values were determined using a
Finnigan MAT 252 mass spectrometer after high-
temperature flash combustion in a Carlo Erba
NA-2500 elemental analyzer at 1100 1C. Pure tank
N2 calibrated against the reference standards Inter-
national Atomic Energy Agency IAEA-N-1 and
IAEA-N-2 was used as a working standard. d15N is
given as the per mil deviation from the N-isotope
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composition of atmospheric N2. Analytical preci-
sion was better than 0.1% based on replicate
measurements of a reference standard. Duplicate
measurements of samples resulted in a mean
deviation of 0.2%. d13C was measured after the
removal of carbonate by 2N H3PO4 and is given as
the per mil deviation from the isotopic composition
of the PDB standard.

2.4.4. Sterols and fatty acids

Sterols and fatty acids were determined in the
Yen 02 and Kara 01 samples. For lipid analyses the
samples were extracted three times with dichlor-
omethane/methanol (2:1, by volume). The total
extract was transesterified using 3N methanolic
HCl (50 1C for 12 h), a method modified according
to Christie (1990) and Conte et al. (1992), and
separated into fractions by column chromatography
after eluting with 5ml hexane for the hydrocarbons,
4ml dichloromethane for the fatty acids and 5ml
ethylacetate:hexane (20:80, by vol.) for the sterols.
The sterols were silylated with 500ml bis-trimethylsilyl-
trifluoroacetamide (BSTFA) (60 1C for 2 h). All
compounds were analyzed with a Hewlett Packard
gas chromatograph (HP 6890, column 30m�
0.25mm; film thickness 0.25 mm; liquid phase: DB-
5MS) using a temperature program as follows:
60 1C (2min), 150 1C (rate: 15 1C/min), 320 1C (rate:
3 1C/min; 20min isothermal). The injection volume
was 1 ml using a cold injection system (temperature
program: 60 1C (0.1min), 320 1C (rate: 12 1C/s,
60 s)). Helium was used as carrier gas (1.5ml/min).

The identification of the sterols and fatty acids
was supported by GC/MS, which consisted of a gas
chromatograph (HP 5890, column 30m� 0.25mm;
film thickness 0.25 mm; liquid phase: DB-5MS)
and a mass spectrometer (MSD, HP 5972, 70 eV
electron—impact ionisation, Scan 50–650m/z,
1 scan/s, ion source temperature 175 1C). GC analy-
sis was performed with the following temperature
program: 60 1C (2min), 150 1C (rate: 15 1C/min),
320 1C (rate: 3 1C/min; 20min isothermal). The
injection volume was 1 ml (splitless). Helium was
used as carrier gas (1.2ml/min at 60 1C). The
identification of the sterols and fatty acids was
carried out on the basis of GC retention time and
MS fragmentation pattern. For quantification 19:0
fatty acid methyl ester and cholest-5-en-3b-ol-2,
2,3,4,4,6-d6 were added as internal standards before
any extraction and analytical step.

For the interpretation of the sediment trap data
we use four sterols, 24-methylcholesta-5,22-E-dien-
3b-ol (brassicasterol), 4a,23,24-trimethyl-5a-cholest-
22E-en-3b-ol (dinosterol), 24-ethylcholest-5-en-3b-
ol (b-sitosterol) and 24-methylcholest-5-en-b-ol
(campesterol), and four fatty acids, cis-11eicosenoic
acid (20:1(n-9)), cis-13-eicosenoic acid (20:1(n-7)),
and the two isomeres of cis-docosenoic acid (22:1
(n-11), 22:1(n-9)). All data are available on http://
www.pangaea.de.

3. Results

3.1. Current speeds and directions

In the deep layer of saline water current speeds
(daily averages to remove tidal signal) reached
maxima of 35 cm/s in 2001/2002 and were slightly
lower at the Kara than at the Yen location. Weekly
averages used in Fig. 2d to elucidate the seasonality
were between 3.5 and 30 cm/s. Currents speeds were
highest in September/October 2001 and in October
2002–May 2003 and lower (o15 cm/s) in January
2001–August 2002. The currents flowed onshore
(SE–SW) all through the sampling period which is
typical for the deep water of the Kara Sea during
most of the year (Harms et al., 2003).

3.2. Trap Yen 02 and Yen 04

3.2.1. Bulk components

Particle fluxes into the Yen 02 trap were between
20mgm�2 d�1 in May 2001 and 12,936mgm�2 d�1

in October 2002 (Table 1, Fig. 3a). Lithogenic
matter made up between 70% and 83% of total
material. Biogenic opal contributed between 10%
and 18% with little seasonal variation. From
January to June 2001 biogenic opal could not be
determined as samples were on glass fibre filters
(see 2.2.) so that we may have missed a small
seasonal signal. Organic carbon percentages were
between 2.5% and 17.6% which is a very wide range
compared to other trap experiments in arctic
regions (Hargrave et al., 2002; Ingalls et al., 2006;
Wassmann et al., 2004). Low values (o8%)
occurred from February to April, from the end of
June to September 2001, and during the whole
deployment period of Yen 04. Peaks occurred in
May/June 2001, in October 2000 to January
2001, and in May/June 2001. Smaller peaks were
observed in mid-July and in the beginning of
August 2001. C/N ratios were between 7.6 and 11.7
with higher ratios in June through August 2001
(Table 1).

http://www.pangaea.de
http://www.pangaea.de
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Fig. 3. (a) Bulk component fluxes (lithogenic matter, biogenic opal, organic matter) in mgm�2 d�1 sampled by the Yen 02 and 04 traps. In

indicated samples (January–June 2001) biogenic opal has not been determined so that hatched areas indicate lithogenic matter and

biogenic opal. Dark shaded areas indicate complete ice cover and light shade indicates ice break up. (b) Nitrogen fluxes in mgm�2 d�1,

nitrogen percentages, and d15N values in the Yen 02 and 04 trap samples. Dark shaded areas indicate complete ice cover and light shade

indicates ice break up. (c) Organic carbon fluxes in mgm�2 d�1, organic carbon percentages and d13C values in Yen 02 and 04 samples

(upper graph). Amino acid (AA) and hexosamine (HA) fluxes in mgm�2 d�1, F 1 scores of factor analysis of trap samples, and Asp/X-Ala

ratios in Yen 02 and 04 samples (lower graph). Dark shaded areas indicate complete ice cover and light shade indicates ice break up.
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3.2.2. Stable isotopes, AA, hexosamines, sterols and

fatty acids

The d15N values revealed a very wide range from
2.9% to a maximum of 12.3% (Fig. 3b) and were
positively correlated with organic carbon and total
nitrogen percentages (R2

¼ 0.41 and R2
¼ 0.46,

respectively, n ¼ 34). The correlation of AA content
and d15N was even better (R2
¼ 0.50) implying that

common processes enhanced both d15N values and
(nitrogenous) organic matter contents. The correla-
tions became more significant if the last four
samples of Yen 04 were excluded.

d13C variations differed from those of d15N, and
organic contents during most of the year (Fig. 3b
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Table 2

Annual averages of total and bulk component fluxes, weighed means of POC/N ratios, d15N, d13C and annual averages of percentages of

bulk components, DI and RI in sediment trap samples from Yen 02, Yen 04 and Kara Sea 01

Yenisei 02

09/00–08/01

Yenisei 04

10/02–04/03

BP 00–14

Surface Sed.

BP 99–04

Surface Sed.

BP 00–07

Surface Sed.

Kara Sea 01

09/01–08/02

BP 00–26

Surface Sed.

BP 01–61

Surface Sed.

Latitude N 74100, 28 74100, 1145 72155, 86 73124, 9 74139, 48 76112, 08 75142, 54 76112, 9

Longitude E 80100, 45 80119, 6413 79147, 4 79140, 5 81,08, 46 75145, 3 77157, 6 75153, 15

Water depth m 31 40 19.2 32.3 38 73 68 106

Trap depth m 20 29 54

Total flux gm�2 a�1 150.3 547.1a 650 500 350 222.3 170 70

Lithogenic flux

gm�2 a�1
118.7 425.9a 553.2 441.0 301.7 192.0 148.8 nd

Opal flux gm�2 a�1 12.6 91.1a 66.3 42.5 34.3 15.6 15.5 nd

POC flux gm�2 a�1 10.6 16.7a 13.0 7.8 2.6 8.2 2.7 0.7

N flux gm�2 a�1 1.30 2.21a 1.40 0.95 0.35 1.17 0.36 0.12

C/N (atomic) 9.5 8.8 11.1 9.5 8.8 8.2 8.8 6.9

d15N % 7.99 8.21 5.28 5.70 6.99 7.47 7.05 6.98

d13C % �26.88 �25.77 �26.96 �26.37 �26.15 �24.12 �24.92 �24.39

Lithogenic matter % 79.0 77.9 85.0 88.2 86.2 86.4 87.5 nd

Biogenic opal % 8.4 16.7 11.0 8.5 9.8 7.0 9.1 nd

POC % 7.1 3.1 2.0 1.6 0.8 3.7 1.6 1.0

N % 0.87 0.40 0.21 0.19 0.10 0.52 0.21 0.17

DI 0.90 0.22 nd �0.53 �0.81 �0.05 �1.19 nd

RI 9.57 6.91 nd 1.51 1.01 5.43 0.21 nd

For Yen 02 and Kara Sea 01 fluxes have been extrapolated to one year based on average fluxes of 11 months. For trap Yen 04 fluxes have

been averaged for the 195.5 days of deployment.

Accumulation rates in surface sediments (0–2 ka) taken from Table 7.6.2. in Stein and Fahl (2004) and accumulation rates of lithogenic

matter, biogenic opal, organic carbon (POC) and nitrogen (N) calculated rom our bulk component measurements and total accumulation

rates. POC/N ratios, d15N, d13C, percentages of bulk components, DI and RI in surface sediments.
agm�2 195.5 d�1.
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and c). Minima occurred in November/December
2000 and June to August 2001. The weighted annual
averages in Yen 02 (Yen 04) were 8.0% (8.2%) and
�26.9% (�25.8%) for d15N and d13C, respectively
(Table 2). AA carbon contributed 15–40% to total
organic carbon and AA nitrogen contributed
40–95% to total nitrogen and had maximum values
in May/June and August 2001.

All sterol fluxes (brassicasterol, dinosterol,
b-sitosterol and campesterol) showed similar seaso-
nal patterns that are correlated to those of other
organic components (Table 1). Flux maxima oc-
curred in September and in the beginning of October
2001 as well as during November/December 2000
when the maximum concentrations were attained.
A third but lower maximum was found in June/
August 2001. The fluxes of brassicasterol and
campesterol showed values from 10 to more than
1000 mgm�2 d�1, whereas the fluxes of b-sitosterol
and dinosterol were lower with maxima of 500 and
130 mgm�2 d�1, respectively (Table 1). The highest
fluxes of the 20:1 and 22:1 fatty acids (both isomers)
occurred from October 2000 to January 2001,
reaching rates of 1600 mgm�2 d�1. During the other
months of the year these values were distinctly lower
(1/10–1/100).
3.4. Trap Kara 01

3.4.1. Bulk components

Particle fluxes at the Kara 01 location were
between 80mgm�2 d�1 in September 2001 and
1320mgm�2 d�1 in July/August 2002. Maxima
occurred in January/February and August and
minima in the first cup (September) and in April
to mid-June (Table 3; Fig. 4a). Except for the first
cup that had exceptionally high organic carbon
contents of almost 22%, the composition of the
material was very similar in all cups. Lithogenic
matter contents were between 81% and 90%,
biogenic opal contents were 6–8% and organic
carbon contents 2.4–6.5% (Table 3). Maxima of
organic carbon contents occurred in September/
October 2001 and in June–August 2002 and were
accompanied by minima of lithogenic matter con-
tents. C/N ratios were between 6.7 and 9.7.
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3.4.2. Stable isotopes, AA, hexosamines, sterols and

fatty acids

The d15N values of the Kara 01 samples were
between 6.6% and 10.5%; highest values occurred
in the low flux period from March to the beginning
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hexosamines contributed 11–30% to total organic
carbon and 23–55% to total nitrogen. Minima
corresponded with the high d13C values in June.
Unlike the Yenisei samples there were no significant
correlations among the measured variables.

Campesterol and b-sitosterol had nearly the same
flux pattern throughout the year with high fluxes of
up to 400 mgm�2 d�1 except from March to June
(Table 3). The brassicasterol fluxes reached values
around 300 mgm�2 d�1 from September 2001 to
February 2002 and a flux maximum of
1200 mgm�2 d�1 in September 2002 (Table 3). The
bassicasterol pattern nearly paralleled the record of
organic carbon flux. No dinosterol could be
detected and the fatty acid (20:1 and 22:1) contents
were rather low, reaching not more than trace
amounts in some months and are, therefore, not
given.
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4. Discussion

4.1. Relation of fluxes to ice cover, light availability

and river discharge

Particle fluxes at both trap locations had maxima
during the ice free as well as the ice covered seasons
(Fig. 2c) which is in contrast to other studies from
seasonally ice covered regions (Hargrave et al., 2002;
Honjo et al., 2000; Ingalls et al., 2006; Ramseier et al.,
1997; Wassmann et al., 2004). The high river discharge
by the Yenisei in June and the Ob in June to August
(Fig. 2a) was reflected in only slightly enhanced fluxes
during these months (Fig. 2c). This could imply that
much of the riverine particulate matter was kept in
suspension during the summer months and settled
later in the year (4.3.2.). Sufficient light to initiate a
plankton bloom (415Wm�2; Gowen et al., 1995)
was available fromMarch to September. The ice cover
as well as the high concentration of suspended matter
from the rivers, however, probably prevented an
intense bloom with enhanced particle fluxes in early
spring and summer (see 4.3.2.).

The pattern of current speeds (Fig. 2d) did not
correspond with the particle flux pattern (Fig. 2c). This
would be the case if we had a strong sampling artefact
due to overtrapping in periods of high current speeds
(Gust et al., 1992; Gust and Kozerski, 2000). We can
thus exclude that the flux was significantly modulated
by current related changes in sampling efficiency.

4.2.1. Sources and degradation of organic matter in

the Kara Sea: Stable isotopes

d13C values were used in previous studies to quantify
terrestrial input into the Kara Sea (Fernandes and
Sicre, 1999; Krishnamurthy et al., 2001) as well as into
other Arctic shelf seas (Goni et al., 2005; Guo et al.,
2004a, 2004b). Highest d13C values measured in our
study were about �22% (Tables 1 and 3). This was
lighter than the marine end member in lower latitudes
due to the better CO2 dissolution in colder water
(Sackett et al., 1974). River sediments had minima of
d13C around �29% in the Ob and �27% in the
Yenisei (Fahl et al., 2003; Nagel et al., submitted)
which was close to Kara Sea terrestrial end member
d13C values of �27.8% and �27% used by Fernandes
and Sicre (1999) and Krishnamurthy et al. (2001),
respectively. The d13C of trap samples showed a wide
range. Average d13C values at the Yen locations were
closer to the terrestrial end member whereas the
average d13C of Kara 01 samples was closer to marine
and estuarine phytoplankton (Table 2; Fig. 5).
Terrigenous organic matter in the Kara Sea can
also be identified by low d15N values. The terrestrial
end member d15N values are around 4.5% in the Ob
and less than 3% in the Yenisei, respectively (Nagel
et al., submitted). Investigations of Guo et al.
(2004a) showed that the d15N in Siberian river
sediments decrease from west to east. This is
probably related to the eastward increase in
permafrost area and thickness (Stolbovoi and
McCallum, 2002) which could lead to a better
preservation of soil organic matter. As will be
shown below (4.3.) the periods of maximum river
discharges to the Kara Sea could be discerned from
both, low d13C and d15N values in trap material.

Surface sediments showed a characteristic in-
crease of d13C and d15N towards the north, similar
to average trap values, reflecting a change from
terrestrial to marine dominance (Fig. 5). The
northern Kara Sea sediments had d15N values of
more than 7% which is about 2% higher than
average marine nitrate (Sigman et al., 2000) but
similar to other sediments from the Arctic Ocean
(Schubert and Calvert, 2001). Suspended matter had
a more terrestrial signal in surface waters and a
marine imprint at depth which could be due to the
onshore flow of deep water as well as the resuspen-
sion of sediments (Nagel et al., submitted).

Most d15N of trap samples were higher than those
of phytoplankton end members, suspended matter
and surface sediments. There are several possible
explanations for these higher values. d15N may
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standard deviations are given for suspended matter of different

depths, river end members, soils samples, sediments from

different latitudes and the three trap deployments.
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reflect not only organic matter sources but also
transformation processes within the nitrogen cycle
(Altabet, 1996). Isotopic fractionation during nitrogen
uptake results in an increase of the d15N of the
substrate as well as the produced organic matter as
nutrients become depleted during a progressing
plankton bloom (Altabet, 1996). This process may
explain the high d15N values of Yenisei samples
from an early plankton bloom in the polynya area
(see 4.3.). High d15N values can also indicate the
contribution from zooplankton as well as their fecal
pellets as each increase in trophic level is accom-
panied by a d15N increase by about 3–4% (Montoya
et al., 1991). This may be responsible for high d15N
values of autumn and winter samples from the
Yenisei location (see 4.3.). Finally, d15N values can
increase during diagenesis of sinking particles and
sediments due to organic matter degradation
(Altabet et al., 1999; Lourey et al., 2003; Smith
et al., 2002). However, a strong isotopic imprint is
probably restricted to degradation processes in the
deep sea; near shore and slope sediments showed no
significant d15N increase in sediments compared to
sinking particles which was probably related to faster
burial and oxygen depletion in the sediments (Altabet
et al., 1999; Gaye-Haake et al., 2005). Kara Sea trap
samples with higher d15N values were, generally, less
degraded (see 3.2. and 4.3.) so that differences in
nitrogen sources and increasing trophic levels may be
responsible for higher d15N values in the Kara Sea
rather than organic matter degradation.

4.2.2. Sources and degradation of organic matter in

the Kara Sea: AA

AA are among the more labile organic constitu-
ents and serve as a major food source to hetero-
trophs. In order to study the factors responsible for
changes in AA composition we carried out a factor
analysis on 18 normalized mol% values of amino
acids measured in a set of 213 samples from the
Kara Sea. These consist of three samples from the
fresh water end member, three soil and root
samples, 102 suspended matter samples from the
estuaries to the open marine environment, 62
surface sediment samples and 43 sediment trap
samples (see Tables 1 and 3). Similar to the results
of other studies (Dauwe and Middelburg, 1998;
Ingalls et al., 2003) the AA enriched in fresh
plankton have highest component scores for factor
1 (F1) whereas the amino acids enriched during
organic matter degradation have higher component
scores for factor 2 (F2). Generally, the component
loadings for F1 are similar to those of Dauwe et al.
(1999) used for the calculation of the DI. In order to
classify the Kara Sea trap samples according to their
state of degradation we plotted the RI (see 2.4.4.) of
Kara Sea samples against their site scores for F1
(Fig. 6) which is very similar to the RI-DI plot of
Unger et al. (2005). It elucidates the large variations
of degradation states of trap samples ranging from
values typical of fresh surface suspension to those of
surface sediments. Organic matter of the Yen 02 trap is,
mostly, in the range of surface suspension whereas Yen
04 and Kara 01 samples are more similar to deep
suspension; the low RI and F1 site scores of some of
their samples may even indicate contribution from
resuspended sediments. River suspension of the Yenisei
sampled in September is in the range of brackish and
marine surface suspension whereas samples taken
during the peak discharge period in June from
Salekhard on the Ob are more degraded (Fig. 6). This
could be due to the addition of soil organic matter to
the Ob suspension which degradation state is close to
that of deep suspended matter (Fig. 6).

Dauwe et al. (1999) pointed out that the changes
in the monomer distribution determining the DI are
not always linear with increasing degradation. This
is confirmed by our study that shows that the major
changes in the RI occur in relatively fresh organic
matter having high RI and F1 scores, whereas the
major differences in F1 scores occur between the
more degraded trap samples and sediments. The F1
site score-RI plot, thus, helps to classify samples of
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variable environments according to their state of
degradation.

4.3. Seasonal variations

4.3.1. Factor analyses of trap samples

A second factor analysis was carried out on the
trap samples only, using the mol% of 18 AA,
organic carbon, nitrogen, and AA+hexosamine
contents, the DI, RI, d15N and d13C. The AA
enriched in fresh organic matter (Arg, Val, Lys, Ile,
Leu, Phe, His, Tyr), organic carbon, nitrogen and
AA+hexosamine contents as well the indicators of
organic matter freshness DI and RI have high
component scores for F 1 (Fig. 7a). Moreover, d15N
is associated with this group of variables indicating
that organic matter of a less degraded source in
Kara Sea trap samples is characterised by higher
d15N values.

The second group of variables has lower F1 and
higher F2 scores and includes the AA enriched by
degradation such as X -Ala, g-Aba, Orn and Gly
(Fig. 7a) as well as Ala, Met, Ser and Thr. Of these
Ser and Thr are, generally assumed to be enriched in
diatoms together with Gly (Hecky et al., 1973;
Ingalls et al., 2006). Ser, Thr and Gly may, therefore
be considered as a separate third group of amino
acids associated with biogenic opal (Ingalls et al.,
2006).

A fourth group has low F1 and F2 scores and
includes Asp and Glu as well as d13C. Very similar
results were obtained by Ingalls et al. (2006) in their
PCA carried out on trap samples from the Southern
Ocean using AA and pigments. They attributed the
separation of Asp and Glu to the association of
these AA with carbonaceous organisms. However,
the Kara Sea samples had calcium carbonate
contents below the detection limit of carbonate
measurements so that we can exclude this source.
The association of the acidic AA with d13C implies
that they indicate marine vs. terrestrial material.
The AA spectra from the Kara Sea trap samples
thus reflect, both, organic matter degradation as
well as organic matter sources.

The factor scores for F1 and F2 for trap samples
show that samples from the Yenisei location mainly
differ in their state of degradation (Fig. 7b). Less
degraded material characterised by high F1 and low
F2 scores is mostly from the autumn and early
spring samples of the Yenisei 02 deployment while
the most degraded samples with low F1 and high F2
scores are those with the highest contribution of
resuspended sediments from the ice covered season
of the Yen 04 deployment. In contrast to the Yen
samples the Kara samples have lower F1 and F2
scores revealing the more marine organic matter
source rather than the state of degradation.

4.3.2. Seasonality of fluxes at Yen 02 and 04

4.3.2.1. Ice-free period in autumn. Highest particle
fluxes of both trap deployments occurred in
September/October just before ice formation started
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(Figs. 3a and 8) and were in the same order of
magnitude as late summer/early autumn fluxes in
other arctic coastal seas (Wassmann et al., 2004).
Intermediate organic carbon and nitrogen percen-
tages and organic matter quality indicate mixed
planktonic and fluvial organic matter source
(Figs. 3b, c and 8). This is confirmed by inter-
mediate d15N values and microscopic investigations
of Nöthig (2005, personal communication). Ice-free
conditions and better light availability due to
less river input allowed increased primary produc-
tivity in autumn and at the same time promoted
enhanced settling of river material which was
partly still in suspension in autumn. Short-term
trap deployments and suspended matter sampling
identified an intense plankton bloom off the Ob
estuary in September 1999 (Nöthig et al., 2003;
Gaye-Haake et al., 2003). However, in the subse-
quent years no such blooms were found (Unger
et al., 2005). This shows that hydrographic condi-
tions during the ice-free season were spatially and
temporally very variable related to atmospheric
forcing, i.e. changing wind conditions and pulsed
Yenisei 02
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from the cups, their partial disintegration, evidently,
left an imprint on the trap samples. This was also
indicated by the high fluxes of 20:1 and 22:1 fatty
acid isomers (Table 1) which are synthesized mainly
by copepods (Falk-Petersen et al., 1987). In a study
from the Fram Strait (Werner, 2006) found that
many copepods reproduced under the ice in winter
and may have fed on POC which is abundant during
this season. The d13C minimum in November/
December 2000 (Fig. 3c) either indicated an event
of lateral supply and redeposition of terrestrial
material from the inner estuary or resulted from a
zooplankton species strongly depleted in 13C (Smith
et al., 2002). Sterols support the terrestrial source:
they had high fluxes as well as their maximum
contents (not shown) in these two cups (Table 1).
Whereas campesterol and X -sitosterol are derived
from higher land plants (Huang and Meinschein,
1976; Volkmann, 1984), dinosterol and brassicas-
terol can be derived from both fresh water and
marine algae (Fahl and Stein, 1999; Robinson et al.,
1984; Thiel, 1993; Yunker et al., 1995). As fluxes
and contents of all sterols were significantly
correlated we can assume that the algal sterols were
mainly fresh-water derived. This terrestrial signal
was, however, not reflected in d15N values, possibly
due to the lower nitrogen content of sediments.

During the ice covered season in 2003 (Yen 04)
the proportion of lithogenic matter as well as d13C
values were higher than during the Yen 02 deploy-
ment. This more marine signal could be explained
by a higher proportion of resuspended material
from further off shore in 2003 while material settling
in 2001 was derived from more in shore source
areas.

In February to April 2001 (Yen 02) the fluxes
were very low and all variables attained their
minima (Figs. 3a–c and 8). The low d15N values
indicate riverine origin of organic matter. The small
amounts of material caught in the trap during this
period were thus; either slow settling degraded river
suspension or reworked riverine sediment. Such a
tranquil period was not observed during the Yen 04
deployment indicating that sedimentation in the
Kara Sea is highly dynamic and subjected to
interannual variations not only during ice-free
conditions but also under ice cover. Some of the
differences between the two deployments may,
moreover, be due to the slight shift of the position.

4.3.2.3. Ice break up and fluvial supply. In April/
May 2001 just prior to and during the first break up
of the ice cover and polynya formation trap material
had peak organic carbon and nitrogen contents and
organic matter was freshest of all Yen trap samples
(Fig. 3a–c). The latter was discerned from maxima
of F1 scores, RI, Asp/X–Ala ratios as well as highest
contributions of AA carbon to total organic carbon
(Table 1; Fig. 3c). These signals were due to an ice-
associated bloom that was dominated by diatoms
(Nöthig, 2006, personal communication). Although
fluxes remained low during this period (Fig. 8) the
early bloom may have been very important to
sustain the life cycles of other organisms such as
protozoa, zooplankton or fish. It produced a
marine, i.e. an enriched d13C signal and was,
moreover, characterised by the maximum of d15N
values. This may have been due to the regime in
which ice-associated blooms occurred: due to low
light availability the diatoms could only survive just
below the ice or in the polynyas opening up in the
southern Kara Sea. The ice melting produced fresh
water lenses leading to stratification of surface
waters so that nitrogen became limiting and was
completely taken up which is evident from d15N
values up to 412%.

In June/July the Kara Sea was still ice covered
except for the polynya area. The river plumes broke
up the ice in the rivers and estuaries within less
than one week in mid-June 2001 for the Yenisei
and in mid-July for the Ob. The whole Kara
Sea was ice free only in the beginning of August
(http://www.seaice.de). The arrival of the river
plumes as well as the timing of ice break up in the
Kara Sea reveal slight interannual variations.
Although fluxes of this phase were low, composition
of material clearly reflected the fluvial input in their
depleted d15N and d13C signals as well as low
organic carbon and nitrogen contents and inter-
mediate organic matter quality (Fig. 3b and c). d15N
dropped to values close to the river end members
(sea above) and d13C values dropped from more
than �26.5% to the purely riverine value of
�28.5%. The relatively low fluxes found during
this season were possibly due to high current
speeds in surface waters as well as strong stratifica-
tion which held much of the particulate matter in
suspension until autumn or even winter, similar to
processes found in the Laptev Sea (Wegner et al.,
2003).

4.3.3. Seasonality of fluxes at Kara 01

Enhanced primary productivity during the very
short ice-free period in summer was reflected in high

http://www.seaice.de
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fluxes and/or high contents of organic matter in
September/October 2001 and July/August 2002
(Fig. 4). Organic matter contents were higher and
organic matter was fresher (higher Asp/X–Ala
ratios) indicating the higher contribution from
primary production during the ice-free period. As
pointed out above (see 4.3.1.), F1 scores can
indicate terrestrial vs. marine organic matter sources
as well as the state of organic matter degradation at
the Kara location. Unlike the Yen trap results, F1
scores are not correlated with organic contents or
Asp/X–Ala ratios but have a minimum during ice
break up coinciding with high d13C values. This
shows the degraded marine nature of organic matter
deposited during ice melt.

The flux pattern during the ice covered season
resembled the pattern observed during the Yen 02
deployment one year before (Figs. 3 and 4)
with high particle fluxes including land plant
derived sterols from October to January and lowest
fluxes in late winter/early spring (Table 3). Another
similarity was the maximum of d15N in May/June
that we attributed to an ice-associated bloom. The
observed variations in stable isotopic ratios, organic
matter contents and values of AA derived biogeo-
chemical indicators were, however, smaller than
those at the southern trap location and there
were no correlations among these variables. One
reason for this could be the, generally, more
uniformly marine character of deposited organic
matter at the Kara compared to the Yen location.
This is also indicated by higher d13C values,
the stronger degradation of organic matter as well
as the different sterol spectra. In contrast to the
Yen 02 results not all sterol fluxes are correlated in
the Kara samples. The algal derived brassicasterol
had high fluxes after ice break up in 2002 whereas
the land plant derived campesterol and X -sitosterol
did not increase significantly (Table 3). We can,
therefore, assume that the high brassicasterol
flux was of marine origin (Yunker et al., 1995)
and that the flux peak at the Kara 01 location
occurring after ice break had only a weak land
derived component.

4.4. Comparison of trap results with primary

productivity and sediment accumulation rates

To study the fate of terrestrial and marine organic
carbon in the Kara Sea we calculated the proportion
of terrestrial organic matter in selected samples by a
two-end member-mixing model
Terrestrial Organic Matter %

¼
d13Cmarine� d13Corganic

d13Cmarine� d13Cterrestrial

� �
100,

where d13Cmarine is the marine end member of
�22%, d13Corganic is the d13C value of a surface
sediment or of the average of trap samples, and
d13Cterrestrial is the terrestrial end member of
�28% (see 4.2.1.).

Based on these results we calculated the accumu-
lation rates of marine and terrestrial organic carbon
in surface sediment samples and in sediment traps as
annual averages (Table 2). Samples were selected in
a profile from the Yenisei estuary to the Kara Sea
trap location (Figs. 1 and 9). The proportion of
terrestrial organic carbon in traps and surface
sediments is reduced from more than 80% at the
southernmost station to 40% at the northernmost
station close to the Kara Sea trap; the accumulation
rate of terrestrial organic carbon drops from 10.7 to
0.3 gCm�2 a�1 (Fig. 9).

A comparison of accumulation rates of marine
organic carbon in traps and sediments with primary
production is difficult as data are neither available
for the period of study nor in spatial resolution. We
can only use an estimate of about 22 gCm�2 a�1 of
Vinogradov et al. (2000) which is an average for the
whole Kara Sea. Our comparison to this estimate
shows that 9–28% of primary production was
caught in the traps (Fig. 9). The large difference
between the Yen 02 and 04 traps could indicate
interannual or spatial variations of primary produc-
tion as well as of resuspension, redeposition, and
source of this material (see 4.3.). The preservation of
marine organic carbon in surface sediments is
reduced from 10% of primary productivity in the
southern Kara Sea to 2% in the central Kara Sea.
Northward decreasing organic matter quality is also
indicated by lower organic carbon and nitrogen
percentages as well as lower DI and RI values
(Table 2). The stronger degradation in the central
Kara Sea may be due to the lower total sediment
accumulation rates (Table 2).

Composition of material caught in sediment traps
and accumulated in surface sediments is similar
except for organic carbon (Table 2). Degradation
results in a reduction of organic carbon percentages
from 3 to 7% in traps to 0.7–2% in sediments and a
relative enhancement of lithogenic matter from 80
to 85% in traps to 86–88% in sediments. Biogenic
opal contents are roughly around 10% in traps and
sediments revealing that opal dissolution is not
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significant. Considering the biases of sediment
trapping in a shelf environment (see 2.2.) as well
as the different time scales covered by traps (o1 a)
and surface sediments (2 ka) it is remarkable that
not only the composition but also the accumulation
rates are roughly similar in traps and sediments.

5. Conclusions
1.
 In analogy to surface sediment data, particulate
matter fluxes in sediment traps have a decreasing
fluvial imprint from the southern to the central
Kara Sea.
2.
 The season of ice break up in May/June is
characterised by an early bloom of ice-associated
algae in the polynya area of the southern Kara
Sea. This bloom does not produce increased
fluxes but fresh organic matter that may be
important to sustain the life cycles of organisms
after a period of light limitation. In the central
Kara Sea settling particles caught during ice
break up are of degraded marine nature and are
dominated by material released during ice melt.
3.
 The season of main river discharge in June to
August is characterised by low material fluxes in
the southern Kara Sea that are of terrestrial
origin.
4.
 Peak fluxes occur during the ice-free season in
September/October and organic matter is of
mixed terrestrial and planktonic origin.
5.
 High fluxes occur during the ice covered season
in all traps and show that the riverine material
supplied earlier can settle only as current speeds
in surface waters decrease. Microscopic and
biogeochemical evidence show that zooplankton
reproduce in early winter. Moreover, resuspen-
sion, lateral transport and resedimentation de-
termine sedimentation processes during the ice
covered season.
6.
 Despite the possible methodological biases of
sediment traps in shallow water and the different
time scales of sediment trapping and surface
sediment accumulation, total annual fluxes in
traps are in the same order of magnitude as
accumulation rates in surface sediments and have
a similar composition.
7.
 Terrestrial organic carbon accumulation rates in
sediments decrease by a factor of 30 from the
southern to the central Kara Sea while the
contribution of terrestrial to total organic carbon
in traps and sediments decreases from 480%
to 40%.
8.
 Marine organic carbon preservation in surface
sediments is reduced from 10% of primary
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production in the estuaries to 2% in the central
Kara Sea which is probably related to decreasing
rates of sedimentation.
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K., Fütterer, D.K., Galimov, E., Stepanets, O. (Eds.), Siberian

River Run-off in the Kara Sea: Characterisation, Quantifica-

tion, Variability, and Environmental Significance. Proceedings

in Marine Science. Elsevier, Amsterdam, pp. 27–46.

Hecky, R.E., Mopper, K., Kilham, P., Degens, E.T., 1973. The

amino acid composition of diatom cell-walls. Marine Biology

19, 1999–2033.

Hirche, H.J., Kosobokova, K.N., Gaye-Haake, B., Harms, I.,
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sity Germany, Masters Thesis, pp. 137.

Unger, D., Gaye-Haake, B., Gebhardt, A.C., Ittekkot, V., 2005.

Biogeochemistry of suspended and sedimentary material from

the Ob and Yenisei rivers and the adjacent Kara Sea: amino

acids and amino sugars. Continental Shelf Research 25,

437–460.

Vedernikov, V.I., Demidov, A.B., Sud’bin, A.I., 1995. Primary

production and chlorophyll in the Kara Sea in September

1993. Oceanology (English Translation) 34 (5), 630–639.

Vinogradov, M.E., Vedernikov, V.I., Romankevich, E.A.,

Vetrov, A.A., 2000. Components of the carbon cycle in the

Russian Arctic seas: primary production and flux of Corg from

the photic layer. Oceanology (English Translation) 40 (2),

204–215.

Volkmann, J.K., 1984. A review of sterol markers for marine and

terrigenous organic matter. Organic Geochemistry 9, 83–99.

Wassmann, P., Bauernfeind, E., Fortier, M., Fukuchi, M.,

Hargrave, B., Moran, B., Noji, T., Nöthig, E.-M., Olli, K.,
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