

The Analysis of Algal Toxins Using Various Scan Modes in LC/MS/MS

Toxic Algal Blooms

Distribution of Paralytic Shellfish Poisoning events

Causative Organisms

Causative Organisms

2. Berliner LC/MS/MS Symposium, 17. April

AVVI

2. Berliner LC/MS/MS Symposium, 17. April

List of Yessotoxin Pseudo-molecular and Fragment Masses (abridgement)

Entry	$M_{\rm wt}$	R	$[M - H]^-$	MS ²	MS ³ (see Fig. 5)	$[M - 2H]^{2-}$	Relative intensity ^a	MS ²	MS ³	Structure1	
1	956°	3.2	955	875	831 , 795	477.3	++	-	-		
2	984	3.3	983	903, 869,	-	-	-	-	-		
				653, 599							
3	986	2.2	985	905, 815 ,	797 , 772, 645, 627, 583	439.0	+	-	-		
				771							
4	992	5.2	991	911	868, 799 , 757,	-	-	-	-	17	
~	000		00.1		729, 688, 575					10	
5	992	6.1	991	911	868, 657	-	-	-	-	18	
6	992	7.1	991	911	827	-	-	-	-	19	T I () (
7	1008	3.2	1007	927	919, 912, 855, 759	-	-	-	-		The most abundant
8	1010	3.3	1009	929, 922,	-	-	-	-	-		
0	to to 4		1011	850, 799	897 0.61 807 (0)	606 Q					tragment of all
	1012	2.7	1011	931	887, 851, 807, 696	505.2	+	-	-		
10	1020 1020	4.4	1019	939, 799	939	-	-	-	-		YTXs is the loss of
10	1022	4.1	1021	980, 941, 92	9	-	-	-	-		
12	1026°	2.8	1025	945, 875,	927, 758	512.0	+	-	-		SO from the
12	10.26	2.1	1025	847, 780 045	077 944						
13	1020	2.2	1025	945	927, 804	= 610.2	-	-	-		sulfata aroune
14	1028	3.5	1037	957	939, 677	516.5	++	-	-		sunate groups
15	1038	5.4	1030	950 020	929	510.5	-	-	-		
10	1040	5.4	1059	847 508	921	519.5	Ŧ	-	-		
17	1042	26	1041	961	046 043 017 015 881	520.4	+	_	_		
18	1042	5.2	1047	967	924 907 895 855 713 671	-	_	_	_	6	
19	1048	5.9	1047	967	924, 895, 855, 713, 671, 659	_	_	_	_	7	
20	1048	6.8	1047	967	883	_	-	_	_	8	
21	1062	3.2	1061	981	951	_	_	_	_	U	
22	1062 ^h	6.3	1061	981, 924,	-	_	_	_	_		
				855, 713							
23	1082	3.0	1081	1001	970. 927. 885. 855. 799. 713	_	_	_	_		
24	1082	3.4	1081	1001	983, 957, 927, 869, 855, 713	_	_	-	_		
25	1086	8.8	1085	1005, 868	921, 868, 851, 822, 799,	_	-	_	_	16	
					773, 657						
26	1090	7.5	1089	1009	981, 967, 925, 855, 799, 671	-	-	-	-		
27	1118^{i}	5.7	1117	1037	924, 895, 855, 713	-	-	-	-		
28	1120	4.6	1119	1039	959, 895, 855, 799, 713, 687	559.4	++	-	-		
29	1120 ^j	5.3	1119	1039	1021, 941, 924, 895, 855, 713	559.4	+	-	-		
30	1134	5.8	1133	1053	967, 925, 855, 713	- 1	Miles e	t-al.	(2005)	Harmfu	I Algae 4 : 1075-1091

YTX analogs detected by LC-MS3 analysis of a fractionated extract of Protoceratium reticulatum

2. Berliner LC/MS/MS Symposium, 17. April

AWI

2. Berliner LC/MS/MS Symposium, 17. April

Yessotoxin confirmationtion – MS³

Causative Organisms

Cyanotoxin detection – Precursor Scan

Aim:

Survey method for the qualitative detection of cyanobacterial freahwater toxins

Prerequisites:

All toxins soluble in the same extraction solvent

Characteristic fragment for each toxin group

Toxin group (not single compound!) separation

2. Berliner LC/MS/MS Symposium, 17. April

Period 1: PSP & Anatoxin-a(s)

Period 2: Anatoxins & Cylindrospermopsins

Period 3: Microcystins & Nodularins

characteristic fragment: m/z 135

	experiment 1	experiment 2	experiment 3	experiment 4
scan range (<i>m/z</i>)	400 - 575	400 - 575	900 - 1150	800 - 850
protonated fragment ions [M+H] ⁺ / [M+2H] ²⁺	[M+2H] ²⁺	[M+2H] ²⁺	[M+H] ⁺	[M+H] ⁺
collision energy (eV)	17	35	60	90
declustering potential (V)	46	40	60	175
cyanobacterial toxins: microcystins / nodularins	microcystins	microcystins	microcystins	nodularins
number of Arg residues within the microcystin peptide	1, exceptional 0	2	0	

Lyngbya wollei, Australia

Unknown cyanobacterial sample

Thanks to...

Susann Hiller, Friedrich-Schiller-Universität Jena

Wolfgang Drebing, AWI

...and for your attention!

2. Berliner LC/MS/MS Symposium, 17. April