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Abstract 
 
In polar regions huge layers of frozen ground are formed - termed permafrost - which 
covers more than 25 % of the land mass and significant parts of the coastal sea 
shelfs. Permafrost habitats are controlled by extreme climate and terrain conditions. 
Particularly, the seasonal freezing and thawing in the upper active layer of permafrost 
leads to distinct gradients in temperature and geochemistry. Due to the harsh living 
conditions, microorganisms in permafrost environments have to survive extremely 
cold temperatures, freeze-thaw cycles, desiccation and starvation under long-lasting 
background radiation over geological time scales. Although, permafrost 
microorganisms remains relatively unexplored, recent findings show that microbial 
communities in this extreme environment are composed by members of all three 
domains of life (Archaea, Bacteria, Eukarya), with a total biomass comparable to 
temperate soil ecosystems. This chapter describes the environmental conditions of 
permafrost and reviews recent studies on microbial processes and diversity in 
permafrost affected soils as well as the role and significance of microbial 
communities on the global biogeochemical cycles. 
 
 
7.1 Introduction 
 

The Arctic plays a key role in Earth’s climate system as global warming is predicted 

to be most pronounced at high latitudes and because one third of the global carbon 

pool is stored in ecosystems of the northern latitudes. Global warming will have 

important implications for the functional diversity of microbial communities in these 

systems. It is likely that temperature increases in high latitudes may stimulate 

microbial activity and carbon decomposition in Arctic environments and are 

accelerating climate change through the increase of trace gas release (Melillo et al. 

2002, Zimov et al. 2006, see Chap. 8 of this issue). 

In polar regions huge layers of frozen ground are formed – termed permafrost 

– which covers more than 25 % of the land mass (Zhang et al. 1999) and significant 

parts of the coastal sea shelfs (Romanovskii et al. 2005, Fig. 7.1). Permafrost can 

extend hundreds of meters to more than 1000 m into the subsurface (Williams and 

Smith 1989). This environment is controlled by extreme climate and terrain 

conditions. Particularly, the seasonal freezing and thawing leads to distinct gradients 
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in temperature and geochemistry in the upper active layer of permafrost. As it was 

thought that these conditions were hostile for life, permafrost was considered as 

uninhabitable also for microorganisms. However, from recent findings we know that 

microbial communities in permafrost environments are composed by members of all 

three domains of life (Archaea, Bacteria and Eukarya), with a total biomass 

comparable to temperate soil ecosystems (Wagner et al. 2005).  

 

 

 

Figure 7.1: Terrestrial and submarine permafrost distribution in the northern 

hemisphere (International Permafrost Association Standing Committee on Data 

Information and Communication 2003). 

 

The permafrost microbial communities have to overcome the combined action of 

extremely cold temperature, freeze-thawing cycles, desiccation and starvation 

(Gilichinsky and Wagener 1994, Morozova and Wagner 2007). Recent studies 

indicated that microorganisms do not only survive under permafrost conditions, but 

can be also metabolic active (Rivkina et al. 2004, Wagner et al. 2007). Allthough, 

modern molecular-ecological studies of diversity and community structure in 

permafrost environments are still rare (e.g. Rivkina et al. 2000, Wartiainen et al. 

2003, Colwell et al. 1999, Vishnivetskaya et al. 2006, Ganzert et al. 2007, Steven et 

al. 2007), a diverse range of microorganisms have been discovered in the different 

ecosystems (Shi et al. 1997, Kobabe et al. 2004, Wagner et al. 2005). Although 

microbial metabolism has been rather well studied in temperate environments, little is 

known about the role of microbial diversity for the functioning and stability of the 

Arctic ecosystem, about the carbon dynamics controlled by microorganisms and 



 3 

about the reaction of these microorganisms to changing environmental conditions in 

high latitudes.  

Apart from the global relevance of permafrost as a large carbon reservoir, this 

extreme environment is also of particular interest in the scope of astrobiological 

research as an analogue for extraterrestrial permafrost habitats, which is a common 

phenomenon in our solar system. Since the current ESA mission Mars Express 

determined for the first time methane in the Martian atmosphere (Formisano 2004), 

recent studies focused on methanogenic archaea from permafrost environments as 

potential candidates for life on Mars (Wagner et al. 2001, Morozova et al. 2007, see 

Chap. 10 of this issue). 

This review describes the environmental conditions of permafrost, the 

microbial communities, their function (so far it is known) and their role and 

significance in the biogeochemical cycles. 

 

 

7.2 The Permafrost Environment 

 

Permafrost is defined as the thermal condition, in which soils, sediments and rocks 

remain at or below 0 °C for two or more years in succession (van Everdingen 2005). 

Arctic permafrost regions are characterized by low mean annual air temperatures, a 

low mean annual precipitation (Table 7.1) and poor to missing vegetation. During the 

relatively short period of arctic summer only the surface zone (few decimeter) of 

permafrost sediments thaws, called the active layer. Active layer depths ranged from 

a few centimeters in the high Arctic to more than 2 m in subarctic regions. Permafrost 

can be cemented by ice, which is typical for Arctic regions, or, in the case of 

insufficient interstitial water, may be dry like the Antarctic polar deserts or rocky 

areas. 

The permafrost environment can be divided into three temperature-depth 

layers, characterized by different living conditions. The active layer with an extreme 

temperature regime from about +15 to -35°C depending on air temperature 

fluctuations; the upper, perennially frozen permafrost sediments (10-20m thickness) 

with smaller seasonal temperature variation of about 0 to –15°C above the zero 

annual amplitude; and the deeper permafrost sediments, which are characterized by 

a stable temperature regime of about -5 to -10°C (French 1996). The boundary 

between the active layer and the perennially frozen ground is called permafrost table, 

which acts as a physical and chemical barrier. Intensive physico-chemical processes 

under extreme conditions take place in the active layer and upper permafrost 

sediments (Ostroumov 2004). The deeper permafrost layers are characterized by 

living conditions which have been stable for long periods of time and where microbial 

processes are limited (French 1996).  
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Amongst the specific stratigraphy of permafrost, this environment is 

characterized by patterned ground formation and by different cryogenic structures 

such as ice wedges, taliks and cryopegs (Fig. 7.2), which are defined by their thermal 

conditions. The large differences between summer and winter temperature in 

permafrost environments for instance leads to the formation of typical patterned 

grounds (e.g. sorted circle and high- and low-centered polygons) with a prominent 

mircrorelief (Fig. 7.3 a-c). The development of these structures is often related to the 

processes of ground ice formation. The term ground ice describes all types of ice in 

permafrost deposits, ranging from poor ice crystals to massive horizontal layers of ice 

with a thickness of several decameter.  

 

Table 7.1: Climate data for selected localities in circum-arctic permafrost 

environments 

Locality Coordinates Mean annual 
temperature 

[°C] 

Minimum/ 
maximum 

temperature 
[°C] 

Total 
precipitation 

[mm] 

Reference 

Green 
Harbour, 
Spitzbergen 

78°N, 15°E -8 -19…+6 370 French, 1996 

Severnay 
Zemlya, 
Krasnoyarsk 

79°N, 91°E -14 -45…+6 97 Orvig, 1970 

Lena Delta, 
Yakutsk 

73°N, 126°E -15 -48…+18 320 ROSHYDROMET, 
2004 

Lake 
Elgygytgyn, 
Chukotka 

67°N, 172°E -10 -40…+26 178 Nolan & Brigham-
Grette, 2007 

Dawson City, 
Canada 

64°N, 139°W -5 -31…+14 343 French, 1996 

Sachs 
Harbour, 
Canada 

71°N, 125°W -14 -29…+5 93 French, 1996 

 

Ice wedges occurred typically in tundra environments with polygonal patterned 

grounds. In the cold winter season thermal contraction cracks form polygonal nets. 

These cracks have been filled with snow melt water at the beginning of spring. 

Repeated cracking, filling with water and freezing can produce low-centred polygonal 

microrelief with ice wedges of several meters in width and two to three decameters in 

depth over geological times of ten thousand years (Fig. 7.3 e, Washburn 1978). 

Pleistocene ice-rich erosional remains of such a polygonal landscape is called ice 

complex (Yedoma; Fig. 7.3 f). An unfrozen sediment layer or body in the perennially 

frozen ground, mostly below water bodies, is called talik, which occurred due to local 

anomalies in thermal, hydrological, hydrogeological, or hydrochemical conditions 

(van Everdingen 2005). Cryopegs (overcooled water brine lenses) are defined as a 

layer of unfrozen ground that is perennially cryotic, forming part of the permafrost 

(van Everdingen 2005). Freezing of cryopegs is prevented by freezing-point 
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depression due to the high salt content of the pore water (140-300 g l-1, Gilichinsky et 

al. 2005). 

 

 

 

 

Figure 7.2: Block diagram of an Arctic permafrost environment showing the different 

landscape units (glacier, tundra, coast and sea) with the potential cryogenic features 

(ice complexes and wedges, massive ground ice, taliks, cryopegs), differentiated by 

their thermal regime. 

 

It is well-known for some time that the shallow shelfs of the Arctic coastal seas are 

underlined by submarine permafrost (Fig. 7.1 and 7.2), which was formed during the 

Holocene sea level rise by flooding of the formerly terrestrial permafrost 

(Romanovskii et al. 2005). The flooding of the cold terrestrial permafrost (-5 to -15°C) 

with relatively warm saline sea water (-0.5 to -2°C) changed the system profoundly 

and resulted in a warming of the permafrost (Overduin 2007). 

 

Permafrost soils (cryosols) have been developed in the upper zone of the 

cryolithosphere (active layer and upper permafrost sediments) where the temperature 

ranges from -50 C to +30 C (Yershov 1998). Therefore, permafrost soils are mainly 

formed by cryopedogenesis, which include freezing and thawing, frost stirring, 

mounding, fissuring and solifluction. The repeating cycles of freezing and thawing 

leads to cryoturbation features (frost churning) that includes irregular, broken or 
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involutedly horizons (Fig. 7.3 d) and an enrichment of organic matter and other 

inorganic compounds, especially along the top of the permafrost table (Van Vliet-

Lanoë 1991, Bockheim et al. 1999). As a result of cryopedogenesis many permafrost 

soils are influenced by a strong micro-relief causes small-scale variations in soil types 

(Fig. 7.3 d and g) and vegetation characteristics as well as in the microclimatic 

conditions of the habitats. This affects the abundance, processes and diversity of 

microbial communities in permafrost environments. Table 7.2 summarizes the 

physiochemical properties exemplarily for permafrost soils of the dry rim part of a 

low-centered polygon from the Lena Delta, Siberia.  

 

Table 7.2: Selected physiochemical properties of a permafrost soil (Glacic 

Aquiturbel) of the Lena Delta, northeast Siberia (modified according to Wagner et al. 

2005) 

Horizon Depth 

[cm] 

T 

[°C] 

pH TOC 

[%] 

TN 

[%] 

DOC 

[mg l
-1

] 

CH4 

µmol g
-1

] 

Sand 

[%] 

Silt 

[%] 

Clay 

[%] 

Ajj 0-5 6.4 n.d. 2.1 0.12 7.3 0.4 85.7 10.4 3.9 

Bjjg1 5-12 5.0 n.d. 2.0 0.11 7.1 0.3 74.3 20.6 5.0 

Bjjg2 12-20 4.0 n.d. 2.4 0.14 9.0 35.3 68.0 25.8 6.3 

 20-27 3.4 7.9 3.0 0.09 7.3 65.8 63.7 30.3 6.0 

 27-35 2.4 6.7 2.4 0.07 4.0 153.5 56.5 34.5 9.1 

Bjjg3 35-42 1.7 6.8 2.7 0.15 8.7 224.7 59.3 34.0 6.7 

 42-49 1.0 n.d. 3.3 0.18 17.3 478.7 43.7 43.8 12.5 

Horizon nomenclature according to Soil Survey Staff (1998); T = temperature; TOC = total organic 

carbon; TN = total nitrogen; DOC = dissolved organic carbon 

 

The seasonal variation of soil temperature also influences the availability of 

pore water. The presence of unfrozen water is an essential bio-physical requirement 

for the survival of microorganisms in permafrost. Temperatures below zero stand for 

an increasing loss of free water. At the same time, freezing of water leads to an 

increase of salt content in the remaining pore solution. However, in clayey permafrost 

soils liquid water was found at temperatures up to -60°C (Ananyan 1970). The most 

important biological feature of this water is the possible transfer of ions and nutrients 

(Ostroumov and Siegert 1996). 

Permafrost ecosystems are therefore extremely heterogeneous in nature, 

depending on the regional climatic conditions, which provide harsh and strongly 

fluctuating conditions to their inhabitants. In these habitats, the extraordinarily high 

content of solid components randomly intermixed with gaseous and liquid 

components hampers the movement of microorganisms, the mixing of substrates and 

physical interaction with other organisms. This stimulates the formation of spatially 

separated microcolonies, which are subject to location-based adaptation and micro-

evolutionary processes. 
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Figure 7.3: Patterned grounds, cryogenic structures and permafrost soils of Arctic 

polar regions: a. sorted nets, Dawson City, Canada (photo E.-M. Pfeiffer, University 

of Hamburg); b. sorted circle, Spitsbergen (photo J. Boike, AWI); c. low-centered 

polygons, Lena Delta, Siberia (photo D. Wagner, AWI); d. permafrost soil (Glacic 

Aquiturbel) of the polygon rim, Lena Delta, Siberia (photo L. Kutzbach, University of 

Greifswald); g. permafrost soils (Ruptic-Histic Aquiturbel) of an ice complex area, 

Lena Delta, Siberia (photo D. Wagner, AWI); e. ice-wedge, Lena Delta, Siberia 

(photo D. Wagner, AWI) and f. ice complex, Lena Delta, Siberia (photo V. Rachold, 

IASC).  
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7.3 Permafrost Microbiota 

 

The first report on viable microorganisms in permafrost was given in 1911 by 

Omelyansky. This pioneering investigation was followed by a number of studies 

revealed significant cell counts and various types of microorganisms, including 

bacteria, yeasts, fungi and protozoa, within the soils of the active layer and the 

perennially frozen ground (Kris 1940, James and Southerland 1942, Boyd 1958, 

Boyd and Boyd 1964). Since that time, a number of investigations on microbial 

abundance and physiology within different circum-arctic environments had been 

undertaken (e.g. Zvyagintsev et al. 1985, Khlebnikova et al. 1990, Rivkina et al. 

2000, Kobabe et al. 2004, Gilichinsky et al. 2005, Zak and Kling 2006, Liebner and 

Wagner 2007).  

With classical isolation strategies microorganisms from the most important 

physiological groups could be identified including aerobic and anaerobic 

heterotrophs, methane oxidizers, nitrifying and nitrogen fixing bacteria, sulfate and 

iron reducers, acetogens and methanogens. The dominant microbial genera are 

Acetobacterium, Acinetobacter, Arthrobacter, Bacillus, Cellulomonas, 

Flavobacterium, Methanosarcina, Methylobacter, Micrococcus, Nitrobacter, 

Nitrosomonas, Pseudomonas, Rhodococcus, and Streptomyces (e.g. Gilichinsky et 

al. 1995, Kotsyurbenko et al. 1995, Omelchenko et al. 1996, Shi et al. 1997, 

Simankova et al. 2000, Suzuki et al. 2001, Wartiainen et al. 2006a). Total microbial 

counts obtained for permafrost soils gave high numbers of microorganisms in the 

range from 108 to 109 cells g-1 soil (Kobabe et al. 2004) and for the perennially frozen 

ground between 103 and 108 cells g-1 sediment (Rivkina et al. 1998). 

However, it is notoriously difficult to obtain a wide diversity of microorganisms 

from environmental samples in culture, especially from low temperature habitats, and 

the biogeochemical roles of Bacteria, Archaea and Fungi have consequently been 

studied using black-box techniques such as epifluorescence direct counts, DNA and 

protein synthesis rates, enzyme activity, and a host of other methods that are 

inherently blind to variations in community composition (e.g. Vorobyova et al. 1997, 

Spirina and Fedorov-Davydov 1998, Bakermans et al. 2003, Šantrůčková et al. 2003, 

Colwell et al. 1999, Liebner and Wagner 2007, Panikov and Sizova 2007). Much of 

what is now known of the diversity of environmental microbial diversity is based on 

distinguishing among different organisms, as represented by their extracted and 

polymerase chain reaction (PCR)-amplified nucleic acids or their lipid composition, 

without actually culturing them or having any direct knowledge of their morphology, 

physiology or ecology. However, modern molecular-ecological studies of diversity 

and community structure in permafrost environments are still rare (e.g. Zhou et al. 

1997, Høj et al. 2005, Neufeld and Mohn 2005, Ganzert et al. 2007, Steven et al. 

2007). 
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Both with the fluorescence in situ hybridization (FISH) and with DNA based 

investigations all relevant groups of microorganisms (α-, β-, γ- and δ-subclasses of 

Proteobacteria, Cytophaga-Flavobacterium cluster, gram-positive Bacteria with low 

and high GC content and Archaea) could be detected with high cell numbers in the 

active layer and in the frozen ground of permafrost (Shi et al. 1997, Zhou et al. 1997, 

Kobabe et al. 2004). Despite all differences in the requirements of the specific 

groups, which influence their abundances in the soils, the total diversity and quantity 

of active cells was strongly related to the content and quality of organic matter 

(Kobabe et al. 2004; Wagner et al., 2005). Nevertheless, in spite of the harsh 

environmental conditions in the deeper horizons of the active layer close to the 

permafrost table, there is evidence for high amount of cells (4 x 107 cells g-1 soil) with 

at least minimal activity (Kobabe et al. 2004). Detailed bacterial 16S rDNA clone 

library analyses of a polygonal tundra from the Lena Delta (northern Siberia) revealed 

a distinct variability of the main phyla (Actinobacteria, Bacteroidetes, Chloroflexi, 

Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria and 

Verrucomicrobia) within the soil of the polygon rim, while the community composition 

in the center soil is more homogenous depending on the small-scale variability of 

environmental conditions (S. Liebner pers. communication). Particularly, the 

communities are dominated by Bacteroidetes, Actinobacteria, Proteobacteria and 

Firmicutes (in the sequence with decreasingly portions) with a distinct shift following 

the vertical temperature profile. Another study carried out in Northeast Siberia 

showed that the α- and δ-subclasses of the Proteobacteria dominated the microbial 

community with a portion of about 50% (Zhou et al. 1997). Microbial community 

analyses of the frozen ground studied on Ellesmere Island, Canada showed a similar 

composition compared with the active layer, but dominating phyla were 

Actinobacteria- and Proteobacteria-related sequences (Steven et al. 2007). The 

archaeal community in this study was composed of 61% Euryarchaeota and 39% 

Crenarchaeota, suggesting the presence of a diverse archaeal population. In ancient 

permafrost sediments from Northeast Siberia the following major groups were found: 

Actinomycetales (Arthrobacter and Microbacteriaceae), Actinobacteria, Bacteroidetes 

(Flavobacterium), Firmicutes (Exiguobacterium and Planomicrobium), α-

Proteobacteria (Sphingomonas) and γ-Proteobacteria (Psychrobacter and 

Xanthomonadaceae; Vishnivetskaya et al. 2006). In all the studies a distinct part of 

the microbial community belonged to so far unclassified microorganisms, which 

indicates the existence of large unknown communities in permafrost environments. 

Thus, the physiology and function of these presumably dominant microorganisms are 

still unknown as well. 

The best investigated microorganisms in permafrost environments are 

methanogenic archaea and methane oxidizing bacteria as the main player in the 

Arctic methane cycle and in consequence of their significance for the global methane 

budget.  
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Figure 7.4: Selected microorganisms (Bacteria, Archaea) isolated from different 

permafrost environments: a. Candidatus Nitrotoga arctica (with courtesy of E. Spieck 

and T. Sanders, University Hamburg); b. Methylobacter tundripaludum (Wartiainen et 

al., 2006a); c. Methanosarcina sp. SMA-21 (D. Wagner and D. Morozova, AWI); d. 

Acetobacterium tundrae (Simankova et al. 2000); e. Clostridium algoriphilum 

(Shcherbakova et al. 2005) and f. Psychrobacter sp. 273-4 (Vishnivetskaya et al. 

2000). 
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The microbial methane production (methanogenesis) is one of the most 

prominent microbiological processes during the anaerobic decomposition of organic 

matter. Methanogenesis is solely driven by a small group of strictly anaerobic 

organisms called methanogenic archaea, which belong to the kingdom 

Euryarchaeota (Garcia et al. 2000).  

The highest cell counts of methanogenic archaea were detected in the active 

layer of permafrost with numbers up to 3 x 108 cells g-1 soil (Kobabe et al. 2004). The 

portion of methanogens of the total cell counts varied from 0.5% to 22.4%. 

Phylogenetic analyses revealed a distinct diversity of methanogens in the active 

layer, with species belonging to the families Methanobacteriaceae, 

Methanomicrobiaceae, Methanosarcinaceae, and Methanosaetaceae (Høj et al. 

2005, Metje and Frenzel 2007, Ganzert et al. 2007). In addition sequences affiliated 

with the euryarchaeotal Rice Cluster II and V (Hales et al. 1996, Grosskopf et al. 

1998, Ramakrishnan et al. 2001) as well as with Group I.3b of the uncultured 

Crenarchaeota (non-methanogenic archaea; Ochsenreiter et al. 2003). There were 

no restrictions of the detected families to specific depths of the soil profiles. 

Environmental sequences from the Laptev Sea coast form four specific permafrost 

clusters (Ganzert et al. 2007). Permafrost Cluster I was recovered mainly from cold 

horizons (< 4 °C) of the active layer and related to Methanosarcinacea. Permafrost 

Clusters II and III related to Methanomicrobiales and Permafrost Cluster IV related to 

Rice Cluster II. It was hypothesized by the authors that the specific permafrost 

clusters are formed by methanogenic archaea characterized by a specific 

physiological potential to survive under harsh environmental conditions. The 

phylogenetic affiliation of recovered sequences indicated a potential of both 

hydrogenotrophic and acetoclastic methanogenesis in permafrost soils.  

Methanosarcina spec. SMA-21 closely related to Methanosarcina mazei was 

recently isolated from a Siberian permafrost soil in the Lena Delta. The organism 

grows well at 28°C and slowly at low temperatures (4°C and 10°C) with H2/CO2 

(80:20, v/v, pressurised 150 kPa) as a substrate. The cells grow as cocci, with a 

diameter of 1-2 µm. Cell aggregates were regularly observed (Fig. 7.4c). 

Methanosarcina SMA-21 is characterized by an extreme tolerance against extreme 

low temperatures (-78.5°C), high salinity, starvation, desiccation and oxygen 

exposure (Morozova and Wagner 2007). Furthermore, this archaeon survived three 

weeks under simulated thermo-physical Martian conditions (Morozova et al. 2007). 

The biological oxidation of methane by methane oxidizing (methanotrophic) 

bacteria, which represent very specialized Proteobacteria, is the only sink for 

methane in permafrost habitats (Trotsenko and Khmelenina 2005). Methanotrophic 

bacteria are common in almost all environments, where they can survive under 

unfavourable living conditions by the formation of spores.  



 12 

Up to 2 x 108 cells of methane oxidizing bacteria g-1 soil were detected by 

fluorescence in situ hybridization in the active layer of permafrost soils (Liebner and 

Wagner 2007). Most horizons of the soils were dominated by type I methanotrophic 

bacteria. Only in samples close to the permafrost table type II were more abundant 

than type I methanotrophs. However, based on phospholipid fatty acid (PLFA) 

concentrations and stable isotope probing the community growing at low in situ 

temperatures was dominated by type I methanotrophs (C. Knoblauch pers. 

communication). This was also confirmed by phylogenetic analyses of 

methanotrophic bacteria in Arctic wetland soils of Svalbard indicated more type I than 

type II methanotrophs. However, the analyses revealed the two genera 

Methylobacter (type I) and Methylosinus (type II) in all studied localities (Wartiainen 

et al. 2003). Phospholipid fatty acid analyses revealed the signature PLFA 

18:1∆cis10 for the two methanotrophic genera Methylosinus and Methylocystis of the 

α-Proteobacteria only in the dryer sites of polygonal tundra. In contrast, the PLFA 

16:1∆cis8 indicative for the genera Methylomonas, Methylomicrobium, 

Methylosarcina and Methylosphaera were detected in all sites of the polygonal tundra 

in the Lena Delta (Wagner et al. 2005). 

Methylobacter psychrophilus isolated from a Siberian tundra soil represent a 

cold-loving methane oxidizing bacteria belong to type I species (Omelchenko et al. 

1996). Recently two new species of methanotrophs were isolated from an Arctic 

wetland soil on Svalbard. Methylobacter tundripaludum (Fig. 7.4b) belong to type I 

species. The gram-negative, rod-shaped, pale-pink pigmented cells can optimal grow 

at 23°C, but grows well down to 10°C (Wartiainen et al. 2006a). Cells of 

Methylocystis rosea are gram-negative, pink-red pigmented, polymorphic rods belong 

to type II species. Organisms can grow between 5 and 37°C with optimal growth at 

27°C (Wartiainen et al. 2006b).  

Recently the biodiversity in cryopegs (100,000-120,000 years old) in Siberian 

permafrost was described (Gilichinsky et al. 2005). Direct microbial cell counts 

revealed numbers in the range of 107 cells ml-1 saline water. A variety of aerobic and 

anaerobic, spore-less and spore-forming, halophilic and psychrophilic bacteria as 

well as mycelial fungi and yeast have been isolated including genera like 

Arthrobacter, Bacillus, Erwinia, Frigoribacterium, Microbacterium, Psychrobacter, 

Paenibacillus, Rhodococcus and Subtercola. Clostridium algoriphilum sp. nov. was 

isolated, which is adapted to low nutrient concentrations (Fig. 7.4e; Shcherbakova et 

al. 2005). The metabolic end product of this anaerobic bacterium is lactate and 

butyrate, which can be used as substrate by heterotrophic Psychrobacter isolates, 

indicating the possibility of a trophic food chain within the microbial communities of 

cryopegs. 

There are some further new microorganisms, which were isolated recently 

from different habitats as for example: Acetobacterium tundrae (DSM 9173) was 

isolated from tundra wetlands of Polar Ural (Simankova et al. 2000). The organisms 
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is cold-adapted with an optimum of grows at 20°C (range between 1-30°C). Cells 

were gram-positive, oval shaped, flagellated rods (Fig. 7.4d), which fermented 

H2/CO2, formate, methanol and several sugars to acetate as the sole end product. 

Carnobacterium pleistocenium, a novel psychrotolerant, facultative anaerobe 

bacterium, was isolated from Pleistocene ice from the Fox tunnel in Alaska (Pikuta et 

al. 2005). The organism is characterized by gram-positive, motile, rod-shaped cells, 

which can optimal grow at 24°C (range 0-28°C). Metabolic end products are acetate, 

ethanol and CO2. Exiguobacterium sp. 255-15 is a non-spore forming gram-positive 

bacterium isolated from a 2-3 million-year permafrost core (Vishnivetskaya et al. 

2000). The cells are short rods about 1 µm in length with rounded ends. They are 

facultative anaerobes but grow more profusely aerobically. A novel nitrite oxidizing 

bacterium enriched and provisional classified as “Candidatus Nitrotoga arctica” (Fig. 

7.4a). The organism was cultured at 10°C and is characterized by a fatty acid profile, 

which is different from those of known nitrite oxidizers but similar to fatty acid profiles 

of β-Proteobacteria (Alawi et al. 2007). Psychrobacter sp. 273-4 is a small, non-

motile coccoid rod (Fig. 7.4f) often found in pairs isolated from a 20-40 thousand-

year-old Siberian permafrost core (Vishnivetskaya et al. 2000). The strain is 

characterized by rapid growth at low temperatures and excellent survival after 

exposure to long-term freezing. 

Viable green algae were isolated from Arctic deep sediments frozen for 5-7 

thousand years (Vorobyova et al. 1997). All isolates grew at a low rate at 20-25°C 

and were sensitive to high light intensities. Photosynthetic pigments, chlorophyll a, 

chlorophyll b, and pheophytin were found in a wide range of sediments of different 

genesis and age. 

Both in the active layer and in the perennially frozen sediments a large variety 

of fungi was determined. In the active layer of Arctic tundra tussock and shrub soils 

the fungal community was composed of Ascomycota, Basidiomycota, Zygomycota, 

Chytridiomycota, Glomeromycota and Euryota (Wallenstein et al. 2007). While the 

tussock communities had higher proportions of Ascomycota (Dothideomycetes, 

Pezizomycetes and Sordariomycetes), the shrub soils were dominated by 

Zygomycota (Zygomycetes). Another study performed in Alaska reported the 

dominance of basidiomycetous dimorphic yeasts (Mrakia and Leucosporidium) and 

ascomycetous mycelial fungi Geomyces (Panikov and Sizova 2007). In permafrost 

deposits of up to an age of 400 ky only the major groups Ascomycota, Basidiomycota 

and Zygomycota could be verified (Lydolph et al. 2005).  

The absence of a wide spectrum of cultured organisms suggests that many 

microorganisms from permafrost environments are either unculturable or the 

appropriate methods of enrichment and cultivation have not been attempted. 
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7.4 Role and Significance 

 

Certain key processes of global biogeochemical cycles (e.g. C, N, S) are carried out 

exclusively by highly specialized microorganisms (e.g. methanogenic archaea, 

acetogenic, nitrifying and sulfate-reducing bacteria), which play the quantitatively 

dominant role in mineralization processes (Hedderich and Whitman 2006, Drake et 

al. 2006, Bock and Wagner 2006, Rabus et al. 2006). Although the physiology and 

ecology of many microorganisms from different environments is well studied, little is 

known about the activity and function of many of the phyla and species in permafrost 

habitats described in the previous section.  

The active layer of permafrost is subjected to freezing and thawing cycles 

during the year showing large gradients in temperature and geochemistry along the 

depth profiles of the soils. The extreme temperature regime is one of the most 

important parameter regulating the metabolic activity and survival of microorganisms. 

Several recent studies demonstrated activities of microorganisms from the active 

layer and the perennially frozen ground at sub-zero temperatures. Metabolic activities 

down to -10°C of different microorganisms isolated from Siberian permafrost were 

reported by Bakermans et al. (2003) and Jakosky et al. (2003). The incorporation of 
14C-labeled acetate into bacterial lipids determined in microcosm experiments at 

temperatures between +5°C to -20°C showed activity of the indigenous 

microorganisms (Rivkina et al. 2000). The minimum temperature for growth of 

microorganisms was recently reported with -35°C (Panikov and Sizova 2007). The 

isolated microorganisms were able to grow down to -17°C with rates similar to growth 

above the freezing point. Between -18°C to -35°C growth was only detectable for 

three weeks after cooling. Then metabolic activity declined to zero, and 

microorganisms entered a state of reversible dormancy. Studies on methanogenic 

activity and biomass in a Holocene permafrost core from the Lena Delta (Siberia) 

showed that the methane found in certain depth of the sediments originated from 

modern methanogenesis by cold-adapted methanogenic archaea (Wagner et al. 

2007). These findings are in accordance with the microbial metabolic rates of cold-

adapted microorganisms proposed by Price and Sowers (2004): the first group of 

microorganisms is characterized by a rate sufficient for microbial growth; the second 

group has a rate sufficient for metabolism but too low for growth and the third one 

shows a rate sufficient for survival, in which they can repair macromolecular damage, 

but are probably largely dormant. The reviewed results of microbial metabolism at 

sub-zero temperatures contradict the idea of the ‘community of survivors’ in 

permafrost soils (Gounot 1999, Rothschild and Mancinelli 2001), which are not 

thought to ‘prefer’ their environment but are said to be rather more resistant than 

others that have endured a similar fate. 

Currently most strongly discussed with reference to permafrost ecosystems is 

the question: “What happens to the carbon stored in permafrost in consequence of a 
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climate change?” The relevance of Arctic carbon reservoirs is highlighted by current 

climate models that predict significant changes in temperature and precipitation in the 

northern hemisphere (Kattenberg et al. 1996, Smith et al. 2002). Particularly, the 

degradation of permafrost and the associated release of climate relevant trace gases 

from intensified microbial turnover of organic carbon and from destabilized gas 

hydrates represent a potential environmental hazard.  

The carbon mineralization under anoxic conditions within the predominantly 

wet permafrost soils is mainly performed via methane production, which is the final 

process in a sequence of hydrolysis and fermentation (Schink and Stams 2006). 

Thus, methanogenic archaea are standing in close relationship with other 

microorganisms of the anaerobic food chain (e.g. acetogenic bacteria or clostridia; 

Kotsyurbenko et al. 1993, Stams 1994). In cold environments two main pathways of 

energy-metabolism by methanogens dominate: (i) the reduction of CO2 to CH4 using 

H2 as a reductant (hydrogenotrophic methanogenesis) and (ii) the fermentation of 

acetate to CH4 and CO2 (acetoclastic methanogenesis; Conrad 2005).  

Methanogenic activity was observed at low in situ temperatures with rates up 

to 39 nmol CH4 h
-1 g-1 soil in the active layer of permafrost (Wagner et al. 2003, Høj 

et al. 2005, Metje and Frenzel 2007). The highest activities were measured in some 

extent in the coldest zones of the profiles. Furthermore, it could be shown that the 

methane production is regulated more by the quality of soil organic carbon than by 

the in situ temperature (Wagner et al. 2005, Ganzert et al. 2007). Another important 

factor affecting archaeal communities in permafrost soils is the water regime. Along a 

natural soil moisture gradient, changes in archaeal community composition were 

observed, which suggest that the differences in these communities were responsible 

for the large-scale variations in methane emissions (Høj et al. 2006).  

The microbial methane oxidation in the oxic zones of the active layer has great 

importance for the control of methane releases from permafrost environments. 

Methane oxidizing bacteria are using methane as the sole carbon source, while 

energy is gained by the oxidation of CH4 to CO2 (Hanson and Hanson 1996). The 

methane oxidation rates in permafrost-affected Canadian soils ranged between 58 

and 92% depending on the environmental conditions (Popp et al. 2000). However, 

the methane oxidation activities showed vertical shifts within the optimal temperature 

and within the distribution of type I and type II methanotrophs in Siberian permafrost 

soils (Liebner and Wagner 2007). In the upper active layer, maximum methane 

oxidation potentials were detected at 21°C. Deep active layer zones that are 

constantly exposed to temperatures below 2°C showed a maximum potential for 

methane oxidation at 4°C. This indicates a dominance of psychrophilic 

methanotrophs close to the permafrost table.  

The results demonstrate the close relationship between methane fluxes and 

the fundamental microbiological processes and communities in permafrost soils. The 

microorganisms do not only survive in their extreme habitat but also can be metabolic 
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active under in situ conditions, which shows that the microbial communities are well 

adapted to low temperatures and extreme geochemical gradients. However, they are 

also able to follow an increasing temperature over a wide range. This is in 

accordance with reported results showing that a slight increase of the temperature 

can lead to a substantial increase in methanogenic activity within perennially frozen 

deposits (Wagner et al. 2007). In case of permafrost degradation by thermokarst or 

coastal erosion processes, this would lead to an extensive expansion of the methane 

deposits and fluxes with their subsequent impacts on the total atmospheric methane 

budget.  

The nitrogen turnover is strongly correlated with the carbon cycle but little is 

known about nitrogen fluxes in Arctic ecosystems and the responsible organisms. 

Low temperature and poor substrate quality often limit decomposition and nitrogen 

mineralization in many arctic ecosystems (Jonasson et al. 1993). However, higher 

rates of nitrogen fixation were observed in climate change simulation experiments on 

Ellesmere Island, Canada (Deslippe et al. 2005). Nitrifying bacteria were detected in 

permafrost soils and sediments (Bartosch et al. 2002, Alawi et al. 2007). Even in old 

deep permafrost sediments, nitrifyers can survive long periods of starvation and 

dryness (Soina et al. 1991). Nearly nothing is known about the Arctic source strength 

for the long-life greenhouse gases NO and N2O. Furthermore, the interaction of 

climate relevant processes like microbial methane oxidation is influenced by the 

activity of ammonia oxidizers. The Artic carbon fluxes and turnover times are limited 

by the microbial mediated nitrogen mineralization. 

Sulphur plays a key role in marine biogeochemical cycles, in particular in 

anaerobic sediments of the marine shelf. About 50 % of the carbon mineralization in 

shelf sediments is oxidized via the reduction of sulphate to sulphide by sulphate 

reducing bacteria (Jørgensen 1982). The released sulphide can be oxidized 

chemically or by sulphide oxidizing bacteria in aerobic sediment layers. However, 

coastal erosion and sea level rise created the shallow shelfs of the Arctic Ocean as 

for example those of the Laptev Sea whose bottom is formed by the formerly 

terrestrial permafrost (Rachold et al. 2005, Romanovskii et al. 2005). Flooding of the 

cold (-5 to -15°C) terrestrial permafrost with relatively warm (-0.5 to -2°C) saline, 

sulphur-rich water from the Laptev Sea changed the system profoundly and resulted 

in a warming of the permafrost (Rachold et al. 2007). Studies on the microbial 

diversity and activity in submarine permafrost neither have been conducted by 

cultivation dependent methods nor by cultivation independent molecular approaches. 

Therefore, the significance of microbial mineralization and response to rising 

temperatures in these carbon rich permafrost ecosystem, as well as microbial 

abundance and diversity is totally unknown. 

The permafrost environment forces the adaptation of the microbial 

communities to low temperature conditions with species, which have been untraced 

in temperate ecosystems so far. Therefore, Arctic permafrost environments can be 
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seen as active microbial ecosystems rather than frozen habitats with microbial 

survivors. The evaluation of microbiological data and their correlation with climatic 

and geochemical results represents the basis for the understanding of the role of 

permafrost in the global system, in particular feedback mechanisms related to 

nutrient cycles, biogeochemical processes and greenhouse gas emissions in the 

scope of a warming Earth. 

 

 

7.5 Future Direction of Research 
 

Although one fourth of the Earth land surface and distinct areas of the coastal sea 

shelfs are affected by permafrost the physiology, function and diversity of microbial 

communities in these ecosystems is sparsely investigated so far. This may be 

partially caused by the accessibility of the investigation areas and the associated 

logistic problems. However, the larger problem seems to be the development of novel 

methodologies specific for permafrost sampling and isolation of cold-adapted 

microorganisms from Arctic soils and sediments. This is shown in the discrepancy 

between the small numbers of psychrophilic microorganism isolated so far from 

permafrost environments in contrast to the observed significant metabolic rates under 

in situ conditions. Methodical developments should consider the following aspects: 

enrichment of microorganisms should be performed directly in the field or in batch or 

continuous laboratory culture; culture techniques for the enrichment of ‘syntrophically 

associated’ microorganisms; the need of sub-zero culturing methods; and state-of-

the-art culture-independent molecular techniques for diversity and functional 

analyses of microbial communities should be applied on permafrost. 

The lack of isolates from permafrost affects also a possible biotechnological 

use. Cold-adapted microorganisms from permafrost exhibit properties distinctly 

different from other thermal classes. Therefore, the vast genetic resources of 

microorganisms from permafrost environments are nearly unexploited. It is likely that 

mainly extremophilic microbes could offer technologically and/or economically 

significant compounds such as enzymes, polysaccharides, osmoprotectors and 

liposomes (Cavicchioli et al., 2002). Therefore, by exploring microbial diversity in cold 

regions, one future goal will be to get new isolates in hand, which might be important 

for biotechnology processes or medicine.  

Apart from the global relevance of permafrost as a large carbon reservoir, this 

extreme environment is also of particular interest in the scope of astrobiological 

research as an analogue for extraterrestrial permafrost habitats, which is a common 

phenomenon in our solar system (Gilichinsky 2001, Wagner et al. 2001). Particularly, 

the observation of methane in the Martian atmosphere by the current mission of the 

European Space Agency (ESA, Formisano 2004) Mars Express has stimulated the 

debate over possible microbial life on Mars. Currently, it was shown that 
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methanogenic archaea isolated from Siberian permafrost environments are more 

tolerant against environmental stress and simulated thermo-physical Martian 

conditions than methanogens from temperate ecosystems (Morozova and Wagner 

2007, Morozova et al. 2007). To obtain a proper understanding of potential microbial 

life in extraterrestrial permafrost ecosystems microorganisms from terrestrial 

permafrost are considered as model organisms to study the survival under extreme 

living conditions and the molecular mechanisms of permafrost extremophiles. 
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