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General Introduction 

1. General Introduction 

1.1 Harmful Algal Blooms 

Oceans, the origin of life, harbour complex phytoplankton communities, which play an

important role in marine biological ecosystems. Microalgae are the major producers of 

biomass and organic compounds in the oceans because of their photosynthetic activity and

represent the base of the aquatic food chain. Filter feeding bivalve shellfish (oysters, mussels, 

scallops, clams, etc.), the larvae of crustaceans and finfish feed primarily on microalgae

(Hallegraeff 2003). About 5000 species of marine microalgae are known to date (Sournia et

al. 1991) and some 300 species can proliferate in such high numbers that they discolour the 

surface of the sea (Daranas et al. 2001; Hallegraeff 2003) as a so-called bloom (Figure 1).

Figure 1. Bloom of Noctiluca scintillas in October 2002, Leigh, New Zealand (photo: Miriam

Godfrey)

This is regarded as a sudden increase in the microalgal population activated by suitable 

growth conditions so that concentrations of 104–105 cells per litre can be reached for a certain

period of time (Masó and Garces 2006). A bloom can be dominated by a particular species or 

a group of species (Masó and Garces 2006). The initiation of a bloom requires an inoculum of 

cells, which can be from several sources and may involve different life stages, e.g., cysts 

(Steidinger and Garcés 2006), as well as favourable environmental conditions of temperature,
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light, nutrients and water salinity (Zingone and Enevoldsen 2000; Daranas et al. 2001). 

Termination of a bloom is triggered by inappropriate environmental conditions, such as 

nutrient-deplete water, zooplankton predation or advection (Steidinger and Garcés 2006). 

Also viral termination of algal blooms of Heterosigma akashiwo, Emiliana huxleyi and

Phaeocystis globosa have been observed (Bratbak et al. 1996; Brussaard et al. 2005).

Complex life cycles are described for numerous phytoplankton species and alternation 

between dormant, benthic stage and a motile, vegetative existence can take place. Dormant

cysts or resting spores can be formed from many marine phytoplankton species during their 

life history and may play a an important role in bloom initiation (Zingone and Enevoldsen

2000). Most toxic or harmful species, dinoflagellates and diatoms, reproduce by asexual, 

binary division; however, sexuality can be induced under certain conditions. Morphological 

and physiologically distinct cell types (gametes, zygotes and cysts) are formed during the life 

cycle of most algae (Anderson et al. 2003). Blooms of dinoflagellates are annual events; the 

first increase of populations is usually documented in the spring. Sexual reproduction often 

occurs following the main period of vegetative growth and can last from a few hours several 

days. The resulting zygote is usually a resting stage or cyst. Cyst production is also assumed

to be seasonal, because different dinoflagellate species become abundant at different times

during the year. Some species attain their maximum abundance within the phytoplankton 

during the season spring and, therefore, form cysts in the late spring to early summer (e.g., 

Protoperidinium oblongum). Other species (e.g., Alexandrium tamarense, Protoceratium

reticulatum) may exhibit two annual peaks in abundance and hence two peaks of encystment

(Harland et al. 2004). Diatoms reproduce by asexual division until cell size reaches a 

minimum threshold level, usually below 30%–40% of the dimensions of the maximum cell 

size (Amato et al. 2005). This initiates sexual reproduction, which can be associated with 

increased photoperiod length (Steidinger and Garcés 2006). Life cycle investigations of

diatoms have shown, that, within a population, sexual reproduction is a nearly synchronous 

event which occurs within a restricted size window, with a periodicity varying from 2 to 40 

years (Mann 1988; Amato et al. 2005). Thick-walled resting cysts are occasionally formed

from diatoms mainly towards the end of a bloom. They settle to the bottom or accumulate at 

pycnoclines (Anderson et al. 2003; Steidinger and Garcés 2006). Some dinoflagellate cysts 

can remain viable in the sediments for several years, ready to germinate when conditions 

permit (Zingone and Enevoldsen 2000; Daranas et al. 2001; Anderson et al. 2003).
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In most cases, the proliferation of microalgae is a normal event and can be beneficial for 

aquaculture and fisheries operations. However if the bloom consists of harmful algae, it can 

also have a negative effect and cause severe economic losses to aquaculture, fisheries and 

tourism (Hallegraeff 2003). Three different types of HABs have been delineated by 

Hallegraeff (2003). The first type represents species that produce basically harmless

discolorations of the water, but which can, under exceptional conditions, such as sheltered 

bays, form dense blooms that cause indiscriminate kills of fish and invertebrates through 

oxygen depletion (e.g., Noctiluca scintillans). Species that produce potent toxins form the 

second type are e.g., species of the genera Alexandrium, Dinophysis or Pseudo-nitzschia.

Their toxins can find their way through the food chain to humans and cause a variety of 

gastrointestinal and neurological illnesses. The third type is presented by species that are non-

toxic to humans but harmful to fish and invertebrates by damaging or clogging the gills or gill 

tissue (e.g., Prymnesium parvum, Chrysochromulina polylepsis) (Hallegraeff 2003). The 

impact of HABs is defined by the concentration of harmful species, even the most toxic 

species must occur with a minimum cell concentration to exert a harmful effect (Zingone and 

Enevoldsen 2000). About 200 noxious microalgal species and 97 toxic species (mainly

dinoflagellates) are known to have the potential to form HABs (Zingone and Enevoldsen 

2000; Moestrup 2004), a term introduced for the first time in 1974 at the 1st International

conference of blooms of toxic dinoflagellates (Masó and Garces 2006). Harmful algae can be 

observed not only in a single class or in a few genera, but also can be found among six 

taxonomic groups (diatoms, dinoflagellates, haptophytes, raphidophytes, cyanophytes and 

pelagophytes) (Zingone and Enevoldsen 2000).

HABs are natural phenomena that have occurred throughout recorded history. However, in 

the past decades, the public health and economic impacts appear to have increased in

frequency, intensity and geographic distribution (Daranas et al. 2001; Hallegraeff 2003). A

worldwide increase of HABs cannot be verified because of missing time series data, but,

numerous examples of HABs have been observed in areas where they were previously 

unknown (Zingone and Enevoldsen 2000), maybe through the transport in ballast water.

Paralytic shellfish poisoning (PSP), triggered by blooms of Alexandrium tamarense and A.

catenella, was only observed in the temperate waters of Europe, North America and Japan 

until 1970. By 2000, it was also well documented in the Southern Hemisphere (Hallegraeff 

2003). The apparent increase of HABs can be explained, on one hand, by an increase of 

scientific awareness, reports in the press and electronic media and, on the other hand, by 
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increased aquaculture. This increase of fish and shellfish farming has been observed 

worldwide and consequently, the reports of harmful algae and human illnesses rise.

Additionally some algal blooms appear to be stimulated by eutrophication activated by 

domestic, industrial and agricultural wastes. Also, climatological conditions can have an 

effect on the spatial distribution of a species. The dinoflagellate and PSP-producer 

Pyrodinium bahamense is presently known to be distributed in tropical seas, fossil cysts have 

been found in temperate regions of both hemispheres. Passive introduction of species from 

other areas by transport of cysts in ballast water as well as by currents and storms is

considered as an explanation for extending the geographic range of a species. (Zingone and 

Enevoldsen 2000; Hallegraeff 2003) 

1.1.1 Associated human illnesses

Harmful algae can affect human health in different ways. First, the ingestion of seafood 

contaminated with toxins produced by marine microalgae can cause a number of human

illnesses like paralytic shellfish poisoning described below. Second, environmental exposures

can occur when marine phytoplankton cells are disrupted by waves as they move onshore. 

Reports of skin irritation and respiratory distress have been associated with human exposure 

to water and aerosols containing toxins and cell fragments (Backer et al. 2003). 

Paralytic shellfish poisoning (PSP) – One of the first recorded cases of paralytic shellfish

poisoning was in 1793 when Captain Vancouver and his crew landed in the Pacific Northwest 

of the USA (Nishitani and Chew 1988). Early intoxications of humans have been recorded 

mostly in North America and Europe, but also in Malaysia, the Philippines, Indonesia, 

Venezuela, Guatemala, China and South Africa (Backer et al. 2003). The first isolated 

metabolite was saxitoxin (STX), whose origin was traced to plankton, and two major groups

of toxins, saxitoxin and neosaxitoxin, have been identified. PSP symptoms are neurological 

and their onset is rapid. Neuronal and muscular sodium channels are blocked, which prevents 

propagation of the action potential in nerve axons and skeletal muscle fibres. A tingling or

numbness around the lips is observed within 30 minutes, which gradually spreads to the face 

and neck. A prickly sensation in the fingertips, headache, fever, nausea, vomiting and 

diarrhoea usually follow. PSP is a life-threatening poisoning syndrome and the most severe 

cases result in respiratory arrest within 24 hours of consumption of the toxic shellfish. An 

antidote is non-existent and if supportive respiratory therapy can be carried out, survivors 

recover fully (Daranas et al. 2001). PSP toxins are produced by dinoflagellates of the genera 
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Alexandrium, Gymnodinium and Pyrodinium. 1,600 cases of intoxication were reported 

before 1970. Since that time an additional 900 cases have been diagnosed (Backer et al.

2003).

Diarrhetic shellfish poisoning (DSP) – The first report of DSP originated in 1976 from Japan, 

where it caused major problems in the scallop fisheries. The outbreaks in Japan were 

correlated with the appearance of the dinoflagellate Dinophysis fortii. Shortly after the

outbreaks in Japan Dinophysis species and Prorocentrum lima were found to be responsible 

for DSP incidences in Europe (Hallegraeff 2003). The toxin responsible was named

dinophysistoxin (DTX). The principal toxins responsible for incidents DSP are okadaic acid 

and its analogs, DTX1 and DTX2. Two other toxin groups, pectenotoxin and yessotoxin, are 

also placed in the “DSP” category, because of their co-occurrence with okadaic acid and

DTX. Pectenotoxin (PTX) is named after the scallop genus Patinopecten from which it was 

first isolated and is the main toxin produced by Dinophysis spp.. Yessotoxins (YTX) are 

produced by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum

(Quilliam 2003b). DSP toxins of the okadaic acid group produce gastrointestinal symptoms,

including diarrhoea, nausea, vomiting and abdominal cramps. The symptoms can begin within 

30 minutes after consumption of toxic shellfish and recovery takes place within three days

without any medical treatment. Symptoms can easily be mistaken for those of bacterial gastric 

infections. However, some of the polyether toxins involved may promote stomach tumours

and thus produce chronic problems in shellfish consumers (Daranas et al. 2001). In the 1970s 

and 1980s, altogether some 1,300 DSP cases were reported in Japan and more than 8,000 

cases in Europe. By 2000, the global reports of diarrethic shellfish poisoning had extended to 

Japan, Europe, Chile, Thailand, Canada, Australia and New Zealand (Hallegraeff 2003). 

Amnesic shellfish poisoning (ASP) – The first recognition of this phenomenon was in 1987 

when three victims died and a hundred acute cases occurred after consumption of blue

mussels from Prince Edward Island, Canada (Hallegraeff 2003). Domoic acid belongs to a 

group of amino acids called kainoids, a neuroexcitant, and interferes with the 

neurotransmission mechanisms in the brain. The diatom Pseudo-nitzschia multiseries was 

identified to be causative organism of the incident in Canada (Quilliam 2003a). Victims

reported gastrointestinal symptoms, such as vomiting, abdominal cramps and diarrhoea, 

which usually occurred within 24 hours of the consumption of toxic shellfish. Additionally

neurological symptoms can appear, usually within 48 hours. Dizziness, headache, 
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disorientation, short-term memory loss, respiratory difficulty and coma are also observed

(Daranas et al. 2001; Backer et al. 2003). In 1991, brown pelicans and cormorants of

California were victims of ASP from ingesting anchovies that had accumulated Pseudo-

nitzschia species (Silver 2006). Domoic acid has been also isolated from P. australis, P.

delicatissima, P. multistriata, P. pseudodelicatissima, P. seriata, P. pungens and P. turgidula.

Reports of domoic acid are mainly restricted to North America and Canada, whereas only low 

concentrations have been found in Europe, Australia, Japan and New Zealand. (Hallegraeff 

2003)

1.1.2 Aquaculture and harmful algal blooms 

Because of the decrease in wild fishery catches, shellfish production and mariculture

experience a worldwide expansion, especially in the Asia-Pacific region where seafood 

products are consumed in large amounts. In Europe, Spain, France, Italy, Denmark and the 

Netherlands are the main shellfish producers, with a total production of about one million

tonnes in 1997. Mussel production is of great importance in these areas and the markets for 

fresh and frozen mussels are almost exclusively in Europe (Fernández et al. 2003). In 1998, 

worldwide production of mariculture fish was about 0.7 million tonnes (Rensel and Whyte

2003). Shellfish, such as bivalve molluscs, gastropods, crabs and lobsters, accumulate

phycotoxins by direct filtration of the algal cells or by feeding on contaminated organisms.

Regulation of accumulation of a particular toxin takes place by balancing toxin intake and

loss from and to the environment as well as by the transformation to and from other toxins by 

microbial agents. Toxin accumulation rates as well as the rates of toxin loss by filter-feeding

shellfish from toxic algae are toxin- and species-specific. (Fernández et al. 2003)

Consequently, the duration of market closure depends on these rates. In 1984, the Swedish 

mussel industry was shutdown for almost a year because of DSP toxins (Hallegraeff 2003) 

that resided in the mussels depurated at slow rate (Svensson and Förlin 2004).

Fish killing microalgae have caused high economic losses to aquaculture in the last decades.

One example is the massive bloom of Chrysochromulina polylepsis that occurred in 1988 in 

the Skagerrak, the Kattegat, the Belt and the Sound between Denmark, Norway and Sweden 

and caused the deaths of 900 tonnes of fish, including cod, salmon and trout (Hallegraeff 

2003). Similarly, losses from fish kills amounted to US$95.5 million in Korea and in North

America to US$35 million (Rensel and Whyte 2003). Fish mortality is caused by a variety of 

physiological mechanisms. Gill clogging, irritation or mechanical damage to the gill tissue
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leads to the production of mucus to relieve the abrasion or to clear the blocked filaments. That 

can be followed by blood hypoxia and respiratory dysfunction as the cause of fish death. 

Other reasons for fish death can be toxigenic reactions to ichthyotoxic reagents, blood 

hypoxia from environmental oxygen depletion or gas-bubble trauma from oxygen 

supersaturation (Rensel and Whyte 2003). 

1.2 Monitoring of phytoplankton 

Detection and enumeration of harmful algal species is important for the prevention of 

toxication of humans as well as from an ecological and economic point of view. On a global 

scale, approximately 2,000 cases of human poisoning through fish and shellfish consumption

are reported each year with a mortality of 15 percent (Hallegraeff 2003). HAB monitoring

programmes (e.g. GEOHAB) at the coastlines all around the world aim to prevent 

intoxication of humans and animals through the consumption of contaminated seafood. 

Additionally, the protection of humans from algal toxins delivered via sea spray or direct 

contact is aimed. The damage of living resources, such as shellfish and fish, as well as the

economic losses to fisherman, aquaculturists and the tourist industry should be minimized

(Andersen et al. 2003). Monitoring programmes include, in the majority of cases, the 

surveillance for potential toxic algal species (identification and quantification) and the

monitoring of toxin content in shellfish. In addition, water temperature, salinity, nutrients, 

chlorophyll, water stratification, current circulation and other parameters are also observed for 

bloom prediction. 

1.2.1 Methods

1.2.1.1 Mouse bioassay 

The traditional method for the detection, analysis and control of toxicity in shellfish in 

European monitoring programmes is the mouse bioassay (MBA) (Yasumoto et al. 1978). It is 

currently the reference method under EU legislation (Aune et al. 2007). In this method,

shellfish extracts are injected intra-peritoneal into three mice and the mice are monitored over 

a certain period of time. Should at least two of the mice die within the time frame, the 

shellfish are declared to be unsuitable for human consumption. The maximum permissible

level of okadaic acid, dinophysistoxins and pectenotoxins in shellfish (the whole body or any 

part edible separately) is laid down to 160 µg of okadaic acid equivalents/kg, whereas for 
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yessotoxins this level is 1 mg of YTX equivalents/kg (Decision 2002/225/EC) (Mouratidou et 

al. 2006). For PSP toxins the mouse is only monitored for 60 minutes (Aoac 1999). If the 

mouse is still alive after this time the sample is regarded as negative. The detection limit for

MBA is approximately 300 µg/kg of shellfish flesh and if the regulatory limit for PSP toxins 

of 800 µg/kg shellfish flesh is reached the harvesting area is closed (Holtrop et al. 2006). 

Toxin concentration or toxin type are not quantitatively or qualitatively measured and this

assay is recognised as having poor reproducibility and variability (Flanagan et al. 2001). 

However, the use of animal assays induce ethical problems as even with non-toxic samples

the injection of 1 ml of the acidic extract into the abdomen of a 20 g mouse causes

considerable pain and suffering to the animal (Holtrop et al. 2006). This presents the urgent 

need to replace the mouse bioassay with a more suitable monitoring method.

1.2.1.2 Methods for the detection of toxins 

High-performance liquid chromatography (HPLC) is a widely used technique for the analysis 

of shellfish toxins that provides excellent peak resolution and high sensitivity. A wide range 

of toxin structures can be separated with this instrument (Quilliam 2003b). The preferred

analytical method is the use of HPLC in combination with UV absorbance detection, which 

has been used since 1987 in regulatory laboratories (Quilliam 2003a). Organic extract of 

shellfish tissue and plankton are complex and the toxins have to be extracted using organic 

solvents before analysis with the HPLC. A pre- or post-column alkaline oxidation treatment

of a sample for the detection of PSP toxins is required for the fluoremetric detection (Franco 

and Fernández 1993; Luckas et al. 2003). A pre-column HPLC oxidation method proposed by 

Lawrence and Ménard, (1991) (Lawrence and Ménard 1991) and Lawrence et al. (1996) 

(Lawrence et al. 1996) can produce fast and sensitive results but does not separate all PSP

toxins. The method of Oshima (1995) (Oshima 1995) can separate all PSP toxins, however, it 

is very time-consuming because of the need to perform three separate runs in order to

determine all the toxins (Vale and De M. Sampayo 2001).

The analysis of marine toxins can also be carried out using capillary electrophoresis (CE); it 

provides fast and high-resolution separation (Quilliam 2003b). Separation by electrophoresis 

is based on differences in solute velocity in an electric field. Thibault et al. (1991) described 

the use of CE with UV detection for the separation and determination of PSP toxins. CE is a 

rapid and efficient method that needs only a small volume of sample (Thibault et al. 1991). 

However, a purified sample is required for an effective analysis (Zhao et al. 1997). 
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1.2.1.3 Counting techniques 

Microscope-based methods can identify and quantify microalgae at the species or genus level. 

Compound microscopy is a simple and quick method to estimate cell numbers from a drop of

seawater using counting cells, such as the Sedgewick-Rafter cell. For low cell numbers below 

102-104 cells L-1 the cells have to be concentrated before counting. Another possibility for the

quantification of low cell numbers uses an inverted microscope and Utermöhl sedimentation

chambers to concentrate the algae in a sample (Utermöhl 1958). This method can last from a 

few hours to several days because of the time needed to settle cells in the sedimentation

chamber, which depends on the sample volume, the fixative used and the linear dimension of 

the cells. Low cell numbers can also be counted using quantitative epifluorescence

microscopy by concentrating the cells onto filters and staining. Several stains such as DAPI or 

Acridine Orange, can be used. (Andersen and Throndsen 2003). For the identification of 

unicelluar algae, using microscope-based methods, a broad taxonomic knowledge is required, 

because toxic and non-toxic strains can belong to the same species and thus are 

morphologically identical (e.g., Alexandrium tamarense species complex) (John et al. 2005). 

1.2.1.4 Data buoys and remote sensing using satellites 

Marine data buoys are used to monitor plankton as well as physical, chemical and 

meteorological variables in situ and in real-time. For example, the CytoBuoy (CytoBuoy, 

Bodegraven, Netherlands), can be used to conduct extended and/or high frequency time series 

of phytoplankton distribution and abundance on fixed locations. Several buoys from the 

Seawatch Buoy System are located along the Norwegian coast and forecasting of upstream 

blooms can be facilitated (Smayda 2003). Another new HAB buoy system identifies species 

using a high speed camera for in-flow acquisition (Culverhouse et al. 2006). Recently the 

environmental sampling processor (ESP) was introduced (Doucette et al. 2006). The ESP is 

an electromechanical/fluidic system that collects discrete water samples and concentrates 

microorganisms. An automated application of molecular probes is carried out that identifies

microorganisms and their gene products (Doucette et al. 2006).

Also satellite images are used to achieve understanding of the regional influences of physical 

processes affecting local phytoplankton populations. Sea surface temperature images can aid 

the prediction of transport of noxious phytoplankton. Toxic phytoplankton cannot be 
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identified using remote sensing. However, detection of a monospecific bloom with high cell 

counts at the surface is possible by using species-specific chlorophyll a and ocean-colour 

imagery. For example, for the detection of Karenia brevis about 105 cells L-1 are necessary,

which would result in early warning of fish kills but not shellfish toxicity (Franks and Keafer 

2003).

1.2.1.5 Detection of harmful algae using molecular probes or antibodies 

In the past decade, a variety of molecular methods have been adapted for the detection of 

harmful algae. The first review for the use of molecular probes as tools to aid the 

identification of harmful algal species was presented by Anderson (1995) (Anderson 1995). 

Today molecular probes are widely applied for the identification of micro-organisms. The 

usual targets for probes are the small and the large subunit ribosomal RNA genes, because of

their high target number in the cell. More or less conserved regions in these genes make it 

possible to develop probes that are specific at different taxonomic levels (Groben et al. 2004). 

Fluorescence in situ hybridization (FISH) uses a fluorescently labelled probe that is designed 

to recognize a specific sequence of a particular organism. The probe is hybridized inside the 

intact cells, the ribosomes and cells containing a fluorescently labelled probe can then be

detected using epifluorescence microscopy (Hosoi-Tanabe and Sako 2005). FISH allows the 

rapid detection of different algal groups by epifluorescence microscopy and even the 

separation of closely related and morphologically similar species (Lim et al. 1993; Scholin et 

al. 1996; Scholin et al. 1997; Simon et al. 1997; Simon et al. 2000; Groben et al. 2004; Sako 

et al. 2004; Smit et al. 2004; Töbe et al. 2006). Sandwich hybridization assays (SHA) can also 

provide the possibility to identify and enumerate toxic algae rapidly. SHA relies on extracted

nucleic acids from cell lysates. A capture probe bound to a solid surface immobilizes the 

target ribosomal RNA and forms a hybrid complex with a second signal probe. An antibody-

enzyme complex binds to the signal moiety of the signal probe and reacts with a substrate 

forming a colorimetric product or an electrochemical current (Scholin et al. 1996; Tyrrell et 

al. 2002; Metfies et al. 2005). Just recently, the SHA was validated and accepted for 

international accreditation for commercial laboratory use in New Zealand in May 2004 (Ayers 

et al. 2005). DNA microarrays are used in many applications because of the possibility to 

analyze a large number of up to 250,000 different targets in parallel without a cultivation step 

(Lockhart et al. 1996; Graves 1999; Ye et al. 2001). This technology is also used to 

differentiate microalgae (Metfies and Medlin 2004; Metfies and Medlin 2005b; Ki and Han 
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2006; Godhe et al. 2007). A microarray consists of a glass-slide with special surface 

properties (Niemeyer and Blohm 1999) and is spotted with many copies of nucleic acids in a

specific pattern, e.g., oligonucleotides, cDNAs or PCR-fragments (Graves 1999). The most

common type of probes used in HAB research are antibodies (Scholin et al. 2003). Antibodies

bind to different molecules, such as peptides, glycoproteins and toxins. Many of the 

developed antibodies for HAB species have been tested in laboratory but only a few in field 

studies. Primary as well as secondary antibodies are applied; however, many techniques for 

HAB species identification employ the indirect-labelling method using a fluorescent 

secondary antibody (Mendoza et al. 1995; Cordova and Muller 2002; Scholin et al. 2003; 

West et al. 2006). Detection of harmful species employing the polymerase chain reaction

(PCR) is based on the binding of complementary strands of nucleic acids. Only a fragment of 

the genome is targeted, based on the use of oligonucleotide primers that define the size of the 

fragment as well as the taxonomic specificity of the reaction. PCR requires the extraction of

nucleic acids from the sample, primers and an amplification protocol (Scholin et al. 2003). 

Direct quantitative PCR using fluorescent probes was recently used by Bowers et al. (2000) to

detect Pfiesteria species. In this assay, the detection of amplified target DNA required the 

annealing of fluorescently labelled oligonucleotide probes. The 5’- to-3’ exonuclease activity 

of the taq polymerase cleaves the probe and the quencher dye is released from the emitter dye,

which in turn is then able to fluoresce (Bowers et al. 2000). The relative fluorescence is 

related the number of free fluorescent molecules in solution and the cycle of fluorescence

detection is directly related to the number of target molecules in the initial reaction mixture.

However, sensitivity and specificity of the assays has to be analyzed and the application for

some field samples can be problematic, if sample composition inhibits DNA extraction and 

purification (Scholin et al. 2003).

1.3 Biosensors

Biochemical recognition with signal transduction for the detection of specific molecules is 

combined on electrochemical biosensors. The detection component, such as a probe sequence,

an antibody, an enzyme or other biomolecules, catalyzes a reaction with or specifically binds 

to the target of interest. A transducer component transforms this detection event into a 

measurable signal. A specific detection of targets in a complex sample is possible. Biosensor

types comprise optical, bioluminescent, thermal, mass and electrochemical recognition (Gau 

et al. 2005). Various sectors, such as clinical diagnostic, environmental monitoring, biothreat 

detection and forensics, apply single electrode sensors as well as arrays (Berganza et al. 2006; 
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Lermo et al. 2006; Taylor et al. 2006). Arrays of electrodes enable a simultaneous detection of

multiple species with different molecular probes (Farabullini et al.; Dock et al. 2005).

Biosensors can be used in situ and therefore circumvent the need to return samples into the

laboratory. Rapid identification of aquatic microorganisms as well as physical and chemical

measurements of the environment are important to understand coastal dynamics and processes 

that can impact marine ecosystems, such as the introduction and spreading of microbial

pollutants and the initiation of HABs (Lagier et al. 2005). Metfies et al (2005) introduced a 

biosensor in combination with a hand held device for the detection and identification of the 

toxic dinoflagellate Alexandrium ostenfeldii (Metfies et al. 2005). The biosensor has the 

potential to serve as a quick and easy method for the identification of harmful algae. 

1.4 Aim of thesis

My thesis was assigned to the development and evaluation of fast and reliable monitoring 

methods using molecular technologies. Harmful algal species are responsible for fish and 

shellfish kills and poisoning of consumers through ingesting of contaminated seafood. The 

detection and enumeration of harmful algal species is important from an ecological and

economic point of view. The current monitoring methods are time consuming and require 

trained personnel and expensive equipment. Unicellular algae are taxonomically challenging 

and some of them have only few morphological markers for reliable identification. The aim of 

this thesis was to design and adapt molecular probes for the identification of toxic algae.

Furthermore, the methods developed were adjusted and evaluated to serve as potential early 

warning systems for toxic algae.

1.5 Outline of thesis

1.5.1 Development and adaptation of molecular probes for sandwich hybridization

The species Alexandrium minutum belongs to the most potent PSP-toxin and other toxin 

producers (Taylor and Fukuyo 1998; Chen and Chou 2002; Nascimento et al. 2005). A.

minutum can be observed world-wide and its geographic range as well as its bloom frequency

are increasing (Lilly et al. 2005). Monitoring of toxic algae involves the accurate 

morphological identification and enumeration of species by using standard microscopy

procedures. A. minutum is difficult to distinguish from other species of the same genus

because it is characterized by minute details of its thecal plates (Taylor et al. 1995). The small
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and the large subunit ribosomal RNA genes have more or less conserved regions that make it 

possible to design probes of varying target specificity (Groben et al. 2004). Molecular probes 

have been developed only for a small percentage of the toxic algal species. Sandwich

hybridization methods using species-specific ribosomal RNA (rRNA) probes is a suitable tool 

for the rapid and reliable detection of harmful algae.

In Publication I a commercially available PCR ELISA Dig Detection Kit was adapted for the

detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a 

microtiter plate. For the detection of A. minutum a set of two 18S rRNA probes was 

developed using the ARB software package (Ludwig et al. 2004). The specificity of the 

probes was tested using the microtiter plate assay and also closely related species. An 

additional aim of this study was to investigate the potential of the modified assay for the 

detection of harmful algae without labour-intensive cell number determination. For the 

detection of A. minutum by means of standard calibration curve the total rRNA concentration

per cell had to be determined. The assay and the standard curve were evaluated by using 

spiked water samples.

1.5.2 Design and evaluation of probe sets for toxic algae 

Phytoplankton communities consist of assemblages of co-occurring species and the temporal

and spatial variability in composition in the sea is substantial (Venrick 1999; Figueiras et al. 

2006). The composition of the harmful algae species in different areas of Europe is complex

and several algal genera include toxic species, such as Alexandrium, Dinophysis,

Gymnodinium and Pseudo-nitzschia (Simon et al. 1997; John et al. 2003; Moita et al. 2003; 

Chepurnov et al. 2005). Molecular techniques for the detection of toxic algae require the use 

of probes targeting specific genes of the target species.

In Publication II probe sets for the species-specific identification of the toxic algal species

Gymnodinium catenatum, Protoceratium reticulatum, Lingulodinium polyedrum, Prymnesium 

parvum, Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, P. seriata 

and P. pungens were designed and adapted for the use in sandwich hybridization formats. An 

already existing probe set for the genus Pseudo-nitzschia was adapted. Target species as well 

as closely related species were utilized for the verification of specificity in the microtiter plate 

assay.
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1.5.3 Improvement of detection protocol 

Today biosensors are commonly used in clinical diagnostic, environmental monitoring, 

biothreat detection and forensics. The advantage of biosensors is the possibility to measure

on-site and therefore, sample transport to the laboratory is unnecessary. Biosensors are used

for the rapid identification of aquatic microorganisms. Metfies et al. (2005) introduced a 

biosensor for the identification of the toxic dinoflagellate Alexandrium ostenfeldii for the first

time (Metfies et al. 2005). 

In Publication III a description and illustrative visualization of the method introduced from 

Metfies et al (2005) is presented. The aim of this work was to bring up the method to a 

standard for ease of use through others. For this purpose it was necessary to adapt the method

to sensor chips and a measuring device from another manufacturer. Furthermore, the

equipment needed for a complete sample analysis was identified and modifications of

protocols were presented.

1.5.4 Assessment of probe modification for signal enhancement

Identification of microbial species with probe-based methods requires sensitive and highly 

specific probes. The specificity of the probes depends on the number of sequences of the 

target gene available in databases. Probes designed from a low number of target species or for 

a group, which includes relatively unknown or unculturable species can detect also non-

targeted species (cross-hybridization). Additionally, many non-targeted species exist whose 

sequences have not yet been determined. The frequently revise of probes is necessary because 

new sequences are added to databases on a daily basis. The introduction of locked nucleic 

acid (LNA) probe technology promises an enhancement of both specificity and sensitivity of 

molecular probes (Kongsbak 2002).

Publication IV involved the revision of probes for Alexandrium ostenfeldii and the 

comparison of specificity and sensitivity of conventional molecular probes and LNA modified 

probes. Two different solid phase hybridization methods, sandwich hybridization on 

biosensors and DNA-microarrays, were used for the detection of probe signals. The set of 

18S-rRNA probes for A. ostenfeldii was applied to assess the impact of LNA-probes on the 

specificity of probes with the biosensor, thus, the sequence of the capture probe was
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redesigned with locked nucleic acids. Three different species, A. ostenfeldii, A. minutum and 

A. tamutum, were tested with conventional probes and LNA modified probes. A. minutum

previously showed low cross-hybridization signals (Metfies et al. 2005) and the 18S rRNA 

sequence of A. tamutum possessed only one mismatch to the capture probe. Five probes, that 

target the 18S-rRNA, were evaluated with the DNA-microarray. One of the probes targets the 

super kingdom of Eukarya and the other probes each of these four major phyla of algae: the 

Chlorophyta, Bolidophyta, Prymnesiophyta and Cryptophyta. For each probe, two different 

locked nucleic acid modifications were evaluated. 

1.5.5 Development and evaluation of a biosensor

Monitoring programmes at the world-wide coastlines observe phytoplankton compositions

and especially harmful algal species. The application of the mouse-bioassay is statutory for 

the monitoring of toxin contamination of shellfish, whereas toxin determination is performed

by HPLC. The mouse-bioassay induces ethical problems because of the painful procedure for 

the animals; HPLC, in turn, is a very time-consuming and expensive method. Traditional 

methods, such as light microscopy, are time-consuming when numerous samples consisting of

many species have to be routinely analyzed and require a broad taxonomic knowledge as 

well. Simultaneous detection of multiple species can be accomplished using e.g. DNA-

microarrays with different molecular probes (Metfies and Medlin 2005b). The utilization of 

all described methods requires transportation of samples to specialised laboratories and high 

trained staff. The results are achieved within around five working days and therefore, 

preventive measures are not always possible. A fast identification of aquatic microorganisms

is realized by the use of biosensors. The in situ investigation of coastal water for the presence

of different toxic algae could provide a potential early warning tool for monitoring of bloom 

formation and thus, potential shellfish contamination.

In Publication V, the ability and adaptability of a biosensor for the rapid and reliable in situ

detection of toxic algae was investigated. The aim of this study was the design and evaluation 

of a multiprobe chip and an automated device in order to facilitate the detection of several 

species simultaneously. For the design of the multiprobe chip, different materials for

electrodes and the carrier material were tested to obtain accurate signal formation using

sandwich hybridization and molecular probes. An adaptation of analysis and hybridization 

procedures was necessary for the use of the biosensor by layperson. Furthermore a portable 

device was designed, which performs the analysis in a semi-automated manner.

15



Publication list 

2. Publications

2.1 List of publications 

This doctorial thesis is based on the following publications:

I. SONJA DIERCKS, LINDA K. MEDLIN AND KATJA METFIES

COLORIMETRIC DETECTION OF THE TOXIC DINOFLAGELLATE ALEXANDRIUM

MINUTUM USING SANDWICH HYBRIDIZATION IN A MICROTITER PLATE ASSAY

Harmful Algae, to be submitted

II. SONJA DIERCKS, KATJA METFIES AND LINDA K. MEDLIN

MOLECULAR PROBES FOR THE DETECTION OF TOXIC ALGAE FOR USE IN 

SANDWICH HYBRIDIZATION FORMATS

Journal of Plankton Research, to be submitted

III. SONJA DIERCKS, KATJA METFIES AND LINDA K. MEDLIN

ELECTROCHEMICAL DETECTION OF TOXIC ALGAE WITH A BIOSENSOR

Manual and Guides: Microscopic and molecular methods for quantitative 

phytoplankton analysis, submitted

IV. SONJA DIERCKS AND CHRISTINE GESCHER, KATJA METFIES, LINDA K. MEDLIN

EVALUATION OF LOCKED NUCLEIC ACIDS FOR SIGNAL ENHANCEMENT OF 

OLIGONUCLEOTIDE PROBES FOR MICROALGAE IMMOBILIZED ON SOLID SURFACES

Limnology and Oceanography: Methods, submitted

V. SONJA DIERCKS, KATJA METFIES, STEFFI JÄCKEL AND LINDA K. MEDLIN

DEVELOPMENT AND OPTIMIZATION OF A SEMI AUTOMATED RRNA BIOSENSOR

FOR THE DETECTION OF TOXIC ALGAE

Biosensors and Bioelectronics, to be submitted

16



Publication list 

Other publication prepared with contribution of the candiate from the period of time:

GODHE, A., AND OTHERS (2007) 

INTERCALIBRATION OF CLASSICAL AND MOLECULAR TECHNIQUES FOR 

IDENTIFICATION OF ALEXANDRIUM FUNDYENSE (DINOPHYCEAE) AND ESTIMATION

OF CELL DENSITIES

Harmful Algae, 6: 56-72.

2.2 Statement of my contribution to the publications

Publication I 

The experiments were planned together with K. Metfies and L. K. Medlin. The experiments

were carried out by myself and analyzed by myself. The manuscript was written by myself.

Publication II 

The experiments were planned together with L. K. Medlin and K. Metfies and performed by 

myself. I have analyzed the data and wrote the manuscript.

Publication III 

The experiments were planned together with L. K. Medlin and K. Metfies and performed by 

myself. I wrote the manuscript.

Publication IV 

The experiments were planned together with K. Metfies, L. K. Medlin and C. Gescher and 

carried out from C. Gescher and myself. The manuscript was written equally with C. Gescher.

Publication V 

The experiments were planned together with L. K. Medlin, K. Metfies. S. Jäckel was involved 

in the experiments for the development of the lysis buffer. All other experiments were 

performed and analyzed by myself. I wrote the manuscript.

17



Publication I 

2.3 Publication I:

COLORIMETRIC DETECTION OF THE TOXIC DINOFLAGELLATE ALEXANDRIUM

MINUTUM USING SANDWICH HYBRIDIZATION IN A MICROTITER PLATE ASSAY

SONJA DIERCKS, LINDA K. MEDLIN AND KATJA METFIES

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 

Bremerhaven, Germany

Harmful Algae, to be submitted

Abstract

Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an 

important requirement of monitoring programs. Molecular technologies are rapidly improving 

the detection of phytoplankton and their toxins. Assays are based on the discrimination of

genetic differences within different species. A commercially available PCR ELISA Dig 

Detection Kit was adapted for the detection of the toxic dinoflagellate Alexandrium minutum 

using sandwich hybridization in a microtiter plate. A set of two probes for the species-specific 

identification was developed for A. minutum. The specificity of the probes was successfully

demonstrated with the microtiter plate assay. A standard calibration curve for different RNA 

concentrations and thus cell counts was determined for the assay. Total rRNA was isolated 

from three different strains of A. minutum and the mean concentration of RNA per cell of was

determined to be 0.028 ng. The assay and the standard curve were evaluated by using spiked 

water samples. The results demonstrate that the molecular assay was able to detect A.

minutum cells at different cell counts in the presence of a complex background. The

experiments with spiked natural samples present a proof of principle of this assay. These tests 

also provided the necessary specificity tests prior to the probes being adapted to an automated

biosensor using a sandwich hybridization format (Metfies et al. 2005). 
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Introduction

Over the last decades the occurrence of harmful algal blooms (HABs) has increased. Coastal 

systems around the world have had fish kills, outbreaks of shellfish poisonings, deaths of

marine mammals and loss of quality of coastal waters for recreational use. Phytoplankton

blooms are defined as a sudden increase in the microalgal population initiated by suitable 

conditions for growth, and reach cell concentrations up to 104-105 L-1 (Maso and Garces

2006). Two types of causative organisms are considered harmful: the toxin producers and the 

high-biomass producers. Around 4000 marine planktonic microalgae are described so far. Of 

these, around 97 are toxic species (mainly dinoflagellates) and about 200 can be noxious 

(Zingone and Enevoldsen 2000; Moestrup 2004). These harmful/noxious species belong to six 

algal groups: diatoms, dinoflagellates, haptophytes, raphidophytes, cyanophytes, and 

pelagophytes, which differ greatly in terms of morphological, physiological and ecological 

characteristics (Maso and Garces 2006). Among the dinoflagellates, 23 species are known to 

produce potent toxins, such as saxitoxins. Saxitoxins are responsible for the life-threatening 

paralytic shellfish poisoning (PSP), which can be caused by the consumption of molluscs that 

have filtered toxic dinoflagellates of the genus Alexandrium (Daranas et al. 2001; Chou et al. 

2004) as their food source. The identification of the genus Alexandrium by means of 

morphological characteristics, such as general form, cell size and shape of the apical pore is 

difficult and labour-intensive. The morphological characteristics cannot be used alone for 

Alexandrium species identification because of their similarity to other microalgae, and, in 

addition, intermediate morphological forms (Cembella and Taylor 1985; Hosoi-Tanabe and 

Sako 2005; John et al. 2005). Consequently, an improved monitoring, rapid detection and 

enumeration of toxic algae is crucial. Within the genus Alexandrium, the species Alexandrium

minutum, which has been observed world-wide (Lilly et al. 2005), belongs to the most potent

algal group of PSP-toxin and other toxin producers (Taylor and Fukuyo 1998; Chen and Chou 

2002; Nascimento et al. 2005). The geographic range and bloom frequency of A. minutum is

increasing (Lilly et al. 2005). Monitoring methods based on light microscopy are time-

consuming and costly if a large number of samples need to be processed. For the

identification of some species, highly-trained staff and expensive equipment are needed. 

Molecular techniques, such as whole cell fluorescent in situ hybridization or FISH (Anderson 

et al. 2005; Hosoi-Tanabe and Sako 2005; Kim and Sako 2005), sandwich hybridization 

assays or SHA (Tyrrell et al. 2002; Matweyou et al. 2004; Metfies et al. 2005), PCR-based 

assays (Penna 1999; Guillou et al. 2002) and monoclonal antibody probes (Anderson et al.
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1999) can identify phytoplankton species. The principle of the sandwich hybridization was 

introduced by (Zammatteo et al. 1995; Rautio et al. 2003) and represents a DNA probe-based 

method for rapid identification of micro-algae that uses two species specific oligonucleotide 

probes targeting ribosomal RNA (rRNA) (Ayers et al. 2005), one to capture the target 

molecule and the other to carry the detectable signal (Figure 1). Oligonucleotide DNA probes 

are designed to bind to complementary sequences of the small or the large subunit ribosomal

RNA algal genes and have a length of 18-25 base pairs. The possibility to design probes of 

varying target specificity is possible because of more or less conserved regions of the rRNA 

molecule (Groben et al. 2004). It is necessary that the specificity of probes is extensively

tested, so that false positives are not encountered. The probes must be tested so, that close 

neighbours (clade tests) and probe neighbours (probe tests, target sequence close, but 

phylogenetically unrelated) do not bind to the probe. Such extensive tests require a rapid and 

easy to use format so that the many variations in hybridization conditions and test organisms

can be verified as non-reactive. For FISH probes, the dot blot hybridization with 

chemiluminescent detection provides this vehicle for probe specificity testing prior to FISH

applications (Groben and Medlin 2005). 

In this study a fast and simple method for the detection of Alexandrium minutum is presented, 

whose principle is based on a sandwich hybridization with the capture oligonucleotide probe 

bound to the well of a microtiter plate. The commercially available PCR ELISA Dig 

Detection Kit from Roche Diagnostics (Mannheim, Germany) was adapted to the sandwich 

hybridization assay as a rapid, cost-effective, easy-to-use method that requires minimal

handling. The assay presented here comprises a biotinylated target specific capture probe that 

binds to the streptavidin-coated well of a microtiter plate. Target nucleic acid hybridizes to 

the capture probe and a second digoxigenin-labelled signal probe hybridises to this complex.

The detection and visualisation take place via an anti-digoxigenin peroxidase conjugate and

colorimetric substrate. This method provides an easy to use method to test for probe 

specificity and has potential to be used for routine monitoring of field samples.
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Material and Methods 

Cultures and growth conditions - The algal strains used in this study were cultured under 

sterile conditions in seawater-based K-medium (Keller et al. 1987), IMR-medium (Eppley et 

al. 1967), F2-medium (Guillard and Ryther 1962; Guillard 1975) and Prov (Provasoli et al.

1957; Guillard and Ryther 1962; Guillard 1975) at temperatures listed in Table 1. All cultures 

were exposed to a photon irradiance rate of 150 µEinstein –200 µEinstein provided by white 

lamps at a light:dark cycle of 14:10 h. 

Cell counts of algae cells - Aliquots were taken from the different algae cultures prior to 

harvesting and counted using the Multisizer 3 Coulter Counter (Beckman Coulter GmbH

Diagnostics, Krefeld, Germany).

Isolation of RNA - Total RNA was isolated from all algal cultures with the RNeasy Plant Mini

Kit (Qiagen, Hilden, Germany) and the isolation protocol from Qiagen was modified for 

quality enhancement. Having applied the cell lysate to the QIAshredder spin column, the 

centrifugation time was increased from 2 to 15 minutes to improve separation of supernatant 

from cell debris. The first washing step with buffer RW1 was repeated twice and modified by 

adding an incubation time of one minute on the RNeasy spin column. Furthermore, the first 

wash step with buffer RPE was repeated. A Nanodrop Spectrophotometer (Peqlab, Erlangen,

Germany) was used to measure the RNA concentration.

Fragmentation of RNA - Prior to hybridization, the total rRNA was fragmented in 

fragmentation buffer (40mM Tris, pH 8.0/100mM KOAc/30mM MgOAc) for 5 minutes at 94 

°C and then chilled on ice. 

PCR ELISA (DIG Detection) kit contents and preparation of working solutions - The PCR 

ELISA Dig Detection Kit from Roche Diagnostics (Mannheim, Germany) contains several 

reagents; however, only the hybridization buffer, conjugate dilution buffer, substrate buffer, 

Anti-digoxigenin-POD conjugate (anti-DIG-POD), washing tablets and ABTS tablets were 

used in these experiments for the identification of A. minutum. The microtiter plates are

provided as plate modules (8 wells each), pre-coated with streptavidin and post-coated with

blocking reagent. The kits are stored at 4 °C. Prior to the experiments, the washing solution
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was prepared by dissolving one washing tablet in two litre deionized water. The Anti-DIG-

POD is lyophilised and was dissolved in 250 µL of double distilled water.

Hybridization - The biotinylated capture probe, the digoxigenin-labeled signal probe and the 

positive control were diluted to a concentration of 10 µM prior to hybridization. For the

sandwich hybridization, 4 µL of each probe and different concentrations of rRNA were added 

to the hybridization buffer resulting in a final volume of 250 µL. A negative control was 

prepared containing only both probes and hybridization buffer, whereas the positive control 

included additionally the test DNA (target sequence of the probes). Hybridization solution 

containing the RNA, the negative and positive controls were added into the wells of the 

microtiter plate and incubated on a shaker for 1 hour at 46 °C.

Incubation with antibody - The Anti-DIG-POD working solution (1 volume Anti-DIG-POD 

and 99 volumes conjugate buffer) was prepared at least one hour prior to the incubation step 

and stored in dark to equilibrate to room temperature before use. Subsequent to the

hybridization, the wells of the microtiter plate were washed with washing solution three 

times. 200 µL of antibody solution were added to each well and incubated for 30 minutes at 

37 °C with agitation in the dark. The antibody is directed against the digoxigenin label on the 

signal probe. 

Incubation of substrate solution - Substrate solution was prepared by adding one tablet of 

ABTS to 5 mL of substrate buffer and stored protected from light. The substrate solution was 

allowed to equilibrate to room temperature before use. After the incubation with the Anti-

DIG-POD, the wells were washed again three times with washing solution, 200 µL of 

substrate solution were filled in the wells and incubated in the dark on a shaker at 37 °C for 

30 minutes. The hybrids are detected using an anti-digoxigenin antibody conjugated to 

horseradish peroxidase that reacts with substrate to produce a green colorimetric product. 

Reading of microtiter wells - Each well of the microtiter plate was read out at 405 nm using a 

quartz cuvette with a Varian Cary 4000 UV-Vis Spectrometer (Varian Inc., Darmstadt,

Germany).

Preparation of spiked water samples - A water sample was taken from the estuary of the 

Weser River (German Bight) with a natural phytoplankton population as a matrix. The water 
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sample was pre-filtered over a 180 µm nylon filter (45 mm diameter, Millipore, USA) to 

remove larger particles, such as zooplankton. Sedimentation was allowed over night and 

subsequently the water sample was filtered through a 10 µM polycarbonate filter (45 mm 

diameter, Millipore, Billerica, USA). 500 mL of the supernatant was filtered over a 5 µm

polycarbonate filter (45 mm diameter, Millipore, USA) to collect the remaining matrix and

spiked with three different cells counts of Alexandrium minutum and other algae cells with 

different cells counts (Table 2). The samples were prepared in triplicate. RNA was isolated

from the samples as described above and analyzed with the microtiter plate assay.

Results

Design of oligonucleotide probes - From the probe design option within the ARB software 

package (Ludwig et al. 2004) two probes were designed for the sandwich-hybridization that 

bind to the 18S rRNA of Alexandrium minutum (Table 3) from a database consisting of more 

than 3000 published and unpublished algal 18S rRNA sequences. Two probes were chosen 

next to each other in the target sequence in case the target nucleic acid was degraded and the 

sites were no longer accessible from the same length strand of rRNA. In silico, probe AMINC 

is specific for A. minutum and has at least one mismatch against A. insuetum and two 

mismatches against all other non-target organisms listed in the ARB database. Probe 

AMINCNEXT recognizes not only A. minutum, but also A. ostenfeldii, A. tamutum and A.

insuetum. Furthermore, it only has one mismatch against A. affine, but two mismatches

against all other species. A BLAST search (Altschul et al. 1990) was conducted to test the 

overall specificity of the probes against all available sequences. Positive control and probes 

were synthesized from Thermo Electron Corporation (Ulm, Germany). Thus, from these in-

silico tests, AMINC was defined as capture probe and AMINCNEXT as signal probe. 

Specificity of probes - The specificity of the Alexandrium minutum probes was tested using 

the sandwich-hybridization-assay in a microtiter plate well. Total RNA was isolated from 

different strains of the target species Alexandrium minutum and more distantly related species 

of the genus Alexandrium and Gonyaulax spinifera. The obtained signals were normalised to 

a target concentration of 350 ng RNA and compared to one another. Signals were observed 

for all A. minutum strains, whereas no signals were determined for the non-targeted species 

(Table 4).
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Total RNA concentration per cell - In a range of 10,000 to 500,000 Alexandrium minutum

cells, total RNA was isolated in triplicate from different cell counts of three strains (AL3T, 

AMP4, AL5T) to determine the RNA concentration per cell (Figure 2) at optimum growth 

conditions, because this corresponds most closely to bloom development in the field (Ayers et 

al. 2005). The curves of the different strains show variations in the RNA concentration for the 

different cell numbers. However, all three curves of the different strains show a straight 

proportional development. For each strain, a mean RNA concentration per cell was calculated

from the RNA concentration of the different cell counts. Strains AMP 4, AL3T and AL5T 

contained 0.017 ng, 0.027 ng and 0.036 ng RNA per cell, respectively. The mean

concentration of total RNA per cell for the Alexandrium minutum strains was determined to

be 0.028 ng.

Standard Curves of photometer readings to cell counts - The microtiter plate assay using a 

sandwich-hybridization and specific probes for Alexandrium minutum detected hybridization

signals for different RNA concentrations and thus these values could be converted to cell 

numbers of A. minutum. The photometer readings (Figure 3) for isolated total RNA of three A.

minutum strains showed a linear increase in signals from a mean absorbance of 0.0297 for

10,000 cells to 1.7757 for 500,000 cells. Strain AL5T produced higher probe signals than 

strains AL3T and AMP4; however, average values of the tested strains were observed to be in

the same range as the signals for strain AL3T.

Method application to spiked samples - For method evaluation, a natural water sample was 

taken and spiked with different numbers of cells to simulate real samples as closely as

possible. The photometer readings from the microtiter plate assay and Alexandrium minutum 

probes were compared using a lab culture of A. minutum and field samples spiked with A.

minutum. Signals for 10,000 cells of A. minutum for both samples were slightly above the 

background but still measurable (Figure 4). The spiked sample with 50,000 cells of A.

minutum gave a signal of 0.055, which was fourfold lower than the signal of 0.199 for a lab 

culture at a similar cell concentration. Also the signal for the spiked sample with 100,000 

cells was threefold lower than that for the lab culture. 
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Discussion

In this study, a new method for the detection of the toxic dinoflagellate Alexandrium minutum

is presented. The PCR ELISA Dig Detection Kit (Roche Diagnostics, Mannheim, Germany)

in a microtiter plate was successfully adapted to a sandwich hybridization format using two

differently labelled probes. The capture probe is biotin-labelled and the signal probe is 

digoxigenin-labelled. The probes used in the sandwich hybridization presented here are 

targeted against the 18S-rRNA of A. minutum. Sandwich hybridizations and rRNA targeted 

probes are used in different applications for the detection of microalgae (Scholin et al. 1996; 

Tyrrell et al. 2002; Ayers et al. 2005; O'halloran et al. 2006). 

Probes were designed using the software ARB software package (Ludwig et al. 2004). The 

specificity of the probes for A. minutum was shown using sandwich hybridization in a 

microtiter plate well. The signals for all A. minutum strains were always significantly above 

the signals for the non-target species as predicted by the in-silico tests. Moreover,

Alexandrium species with a single mismatch in the target sequence were not detected with the 

sandwich hybridization even without the use of a competitor to block these non-target species

and prevent the RNA from hybridising with the capture probe. More distantly related species

were not tested with the assay assuming that the species with the fewest number of

mismatches would present the highest possibility of unspecific binding. Distantly related

species have even more mismatches to the probe sequences and probe binding would be 

unlikely. The probes were designed to be in close proximity to one another in the target 18S-

rRNA sequence to avoid a loss of signal if the target RNA molecule was degraded.

To develop a standard calibration curve of the microtiter plate assay for A. minutum, the total

rRNA concentration per cell was determined at optimum growth conditions for three different

strains as this was expected to correspond most closely to bloom development in the field 

(Ayers et al. 2005). A mean concentration of 0.028 ng rRNA per cell was found. The different

strains were not synchronised, consequently a part of the culture could have been in the lag or 

stationary phase. This calculated rRNA concentration per cell of A. minutum also

corresponded  to that obtained for A. fundyense (data not shown) and A. ostenfeldii (Metfies et 

al. 2005). Additionally, similar findings were achieved for different growth conditions for A.

minutum (personal communication L. Carter, Westminster University, London, UK). A 

standard calibration curve for different rRNA concentrations and consequently different cell
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counts of A. minutum strains with the microtiter plate method was calculated. The signal 

increases with higher RNA concentrations and thus with higher cell numbers. The measured

signal for 10,000 A. minutum cells is just above the background and can also be regarded as a 

negative signal. A signal that is clearly distinguishable from the background was observed for 

12,500 cells of A. minutum. A low signal with an absorbance of 0.07 presents either 12,500 

cells of A. minutum or a very high amount at least 500,000 cells of A. ostenfeldii or A.

fundyense with high concentrations of RNA, thus the signal can not be misinterpreted. RNA 

isolation limits the detection method because of high user variability in the ability to isolate 

rRNA from the same number of algal cells and thus resulting in lower RNA concentrations

per cell. Signal intensities of these RNA concentrations would not reflect the correct cell 

numbers. 10,000 cells of A. minutum present the smallest possible number of cells for RNA 

isolation in this study, however, RNA isolation is not limited by cell numbers but rather by 

limitations of the extraction kit. But these cell numbers result in the lowest measurable

concentration; otherwise the standard error is too high. Thus, the detection limit of the 

microtiter plate assay for 12,500 A. minutum cells with an average yield of 0.028 ng RNA per

cell the sampling volume would imply that 50 litres with 250 cells per litre would have to be 

concentrated before a reliable detection value is measured. More work is needed to reduce the

detection limit.

The microtiter plate assay using a sandwich hybridization was evaluated with the analysis of 

spiked samples. Phytoplankton communities often consist of several different species and the 

temporal and spatial variability in composition in the sea is substantial. The experiment with

spiked samples revealed that for 50,000 and 100,000 cells of A. minutum, the signal was 

lower than the signals for the same number of cells of a lab culture. One reason for the lower

signals of the natural sample can be the composition of the sample. Large amounts of natural 

sediment were observed at the sampling location and this sediment seems to disturb the RNA 

isolation. The concentration of total rRNA may be improved by changing the RNA isolation 

protocol. Therefore, future experiments should also include the development of an 

independent system without RNA isolation as described by Tyrrell et al. (2002) and Ayers et 

al. (2005). As a result of the lower signals in the microtiter plate assay for natural samples, the

correlation of signal to cell numbers is limited, only an estimation of cell numbers can be 

done. Hence, samples with high sediment loads are inappropriate for analysis with the 

microtiter plate assay. However, the method presented here using a sandwich hybridization in

a microtiter plate is reliable, and in comparison to other molecular methods, inexpensive, fast 
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and easy to handle. It provides a rapid assay for testing of probe specificity, much in the same

way that dot blots provide the vehicle for testing probe specificity for FISH probes. 

Conclusion

A microtiter plate assay was adapted for the detection of the toxic dinoflagellate Alexandrium

minutum using a sandwich hybridization. The assay has the potential to be a fast and reliable 

method for the detection of toxic algae by eliminating the need to count algae manually. The 

assay takes only two and a half hours to examine up to 30 different samples. The experiments

with spiked natural samples present a proof of principle of this method. Clearly additional 

work is required to improve RNA isolation from natural samples and to optimize the

sensitivity of the method for A. minutum probes. For the routine testing of probe specificity, it 

can provide a rapid assay for assessing probe specificity at both the clade and target sequence 

level.
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Table 1. Culture conditions and geographical origin of algae strains used in this study 

Species Strain Culture
medium Temperature Origin

Alexandrium minutum AL1V K 15 °C Ria de Vigo, Spain, 1987, S. 
Fraga

Alexandrium minutum AMADO6 K 15 °C Australia, South Australia,
Hallegraeff

Alexandrium minutum AMITA K 15 °C Adriatic, Mediteranean Sea 

Alexandrium minutum AMP4 K 15 °C Mediterranean Sea, Spain,
Santiago Fraga

Alexandrium minutum AL1T K 15 °C Gulf of Trieste, Italy, A. 
Beran

Alexandrium minutum AL3T K 15 °C Gulf of Trieste, Italy, A. 
Beran

Alexandrium minutum AL5T K 15 °C Gulf of Trieste, Italy, A. 
Beran

Alexandrium minutum AL8T K 15 °C Gulf of Trieste, Italy, A. 
Beran

Alexandrium minutum AL9T K 15 °C Gulf of Trieste, Italy, A. 
Beran

Alexandrium minutum Nantes K 15 °C Atlantic Ocean, France 
Alexandrium minutum AL 7 V K 15 °C Atlantic Ocean, Spain
Alexandrium minutum PALMIRA1 K 15 °C Mediterranean Sea, Spain

Alexandrium minutum AL 4V K 15 °C Ria de Vigo, Spain, 2000,
S.Fraga

Alexandrium minutum AL 2V K 15 °C Ria de Vigo, Spain, Bravo

Alexandrium insuetum CCMP 2082 Prov 20 °C Uchiumi Bay, Kagawa,
Japan, 1985 S. Yoshimatsu

Alexandrium sp. CS 001 K 15 °C Scotland, M. Grieve

Alexandrium tamutum SZNB029 K 15 °C Gulf of Naples, Italy, M.
Montresor

Alexandrium fundyense CA 28 f2 15 °C Woods Hole, Oceanographic
Institution, D.M. Anderson

Alexandrium tamarense SZNB 01 IMR 15 °C Gulf of Naples, Italy 1999,
M. Montresor

Alexandrium tamarense SZNB 019 IMR 15 °C Gulf of Naples, Italy 1999,
M. Montresor

Alexandrium ostenfeldii AOSH 1 K 15 °C Ship Harbour, Nova Scotia,
Canada, A. Cembella

Alexandrium ostenfeldii CCMP 1773 K 15 °C Limfjordan, Denmark,
Hansen

Alexandrium catenella BAH ME 255 IMR 15 °C Spain, M. Delgado

Alexandrium taylorii AY 2T K 15 °C Lagoon of Marano, Italy, A.
Beran

Gonyaulax spinifera CCMP409 f2 15 °C Gulf of Maine, North
America, 1986R. Lande

Protoceratium reticulatum f2-Si 15 °C Helgoland,North Sea,
Germany, M. Hoppenrath

Lingulodinium polyedrum IMR 15 °C Norway, T. Castberg
Prymnesium parvum K-0081 K 15 °C Flade Sø, Denmark

Rhodomonas sp. CCMP 768 K 22 °C North Island, New Zealand, 
South Pacific, F. Chang
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Table 2. Algal species and cell counts used for spiked samples

Species Strain Cell counts
Alexandrium minutum AL3T 10000, 50000, 100000
Alexandrium ostenfeldii CCMP 1773 50000
Alexandrium fundyense CA 28 25000
Alexandrium tamutum SZNB029 50000
Protoceratium reticulatum 10000
Lingulodinium polyedrum 10000
Prymnesium parvum K-0081 590000
Rhodomonas sp. CCMP 768 100000
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Table 3. Sequences of probes for Alexandrium minutum

Probe Probe sequence
A MIN C GAA GTC AGG TTT GGA TGC
AMIN C NEXT TAA TGA CCA CAA CCC TTC C 
positive control
(target sequence)

GCA TCC AAA CCT GAC TTC GGA AGG GTT GTG GTC
ATT A 
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Table 4. Specificity of probes for Alexandrium minutum 

Species Strain Signal Average value OD
350 µg/µL

Alexandrium minutum AL1V + 2.3476
Alexandrium minutum AMADO6 + 2.8662
Alexandrium minutum AMITA + 4.9956
Alexandrium minutum AMP4 + 4.6426
Alexandrium minutum AL1T + 5.1715
Alexandrium minutum AL3T + 3.2775
Alexandrium minutum AL5T + 2.2989
Alexandrium minutum AL8T + 3.4521
Alexandrium minutum AL9T + 1.9837
Alexandrium minutum Nantes + 2.1611
Alexandrium minutum AL 7 V + 2.8885
Alexandrium minutum PALMIRA1 + 1.8488
Alexandrium minutum AL 4V + 1.5897
Alexandrium minutum AL 2V + 4.6268
Alexandrium insuetum CCMP 2082 - 0.0304
Alexandrium sp. CS 001 - 0.0075
Alexandrium tamutum SZNB029 - 0.0971
Alexandrium fundyense CA 28 - 0.0000
Alexandrium tamarense SZNB 01 - 0.0000
Alexandrium tamarense SZNB 019 - 0.0351
Alexandrium ostenfeldii AOSH 1 - 0.1215
Alexandrium ostenfeldii CCMP 1773 - 0.0201
Alexandrium catenella BAH ME 255 - 0.1701
Alexandrium taylorii AY 2T - 0.0161
Gonyaulax spinifera CCMP409 - 0.0188
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Figure 1. Sandwich hybridization 
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2.4 Publication II 

MOLECULAR PROBES FOR THE DETECTION OF TOXIC ALGAE FOR USE IN

SANDWICH HYBRIDIZATION FORMATS

SONJA DIERCKS, KATJA METFIES AND LINDA K. MEDLIN

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 

Bremerhaven, Germany

Journal of Plankton Research, to be submitted

Abstract

Molecular probes can be used for early and rapid detection of toxic algae species. The 

sandwich hybridization requires two probes for each species, a capture probe and a nearly 

adjacent signal probe. Probe sets for the species-specific identification of the toxic algal 

species Gymnodinium catenatum, Protoceratium reticulatum, Lingulodinium polyedrum, 

Prymnesium parvum, Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, 

P. seriata and P. pungens were designed. A genus probe set for Pseudo-nitzschia species was 

adapted and all probe sets were tested for specificity. The target molecules for the probe sets 

are the large and the small subunit ribosomal RNAs. The specificity of the different probes 

sets was tested using a sandwich hybridization in a microtiter plate assay with ribosomal RNA 

isolated from laboratory strains of the target species and closely related species. The assay

showed the eight probe sets to be highly specific. Detection of one other species, in addition 

to the target species, was observed for two of the probe sets. These ten probe sets are valuable

tools for identifying and monitoring different toxic algae. The microtiter plate assay is a cheap

and effective means of testing probe specificity. 
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Introduction

Harmful algae can produce powerful toxins that cause fish kills and shellfish poisoning. Early 

and rapid detection of toxic algal species in coastal areas and aquaculture is the most effective 

way to mitigate their negative effects on human populations. A variety of detection techniques 

using molecular probes, such as fluorescence in situ hybridization (FISH) (Scholin et al. 

1996; Simon et al. 2000; Smit et al. 2004; Kim and Sako 2005), DNA microarrays (Metfies 

and Medlin 2005a; Metfies and Medlin 2005b) and sandwich hybridization assays (SHA)

(Scholin et al. 1996; Ayers et al. 2005; Metfies et al. 2005) can be applied for this purpose. 

Usually, targets for the molecular probes are the small and the large subunit ribosomal RNA 

(rRNA) genes because they can be found in high numbers in the cell and contain more or less

conserved regions (Groben et al. 2004). The relative conservation of the 18S and 28S gene 

can complicate the search for suitable probes at the species level (Gagnon et al. 1996; Ki and 

Han 2006). Specific probes for several algal taxa have been developed recently (Scholin et al.

1999; Tyrrell et al. 2002; John et al. 2003; Kim and Sako 2005; Metfies et al. 2005; Töbe et 

al. 2006), however, still only a small percentage of all toxic algal species is covered. For 

sandwich hybridization formats (Zammatteo et al. 1995; Rautio et al. 2003) two probes are 

needed, and at least one of the probes has to be specific for the target. One of the probes, the 

capture probe can be immobilized on solid surfaces as in combination with DNA biosensors

(Metfies et al. 2005) or in the well of a microtiter plate (see Publication I) and bind to target 

RNA or DNA. A second probe, the detection probe, carries the signal moiety and binds near 

the binding site of the capture probe. Here, we present the results of the application of 10 

probe sets for the detection of the different toxic algal species Gymnodinium catenatum,

Protoceratium reticulatum, Lingulodinium polyedrum, Prymnesium parvum, 

Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, P. seriata and P.

pungens and for all species of the genus Pseudo-nitzschia. The probes were tested for 

specificity applying the sandwich hybridization in a microtiter plate well described in 

Publication I with laboratory strains. 

Materials and Methods 

Culture conditions - All algal strains were cultured under sterile conditions in seawater-based

media K (Keller et al. 1987), IMR (Eppley et al. 1967), Drebes (Stosch and Drebes 1964), 

Prov. (Provasoli et al. 1957; Guillard and Ryther 1962; Guillard 1975), L1 (Guillard and
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Ryther 1962; Guillard 1975; Guillard and Hargraves 1993), DY IV (Andersen et al. 1997), f2-

Si (Guillard and Ryther 1962; Guillard 1975) and GP%50 (Loeblich and Smith 1968) at 

different temperatures and approximately 100 µEinstein with a light: dark cycle of 14:10 

hours (Table 1). 

RNA-extraction - Isolation of total rRNA from Pseudo-nitzschia strains was carried out using 

the protocol for the Tri Reagent kit (Sigma, Taufkirchen, Germany). Glass beads (212-300 

µm, Sigma, Germany) were also added to the isolation solution to break open the cells with a 

bead Mini-Beadbeater (Biospec products, Biospec products Inc, Bartlesville, USA) for 20 

seconds. Subsequent to the cell lysis steps, the Clean up protocol from Qiagen (Hilden, 

Germany) was used for RNA purification. Total RNA from all other algal cultures was 

isolated according to a modified protocol from the RNeasy Plant Mini Kit (Qiagen, Hilden,

Germany). Modifications of this protocol were done to enhance the quality and quantity of the 

extracted rRNA by improved removal of polysaccharides and proteins. For quality

enhancement, the centrifugation step of two minutes for separation of supernatant and cell 

debris was extended to 15 minutes. Buffer RW1 was applied two times to the RNeasy 

column, incubated for one minute and then centrifuged. The first wash step with buffer RPE 

was repeated. RNA concentration was measured with a Nanodrop Spectrophotometer (Peqlab, 

Erlangen, Germany).

Probes and probe synthesis - Specific FISH probes for several species have been previously 

developed (Table 2) and were used in this study. A second probe in close proximity to the 

first probe was developed for these probes for the sandwich hybridization. The previously 

developed probes for the Genus Pseudo-nitzschia were both used in combination; PNFRAGA

was adapted as a capture probe and PNEXDELIB as a detection probe. All probes and 

positive controls (Test DNA) were synthesized from Thermo Electron Corporation (Ulm,

Germany).

Sandwich Hybridization using a microtiter plate assay (MTPA) - The probe sets for the

detection of the different algae were tested for specificity using a sandwich hybridization in a 

microtiter plate assay as described in Publication I. In this assay the capture probe is

biotinylated and the signal probe is digoxigenin-labelled. Prior to the experiments, the 

different buffer solutions from the PCR ELISA Dig Detection Kit from Roche Diagnostics 

(Mannheim, Germany) were prepared for use. Total rRNA from the different algae was 
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fragmented in a fragmentation buffer (40mM Tris, pH 8.0/100mM KOAc/30mM MgOAc) for 

5 minutes at 94°C and then chilled on ice prior to hybridization. Biotinylated probes and 

digoxigenin labeled probes at a concentration of 10 µM and different concentrations of rRNA 

were added to the hybridization buffer. A negative control was prepared containing only 

probes and hybridization buffer, whereas the positive control contained also Test DNA 

(synthesized target sequence of both probes). The different hybridization solutions were 

added into the wells of the microtiter plate and incubated on a shaker for 1 hour at 46°C. 

Subsequently to the hybridization, the wells of the microtiter plate were washed with washing 

solution. Antibody solution was applied into each well and incubated 30 minutes at 37°C with 

agitation in the dark. After incubation with the antibody solution, the wells were re-washed 

with washing solution and substrate solution was filled into the wells and incubated in the

dark on a shaker at 37 °C for 30 minutes. The anti-digoxigenin antibody conjugated to 

horseradish peroxidase reacts with substrate to produce a green colorimetric product. The 

wells of the microtiter plate were read out at 405 nm using a quartz cuvette with a Varian

Cary 4000 UV-Vis Spectrometer (Varian Inc., Darmstadt, Germany).

Results

Probe design - Probes were developed for Gymnodinium catenatum, four Pseudo-nitzschia

species, Chrysochromulina polylepis, Prymnesium parvum/patelliferum, Lingulodinium

polyedrum and Protoceratium reticulatum (Table 3) using the probe design option in ARB 

software package (Ludwig et al. 2004). Additionally a BLAST search (Altschul et al. 1990) 

was conducted to test the overall specificity of the probes against all publically available 

sequences. It was possible to design two specific probes that are located in sufficient

proximity for the sandwich-hybridization approach for G. catenatum, L. polyedrum and P.

reticulatum. However, it was not possible to design two specific probes for Pseudo-nitzschia

australis, Pseudo-nitzschia pungens, Chrysochromulina polylepis and Prymnesium

parvum/patelliferum. Therefore an unspecific signal probe for these target species was chosen

that bind in close proximity to the previously developed specific capture probe. Thus, the 

specificity of the reaction was determined by the capture probe. The close proximity of the 

capture probe and the detection probe minimizes possible degradation effects of the target 

nucleic acid. Positive controls are the synthesized target sequences of each respective probe 

set.
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Specificity of probes - The specificity of 10 probe sets for toxic algae was tested using a 

sandwich hybridization assay in a microtiter plate as described in Publication I with closely

related species (Tables 4 and 5). Total rRNA was isolated from the target species and more

distantly related species for each probe set. The signals obtained were normalised to a target 

concentration of 350 ng RNA and compared. A probe set for the toxic algal species 

Chrysochromulina polylepsis was tested with two strains of C. polylepsis and three closely 

related species (Table 4). It showed specific signals only for the target species. The target 

species Gymnodinium catenatum and the non-target species G. impudicum showed both 

positive signals for the GCAT probe set, whereas other non-target species showed no signal at 

all (Table 4). However, G. impudicum also showed a signal, but the signal for G. catenatum

was threefold higher than the one of G. impudicum. Lingulodinium polyedrum gave a signal 

for the LPOLY probe set and all non-target species did not (Table 4). The PRETI probe set 

showed specific signals for Protoceratium reticulatum (Table 4). Signals for all Prymnesium

species were achieved with the capture probe PRYM 694 and the detection probe PRYM 694 

NEXT. The Genus Pseudo-nitzschia probe set was tested for specificity with all available 

Pseudo-nitzschia species (Table 5), except P. multiseries strain Oroe13 and P. seriata strain

CCMP 1309, which were not available. P. pseudodelicatissima strains AL-93 and SAL-5 

were not detected with the Pseudo-nitzschia genus level probes. The species probe sets PSN 

AUS, PSN MULTI, PSN PUNG and PSN SERI were tested with their respective Pseudo-

nitzschia target species and with representative strains of the other Pseudo-nitzschia species.

Signals of all probe sets were only observed for the target species (Table 5). 

Discussion

Probes sets for 10 toxic algal species were developed and tested for specificity using a 

microtiter plate assay and a sandwich hybridization. Single probes for some species had

already been developed and tested for specificity with dot blot and FISH. Thus, only a second 

probe was needed for these species to complete the sandwich hybridization. The combination 

of both probes needed to be tested for specificity. Our capture probe for Chrysochromulina 

polylepsis was developed for FISH and tested for specificity by Simon et al. (1997). The 

detection probe for C. polylepsis is unspecific; however, in combination with the specific

capture probe only C. polylepsis is detected. Although this probe set was only tested with few 

species, its specificity should be confirmed with further tests e.g., spiked samples. High 

detection signals were observed with the probe set GCAT and the target Gymnodinium
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catenatum. A threefold lower signal was determined for the non toxic G. impudicum, a

worldwide occurring species, that can form massive red tide blooms (Fraga et al. 1995). A 

high signal for G. catenatum presents only 10,000 cells, whereas for the same signal intensity 

at least 250,000 cells of G. impudicum are needed, thus a misinterpretation of signal is 

unlikely. The probe set for Prymnesium parvum detected all tested Prymnesium species

including P. nemamethecum, which is a non-toxic species occurring in marine waters (Pienaar 

and Birkhead 1994). The majority of Prymnesium parvum blooms have been recorded in 

brackish waters (Edvardsen and Paasche 1998) and there have not been any reports of blooms

caused by P. nemamethecum (West et al. 2006). In water samples from brackish water, the 

detection of P. nemamethecum cannot be ruled out but seems unlikely. Some false-positive

results are almost impossible to avoid with a monostrigent hybridization approach, because 

the stability of mismatched probe-target hybrids cannot easily be predicted in silico (Loy et al. 

2005b).

The specificity tests using species of the genus Pseudo-nitzschia and probes for the different 

species turned out to be difficult because of the difficulty in maintaining cultures long term

under laboratory conditions. Consequently only a few representative strains of each species 

could be examined. The Pseudo-nitzschia genus probes were tested with all available strains

and were observed to detect only one of the three P. pseudodelicatissima strains. However,

the 18S gene of the three strains was sequenced and sequences of all Pseudo-nitzschia strains

were compared to the probe sequences. The sequences of strains AL-93 and SAL-5 revealed 

two mismatches to the capture probe sequence, whereas no mismatch was found in strain AL-

19. The sequence of AL-19 was identical to that of other P. delicatissima, thus, this strain was 

determined to be P. delicatissima rather than P. pseudodelicatissima. Hence, our Pseudo-

nitzschia genus probes are not able to detect P. pseudodelicatissima and the absence of a 

signal can be used as a determinate marker for P. pseudodelicatissima, which can be difficult 

to separate from P. delicatissima at the light microscopic level. The search for suitable probes

can be difficult for some recently evolved species because of the relative conservation of the 

18S gene (Gagnon et al. 1996; Ki and Han 2006), therefore a new probe set should be 

developed for the detection of P. pseudodelicatissima. Signals of all other probe sets were 

observed only for the target species. Even when probes are designed from a large database, a 

frequent revision of probe sequences is necessary because new sequences are added almost

daily to databases. 
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Conclusion

Ten probe sets for different toxic algal species were designed and eight probe sets proved to 

be highly specific in our sandwich hybridization assay. Two probe sets, GCAT and PRYM

694, detect another species in addition to its target species. All designed probe sets can be 

applied for the monitoring of toxic algae using solid surface, such as biosensors and the

microtiter plate assay. The microtiter plate assay is a fast and efficient way to test probes for

use in sandwich hybridization much in the same way that dot blots are used to screen for 

specificity for FISH probes. 
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Table 1. Culture conditions and geographical origin of strains 

Species Strain Culture-
medium

Tempera-
ture Origin

Pseudo-nitzschia australis PS 195 V K 15 °C Ría de Vigo, Baiona, Spain, 05/05/2005,
S. Fraga

Pseudo-nitzschia australis PS 193 V K 15 °C Ría de Vigo, Baiona, Spain, 05/05/2005,
S. Fraga

Pseudo-nitzschia australis PS 191 V K 15 °C Ría de Vigo, (E14B), Spain, 04/05/2005,
S. Fraga

Pseudo-nitzschia calliantha CL 187 K 15 °C S. Bates
Pseudo-nitzschia calliantha CL 190 K 15 °C S. Bates
Pseudo-nitzschia multiseries CL 174 K 15 °C Cardigan River, USA, S. Bates 

Pseudo-nitzschia multiseries CL 195 K 15 °C Deadman's Harbour, Bay of Fundy, USA, 
S. Bates 

Pseudo-nitzschia delicatissima AL-23 Drebes 15 °C Naples, Italy, 2004, A. Amato
Pseudo-nitzschia delicatissima AL-63 Drebes 15 °C Naples, Italy, 2004, A. Amato
Pseudo-nitzschia delicatissima Al-86 Drebes 15 °C Naples, Italy, 2004, A. Amato
Pseudo-nitzschia fraudulenta AL-104 Drebes 15 °C Naples, Italy, 2005, A. Amato
Pseudo-nitzschia delicatissima AL-18 Drebes 15 °C Naples, Italy, 2004, A. Amato
Pseudo-nitzschia delicatissima AL-47 Drebes 15 °C Naples, Italy, 2004, A. Amato
Pseudo-nitzschia
pseudodelicatissima AL-93 Drebes 15 °C Naples, Italy, 2004, A. Amato

Pseudo-nitzschia
pseudodelicatissima SAL-5 Drebes 15 °C Naples, Italy, 2004, A. Amato

Pseudo-nitzschia
pseudodelicatissima Al-19 Drebes 15 °C Naples, Italy, 2004, A. Amato

Pseudo-nitzschia pungens 238 K 15 °C S. Kühn, K. Evans

Pseudo-nitzschia pungens Oroe 5 K 15 °C Bot. Inst. Uni Kopenhagen, Denmark, N.
Lundholm,

Pseudo-nitzschia pungens Thisted 37
19/8-97 K 15 °C Bot. Inst. Uni Kopenhagen, Denmark, N.

Lundholm,
Pseudo-nitzschia pungens K 15 °C Sylt, Germany
Pseudo-nitzschia pungens 708 K 15 °C Bristol, UK, K. Evans

Pseudo-nitzschia spec K 0 °C Resolute Passage, Barrow Strait, 
Northwest Territories, Canada, R. Smith

Pseudo-nitzschia seriata CCMP 1309 K 0 °C Resolute Passage, Barrow Strait, 
Northwest Territories, Canada, R. Smith

Chrysochromulina ericina CCMP 281 K 15 °C North Pacific

Chrysochromulina kappa CCMP 288 K 20 °C Bigelow Laboratory dock, West Boothbay
Harbor, Maine USA, M. Keller

Chrysochromulina polylepis B11 IMR 15 °C Norway, B. Edvardsen
Chrysochromulina polylepis B1511 IMR 15 °C Norway, B. Edvardsen
Phaeocystis globosa K+soil 15 °C A. Dauelsberg
Gymnodinium nagasakiense (K.
mikimotoi) PLY 561 IMR+soil 15 °C not known

Gymnodinium fuscum CCMP 1677 DY IV 15 °C Pond, LaTrobe University, Melbourne,
Victoria, Australia, D. Hill

Gymnodinium simplex CCMP 418 K 15 °C Plymouth, England, United Kingdom

Gymnodinium catenatum GC 12V Dreb/IMR 20 °C Ría de Vigo, Baiona, Spain, S. Fraga

Gymnodinium impudicium CCMP 2214 K 20 °C Valencia, North Atlantic, Spain, I. Bravo
Karenia papilionaceae CAWD 91 GP%50 15 °C Hawkes Bay, New Zealand, A. Haywood
Lingulodinium polyedrum Norway IMR 15 °C Norway, T. Castberg

Ceratocorys horrida CCMP 157 L1 22-26 °C Banda, Banda Sea, South Pacific, South
East Asia, B. Sweeney 

Ceratium longipes CCMP 1770 K 15 °C Bigelow Laboratory dock, West Boothbay
Harbor, Maine, USA, S. L. Morton
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Thecadinium inclinatum CCMP 1890 K 15 °C Boundary Bay, British Columbia, Canada,
E. Simons

Gonyaulax spinifera CCMP 409 f2-Si, L1 15 °C Gulf of Maine, North America, 1986, R. 
Lande

Protoceratium reticulatum Sylt f2-Si 15 °C Helgoland,North Sea, Germany, M.
Hoppenrath

Alexandrium minutum AMP4 K 15 °C Mediterranean Sea, Spain, Santiago Fraga 
Alexandrium minutum AL3T K 15 °C Gulf of Trieste, Italy, A. Beran
Emiliana huxleyi CCMP 1516 f2 20 °C South Pacific, L. Polans
Prymnesium parvum K-0081 K 15 °C Flade So, Denmark
Prymnesium parvum f. parvum RL10parv93 IMR 15 °C Bergen, Norway,  A. Larsen

Prymnesium parvum f. patelliferum K-0252 IMR 15 °C Wilson Promontory, Norman Bay, 
Victoria Australia, SCCAP

Prymnesium nemamethecum K 15 °C South Africa St James False Bay, South 
Africa

Prymnesium patelliferum K-0374 K 15 °C Norway

Prymnesium patelliferum K-0082 K 15 °C Brackish; Thornham, Hunstanton,
Norfolk, England, T. Christensen

Fragilariopsis cylindrus K 0 °C A. Krell
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Table 2. Sequences of capture and detection probes 

Probe name Used as the Probe sequence Target Citation

PNEXDELIB Detection
probe GCG CAA TCA CTC AAA GAG Genus Pseudo-nitzschia 18S Eller & Medlin, 

unpublished

PNFRAGA Capture probe ATT CCA CCC AAA CAT GGC Genus Pseudo-nitzschia 18S Eller, Töbe & Medlin, 
unpublished

PSNAUS A-8 Capture probe AAC GTC GTT CCG CCA AT Pseudo-nitzschia australis
18S

Eller & Medlin,
unpublished

PSNPUNG A-
12 Capture probe GGG CAC CCT CAG TAC GAC Pseudo-nitzschia pungens 18S Eller, Töbe &

Medlin, unpublished 

CPOLY01 Capture probe GAC TAT AGT TTC CCA TAA
GGT

Chrysochromulina polylepis
18S (Simon et al. 1997)

PRYM694 Capture probe CAG CCG ACG CCG AGC GCG Prymensium parvum 28S (Töbe et al. 2006)
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Table 3. Sequences of the probes and positive control 5’ to 3’

Probe name Probe sequence 5'-3' Target Positive control
Capture probe: GCAT
FNEXT

TTT TTA AAA GAT TAC CCA 
ATC Gymnodonium catenatum 18S

Signal probe: GCAT F CTG TCG GAC AAG GTC GTA Gymnodonium catenatum 18S

TAC GAC CTT GTC
CGA CAG GAT TGG 
GTA ATC TTT TAA
AAA

Capture probe PSNAUS 

Signal probe: PSNAUS
ANEXT

CAA GGT GCT GAC GGA GAC
GT Pseudo-nitzschia australis 18S

ATT GGC GGA ACG 
ACG TTA CGT CTC
CGT CAG CAC CTT G 

Capture probe: Psnmult
A-17 GCA TGC GAT CCG CAA TTT Pseudo-nitzschia multiseries

18S

Signal probe: Psnmult
A+14 TCC ATC GCC GCC AAA AGG Pseudo-nitzschia multiseries

18S

AAA TTG CGG ATC 
GCA TGC CCT TTT
GGC GGC GAT GGA

Capture Probe 
PSNPUNG
Signal probe: PSNPUNG
ANEXT CAG ACC AGT ACA GCG CAA Pseudo-nitzschia pungens 18S

GTC GTA CTG AGG
GTG CCC TTG CGC
TGT ACT GGT CTG

Capture probe: PSN SERI 
E

GAC AGG TTC TCG TGG TCA
GAT TC Pseudo-nitzschia seriata 18S

Signal probe: PSN SERI 
E NEXT 

AAT AAA GGA AAC CAA CCA 
CAA Pseudo-nitzschia seriata 18S

GAA TCT GAC CAC 
GAG AAC CTG TC TTG
TGG TTG GTT TCC TTT
ATT

Capture Probe C poly

Signal probe: CPOLY01
NEXT

GGA GTC AAA AAG GAC TTC 
CG

Chrysochromulina polylepsis
18S

ACC TTA TGG GAA
ACT ATA GTC CGG
AAG TCC TTT TTG
ACT CC 

Capture Probe Prym694

Signal probe:
PRYM694NEXT CGC CAT CCA ACC AGG CTC Prymnesium

parvum/patelliferum 28S

CGC GCT CGG CGT 
CGG CTG GAG CCT 
GGA TGG ATG GCG 

Capture probe:
LPOLY J 

GGC CAT CTA AAG CAG
AAG

Lingulodinium polyedrum
18S

Signal probe: LPOLY
C

GCC CAA GAC AAG CCA
GAT

Lingulodinium polyedrum
18S

CTT CTG CTT TAG 
ATG GCC ATC TGG
CTT GTC TTG GGC

Capture probe: PRETI
K NEXT

TGT AAC TAA TAA AAA
CAG CCCT 

Protoceratium reticulatum
18S

Signal probe: PRETI K TCC GCG AAA GTC GGG
CCA AGAA 

Protoceratium reticulatum
18S

TTC TTG GCC CGA 
CTT TCG CGGA AGG 
GCT GTT TTT ATT
AGT TACA
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Table 4. Specificity of probes for Chrysochromulina polylepsis, Gymnodinium catenatum,

Lingulodinium polyedrum, Protoceratium reticulatum and Prymnesium parvum

CPOLY GCAT

Species Strain Signal Species Strain Signal

Chrysochromulina ericina CCMP 281 - Gymnodinium nagasakiense PLY 561 -
Chrysochromulina kappa CCMP 288 - Gymnodinium fuscum CCMP 1677 -
Chrysochromulina polylepis B15 + Gymnodinium simplex CCMP 418 -
Chrysochromulina polylepis B1511 + Gymnodinium catenatum GC 12V +
Phaeocystis globosa - Gymnodinium impudicium CCMP 2214 +

Karenia papilionaceae CAWD 91 -
LPOLY PRETI

Species Strain Signal Species Strain Signal
Lingulodinium polyedrum Norway + Lingulodinium polyedrum Norway -
Ceratocorys horrida CCMP 157 - Ceratocorys horrida CCMP 157 -
Ceratium longipes CCMP 1770 - Ceratium longipes CCMP 1770 -
Thecadinium inclinatum CCMP 1890 - Thecadinium inclinatum CCMP 1890 -
Gonyaulax spinifera CCMP 409 - Gonyaulax spinifera CCMP 409 -
Protoceratium reticulatum Sylt - Protoceratium reticulatum Sylt +
Alexandrium minutum AMP4 - Alexandrium minutum AL3T -

PRYM 694
Species Strain Signal

Chrysochromulina polylepis B1511 -
Phaeocystis globosa -
Emiliana huxleyi -
Prymnesium parvum K-0081 +
Prymnesium parvum f.
parvum RL10parv93 +
Prymnesium parvum f.
patelliferum K-0252 +
Prymnesium nemamethecum +
Prymnesium patelliferum K374 +
Prymnesium patelliferum K-0082 +
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Table 5. Specificity of probes for the Genus Pseudo-nitzschia, P. australis, P. multiseries, P.

pungens and P. seriata 

Genus Pseudo-nitzschia PSN MULTI 
Species Strain Signal Species Strain Signal

P. australis PS 195 V + P. australis PS 195 V -
P. australis PS 193 V + P. calliantha CL 187 -
P. australis PS 191 V + P. calliantha CL 190 -
P. calliantha CL 187 + P. multiseries CL 174 +
P. calliantha CL 190 + P. multiseries Oroe 13 +
P. multiseries CL 174 + P. delicatissima AL-23 -
P. delicatissima AL-23 + P. delicatissima Al-86 -
P. delicatissima AL-63 + P. pseudodelicatissima AL-93 -
P. delicatissima Al-86 + P. pseudodelicatissima SAL-5 -
P. fraudulenta AL-104 + P. pseudodelicatissima Al-19 -
P. delicatissima AL-18 + P. pungens 238 -
P. delicatissima AL-47 + P. pungens Oroe 5 -
P. pseudodelicatissima AL-93 - F. cylindrus -
P. pseudodelicatissima SAL-5 -
P. pseudodelicatissima* Al-19 +
P. pungens 238 +
P. pungens Oroe 5 +
P. pungens Thisted 37 +
P. pungens +
P. pungens 708 +
F. cylindrus -

PSN AUS PSN PUNG 
Species Strain Signal Species Strain Signal

P. australis PS 195 V + P. calliantha CL 187 -
P. australis PS 193 V + P. calliantha CL 190 -
P. australis PS 191 V + P. multiseries CL 174 -
P. calliantha CL 187 - P. delicatissima AL-23 -
P. calliantha CL 190 - P. delicatissima Al-86 -
P. multiseries CL 174 - P. fraudulenta AL-104 -
P. delicatissima AL-63 - P. pseudodelicatissima AL-93 -
P. delicatissima AL-18 - P. pseudodelicatissima Al-19 -
P. pseudodelicatissima AL-93 - P. pungens 238 +
P. pseudodelicatissima Al-19 - P. pungens Oroe 5 +
P. pungens 238 - P. pungens +
P. pungens Oroe 5 - P. pungens 708 +
F. cylindrus -

PSN SERI 
Species Strain Signal

P. calliantha CL 187 -
P. multiseries CL 174 -
P. delicatissima Al-86 -
P. delicatissima AL-47 -
P. pseudodelicatissima AL-93 -
P. pseudodelicatissima SAL-5 -
P. pungens Oroe 5 -
P. pungens -

P. seriata
CCMP
1309 +

F. cylindrus -
* likely misidentified should be P. delicatissima based on sequence identity
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2.5 Publication III 

ELECTROCHEMICAL DETECTION OF TOXIC ALGAE WITH A BIOSENSOR

SONJA DIERCKS, KATJA METFIES AND LINDA K. MEDLIN

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 

Bremerhaven, Germany

Manual and Guides: Microscopic and molecular methods for quantitative phytoplankton 

analysis, submitted

Introduction

DNA-biosensors are known from various areas. Glucose detection was one of the first

application areas developed for biosensors (Clark 1956). Today, biosensors are used in many

different areas, such as for the identification of infectious organisms (Hartley and Baeumner

2003) and hazardous chemicals, for monitoring of health relevant metabolites or

environmental samples. A new detection method used for the identification of harmful algae 

was developed using a hand held device (Figure 1A) and biosensors. A first prototype was 

used to identify the toxic dinoflagellate Alexandrium ostenfeldii (Metfies et al. 2005). A 

second prototype manufactured by PalmSens (Houten, Netherlands) was extensively used to 

improve the biosensors (Figure 1B). Biosensors can be produced very cheaply for mass

production.

Molecular probes - Identification of toxic algae is based on oligonucleotide probes that 

specifically target ribosomal RNA. Targets for the probes are the small and large subunit

rRNA genes in the ribosomes of the cells, whose conserved and variable regions make it 

possible to develop probes specific for different taxonomic levels (Groben et al. 2004). For 

the probe development, the ARB software package is used (Ludwig et al. 2004). Theoretical

probe specificity is dependent on the number of sequences of the targeted gene available in

the databases. If molecular probes are designed from only a few sequences, there is a danger 

of cross-hybridization to non-targeted species and organisms whose sequences are unknown 

and not in the database. Prior to the analysis of field-samples, molecular probes were tested 
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for specificity with cultivated target species and closely related species because in silico and

in situ results can show different specificity signals. 

Dipsosable sensor-chip and detection principle - The disposable sensorchip consisting of a

carrier material on which is printed a working electrode, where the detection reaction takes

place, a reference electrode and an auxiliary electrode (Figure 1B). The working electrode has

a diameter of 1mm and is made of a carbon paste. A biotinylated probe is immobilised on the 

reaction layer of the working electrode via avidin. The nucleic acids are detected on the 

sensor chip via a sandwich-hybridization (Zammatteo et al. 1995; Rautio et al. 2003). The

underlying principle of this method is that one target specific probe, the so-called capture 

probe, is immobilised via avidin on the surface of the working electrode. If a target nucleic 

acid is bound to the immobilised probe on the working electrode, the detection of the nucleic 

acid takes place via a hybridization to a second target specific probe, the so-called signal 

probe, that is coupled to digoxigenin (Figure 1C) (Metfies et al. 2005). The digoxigenin 

specific antibody coupled to horseradish-peroxidase is added to the sensor chip. Horseradish-

peroxodase catalyses the reduction of hydrogen peroxide to water. Reduced peroxidase is 

regenerated by p-aminodiphenylamin (ADPA), which functions as a mediator. The oxidised 

mediator is reduced at the working electrode with a potential of 150mV (versus Ag/AgCl) 

(Figure 1D). An electrochemical signal can only be measured if the target nucleic acid bound 

to both capture and signal probes and thus present in the sample to be treated. (Metfies et al. 

2005)
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Materials and methods 

Laboratory facilities and equipment 

Fume hood for RNA isolation 

Centrifuge

Filter, 0.5 µm, ISOPORE™, membrane filters, Millipore, Ireland 

Frit, flask and funnel, Millipore, Ireland 

Mini-Beadbeater™, Biospec products, Biospec products Inc, USA 

Mini-Centrifuge

Thermoshaker

Incubator

Vacuum pump with wash bottle 

Biosensors, Gwent Electronic Materials, Pontypool, UK 

Freezer -80°C

Chemicals and supplier - The chemicals used in this method are listed in Table 1 with their 

suppliers.

Harvesting of cells - The harvesting of cells can be done by centrifugation, the supernatant 

will be discarded, or by filtration using a filtration device and a hand pump (Figure 2). A 

maximum of or 1 x 107 cells can generally be processed with the RNeasy Plant Mini Kit. The 

cells can be frozen for long-term storage by flash-freezing in liquid nitrogen and an 

immediate transfer to –70 °C. Another possibility is the storage of cells in RNALater from 

Ambion (Huntingdon, UK). 

Preservation and storage - After collecting water samples the algae cells can be stored at

room temperature over several days by using RNALater from Ambion, Huntingdon, UK for a

later RNA isolation. Please read carefully the instructions for using RNALater.

RNA Isolation with the RNeasy Plant Mini Kit (QIAGEN) (modified protocol)

General handling of RNA – Ribonucleases (RNases) are very stable, active enzymes and are 

difficult to inactivate; even minute amounts are sufficient to destroy RNA. Use only plastic 

ware or glassware where you have first eliminated possible RNase contamination. Glassware 
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should be cleaned with a detergent, thoroughly rinsed, and oven baked at 180°C for four or 

more hours before use. Always wear gloves while handling reagents and RNA samples to 

prevent RNase contamination from the surface of the skin or from dusty laboratory

equipment. Also change gloves frequently and keep tubes closed whenever possible. Keep 

isolated RNA on ice when aliquots are pipetted for downstream applications. 

RNA-Isolation

1. Add 450 µL Buffer RLT with -Mercaptoethanol to the cells

2. Pipet the lysate to glass beads and shredder the lysate in a bead beater two times for 20 

seconds

3. Pipet the lysate directly onto a QIAshredder spin column (lilac) placed in 2 ml collection

tube, and centrifuge for 15 minutes at maximum speed. Carefully transfer the supernatant

of the flow-through fraction to a new microcentrifuge tube without disturbing the cell-

debris pellet in the collection tube. Use only this supernatant in subsequent steps. 

4. Add 0.5 volume (usually 225 µL) ethanol (96–100%) to the cleared lysate, and mix

immediately by pipetting. Do not centrifuge. Continue without delay. 

5. Apply sample (usually 650 µL), including any precipitate that may have formed, to an 

RNeasy mini column (pink) placed in a 2 ml collection tube. Close the tube gently, and

centrifuge for 15 s at 8000 x g. Discard the flow-through.

Reuse the collection tube in the next step. 

6. Add 700 µL Buffer RW1 to the RNeasy column. Close the tube gently, and wait for ca. 45 

seconds, then centrifuge for 15 s at 8000 x g to wash the column. Discard the flow-

through and collection tube. 

7. Repeat step 6 

8. Transfer the RNeasy column into a new 2 ml collection tube (supplied). Pipet 500 µL 

Buffer RPE onto the RNeasy column. Close the tube gently, and centrifuge for 15 s at 

8000 x g to wash the column. Discard the flow-through. 

Reuse the collection tube in step 9. 

9. Repeat step 8 

10. Add another 500 µL Buffer RPE to the RNeasy column. Close the tube gently, and 

centrifuge for 2 min at 8000 x g to dry the RNeasy silica-gel membrane.
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11. To elute, transfer the RNeasy column to a new 1.5 ml collection tube. Pipet 30-50 µL 

RNase-free water directly onto the RNeasy silica-gel membrane. Close the tube gently, 

and centrifuge for 1 min at 8000 x g to elute.

12. To obtain a higher total RNA concentration, a second elution step may be performed by 

using the first eluate (from step 11). 

13. Measure the RNA concentration

Sandwich Hybridization 

A. Coating of Sensor chips

1. The sensor chips are moistened with 50 µL of carbonate buffer (pH 9.6) (Table 3, Figure 

3A) and aspirated of with a vacuum pump (Figure 3B, 3C) 

2. Incubation over night in a moisture chamber at 4 ºC with 2 µL NeutrAvidin (Pierce, 

Perbio, Germany) in carbonate buffer (Table 3). Storage of the electrodes during this 

period in Petri dishes with moist Whatman filters to protect the solutions from evaporation

(Figure 3D)

3. Excessive NeutrAvidin is removed by washing the chips in PBS (pH 7.6) (Table 3, Figure 

3E). Subsequently the chips are dried with a vacuum pump attached to a wash bottle 

4. The sensors are blocked for one hour at room temperature with 20 µL 3 % casein in PBS.

The casein is removed by washing with PBS 

5. The NeutrAvidin coated electrodes can be stored in a fridge for at least 1 year after

incubation with 2 % Trehalose in PBS (pH 7.6). The electrodes are coated with 15 µL of 

Trehalose solution and dried at 37 °C in an incubator. Before use the electrodes are 

washed with PBS (pH 7.6) to remove the Trehalose. 

B. Immobilization of biotinylated DNA-probe

6. The sensor chips are coated with 2 µL of the biotinylated probe [10 pmol / µL in bead 

buffer (Table 3) and incubated for 30 minutes at room temperature

7. 50 µL of 1x hybridization buffer are added onto the sensors and directly aspirated of to 

remove excessive probe 

8. In accordance to the coated electrodes can be stored in a fridge for at least 1 year after 

incubation with 2 % Trehalose on PBS (pH 7.6). The electrodes are coated with 15 µL of 

Trehalose solution and dried at 37 °C in an incubator. Prior to usage the electrodes are 

washed with PBS (pH 7.6) to remove the Trehalose. 
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C. Sandwich Hybridization of immobilized DNA probe, rRNA and dioxigenin labelled DNA 

probe

9. Fragmentation of rRNA by using a fragmentation buffer (200 mM Tris-Acetate, pH 8.1, 

500 mM KOAc, 150 mM MgOA). 10 µL rRNA are added to 2.5 µL fragmentation buffer, 

heated for five minutes at 94 °C in a thermoshaker (Figure 3F) and subsequently 

immediately chilled on ice. 

10. The hybridization preparation was made up as shown in Table 2. The positive control 

ensures that the probes are working and the negative control shows the detection of the 

used compounds without RNA during the measurement. This preparation was heated for 

four minutes at 94 ºC in a thermoshaker for denaturation and immediately chilled on ice. 

11. 2 µL of the hybridization solution are applied onto each sensor in triplicate

12. The chips are incubated for 30 minutes at 46 °C in an incubator, cooled down at room 

temperature for five minutes

D. Detection

13. The sensors are washed in 1x POP buffer (pH 6.45) (Table 3) to remove excessive RNA.

14. The sensors are incubated for 30 minutes at room temperature with 1.5 µL Anti-Dig-POD

[7.5 U/mL in PBST] (Table 3). 

15. Sensors are separately washed in 1x POP buffer to remove excessive Anti-Dig-POD and 

dried with a vacuum pump 

16. 20 µL of POD substrate are added onto the electrode (POD substrate contains 1.1 mg N-

Phenyl 1,4-phenylenediamine hydrochloride (ADPA) solved in 110 µL ethanol, 250 µL of 

100 mM H2O2 are added and filled up to 25 mL with 1x POP buffer)

17. The chip is plugged in the hand held device and measured (Figure 4). A summary of the 

used buffers is shown in Table 3 

18.

Formulas for calculating results - A calibration has to be determined for each probe set to 

find the signal intensity (nA) for 1 ng RNA. For each target species the RNA concentration

per cell has to be investigated. Subsequently the cell concentration of the target species in a

water sample can be calculated from the electrochemical signals:

60



Publication III 

Let

 nA (probe-signal) = total ng RNA (present in the sample)

then

Number of cells = nA (probe-signal)/ ngRNA (per cell) 

Discussion

The electrochemical detection method with the hand held device and biosensors is a rapid 

method to detect toxic algae in a water sample. Electrodes can be produced in mass. Protocols 

and electrochemical readings of the handheld device are simple and easy even for a scientific 

layperson to use and interpret.

Our initial prototype with many manual steps, has now been defined and improved in the EU-

project ALGADEC so that nearly all steps are automated with an automated flow and heating 

chamber for biosensors for the detection of 14 species in parallel, except the initial sampling

and filtering step and RNA extraction. The present biosensor consists of a disposable sensor

chip with 16 electrodes upon which a redox reaction takes place between the capture probe 

and the signal probe to yield a flow of electrons for an electrochemical detection that is

proportional to the RNA of target captured on the chips and hence proportional to the number

of cells in water column. Probes for other toxic algae (e.g. Alexandrium minutum,

Gymnodinium catenatum etc.) were developed for operating with the hand held device and 

about 14 different toxic algae can be detected, because a negative and a positive control have

to be included in the assay. The probes must be reviewed for specificity to new sequence data

in defined time intervals, because the current 18S rRNA sequence database is only a small

part of the biodiversity and is always upgraded. For each target species, the RNA 

concentration per cell has to be investigated and a calibration curve has to be developed for 

each probe set to determine the signal intensity for the different RNA concentrations to be

able to relate this to cell numbers in the field sample.

The current detection limit of the hand held device requires a high sampling volume, which 

can be up to 8-10 litres if the cell counts are expected low. For the isolation of target rRNA a 

sufficient amount of cells is needed. The detection limit with the hand held device for 

Alexandrium ostenfeldii is ~16 ng/µL, with an average yield of 0.02 ng/cell. This equates to 
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ca. 800 cells or a sampling volume of 6.4 l to get a detectable amount of rRNA from 250 

cells/litre (Metfies et al. 2005). 

The manual isolation of RNA is currently the limiting factor of the system, because the

concentration and quality needs to be high. Different users could possibly isolate different 

amounts of rRNA with different qualities from the same number of algae cells. This results in 

different signal intensities, which cannot be compared to cell counts. An automated RNA 

isolation, as developed during the ALGADEC-project, will overcome the quality in rRNA 

extraction efficiency. A validation of probe signals against total rRNA and over the growth 

cycle of the algae under different environmental conditions is also being conducted to verify 

the calibration curves to extrapolate to cells/litre.
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Table 1. Chemicals and suppliers 

Chemical Supplier
NeutrAvidin™, biotin binding protein PIERCE, Perbio, Germany
D(+)-Trehalose,  99.5 % HPLC Fluka BioChemika, Switzerland
Biotin-labelled probe (18 bases) Thermo Electron
Digoxigenin-labelled probe (18 bases) Thermo Electron
Herring-Sperm DNA Roche
1x PBS PIERCE, Perbio, Germany

Tween 20 Sigma-Aldrich Chemie GmbH,
Germany

N-Phenyl 1,4-phenylenediamine
hydrochloride C12H12N2 HCl (ADPA, N-
Phenyl-1,4-benzenediamine hydrochloride,
1,1-Diphenylhydrazin-hydrochlorid)
ADPA

MERCK KGaA, Germany

Anti-Digoxigenin-POD fab fragments Roche
Hydrogen peroxide solution H2O2, 30%
(w/w)

Sigma-Aldrich Chemie GmbH,
Germany

Ethanol MERCK KGaA, Germany

Sodium hydrogencarbonat NaHCO3
Riedel-de Haën®, RdH,
Laborchemikalien, GmbH & CoKG,
Germany

NaH2PO4 * H2O MERCK KGaA, Germany

NaCl Sigma-Aldrich Chemie GmbH,
Germany

Casein Sigma-Aldrich Chemie GmbH,
Germany

Tris (pH 8.0) Sigma-Aldrich Chemie GmbH,
Germany

SDS Sigma-Aldrich Chemie GmbH,
Germany

BSA Sigma-Aldrich Chemie GmbH,
Germany

-Mercaptoethanol MERCK KGaA, Germany
RNeasy Plant Mini Kit Qiagen, Hilden Germany
Whatman filters Whatman, Brentford, United Kingdom

Glass beads, 212 – 300 µm, 425 – 600 µm Sigma-Aldrich Chemie GmbH,
Germany
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Table 2. Hybridization preparation 

Detection of the species Negative control Positive control
3.5 µL 4x Hybridization buffer 3.5 µL 4x Hybridization buffer 3.5 µL 4x Hybridization buffer
7.5 µL rRNA 1 µL Herring DNA (3480 ng/µL) 1 µL Herring DNA (3480 ng/µL)
1 µL Herring DNA (3480
ng/µL)

1 µL DIG marked DNA probe (1.4
pM/µL) 1 µL Test DNA (36 bases, 1.4 pM/µL)

1 µL DIG marked DNA probe
(1.4 pM/µL) 8.5 µL milliQwater 1 µL DIG marked DNA probe (1.4

pM/µL)
1 µL milliQwater 7.5 µL milliQwater
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Table 3. Buffers for sandwich hybridization on carbon electrodes 

Buffer Compound Concentration
carbonate buffer (pH 9.6) NaHCO3 50 mM
10x PBS (pH 7.4) NaH2PO4 * H2O 0.5 M

NaCl (pH 7.4) 1.54 M 
"bead buffer" NaCl 0.3 M

Tris (pH 7.6) 0.1 M
4x hybridization buffer NaCl 0.3 M

Tris (pH 8.0) 80 mM
SDS 0.04%

10x POP buffer (pH 6.45) NaH2PO4 * H2O 0.5 M
NaCl (pH 6.45) 1 M 

PBS-BT (pH 7.4) PBS 1x
BSA 0.1 % [w/v]
TWEEN 20 (pH
7.4) 0.05 % [v/v]
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Figure 1. (A) PalmSens device, (B) Sensor chip of original prototype, (C) Sandwich 

hybridization, (D) Principle of redox-reaction 
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Figure 2. Filtration equipment and filtration device
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Figure 3. (A) Applying of buffer onto the electrode, (B) Pump and washbottle, (C) Drying of 

chips, (D) Petri dish with Whatman filter and electrodes, (E) Washing of chips, (F) 

Thermoshaker
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Figure 4. Measuring of chips with hand held device 
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2.6 Publication IV 

EVALUATION OF LOCKED NUCLEIC ACIDS FOR SIGNAL ENHANCEMENT OF

OLIGONUCLEOTIDE PROBES FOR MICROALGAE IMMOBILIZED ON SOLID 

SURFACES

SONJA DIERCKS AND CHRISTINE GESCHER, KATJA METFIES, LINDA K. MEDLIN

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 

Bremerhaven, Germany

Limnology and Oceanography: Methods, submitted

Abstract

Biosensors and microarrays are powerful tools for species detection and monitoring of 

microorganisms, e.g., phytoplankton. A reliable identification of microbial species with 

probe-based methods requires highly specific and sensitive probes. The introduction of LNA 

(locked nucleic acid) probe technology promises an enhancement of both specificity and 

sensitivity of molecular probes. In this study, we compared the specificity and sensitivity of 

conventional molecular probes and LNA modified probes in two different solid phase 

hybridization methods; sandwich hybridization on biosensors and on DNA-microarrays. In 

combination with the DNA-microarrays, the LNA-probes displayed an enhancement of

sensitivity, but also more false-positive signals. In combination with the biosensor, the LNA

probes could show neither signal enhancement nor discrimination of only one mismatch. In 

all examined cases, the conventional DNA probes showed equal or better results than the 

LNA probes. In conclusion, the LNA technology may have great potential in methods that use 

probes in suspension and possible in gene expressions studies, but under certain solid surface-

hybridization applications they do not improve signal intensity.
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Introduction

LNA (locked nucleic acids) were first presented by Wengel (Koshkin et al. 1998a; Koshkin et 

al. 1998b) and Imanishi (Obika et al. 1998) and their co-workers. They are a class of bicyclic 

RNA analogs with exceptionally high affinities and specificities toward their complementary

DNA and RNA target molecules (Koshkin et al. 1998b; Singh et al. 1998). They can be 

substituted for any conventional nucleic acid in any synthetic oligonucleotide. It is possible to 

enhance the Tm of conventional oligonucleotides by replacing any of the conventional nucleic 

acid in the oligonucleotides with a LNA (Singh et al. 1998). Thus, the use of LNAs could 

significantly increased mismatch discrimination (Kauppinen et al. 2003). In modified nucleic 

acids, a methylene bridge connects the 2’-oxygen and the 4’-carbon (Parekh-Olmedo et al. 

2002) and consequently produces higher conformational determination of the ribose and 

increased local organization of the phosphate backbone in a 3P-endo conformation (Braasch 

and Corey 2001). Furthermore, LNAs obey Watson-Crick base pairing (Koshkin et al. 1998b) 

and thus, are easy to implement into standard oligonucleotide synthesis chemistry (Kauppinen 

et al. 2003). LNAs offer new potentials for use in DNA/RNA oligo recognition based 

methods because of certain enhanced properties over normal nucleic acids. According to

(Kongsbak 2002), they could be used in any hybridization assay as a modified probe or 

primer to increase specificity and reproducibility. They are used with standard reagents and 

protocols, have the same solubility as DNA or RNA, low toxicity, can make chimeras with 

DNA or RNA, are obtainable from industrial companies (Braasch and Corey 2001) and are 

not affected by nucleases (Vester and Wengel 2004). The only disadvantage is that they are 

much more expensive than conventional nucleic acids. Because of these enhanced properties, 

LNAs have been used in many applications since their first introduction, e.g., gene expression 

profiling (Nielsen and Kauppinen 2002), genotyping assays (Jacobsen et al. 2002a; Jacobsen 

et al. 2002b), fluorescence in situ hybridization (Silahtaroglu et al. 2003; Silahtaroglu et al. 

2004; Wienholds et al. 2005; Kloosterman et al. 2006; Kubota et al. 2006), real-time PCR

(Ugozzoli et al. 2004a; Hummelshoj et al. 2005; Sun et al. 2006) DNAzymes (Vester et al. 

2004; Vester et al. 2006) and other methods.

Because of these successful applications of LNA-modified probes, their use in species

identification in sandwich hybridization and microarray assays should be evaluated. LNA 

modified probes could possibly overcome problems of low hybridization efficiency and cross 
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hybridization of probes to closely related non-target species, often separated from the target 

species by a single base mismatch.

Molecular probes are widely applied for the identification of micro-organisms, e.g., toxic 

algae. They are applied in combination with a variety of detection techniques: Fluorescence in 

situ hybridization or FISH (Scholin et al. 1996; Scholin et al. 1997; Simon et al. 2000; Smit et 

al. 2004; Kim and Sako 2005), sandwich hybridization assays or SHA (Scholin et al. 1996; 

Metfies et al. 2005) and DNA microarrays (Metfies and Medlin 2005a; Metfies and Medlin 

2005b). The small and the large subunit ribosomal RNA genes are the usual targets for 

molecular probes, because there is a high target number in the cell and they contain more or 

less conserved regions, making it possible to develop probes that are specific at different 

taxonomic levels (Groben et al. 2004). Probe specificity is dependent on the number of

sequences of the targeted gene available in databases. Cross-reactions can occur with 

unknown non-targeted species if the target sequence of the probe is designed from a low 

number of sequences or the group is relatively unknown or unculturable and there are many

non-targeted species whose sequences have not yet been determined. Even when a probe is 

designed from a large database, it is necessary to revise probe sequences frequently because

new sequences are added almost daily to databases. Genetic variability has been documented

among geographically dispersed strains of the same species (Scholin et al. 1994), making

specific probes design even more challenging if global strains have not be sampled. One 

important problem in probe design and construction is to choose the best sequence from

several possibilities that could theoretically identify the target. Excellent in-situ hybridization

results of any probe does not always appear to correlate well with in-silico parameters, such

as G–C content or melting temperature (Graves 1999). It is not possible to predict which 

probes will work well under all hybridization conditions. Sometimes probes that work well in 

dot blot and FISH formats do not work at all in a microarray format (Metfies and Medlin,

unpublished).

The identification of phytoplankton, especially of harmful algae species, is important from an 

ecological and economic point of view. Certain harmful algae have the potential to produce 

toxins that have the capability to seriously harm, or even kill, other organisms or even humans

if intermediaries in the food chain, such as mussels, are consumed. Numerous monitoring 

programs are established along all coastlines around the world for the detection of harmful

algae. The European Union demands the monitoring of the coastlines for toxin-producing
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phytoplankton and toxins in mussels by the member states (Directive 91/492d/EC and 

Commission Decision 2002/225/EC). Cell detection methodology based on light microscopy

can be tedious and time-consuming when large numbers of samples need to be processed 

routinely, and identification of some species may require highly trained personnel and 

expensive equipment (Tyrrell et al. 2002). Reliable species identification and long-term

monitoring are difficult to achieve by traditional methods, because unicellular algae are 

taxonomically challenging with toxic and non-toxic strains belonging to the same species. In 

the past decade, a variety of molecular methods have been adapted for the identification of

microbial species, which are often lacking in distinct morphological features. Molecular 

identification is a very useful alternative in the study of natural phytoplankton populations 

(Guillou et al. 1999b). In our lab, we are working on the development of a molecular probe-

based biosensor and a DNA-microarray for the detection of harmful algae and for estimating

hidden biodiversity. In particular, we focus on those species that have the potential to harm

the environment by the production of potent toxins. 

The two solid-phase methods described here: DNA microarrays for phylogenetic analyses and 

an rRNA-biosensor, are used to measure the abundance of algal species using target specific 

probes bound to a surface. 

rRNA biosensor - The detection method using a rRNA-biosensor was successfully introduced

by (Metfies et al. 2005) as a molecular method for the detection and identification of the toxic 

dinoflagellate Alexandrium ostenfeldii. It utilizes sandwich hybridization (SHA) with a 

capture probe that binds to the target RNA or DNA and a second signal probe that carries the 

signal moiety and binds near the binding site of the capture probe. A third additional probe, 

the so-called helper probe, binds near the binding site of the two other probes to modify the 

secondary structure of the molecule so that the signal probe can easily form its heteroduplex. 

This region usually consists of approximately 50 bps leaving little for probe manipulation

should the probes not work properly. The search for suitable probes is complicated by the 

relative conservation of the 18S gene at the species level (Gagnon et al. 1996; Ki and Han 

2006). More variable genes have not been rigorously evaluated because only hyper-variable

regions have been sequenced leaving the majority of the gene unknown and open for non-

specific binding. The detection is measured electrochemically by the PalmSens instrument

and its PSLite software (Palm Instruments, Houten, Netherlands) and was adapted from the

original biosensor presented by Metfies et al. (2005).

74



Publication IV 

Probes for the rRNA biosensor (Table 1) - AOST1 (the signal probe), AOST2 (the capture

probe), and their helper oligonucleotide, H3, are 18S-rRNA probes designed by (Metfies et al. 

2005) and were tested for specificity with dot blot and SHA. Although normalized signals for 

A. ostenfeldii are significantly higher than the signals from all non-target organisms, there is a 

low cross hybridization to A. minutum, which has 2 mismatches to the capture probe. An 

improved protocol for the isolation of algal RNA with the Qiagen RNeasy Plant Mini Kit,

Hilden only enhances this cross reaction. The recently described non-toxic Alexandrium

tamutum (Montresor et al. 2004) presents a single mismatch to the capture probe for A.

ostenfeldii, thus challenging the limits of specificity of this probe.

DNA-Microarray -A DNA-microarray consists of a glass-slide with special surface properties 

(Niemeyer and Blohm 1999a) and many copies of nucleic acids, e.g., oligonucleotides, 

cDNAs or PCR-fragments spotted on it (Graves 1999) in a specific pattern . It is a widely 

used routine tool in many applications because it offers the possibility to analyze a large 

number of up to 250,000 different targets in parallel without a cultivation step (Lockhart et al. 

1996; Graves 1999; Ye et al. 2001). Nucleic acids are fluorescently labelled before 

hybridization and they are detected afterwards with a microarray scanner (Derisi et al. 1997). 

Many functional genomic methods benefit from this technology, such as genome expression 

profiling, single nucleotide polymorphism detection and DNA resequencing (Lipshutz et al. 

1999; Kauppinen et al. 2003; Ji and Tan 2004; Yap et al. 2004; Al-Shahrour et al. 2005; Broet

et al. 2006; Gamberoni et al. 2006). DNA-microarray technology is also used to differentiate 

microalgae (Metfies and Medlin 2005a; Ki and Han 2006; Metfies et al. 2006), fish (Kappel 

et al. 2003) and bacteria (Loy et al. 2002; Peplies et al. 2003; Peplies et al. 2004a; Peplies et 

al. 2004b; Lehner et al. 2005; Loy et al. 2005a; Peplies et al. 2006). 

Probes for the DNA-microarray –Four out of five probes used here (Table 2) were previously 

evaluated on the DNA-microarray (Metfies and Medlin 2005a). The fifth probe, Crypto B, 

recognizes all pigmented cryptomonad algae. It could be shown that these probes work 

specifically with microarrays, but there was potential for enhancement of the signal-to-noise-

ratios because these probes gave low signals and thus were good candidates for signal-

enhancement with LNAs.
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Materials and Procedures 

Culture conditions - All algal strains were cultured under sterile conditions in seawater-based

media (Eppley et al. 1967; Keller et al. 1987) at 15 °C and 150 µEinstein – 200 µEinstein 

with a light: dark cycle of 14:10 hours (Table 1). 

RNA-extraction - Total RNA was isolated from all algal cultures with the RNeasy Plant Mini

Kit (Qiagen, Hilden, Germany) with modifications of the protocol to enhance the quality of

the RNA. This involved a centrifugation of 15 minutes instead of two minutes to achieve an 

improved separation of supernatant and cell debris. Buffer RW1 was applied two times to the 

RNeasy column, incubated for one minute and then centrifuged. The first wash step with

buffer RPE was repeated. RNA concentration was measured with a Nanodrop 

Spectrophotometer (Peqlab, Erlangen, Germany). All of these changes increased the removal

of polysaccharides and proteins to improve quality and quantity of the rRNA extracted. 

DNA-extraction - The template DNA from the environmental clones was isolated from

bacteria by using the Plasmid Mini Kit (Qiagen, Hilden, Germany). DNA from the algal 

strains was extracted from pure cultures with the DNeasy Plant Mini Kit (Qiagen, Hilden,

Germany).

PCR Amplification of 18S rRNA - The entire 18S gene (1800 bp) from the target DNA was 

amplified with universal specific PCR primers 1F (5'-AAC CTG GTT GAT CCT GCC AGT-

3') and 1528R (5'- TGA TCC TTC TGC AGG TTC ACC TAC- 3') without the polylinkers 

(Medlin et al. 1988). The PCR protocol was: 5 min 94°C, 2 min 94°C, 4 min 54°C, 2 min

72°C, 29 cycles and 7 min 72°C. All PCR experiments were done in a Mastercycler 

(Eppendorf, Hamburg, Germany). A 250 bp fragment of the TATA-box binding protein-gene 

(TBP) of Saccharomyces cerevisiae was amplified with the primers TBP-F (5'-ATG GCC 

GAT GAG GAA CGT TTA A-3') and TBP-R-Biotin (5'-TTT TCA GAT CTA ACC TGC 

ACC C- 3') and used as a positive control in the microarray hybridization experiments. The 

TBP amplification protocol was: 5 min 94°C, 1 min 94°C,1 min 52°C, 1 min 72°C, 35 cycles, 

10 min 72°C. All PCR-fragments were purified with the QIAquick PCR purification (Qiagen,

Hilden, Germany) with modifications of the protocol to enhance the quantity of the PCR-

fragments. The elution with the elution buffer EB (Step 8) was performed twice with the same
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buffer. The concentration of the DNA was measured with a Nanodrop Spectrophotometer

(Peqlab, Erlangen, Germany).

Biotin-Labelling of the purified PCR- fragments - For the enhancement of signal intensities

the Biotin DecaLabel DNA Labeling Kit (Fementas, St. Leon-Rot, Germany) was used. 

Labelling of 200 ng of purified PCR-fragment was carried out over night (17 to 20 hours) to 

maximize biotin incorporation into the PCR-fragments. After labelling the purification was

done with the MinElute PCR Purification Kit (Qiagen, Hilden, Germany) with modifications

of the protocol to enhance the quantity of the PCR-fragments as above. Concentration of the 

DNA was measured with a Nanodrop Spectrophotometer (Peqlab, Erlangen, Germany).

Probe synthesis –All probes and helper oligonucleotide probes and positive and negative

controls were synthesized from Thermo Electron Corporation, Ulm, Germany. The locked 

nucleic acids were synthesized from Exiqon (Vedbaek, Denmark). The position of the LNA-

residues within the sequence is proprietary information from Exiqon but they were regularly 

interspersed among normal nucleic acids.

rRNA biosensor

Probe set – A set of two specific 18S-rRNA probes (AOST1 and AOST2, Table 2) was used 

to assess the impact of LNA-probes on the specificity of probes with the biosensor. The

sequence of capture probe AOST2 was redesigned from Exiqon with locked nucleic acids as a

shorter oligonucleotide to maintain the identical melting temperature as the conventional

probe AOST2. Three different probes, LNA 65, LNA 66 and LNA 67, were synthesized with 

a biotin-label and were used as signal probes in combination with AOST1. Probe AOST2 has

a melting temperature (Tm) of 66 °C, AOST1 of 64.3 °C, LNA 65 and LNA 66 of 65°C and 

LNA 67 of 60°C. The positive control was not modified with LNAs. 

Algal strains and templates - The specificity of the LNA probes using the rRNA biosensor

was tested with the target strain Alexandrium ostenfeldii (Table 1) and the non-target strains, 

Alexandrium minutum AL3T and Alexandrium tamutum SZNB029. 

Immobilization of the probes on the sensor chip - The biotinylated capture probes (AOST2, 

LNA 65, LNA 66; LNA 67) were immobilized on the sensor chips as described by (Metfies et 

al. 2005). The working electrode was pretreated with Carbonate buffer (50 mM NaHCO3, pH 
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9.6) following which incubation with NeutrAvidin [0.5 mg/ml] (Pierce Biotechnology, 

Rockford, USA) for at least 4.5 hours at 4 °C was carried out. Excessive NeutrAvidin was 

removed from the working electrode by washing the sensor with PBS (BupH phosphate saline 

pack, Pierce Biotechnology, USA). Subsequently, the working electrode was blocked with 

3% [w/v] casein in PBS for 1 hour at room temperature and afterwards washed in PBS. The 

probes were dissolved at a concentration of 10 µM in bead buffer (0.3 M NaCl/0.1M Tris, pH

7.6) prior to immobilization on the electrodes for 30 minutes at room temperature. All 

incubation steps were carried out in a moisture chamber to avoid evaporation. Unbound probe 

was removed from the electrode by washing with hybridization buffer (75mM NaCl/20mM

Tris, pH 8.0/0.04% SDS). 

Hybridization - Prior to hybridization the total rRNA was fragmented in fragmentation buffer 

(40mM Tris, pH 8.0/100mM KOAc/30mM MgOAc) for 5 minutes at 94°C. The hybridization 

mixture for the detection of rRNA contained 1x hybridization buffer (75mM NaCl/20mM

Tris, pH 8.0/0.04% SDS), 0.25 µg/µL herring sperm DNA, 0.1 pmol/µL dig-labeled probe 

AOST1 and rRNA at different concentrations. Negative control and positive controls contain

water and Test-DNA, respectively, instead of rRNA. Incubation for 4 minutes at 94°C of the

hybridization mixture was carried out to denature the target nucleic acid. Subsequently 2 µL 

of the mixture was applied to the working electrode and the sensor was incubated for 30 

minutes at 46°C. The hybridization was accomplished in a moisture chamber to avoid 

evaporation. Afterwards, the sensor chips were washed with POP buffer (50mM NaH2PO4 × 

H2O, pH 7.6/100mM NaCl).

Detection - The sensor chip was incubated for 30 minutes at room temperature with an

antibody-enzyme complex directed against the digoxigenin coupled to horseradish-peroxidase

(Anti-DIG-POD). 1.5 µL of the antibody-enzyme solution (7.5 U/ml in PBS, pH 7.6/0.1% 

BSA [w/v]/0.05% Tween 20 [v/v]) was added onto the electrode. Excessive enzyme was

removed by washing the sensor with POP buffer; subsequently the sensor chip was inserted

into the PalmSens (Palm Instruments BV, Houten, Netherlands), 20 µL of the substrate 

solution (4-aminophenylamine hydrochloride [44 µg/ml]/0.44% ethanol [v/v]/0.048% H2O2

[v/v]/50mM NaH2PO4 × H2O/100mM NaCl) was applied to the working electrode and an 

electrochemical signal was generated that was directly measured for 10 seconds at a potential 

of -147 millivolt (versus Ag/AgCl) after 8 seconds of equilibration.
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Experimental setup - The LNA probe and the AOST probe experiments were carried at four 

different temperatures: 46 °C (normal hybridization temperature), 55°C, 60 °C and 65°C.

Each LNA probe and the AOST2 probe were tested using the rRNA of the target and non-

target species at each temperature. A hybridization experiment contained three replicates for 

detection of target RNA, and a negative and positive control. Unclear results were repeated to

verify the data. The mean value of the signals was calculated and the standard derivation was 

determined with the following formula:

2 2( )

1

n x x

n n
n

Microarray

Probe set DNA microarray - The five probes evaluated in this publication target the 18S-

rRNA: one for the super kingdom of Eukarya and one for each of these four major phyla of

algae: the Chlorophyta, Bolidophyta, Prymnesiophyta and Cryptophyta. The probe lengths of 

the conventional probes varied from 16-20 base pairs (Table 3). Euk1209, Chlo 02, Boli 02, 

Prym 02 and Crypto B were processed by Exiqon with two different locked nucleic acid 

modifications, LNA2 or LNA3 varying in the number of LNAs/probe and the length and in 

the methylation of Cytosine. The positive control was not modified with LNAs.

Algal strains and templates - The tests of the LNA probes using the microarray-format were

carried out with PCR-fragments amplified from two uncultured, environmental clones and 

two algal strains (Table 3) as target strains. Four strains from the genus Alexandrium (A.

catenella BAHME217, A. ostenfeldii BAHME 136, A. ostenfeldii AOSH1 and A. minutum 

Nantes) were used as non-target strains. 

Microarray production - The probes for the microarray had a C6/MMT aminolink at the 5'-

end of the molecule and were spotted onto epoxy-coated “Nexterion Slide A” slides (Peqlab 

Biotechnologie GMBH, Erlangen, Germany). The oligonucleotides were diluted to a final 

concentration of 1µM in 3x saline sodium citrate buffer and printed onto the slides with the 

pin printer VersArray ChipWriter Pro (Bio-Rad Laboratories GmbH, München, Germany)

and split pins (Point Technologies, Inc., Colorado, USA). The probes were immobilized on 

the slides with a baking procedure of 30 min. at 60°C and stored at -20°C. 
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Standard hybridization protocol - The hybridization solution contained a hybridization buffer

(1M NaCl/10 mM Tris, pH 8/ 0,005% Triton X-100/ 1 mg/ml BSA/ 0.1 µg/µL HS-DNA), the 

biotin-labeled PCR-fragment in a final concentration of 11.25ng DNA per µL and the positive 

control, the 250 bp PCR-fragment TBP from S. cerevisiae with biotin-labeled primers in a 

final concentration of 4.7ng DNA per µL. First, 1 hour pre-hybridization was carried out at 

58C with 2xSTT buffer. The hybridization solution was denatured for 5 min at 94°C and for 

even dispersal of hybridization solution between the chip and the coverslip, a volume of 30 

µL was injected under a Lifter Slip cover slip (Implen, München, Germany). The slides were 

hybridized as follows: 1 hour hybridization in a humid chamber with the hybridization 

solution at a hybridization temperature of 58°C, washing afterwards with 2x and 1x saline 

sodium citrate (2 × SSC/10 mM EDTA/0.05% SDS; 1 × SSC/10 mM EDTA) for 15 min

each. In all microarray hybridization experiments, the chip contained four replicates of each 

probe in four individual arrays. These hybridizations were done four times with the perfectly 

matched targets. For the non-target hybridizations, the hybridizations were repeated twice. 

Staining - The bound PCR-fragments were stained subsequently with Streptavidin-CY5

(Amersham Biosciences, Stadt, Germany) in hybridization buffer at a final concentration of 

100 ng /ml. The staining took place for 30 min. at room temperature in a humid chamber.

Excess staining moieties were removed by washing twice with 2x saline sodium citrate for 5

min. and once with 1x saline sodium citrate for 5 min.

Scanning and quantification of Microarrays - The fluorescent signals of the microarrays were

scanned with a GenePix 4000B scanner (Molecular Devices Cooperation, Sunnyvale USA)

and the obtained signal intensities were analyzed with the GenePix 6.0 software (Molecular 

Devices Coperation, Sunnyvale USA). The signal to noise-ratio was calculated with a formula

according to (Loy et al. 2002) and all ratios were normalized on the signal of the TBP positive 

control. The mean value of the signal-to-noise-ratios was calculated as above.

Assessment

rRNA Biosensor - The PalmSens was adapted for the biosensors using a control chip with a

fixed resistance of 2682 nanoampere (nA). In this study, an amperometric detection technique 

was used with measurement duration of 10 seconds. At the recommendation of Palm

Instruments, the time equilibration of 8 seconds was programmed into measuring method,
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which means a total measurement duration of 18 seconds, 8 seconds longer than with the 

Inventus Biotec GmbH potentiostat used by Metfies et al (2005). The redox-reaction goes to 

completion and then signals decrease over the measurement time because of the limited

substrate amount. Consequently, the signal intensity is lower after 18 seconds than after 10 

seconds. Compared to the signals measured by Metfies et al (2005), all the signals presented 

in this study are about 600 nA lower for the AOST probes than those in Metfies et al. (2005). 

The hybridization temperature for both Alexandrium ostenfeldii probes was optimized in the

present assay to 46°C (Figure 1A). This is around 20 °C below the calculated Tm of AOST 

probes. Hybridization reactions can be carried out at a Tm 25°C below its theoretical

calculation because the rate of DNA annealing is maximal at 20-25°C below its melting

temperature. Hybrids formed from completely homologous nucleic acids will be thermally

stable under these conditions (Howley et al. 1979). However, if hybridizations are performed

at temperatures significantly below the theoretical Tm, the probes could cross hybridize to 

non-target nucleic acids. The AOST probes gave a signal for Alexandrium ostenfeldii of 680 

nA and also showed high cross hybridization signals for A. minutum at 605 nA. However, A.

tamutum, having only one mismatch to AOST2 was not detected by the AOST probes, thus it 

is possible to discriminate target from non-target with a single base pair mismatch. All three 

LNA probes showed almost no signals at 46°C for the different species (Figure 1A). Only 

LNA 66 showed a weak signal for A. ostenfeldii. Also the positive control signals were about

twofold lower for LNA 65 and about 2.7 x lower for LNA 66 and LNA 67 than for the AOST 

probes, which can be explained by the suboptimal hybridization temperature for the LNA 

probes and their melting temperature. It seems that LNA probes do not have the same

hybridization properties as conventional probes in this method.

Metfies et al 2005 showed that a temperature of 55°C results in higher hybridization signals 

than at 46°C but at this temperature, all probes were non-specific (Figure 1B). Only LNA 67 

gave very low signals for all species similar to the signals at a hybridization temperature of 

46°C. Probes AOST1/AOST2, LNA 65 and LNA 66 have a Tm of about 65 °C; LNA 67 has

a Tm of 60°C. A hybridization temperature of 55°C should be the optimum temperature for 

the first three probes. We maintained uniform temperatures and salt concentrations in the 

washing buffers in order to compare the performance of the LNAs against optimal conditions

for the unmodified probes. At hybridization temperature of 60°C (Figure 1C) the AOST 

probes were specific for A. ostenfeldii and showed no signals for the other species, but the
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signal intensity was lower than at 46 °C. All three LNA probes detected A. ostenfeldii and A.

minutum. The AOST probes detected all three species at a hybridization temperature of 65°C 

(Figure 1D), but the signals for A. ostenfeldii and A. minutum were quite low and there was a 

high signal for A. tamutum similar to the signals obtained at 55°C. LNA probe 65 was specific

at 65°C and detected only A. ostenfeldii. This was the only specific signal that we detected. 

LNA probes 66 and 67 showed only low signals for A. ostenfeldii and A. minutum but high 

signals for A. tamutum. The properties of the LNA probes should enhance the signal intensity 

at higher temperatures and discriminate the mismatches but we obtained exactly the opposite 

results. All three LNA probes show non-specific signals at 46°C, 55°C and 60°C for A.

ostenfeldii.

For the use on an rRNA biosensor the probes were also tested for long term stability (data not 

shown). Probes without LNAs are stable over a year. During the experiments with LNA 

probes on the biosensors, it was observed that the LNA probes were unstable after 

immobilization after only a few weeks of storage.

Microarray

Probe development/design - For this hybridization study, previously published and microarray

tested probes were used. They all target higher taxonomic levels, so it is challenging to design 

probes to achieve better specificity and sensitivity that can recognize all taxa belonging to the 

target group. The selected probes are working moderately well but do not show sufficient 

sensitivity for use in routine applications and monitoring of phytoplankton because cell counts 

in field samples are often not high and taxonomic groups with low abundance cannot be 

detectable.

Validation of results in the hybridization protocol - The results of the microarray

hybridization (Figure 2) with specific PCR-fragments indicated that both LNA probes showed 

increased signal intensity. LNA2 performed the best, except for CryptoB, the probe for the 

Cryptophyceae, where LNA3 had the highest result. Signal enhancement varied from approx.

4.5-fold higher results in the Cryptophyceae and Bolidophyceae to 8.5-fold higher signals in

the Chlorophyceae.

Validation of results using non- target hybridizations - In comparison to the above results,

signals of the hybridization of the conventional and LNA-modified probes with non-target 

82



Publication IV

algae species (Figure 3) demonstrated that the conventional probes worked specifically with 

weak cross hybridization with non-related species. All probes, both conventional and LNAs, 

showed positive enhanced signals with the Eukaryotic probe, as they should but there was no 

pattern to the enhancement and these data are not presented.  All LNA probes showed cross 

hybridization signals with non-target DNA. Hybridizations with 27 other Alexandrium strains 

all showed the same tendency (data not shown). 

Increase of hybridization temperature to enhance the discriminative potential of the LNAs

was already tested with the biosensor and the LNA modified probes did not perform as

conventional oligonucleotides. Thus the microarray protocol was not modified any further. 

Even though the results from the hybridizations with target DNA using standard protocols are 

promising with increase in signal-to-noise-ratios, in the hybridization with non target DNA,

the LNA probes show an unacceptable lack of pecificity. For further clarification, the 

mismatches of the probes to the sequences of the four Alexandrium strains are shown in Table 

4. The differences span from 2 to 9 base pairs. Theoretically, it is impossible for these DNAs

to bind to these probes.

Discussion

In this study, we tested and evaluated the use of LNA probes in two solid-phase hybridization 

methods. Although there have been many publications on enhancement of probe or 

hybridization signals with LNA modified probes, there has been no rigorous testing of these 

probes using known target sequences. We found that LNA probes showed no signal 

enhancement in the sandwich hybridization method using the rRNA biosensor. Only one of 

the tested LNA probes showed specific signals at a hybridization temperature of 65°C. Using 

the microarray, the LNA probes could enhance the sensitivity and gave higher signals than the

conventional probes using only target DNA but unfortunately, unspecific binding with non-

target DNA also was enhanced. These results were surprising because in other methods the 

LNA modified probes show great potential and an ability to enhance the signals and to 

improve specificity, accuracy and sensitivity in the whole method (Silahtaroglu et al. 2004; 

Wienholds et al. 2005; Kloosterman et al. 2006; Kubota et al. 2006; Sun et al. 2006). Results 

from other methods using LNA probes cannot be easily compared to the results presented in 

this study, because of the different experimental setups, such as in situ hybridizations in 

tissues (fluorescence in situ hybridization (FISH), in situ hybridization). In FISH experiments,
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the LNA probes using human-specific repetitive elements were very efficient (Silahtaroglu et 

al. 2003; Silahtaroglu et al. 2004). To evaluate the potential possibilities and abilities of LNA 

probes, more experiments with more methods are necessary. A comprehensive and ultimate

evaluation of the potential of LNA probes cannot be conducted here because only a small

subset of probes were tested in two different solid phase based hybridization techniques with 

the use of our standard hybridization protocols. It is likely that the increased signals seen in 

these studies result from non-sepcific binding which cannot be documented because the target

and non-target sequences are unknown. The standard protocols developed for our unmodified

probes on multiprobe chips at specific hybridization temperatures are appropriate for

monitoring of phytoplankton. By choosing other salt concentrations in combination with other 

hybridization temperatures, the signals of the LNA probes could be different. Further 

optimization experiments are only appropriate for the use of only one LNA probe at a time,

because different LNA probes can have different hybridization temperature optima.

Additionally to unspecific binding, other problems occurred using LNA probes. For example,

the biosensors for the monitoring of the toxic algae are prepared in advance of application.

Because of this, the probes on the biosensors have to be stable and need to give the same

signals after several months of storage. With the LNA probes, this application was not 

possible.

Signal enhancement of both methods, biosensors and microarrays, has been achieved 

by changing substrate concentration for the biosensor and by reducing the background noise 

with the help of other blocking solutions. In the case of the microarrays, signal enhancement

can be accomplished by using labelling kits that incorporate multiple labels to a target.
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Table 1. Algae cultures

Species Strain Culture
medium Temperature Origin

Alexandrium minutum AL3T K 15 °C Gulf of Trieste, Italy, A. Beran
Alexandrium minutum Nantes K 15 °C Atlantic Ocean, France 
Alexandrium tamutum SZNB029 K 15 °C Gulf of Naples, Italy, M. Montresor

Alexandrium ostenfeldii AOSH 1 K 15 °C Ship Harbour, Nova Scotia, Canada, A. 
Cembella

Alexandrium ostenfeldii CCMP 1773 K 15 °C Limfjordan, Denmark, Hansen

Alexandrium ostenfeldii BAH ME
136 K 15 °C Biologische Anstalt Helgoland, Germany

Prymnesium parvum f.
patelliferum PLY 527 K 15 °C Plymouth Culture Collection, UK

Rhinomonas reticulate PLY 358 IMR 15 °C Plymouth Culture Collection, UK

Alexandrium catenella BAH ME
217 IMR 15 °C Biologische Anstalt Helgoland, Germany

90



Publication IV

Table 2. Sequences of the probes, the helper oligonucleotide H3, positive and negative

control for the biosensor
Probe name Probe sequence Target Source
Signal probe: AOST1 CAA CCC TTC CCA ATA GTC AGG T Alexandrium

ostenfeldii
CCMP 1773

(Metfies et al. 
2005)

Capture probe: AOST2 GAA TCA CCA AGG TTC CAA GCA G Alexandrium
ostenfeldii
CCMP 1773

(Metfies et al. 
2005)

Capture probe: LNA 65 AAT CAC CAA GGT TCAA Alexandrium
ostenfeldii
CCMP 1773

Exiqon

Capture probe: LNA 66 AGG TTC CAA GCAG Alexandrium
ostenfeldii
CCMP 1773

Exiqon

Capture probe: LNA 67 CCA AGG TTC CAAG Alexandrium
ostenfeldii
CCMP 1773

Exiqon

Helper oligonucleotide:
H3

GCA TAT GAC TAC TGG CAG GAT C Alexandrium
ostenfeldii
CCMP 1773

(Metfies et al. 
2005)

Test DNA (positive
control

CTGC TTG GAA CCT TGG TGA TTC 
ACCT GAC TAT TGG GAA GGG TTG

(Metfies et al. 
2005)
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Table 3. Probe Sequences for the microarray

Probe name Probe sequence Target Source
Euk 1209 GGGCATCACAGACCTG All Eukaryotes 18S (Lim et al. 1993)
Chlo 02 CTTCGAGCCCCCAACTTT Chlorophytceae HE001005.53* (Simon et al. 2000)
Boli 02 TACCTAGGTACGCAAACC Bolidophyceae HE001005.51* (Guillou et al. 1999a)

Prym 02 GGAATACGAGTGCCCCTGAC
Prymnesium parvum f.
patelliferum PLY 527** (Simon et al. 2000)

Crypto B ACGGCCCCAACTGTCCCT Rhinomonas reticulata PLY 358** Medlin, unpublished
Positive
control (PC) ATGGCCGATGAGGAACGT S. cerevisiae, TBP (Metfies and Medlin 2005a)
Negative
control (NC) TCCCCCGGGTATGGCCGC (Metfies and Medlin 2005a)
*Environmental clone from EU FP5- Project PICODIV, ** Plymouth Culture Collection, UK 
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Table 4. Mismatches of the probes to the Alexandrium strains in base pairs (bp)

A. catenella BAHME217 A .ostenfeldii BAHME136 A.ostenfeldii AOSH1 A. minutum Nantes 
Chlo 02 3 bp 2 bp 2 bp 2 bp 
Boli 02 9  bp 8 bp 8 bp 5 bp 
Prym 02 5 bp 5 bp 5 bp 5 bp 
Crypto B 3 bp 3 bp 3 bp 3 bp 
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Figure 1. Signal intensity of the rRNA-biosensor. Four different probes were tested at four

different hybridization temperatures and with three different species. (A) 46°C, (B) 55°C, (C) 

60°C, (D) 65°C. The concentration of the rRNA for all tested species was 450 ng/µL. The

asterisk marks the only specific LNA probe.

94



Publication IV

0

20

40

60

80

100

120

140

160

180

conventional Probe LNA2 LNA3

Si
gn

al
/N

oi
se

-R
at

io

Euk1209 hybridized with all targets Chlo02 hybridized with the Chlorophyte clone Boli02 hybridized with the Bolidophyte clone

CryptoB hybridized with R.reticulata Prym02 hybridized with P. parvum f. patelliferum
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signal-to-noise ratio, defining the threshold for a true signal. 
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Figure 3. (A) Signal/Noise-Ratios of the set of three Boli02 probes in comparison from

hybridization with unspecific PCR-fragments from the genus Alexandrium. (B) Signal/Noise-

Ratios of the set of three Chlo02 probes in comparison with hybridization with unspecific 

PCR-fragments from the genus Alexandrium. (C) Signal/Noise-Ratios of the set of three

CryptoB probes in comparison with hybridization with unspecific PCR-fragments from the

genus Alexandrium. (D) Signal/Noise-Ratios of the set of three Prym02 probes in comparison 

with hybridization with unspecific PCR-fragments from the genus Alexandrium. The black

line represents the value of 2 for the signal-to-noise ratio, defining the threshold for a true 

signal.
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1Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 
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Biosensors and Bioelectronics, to be submitted

Abstract

In order to facilitate the monitoring of toxic algae, a multiprobe chip and a semi-automated

rRNA biosensor for the in situ detection of toxic algae were developed. Different materials

for the electrodes and the carrier material were tested using single electrode sensors and 

sandwich hybridization that is based on species specific rRNA probes. The biosensor consists 

of a multiprobe chip with an array of 16 gold electrodes for the detection of up to 14 target

species. The multiprobe chip is placed inside an automated hybridization chamber, which in

turn is placed inside a portable waterproof case with reservoirs for different solutions. A 

peristaltic pump moves the reagents into the flow cell containing the multiprobe chip. For use

of the device by layperson, a lysis protocol was successfully developed and manual rRNA

isolation is no longer required. Only water sample filtration has to be done manually. The

stand-alone system was evaluated using isolated total rRNA from algae cultures and field

samples. The device processed automatically the main steps of the analysis and completed the 

electrochemical detection of toxic algae in less than two hours in comparison to other routine 

monitoring methods that need at least a day for analysis.
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Introduction

Coastal areas are an important economic source for fishery aquaculture and tourism.

Aquaculture is an increasingly important industry world-wide as a source of food and 

employment. Planktonic algae are critical food for shellfish and fish and thus, in most cases, 

marine phytoplankton blooming is a natural phenomenon and beneficial for aquaculture and 

wild fisheries operations. Marine phytoplankton blooming is regarded as a sudden increase in 

the population and can be activated by suitable growth conditions and cell concentrations can

reach up to 104-105 L-1 (Masó and Garces 2006). However, algal blooms can also pose a 

threat, because about 80 or even more algal species produce potent toxins that can find their 

way through the food chain via shellfish (e.g. oysters, mussels) and fish to humans

(Hallegraeff 2003). Among the toxic algae, the marine dinoflagellate Alexandrium includes a 

number of species producing saxitoxin and potent neurotoxins, which are responsible for 

paralytic shellfish poisoning (Penna 1999). Also certain Pseudo-nitzschia ssp. produce a 

neurotoxin, which causes amnesic shellfish poisoning (Scholin et al. 1999; Masó and Garces 

2006). World-wide monitoring programs have been introduced to observe phytoplankton 

composition. Monitoring of toxic algae by means of traditional methods, namely light-

microscopy, can be time-consuming if many samples have to be routinely analyzed. Reliable 

species identification requires trained personnel to carry out the analysis and expensive 

equipment (Tyrrell et al. 2002; Ayers et al. 2005), because unicellular algae are taxonomically

challenging and some of them have only few morphological markers. Various molecular 

methods are used up to date for the identification of phytoplankton, such as whole cell 

fluorescent in situ hybridization (Anderson et al. 2005; Hosoi-Tanabe and Sako 2005; Kim

and Sako 2005), PCR-based assays (Penna 1999; Guillou et al. 2002) and sandwich 

hybridization assays (Tyrrell et al. 2002; Ayers et al. 2005). A rapid and potential method for 

the detection of toxic algae was introduced by Metfies et al. (2005) using sandwich 

hybridization on a biosensor and molecular probes that specifically targeted the rRNA of 

toxic algae. Electrochemical biosensors combine biochemical recognition with signal

transduction for the detection of specific molecules (Gau et al. 2005). Single electrode sensors 

as well as arrays are known from various sectors like clinical diagnostic and environmental

monitoring. Biosensors have been applied for the detection of biochemical substances as well 

as of micro-organisms like bacteria (Berganza et al. 2006; Lermo et al. 2006; Taylor et al. 

2006). Phytoplankton communities consist of different species and the temporal and spatial 

variability in composition in the sea is substantial. The simultaneous detection of multiple
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species can be accomplished using arrays of electrodes with different molecular probes. There 

are examples for on-site monitoring of toxic algae, such as the environmental sampling

processor (Doucette et al. 2006; Silver 2006). However, molecular techniques for the 

monitoring of harmful algae usually require transportation of samples to specialised

laboratories. The same applies to conventional methods. As a consequence, results are usually 

obtained within five working days after receiving the sample and therefore preventive

measures are not always possible. 

In this regard, a system with two major parts was developed during the EU-project

ALGADEC: a multiprobe biosensor with the aim to detect specific compositions of toxic

algae simultaneously in combination with a hand-held device for the in situ analysis. The

hybridization method involves a capture probe, immobilised on the working electrode surface 

of a biosensor that binds to rRNA isolated from the target organism as well as a second

digoxigen-labelled probe that also binds to the rRNA but carries the signal moiety. An 

antibody-enzyme complex directed against digoxigenin is added and incubated. A redox-

reaction takes place after substrate addition and the resulting electrical current can be

measured with a potentiostat.

We present here the testing of all components in the biosensor and the optimisation of the 

protocol for in-situ analysis of toxic algae. 

Materials and Methods 

Probe sets - One set of capture and signal 18S-rRNA probes (AOST1 and AOST2, (Metfies et 

al. 2005), Table 1), specific for Alexandrium ostenfeldii, was used to compare the

performance of carbon sensors and gold sensors (Gwent Electronic Materials (GEM), UK). 

Another set of 18S-rRNA probes (AMINC and AMINC NEXT), specific for Alexandrium

minutum, was developed previously (see publication II) and used for the experiments using 

different lysis buffers and the adaptation of the multiprobe chip to the semi-automated device.

The probes and the positive controls were synthesized from Thermo Electron Corporation,

Ulm, Germany.
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Single electrode chips

Immobilization of probes on carbon sensors - The immobilization of the biotinylated capture

probe (AOST2) on single electrode carbon sensors used in this study was done according to a 

previous protocol (Metfies et al. 2005). All incubation steps were carried out in a moisture

chamber to avoid evaporation. The surface of the carbon working electrode was pretreated

with carbonate buffer (50 mM NaHCO3, pH 9.6) that was followed by an incubation with 

NeutrAvidin [0.5 mg/ml] (Pierce Biotechnology, Rockford, USA) for at least 4.5 hours at 4 

°C. Subsequently, the sensor was washed with PBS (BupH phosphate saline pack, Pierce 

Biotechnology, USA) to remove excessive NeutrAvidin. For blocking, the working electrode 

was incubated with 3% [w/v] casein in PBS for 1 hour at room temperature and afterwards the 

sensors were washed in PBS. Prior to the application on the electrodes, the probes were 

diluted in bead buffer (0.3 M NaCl/0.1M Tris, pH 7.6) to achieve a concentration of 10 µM.

For the immobilization of the probes on the electrodes, the sensors were incubated for 30 

minutes at room temperature. Unbound probe was removed from the electrode by a washing 

step with hybridization buffer (75mM NaCl/20mM Tris, pH 8.0/0.04% SDS).

Immobilization of probes on gold sensors - The immobilization of thiolated probes on single 

electrode gold sensors was done according to a modified protocol that was first introduced by 

Carpini et al. (2004) (Carpini et al. 2004). Prior to the immobilization of the probes onto the 

gold working electrode the thiolated probes were dissolved at a concentration of 10 µM in 0.5 

mol/L phosphate buffer. The gold working electrode surface was incubated with a probe for at 

least 16 hours at room temperature. During all incubation steps, the sensors were stored in a 

moisture chamber to protect the solutions from evaporation. In order to minimize the non-

specific interaction between the gold surface and the probes, a post treatment with 6-

mercapto-1-hexanol (MCH; 1mmol/L aqueous solution) was carried out for 1 hour. Excessive 

probe and MCH were removed by washing the sensor with 2x saline sodium citrate buffer.

Storage of coated sensors - The sensors were coated with 2% [w/v] Trehalose in PBS and 

dried for approximately 30 minutes at 37°C. Afterwards coated sensors can be stored at 4°C.

Hybridization of test DNA on single electrode sensors - The hybridization mixture for the 

detection of test-DNA contained 1x hybridization buffer (75mM NaCl/20mM Tris, pH 

8.0/0.04% SDS), 0.25 µg/µL herring sperm DNA, 0.1 pmol/µL dig-labelled probe AOST1 
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and 0.1 pmol/µL test-DNA (positive control) as target for the probes. The negative control 

contains no test-DNA. Denaturation of the target nucleic acid was carried out by incubating

the hybridization mixtures for 4 minutes at 94°C. 2 µL of the mixture was applied to the 

working electrode and the sensor was incubated for 30 minutes at 46°C. The biosensors were 

stored in a wet chamber during hybridization to prevent evaporation. Subsequently, the 

sensors were washed with POP buffer (50mM NaH2PO4 × H2O, pH 7.6/100mM NaCl).

Electrochemical detection with single electrode sensors - An antibody-enzyme complex

directed against the digoxigenin coupled to horseradish-peroxidase (Anti-DIG-POD, 7.5 U/ml

in PBS, pH 7.6/0.1% BSA [w/v]/0.05% Tween 20 [v/v]) was applied onto the single electrode

sensor and incubated for 30 minutes at room temperature. Unbound antibody-enzyme

complex was removed by washing the sensor with POP buffer and the sensor was inserted 

into the measurement device, PalmSens (Palm Instruments BV, Houten, Netherlands). 20 µL 

of substrate solution (4-aminophenylamine hydrochloride (ADPA) [44 µg/ml]/0.44% ethanol 

[v/v]/0.048% H2O2 [v/v]/50mM NaH2PO4 × H2O/100mM NaCl) was added to the working 

electrode and the resulting electrochemical signal was directly measured for 10 seconds at a 

potential of -147 millivolt (versus Ag/AgCl) after 8 seconds of equilibration. All experiments

were carried out in triplicate, the mean value of the signals was calculated and the standard

derivation was determined with the following formula:

2 2( )

1

n x x

n n
n

Multiprobe chips

Spotting of multiprobe chips - Multiprobe chips were either hand-spotted or spotted with a

non-contact dispenser (Biodot Ltd., Chichester, UK) from GEM. Hand-spotted chips were 

covered with 10 µL of thiolated capture probe (10 µM in 0.5 mol/L phosphate buffer) and 

incubated as described above. 10 µL of MCH solution were added and incubated for one 

hour, subsequently, unbound probe and MCH were removed by washing the sensor with 2x 

saline sodium citrate buffer. The multiprobe chips were blocked with 10 µL of 5% [w/v] BSA

and washed again with 2x saline sodium citrate buffer. Multiprobe chips were biodotted by

immobilising 0.05 µL thiolated capture probe per electrode and adding of 0.05 µL of MCH
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after incubation. Wash steps and blocking of the surface was carried out as previously 

described. The multiprobe chips were subsequently coated with 10 µL 2% [w/v] Trehalose in

PBS buffer and dried for storage and shipment.

Hybridization mixture and electrochemical detection - The hybridization mixture using test-

DNA (positive control), antibody solution and substrate solution for the multiprobe chip were

prepared as described above. A volume of 10 µL hybridization mixture and antibody solution 

was applied each time onto the chip to cover the whole electrode array. Electrochemical

detection was carried out by placing the multiprobe chip into a substrate reservoir that

harboured the substrate solution. The electrochemical signals were measured using a 

multiplexer, which can measure eight electrodes simultaneously, and the PalmSens detector

(Palm Instruments BV, Houten, Netherlands).

Semi automated Device

Culture conditions - The Alexandrium minutum strain AL3T was cultured under sterile 

conditions in seawater-based media K (Keller et al. 1987) at 15 °C and 120 µEinstein with a

light: dark cycle of 14:10 hours. Prior to the experiments, the cells were counted using the 

Multisizer 3 Coulter Counter (Beckman Coulter GmbH Diagnostics, Krefeld, Germany).

Total rRNA-extraction - The RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was used to 

isolate the total RNA from Alexandrium minutum with modifications of the protocol to 

enhance the quality and quantity of the RNA by removal of polysaccharides and proteins

content. For the achievement of an improved separation of supernatant and cell debris, the 

centrifugation step of two minutes was extended to 15 minutes. The washing buffer RW1 was 

applied twice to the RNeasy column, incubated for one minute and centrifuged. The first wash 

step with buffer RPE was repeated. RNA concentration was measured with a Nanodrop 

Spectrophotometer (Peqlab, Erlangen, Germany).

Fragmentation of total rRNA from Alexandrium minutum - Total rRNA from Alexandrium

minutum was fragmented in fragmentation buffer (40mM Tris, pH 8.0/100mM KOAc/30mM

MgOAc) for 5 minutes at 94°C prior to hybridization.
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Testing of different combinations of lysis buffer and hybridization buffers - Two different lysis 

buffers and hybridization buffers were tested for the determination of the optimal lysis 

properties and hybridization signals on the multiprobe chip. Lysis buffer 1 (Table 2) was 

prepared after Kingston (1998) (Kingston 1998) and the second lysis buffer RLT was taken 

from the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). In combination with the two

lysis buffers two different hybridization buffers were tested (Table 2). The 4x hybridization 

buffer was described by Metfies et al. (2005) and the second hybridization buffer, named

sample buffer, was introduced by Scholin et al. (1999) (Scholin et al. 1999). The experiments

were carried out using 400,000 cells of Alexandrium minutum and 450 µL of the lysis buffers. 

600 µL of 4x hybridization buffer and sample buffer were added to the different lysis 

solutions, respectively. Cell debris was removed by filtration through a 0.45 µm filter

(Millipore, USA). Detection probe AMINC NEXT and fragmentation buffer were added to 

the lysis-hybridization solutions, incubated for 5 minutes at 94 °C and applied onto 

multiprobe chips with immobilised capture probe AMINC. Negative and positive controls 

were prepared as described above and total rRNA was isolated from the same cell counts of 

A. minutum and also hybridised for comparison of the signals.

Hybridization and analysis in semi-automated device - The hybridization mixture was 

prepared as described above, but the amount was amplified. Multiprobe chips consisted of an

immobilised AMIN probes on all 16 working electrodes. The adjustment of the device was

conducted using Test-DNA as target of the probes for A. minutum. Hybridization with

different concentrations of target rRNA from A. minutum followed instead of the target-DNA.

Final adjustments of hybridization mixture and the lysis buffer 1 were carried out using 

500,000 cells of A. minutum.

Results

The signals of the electrochemical detection are measured with negative values, but for 

simplification of analysis, the signals are multiplied by –1 unless otherwise noted. 

Sensor design using single electrode sensors

Comparison of electrochemical signals of carbon and gold sensors - In order to determine the 

most efficient and cost effective material for the working electrodes on the sensors, two 
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different materials, carbon and gold were tested to compare signal intensity and the 

effectiveness of probe immobilization (AOST2). Additionally the signals were compared to

the signals shown by Metfies et al. (2005) with carbon sensors from a different manufacturer.

The achieved signals for the positive controls detected on electrodes with different materials

and sensors from different manufacturers are comparable being in the range of ~1500 nano 

ampere (nA) (Figure 1). However, the signal intensity of the negative control for the different

surface materials varied highly. The carbon sensor from Metfies et al. (2005) showed the 

lowest signal with 78 nA, whereas for the carbon sensor from GEM a signal of 190 nA was 

achieved. The gold sensor showed a very high signal of 611 nA. Therefore the immobilization

protocol for gold sensors was optimized to reduce the background noise of the gold sensors.

Optimization of immobilization protocol for gold sensors - The optimization of the 

immobilization protocol was carried out by adding a surface blocking step to the protocol

subsequent to the immobilization of the probe (AOST2) and the treatment with MCH. Two 

different blocking reagents, casein and bovine serum albumin (BSA), known from the 

literature for their blocking properties were examined for their attributes to reduce the

background noise of the gold surface. As a control, gold electrodes with no blocking were 

hybridized. The blocking with 3% casein in PBS was accomplished at room temperature for 1 

hour, and could reduce the signal of the negative control to 281 nA but also reduced the signal 

of the positive control to 1168 (Figure 2). Different concentrations of BSA, 3%, 5% and 10% 

in 4x hybridization buffer, were applied to the gold sensors and incubated for 1 hour at 46°C.

All treatments reveal a decrease of signal of the negative control regardless which 

concentration of BSA is used, but 3% BSA and 5% BSA showed the strongest improvement.

Additionally the signals of the positive control of the gold sensors blocked with 5% BSA and 

10% BSA increased about 200 nA. In consideration of these results, the 5% BSA blocking 

solution was chosen for the further experiments.

Long term stability of sensors - Long term stability of carbon and gold sensors was tested by

coating the sensors with Trehalose after immobilization of the probes (AOST2) onto the 

working electrode. The sensors were stored at 4 °C and hybridised with target-DNA and the 

detection probe (AOST1) after 4, 6 and 12 months. Signal intensity decreased from freshly 

prepared carbon sensors with 1416 nA to 798 nA for carbon sensors stored over 12 months at 

4 °C (Figure 3). Also the signals for gold sensors decreased from 1711 nA to 1282 nA.
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Optimization of the substrate concentrations - The enhancement of signals intensity was 

examined using carbon sensors (GEM) and different concentrations of substrate (POD) by 

varying the concentration of the mediator 4-aminophenylamine hydrochloride (ADPA) and of 

the hydrogen peroxide (H2O2). Figure 4 shows that an increase of signal was achieved from 

1530 nA of normal POD substrate to 3971 nA of 6.6 mg ADPA and 600 mM of H2O2 by 

increasing concentrations of ADPA and H2O2, simultaneously. The highest signal was 

obtained with 6.6 mg of ADPA and 600 mM of H2O2, however, also the signal of the negative 

control increased from 38 nA to 203 nA.

Development of a multiprobe chip

Design of the multiprobe chip - A disposable multiprobe chip was designed from iSiTEC

GmbH (Bremerhaven, Germany) with the size of a conventional glass slide and produced by 

GEM (UK). The multiprobe chip consisted of a carrier material that contains 16 gold working

electrodes, each with the size of 1.5 mm and a combined counter/reference electrode above

the electrode array (Figure 5). Working and counter/reference electrodes are encircled with a 

dielectric layer. The stems of the electrodes fit to a typical connecting strip. 

Signal transmission between working electrodes - Every second working electrode (e.g. WE

2, 4, 6) of a multiprobe chip with plastic carrier material was spotted by hand with thiolated

probe. Signals were detected only for the spotted working electrodes (Figure 6); non-coated 

electrodes gave signals from 62 nA to 129 nA. There was no signal transmission between the 

electrodes. The signals are in average 3x lower than the signals for the single electrode

sensors because of the smaller diameter of the electrodes.

Selection of carrier material for multiprobe chips - Two different carrier materials (plastic 

and ceramic) were chosen for comparison of spotting properties and signal intensities.

Additionally two variations of the ceramic were tested, a plain ceramic material and ceramic

with a hydrophobic polymer. Figure 7 shows the signal intensity for the different carrier 

materials. Plastic showed signals from 716 nA up to 1099 nA with a mean signal of 913 nA,

the ceramic with hydrophobic polymer signals from 728 nA to 1324 nA with a mean of 937 

nA whereas the plain ceramic showed the lowest signals from 421 nA to 1296 nA with a 

mean of 602 nA. The plastic material showed a higher stability of probe drops during 

spotting, whereas the plain ceramic cannot be spotted with a biodot because of the hydrophilic 
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properties of the ceramic (data not shown). Ceramic with a hydrophobic polymer underneath 

the working electrodes shows good stability of probe drops (data not shown). During the 

experiments the plastic material was found to be difficult to cut into the correct size and 

spotted with probes because of material plasticity.

Development of a semi-automated device

Development of lysis protocol - The current protocol using a kit for total RNA isolation 

requires trained personnel and simplification is crucial for the use of the semi-automated

device. Two different lysis buffers were tested for their lysis properties and the signal

formation in combination with two different hybridization buffers. For comparison of the 

signals negative and positive controls as well as hybridization with target rRNA were carried 

out (Figure 8). The signals of all 16 electrodes were averaged out for the different 

experiments and compared. All experiments with lysis/hybridization buffer combinations and 

total rRNA showed similar signals. 4x hybridization buffer in combination with lysis buffer 1 

achieved the highest mean signal with 554 nA, whereas in combination with RLT buffer from 

the Qiagen Kit, the lowest signal (365 nA) were detected. Sample buffer in combination with

RLT buffer showed a similar signal of 518 nA to the 4x hybridization buffer/lysis buffer 1 

combination. Sample buffer with lysis buffer 1 achieved a mean signal of 462 nA.

Development and adjustment of semi-automated device - A semi-automated portable device, 

named ALGADEC, was developed by iSiTEC GmbH (Bremerhaven, Germany) and the

Alfred Wegener Institute (Bremerhaven, Germany) during the EU-Project ALGADEC

(Figure 9). The device contains reservoirs for antibody, substrate and washing buffers as well 

as a flow cell unit for hybridization. The flow cell unit and an additional inlet for applying the 

samples can be heated and cooled to the required temperatures during the analysis procedure. 

A peristaltic pump moves the reagents through the flow cell and finally into the waste

reservoir (Figure 10). The main steps of the analysis process can be executed automatically in

the measurement device. A flow chart was developed for the varying processes (e.g., 

hybridization, wash steps, antibody incubation and measurement) and pump times were

adapted. Adjustment of the semi-automated device was conducted using multiprobe chips

with the probe set for Alexandrium minutum and Test-DNA as target for the probes. The

disposable multiprobe chip was inserted into the flow cell unit before analysis was started.

During measurement of the electrochemical reaction, the signals from the working electrodes
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with probes are recorded by a microcontroller unit. Process data can be visualized with 

special software programmed by iSiTEC GmbH if a PC is connected to the system. Graphic 

results and the measured values are stored on the hard disc. The portable ALGADEC device

can be operated as a stand-alone system with a built in keypad, display, power supply and

memory card. A waterproofed case protects the system and allows its use under adverse

conditions.

Hybridization of target RNA on multiprobe chips - Hybridizations with two different

concentrations of target rRNA from A. minutum; a negative and a positive control were

carried out in the semi-automated device. The measurements were started when washing 

buffer was still present in the flow cell unit. After approximately 150 seconds of

measurement, substrate buffer arrives in the unit and was pumped continuously through it. 

Redox-reaction takes place and the signals decreased; however, saturation of the reaction was

observed after approximately 500 seconds. The highest signals were found for the positive

control with a mean signal of 265 nA and for all electrodes after 500 seconds of measurement

(Figure 11, A). At the same measurement point, signals for the negative control (Figure 11, 

B), high RNA concentration (Figure 11, C) and low RNA concentration (Figure 11, D) were

observed from 104 nA, 201 nA and 106 nA, respectively.

Hybridization of dissolved cells on multiprobe chips - 500,000 cells from Alexandrium

minutum were dissolved in lysis buffer, mixed with hybridization solution and analyzed in the 

device. Both analyses display higher signals at the beginning of the measurements (Figure 12,

A+B), than the experiments described above. However, the mean signals of all 16 electrodes

of the analyses at 500 seconds were found to be 158 nA and 148 nA, respectively.

Discussion

Design of sensors and comparison of immobilization protocols - Two materials for sensors

were tested and an immobilization protocol for gold sensors was developed and tested.

Immobilization of probes to gold surfaces was already established (Carpini et al. 2004; 

Mannelli et al. 2005) and the described methods were adapted to the gold sensors with some

modifications. The signal formation of a gold or carbon covered surface was similar and 

efficient. Signal comparison of long term stability tests showed that the signals of carbon and 

gold sensors decreased over several month of storage about 45 % and 26 %, respectively, but 
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stored gold sensors performed better and achieved higher signals. Long term storage enables 

the production and coating of sensors in advance of use. Experiments with higher substrate 

concentrations revealed the potential of enhanced signals. A substrate concentration of 2.2 mg 

ADPA and 200 mM of H2O2 would be sufficient for a twofold signal increase. However, the 

immobilization protocols for the different sensors have advantages and disadvantages

concerning costs. One advantage of the carbon sensors is the lower price of the carbon paste 

in comparison to the gold paste. Gold sensors have the benefit that the coating with expensive

NeutrAvidin can be omitted given that thiolated DNA probes bind directly to the surface of 

the gold. Because the gold sensors required fewer immobilization steps in the protocol, thus

reducing manufacturing costs and produced higher values during long term-storage, the gold 

sensors were chosen over the carbon sensors for the further development of a biosensor.

Development of multiprobe chip - A multiprobe chip was designed from iSiTEC GmbH with

16 gold electrodes, that can detect 16 different target species. The chip was developed with 

the size of a conventional glass slide, which offers the possibility to use automated dispensing 

systems for the spotting of probes. Furthermore, the chips are easy to handle because of their 

size and can be stored in standard boxes. The size of the working electrodes was reduced in

comparison to the single electrode sensors to decrease the electrode area and consequently the 

amount of reagents needed for analysis. Signal transmission between the electrodes was 

assessed and only background noise was determined. Different carrier materials for the 

electrodes were investigated for signal formation and probe spotting properties. Plastic 

material showed high signals and can be spotted with probes by hand, however, the signals 

from electrodes spotted with probes by hand were irregular and unacceptable. Automated

spotting with a dispenser requires accurately cut chips and the plastic material was easily

bent, making this material unsuitable. To overcome this problem, the ceramic carrier material

was chosen for the multiprobe chips. It could be accurately cut and thus be spotted with an 

automated dispenser. The experiments with the ceramic chips showed lower signals than the

plastic material because the hydrophilic surface hampered the spotting. Finally the addition of 

hydrophobic polymer overcame this last problem. However, during the manufacturing of

these chips, difficulties using the automated dispenser for probe spotting occurred and the 

multiprobe chips for our device tests presented here were hand-spotted. We anticipate that in

the production of these chips for commercial use that all spotting difficulties encountered here 

will be overcome.
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Development of a semi-automated device - The methods described in the first part of our 

study involve the isolation of total rRNA from the algal cells. The proposed use of our device 

by inexperienced users meant that we needed to simplify the rRNA extraction method. A lysis 

protocol was successfully developed to circumvent manually rRNA isolation. The 

combination of our 4x Hybridization buffer with lysis buffer 1 resulted in high signals and 

can be inexpensively produced. Thus, all required steps for the automated the detection of 

toxic algae were achieved. A portable device was developed during the EU-project

ALGADEC, which can be used as a stand-alone system in the field (e.g., on ships or shores) 

as well as in the laboratory. The device is easy to handle even for laymen and sample analyses

with all required steps can be performed automatically in less than two hours. Only the water

sample has to be filtered by hand by the user and placed in the inlet of the device. Data are 

stored in the microcontroller unit or, if attached to a PC, can be analyzed directly. Multiprobe

chips and the ALGADEC device were tested using isolated RNA and cells from Alexandrium

minutum and the data were compared. The signals for comparison were chosen after 500 

seconds of measurement because saturation of the reaction was observed. Hybridizations with

two different concentrations of target rRNA, high and low, from A. minutum were carried out.

Clearly distinguishable signals were determined for low and high concentration of rRNA; a

low rRNA concentration resulted in signals in the range of the negative control and was 

consequently at the detection limit of the probes for A. minutum. A high rRNA concentration 

gave mean signal of 201 nA. When compared to hybridization signals for dissolved cells of A.

minutum decreased signals (mean signal 150 nA) can be observed. The isolated rRNA with a 

high quality originated from about 260,000 cells, whereas the filtered cell lysate of 500,000 

cells contained also the proteins and polysaccharides, which can disturb the hybridization 

immense. Additionally a field sample with Pseudo-nitzschia cells from the Orkney Islands, 

United Kingdom, was tested with a multiprobe chip coated with the genus probe for Pseudo-

nitzschia (data not shown). The analysis revealed a strong positive signal for Pseudo-

nitzschia. Hence, the semi-automated device in combination with multiprobe chips can also

be successful used for the analysis of field samples.

Forthcoming research - The sensitivity of the system has to be optimized and the detection

limit must be reduced, because when a cell count of the toxic algal cells is reached, then the 

fisheries are closed. We must have a detection limit far less than this number to meet

monitoring requirements. To meet these requirements, several adaptations must be made. The

spotting of the multiprobe chips with probes has to be automated to achieve a regular signal
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formation. We plan to spot different probes, i.e. species onto the chip, thus chips specific for

different geographic areas can be developed. Several specific probe sets for toxic algae have 

been developed and need to be adapted to the chips. Furthermore, the sensors must be 

calibrated for each probe set to convert the electronic signal into concentration of toxic cells 

with the help of the software.

Conclusion

A multiprobe chip with 16 gold electrodes was designed and adapted for the use in a

sandwich hybridization assay. Furthermore, a portable semi-automated device was developed 

that automatically processed the main steps of the analysis and facilitated the electrochemical

detection of toxic algae in less than two hours. The device can be used by laymen because a 

manual RNA isolation is not longer required with the development of a lysis protocol. The 

proof of principle was presented here. The multiprobe chip and the ALGADEC device can be

used as stand-alone system in the field and will contribute to monitoring programs to provide

an early warning system for the aquaculture and tourist sectors who are most affected by toxic 

algal blooms. 
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Table 1. Sequences of capture and detection probes and positive control for Alexandrium

ostenfeldii and A. minutum
Probe name Probe sequence Target Citation
Detection probe: AOST1 CAA CCC TTC CCA ATA GTC AGG T Alexandrium

ostenfeldii 18S
Metfies et al. 
(2005)

Capture probe: AOST2 GAA TCA CCA AGG TTC CAA GCA G Alexandrium
ostenfeldii 18S

Metfies et al. 
(2005)

Test DNA AOST 
(positive control

CTGC TTG GAA CCT TGG TGA TTC 
ACCT GAC TAT TGG GAA GGG TTG

Metfies et al. 
(2005)

Capture probe: AMIN C GAA GTC AGG TTT GGA TGC
Alexandrium
minutum 18S Publication I 

Detection probe: AMIN C 
NEXT TAA TGA CCA CAA CCC TTC C 

Alexandrium
minutum 18S Publication I 

Test DNA AMIN (positive 
control)

GCA TCC AAA CCT GAC TTC GGA 
AGG GTT GTG GTC ATT A Publication I 
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Table 2. Contents of lysis buffer 1 and hybridization buffers 

Buffers Chemical
Lysis buffer 1, pH 11 4 M guanidin-isothiocyanat

25 mM sodium citrate
0.5 % Sarcosyl [w/v]

4x Hybridization buffer, pH 8 0.3 M NaCl
80 mM Tris
0.04% SDS

Sample buffer, pH 7.5 100 mM Tris
17 mM EDTA 
5 M Guanidine isothiocyanate
8.35% Formamide
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Figure 2. Reduction of background signal by using casein and bovine serum albumin as 

blocking solutions on gold sensors coated with the thiolated probe AOST2
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Figure 5. Multiprobe chip with 16 gold working electrodes
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with thiolated probe AOST2
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Figure 9. Semi-automated portable ALGADEC device 
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Figure 10. Flow chart of semi-automated device 
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3. Synthesis

3.1 Colorimetric assay for the detection of toxic algal species 

The composition of phytoplankton communities in Europe includes several genera of toxic

algal species, such as Alexandrium, Dinophysis, Gymnodinium and Pseudo-nitzschia (Simon

et al. 1997; John et al. 2003; Moita et al. 2003; Chepurnov et al. 2005). Monitoring programs

aim at the rapid and reliable detection of harmful algae in coastal areas and shellfish and fish 

farms. Morphological identification and enumeration of harmful species using standard 

microscopy procedures are time-consuming and a broad taxonomic knowledge is required. 

For example Alexandrium minutum is characterized by minute details of its thecal plates and

thus, is difficult to distinguish from other species of the same genus (Taylor et al. 1995). 

Molecular technologies and molecular probes, that target the large or small subunit ribosomal

RNA (rRNA), are rapidly improving the detection of phytoplankton, because the applications 

are based on the discrimination of the genetic differences of the different species. Down to the 

present day the development molecular probes is limited to only a small percentage of the

different toxic algal species.

In Publication I the detection of the toxic dinoflagellate Alexandrium minutum was 

conducted by the use of molecular probes in sandwich hybridization. Two probes are needed 

in the sandwich hybridization format (Zammatteo et al. 1995; Rautio et al. 2003), and at least 

one of the probes has to be specific for the target. The so-called capture probe is immobilized

on solid surfaces as in combination with DNA biosensors (Metfies et al. 2005) and binds to 

target RNA or DNA. A signal moiety is covalently bound to a second probe, which binds in 

close proximity to the binding site of the capture probe. A commercially available PCR 

ELISA Dig Detection Kit was adapted for the use of sandwich hybridization. A set of two 

18S ribosomal RNA probes for the species-specific identification was developed for A.

minutum. The capture probe was biotin-labelled and the signal probe digoxigenin-labelled for 

the application in the sandwich hybridization. Probe specificity was successfully 

demonstrated with the microtiter plate assay; because the signals for all A. minutum strains

were always significantly higher than the signals for the non-target species. It was also 

pointed out that Alexandrium species with a single mismatch in the target sequence were not 

detected. For the application of the assay as a monitoring method, achieved signals need to be 

correlated to cell numbers. Bloom development in the field is expected to correspond most
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closely to optimum growth conditions (Ayers et al. 2005). Hence, total rRNA concentration 

per cell of A. minutum was determined at optimum growth conditions for three different 

strains and a mean concentration of 0.028 ng rRNA per cell was found. Similar findings were 

achieved from Metfies et al. (2005) for A. ostenfeldii and for different growth conditions of A.

minutum (personal communication L. Carter, Westminster University, UK). Consequently,

the calculation of the cell numbers from the isolated rRNA concentration is possible. A 

standard calibration curve for A. minutum was investigated for the assay, resulting in a good 

correlation of signal with rRNA concentration. Thus, cell numbers can be calculated from the 

signal intensity of the assay. Natural water samples were spiked with different algal cells to

evaluate the potential of the microtiter plate assay for the monitoring of field samples. The

results demonstrate that the molecular assay was capable of detecting A. minutum cells at 

different cell counts in the presence of a complex background. However, in comparison to a 

pure culture with the same number of cells, lower signals were achieved for the spiked 

samples. One reason for the different hybridization signals could be the composition of the 

sample, because large amounts of sediment were observed at the sampling station. Sediment

seems to disturb the RNA isolation and the isolation protocol needs to be modified. 

Nevertheless, the adaptation of the commercially available PCR ELISA Dig Detection Kit

was successful and the experiments with spiked natural samples present a promising proof of 

principle.

In this study a method for the detection of the toxic dinoflagellate Alexandrium minutum

using 18S rRNA probes and a microtiter plate assay was established. This method has the 

potential to be a fast and reliable method for the detection of toxic algae by eliminating the 

need for manual algae counts. Furthermore, a rapid assay was developed for the routine 

testing of probe specificity at both the clade and target sequence level much in the same way 

that dot blots are used to screen for specificity of FISH probes.

The microtiter plate assay developed in Publication I was applied for further species-specific 

identification of toxic algal species in Publication II. Probe sets for the toxic species

Gymnodinium catenatum, Protoceratium reticulatum, Lingulodinium polyedrum, Prymnesium 

parvum, Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, P. seriata 

and P. pungens were designed from a database consisting of more than 3000 published and 

unpublished algal 18S rRNA sequences. Single probes for some species had already been 

developed and tested for specificity by means of dot blot and FISH (Simon et al. 1997; Töbe 
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et al. 2006). Hence, for these only a second probe was designed to complete the sandwich 

hybridization and the combination of both of the probes needed to be tested for specificity. A 

probe set for the genus of Pseudo-nitzschia species was previously designed and needed to be 

adapted. The large and the small subunit ribosomal RNA genes are the targets for the different 

probe sets. The sandwich hybridization in the microtiter plate assay was applied for the 

specificity tests. Target rRNA was isolated from laboratory strains of the target species and

closely related species. A total of ten probe sets for different toxic algal species were designed

and tested and eight probe sets proved to be highly specific. Two probe sets with the target

species Gymnodinium catenatum and Prymnesium parvum detected one non-target species in 

addition to the target species, respectively the non-toxic G. impudicum and P. nemamethecum.

The specificity of the probes is dependent on the number of sequences of the targeted gene 

available in databases. However, even if a probe is designed from a large database, such as the 

used database, it is almost impossible to avoid the occurrence of some false-positive results

with a monostringent hybridization approach. The in silico prediction of the stability of

mismatched probe-target hybrids is difficult and influenced by many factors, such as the

number of mismatches, the nature of the mismatching nucleotides, the position of the 

mismatches in the probe target site, and possible stacking interactions of nucleotides adjacent

to the mismatches (Loy et al. 2005b). The protocol applied in this study using specific 

hybridization temperatures is optimized for the microtiter plate assay as well as for the 

biosensor described in Publication V. However, specific identification of target organisms is 

still possible with the probes sets for the species described above. The probe set for 

Gymnodinium catenatum presents significant high signals for only 10,000 cells, whereas for 

the same signal intensity at least 250,000 cells of the non-target species G. impudicum are 

needed, thus a misinterpretation of signal is unlikely. The detection of P. nemamethecum in 

brackish waters with the probe set for P. parvum cannot be ruled out but seems to be unlikely, 

because the majority of P. parvum blooms have been recorded in brackish waters (Edvardsen

and Paasche 1998) and there have not been any reports of blooms caused by P.

nemamethecum (West et al. 2006). 

The ten probe sets presented in this study are valuable tools for identifying and monitoring

different toxic algae and can be adapted to the multiprobe chip and the semi- automated

biosensor presented in Publication V. Furthermore, the specific capture probes can also be 

adjusted to other molecular methods using ribosomal RNA probes, such as the DNA-

microarray technology, real-time PCR or FISH.
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In summary, a commercially available PCR ELISA Dig Detection Kit was successfully

adapted for the detection of the toxic dinoflagellate Alexandrium minutum by application of 

ribosomal 18S probes and sandwich hybridization. The mean concentration of total rRNA per

cell of was determined and a standard calibration curve for different RNA concentrations and 

thus cell counts was investigated for the assay. Additionally the assay was able to detect A.

minutum cells at different cell counts in the presence of a complex background. This 

represents the potential to serve as a fast and reliable method for the detection of toxic algae 

by eliminating the need to count algae manually. Furthermore, the assay showed the 

specificity of 10 additional probe sets for the toxic algal species Gymnodinium catenatum,

Protoceratium reticulatum, Lingulodinium polyedrum, Prymnesium parvum, 

Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, P. seriata and P.

pungens and the genus Pseudo-nitzschia.

3.2 Assessment of signal enhancement

DNA-biosensors are commonly used in clinical diagnostic (e.g., glucose detection),

environmental monitoring (e.g., hazardous chemicals), identification of infectious organisms

and forensics. Biosensors are also commonly used for the rapid identification of aquatic 

microorganisms. The identification of the toxic dinoflagellate Alexandrium ostenfeldii using a 

biosensor was presented by Metfies et al. (2005). The advantage of biosensors is displayed by 

the in situ use and therefore the circumvention of sample transport to the laboratory.

Therefore, this technique is suitable for the application in monitoring programmes, because of 

the simple use and analysis. Another potential method is the DNA-microarray-technology,

that enables the simultaneous analysis of up to 250,000 probes (Lockhart et al. 1996) and can 

be used as a method to analyse samples from complex environments (Metfies and Medlin 

2004; Medlin et al. 2006). However, the reliable identification of harmful algal species with 

probe-based methods requires highly specific and sensitive probes and high quality nucleic 

acids.

In Publication III the method for the electrochemical detection of toxic algae is presented, 

the steps were described in detail and visualized for easy application by inexperienced users.

Several modifications were established to the protocol described by Metfies et al. (2005). 

First of all, different manufacturers were located for the production of the single electrode 
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sensors and the measurement device for the improvement of the biosensors. In addition, the 

total RNA isolation protocol from Qiagen (Hilden, Germany) was modified to increase the 

removal of polysaccharides and proteins to improve quality and quantity of the extracted

rRNA. The improved quality of the rRNA led to an enhanced signal intensity of the 

electrochemical measurements. The improved method was tested with spiked field samples in 

an intercalibration workshop (Godhe et al. 2007). In Publication IV a higher signal was also

determined for undesired cross-hybridization of A. ostenfeldii probes to Alexandrium minutum

in comparison to the data previously presented by Metfies et al. (2005). This represents no 

drawback of the probe detection of A. ostenfeldii, because also A. minutum is a toxic species 

and needs monitoring. On the multiprobe chip, presented in Publication V; a combination of

probes will facilitate the differentiation of both species. The introduction of locked nucleic 

acids (LNAs) promises an enhancement of both specificity and sensitivity of molecular

probes (Kongsbak 2002). LNAs have shown their potential in many applications, such as 

gene expression profiling, genotyping assays, fluorescence in situ hybridization and real-time

PCR (Jacobsen et al. 2002b; Nielsen and Kauppinen 2002; Silahtaroglu et al. 2003; Ugozzoli 

et al. 2004b). Many publications describe the enhancement of probe or hybridization signals 

with LNA modified probes, but there has been no rigorous testing of these probes using 

known target sequences. The specificity and sensitivity of conventional molecular probes and

LNA modified probes were compared in Publication IV by application of sandwich 

hybridization on biosensors and on DNA-microarrays. Three different species, A. ostenfeldii,

A. minutum and A. tamutum, were tested with conventional and LNA modified probes on the

biosensor. In addition to the cross-hybridization signal for A. minutum also A. tamutum was

tested for signal formation, because of only one mismatch in the 18S rRNA sequence to the

capture probe. Kauppinen et al. (2003) suggested that the use of LNAs could significantly 

increase mismatch discrimination (Kauppinen et al. 2003). Previously, several probes were 

successfully adapted to the DNA-microarray but, because of low signal intensities, an 

enhancement of the signal-to-noise-ratios using LNAs was evaluated. The present study 

revealed that the LNA probes showed neither signal enhancement using the rRNA biosensor,

nor discrimination of only one mismatch. The DNA probes showed equal or better results in 

all experiments using the biosensor, whereas LNA probes could enhance the sensitivity of the

microarray and gave higher signals than the conventional probes. However, unspecific 

binding with non-target DNA was also enhanced. In conclusion the LNA probes do not 

improve signal intensity under at these solid surface-hybridization applications. Other 

potential application for signal enhancement of the biosensor could be the variation of 
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substrate concentration and the reduction of background noise with blocking solutions. Signal 

enhancement in case of the microarray can be accomplished by using labelling kits that 

incorporate multiple labels to a target or also the reduction of background noise.

In summary, the total rRNA isolation protocol was improved and the hybridization procedure 

for the electrochemical detection of toxic algal species was described in detail and 

illustratively visualized for easy application by inexperienced users. Furthermore, locked 

nucleic acid probes were tested with known target sequences and the specificity and 

sensitivity was compared to signal formation of conventional molecular probes. The 

hybridization signals for both of the tested solid surface methods could not be enhanced and 

the conventional DNA probes showed equal or better results.

3.3 Detection of toxic algal species using multiprobe chips and a semi-automated

device

The increasing demand for fast monitoring techniques emerges from poisoning incidences 

and economic losses, which cannot be foreseen because of sample analysis taking up to five 

working days. In addition, the statutory method for shellfish flesh analysis, the mouse-

bioassay, induces ethical problems. HPLC as well as traditional light microscopy methods are 

time-consuming and need high trained personnel. Furthermore, the samples have to be

transported to specialized laboratories for analysis. A potential tool for bloom formation and

thus potential shellfish contamination is provided by the in situ investigation of coastal water

for the occurrences of different toxic algae. There are examples for on-site monitoring of toxic 

algae, such as the environmental sampling processor (Doucette et al. 2006; Silver 2006).

In order to facilitate the in situ monitoring of toxic algae, a multiprobe chip and a semi-

automated rRNA biosensor for the in situ detection of toxic algae were developed and 

evaluated in Publication V. Simultaneous detection of different species can be accomplished

using arrays of probes, such as microarrays (Metfies and Medlin 2004). A multiprobe chip

with an array of 16 gold electrodes for the simultaneous detection of up to 14 algal target 

species was designed in this study. For a simplification of sensor handling the standard size of 

a conventional glass slide was chosen and thus can be stored in standard boxes. Different 

materials for the electrodes and the carrier material were tested in order to achieve a
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multiprobe chip that can be coated with probes automatically. The mass production and 

coating of sensors in advance of use are able to decrease the costs; consequently the probes 

have to be stable on the electrode surface and need to give same signals after several months

of storage. Long-term storage experiments showed that the sensors are stable over a year, 

however a signal decrease of 26 % was observed. In order to facilitate a cost efficient method

the size of the working electrodes was reduced in comparison to the single electrode sensors 

used from Metfies et al. (2005). Hence, the electrode area is decreased and the amount of 

reagents needed for analysis is reduced.

So far, all monitoring methods demand high trained personnel for sample analysis. 

Experienced users are needed for the isolation of total rRNA from the different algal species 

for analysis using the biosensor. Scholin et al. (Scholin et al. 1999) reported the use of crude 

cell homogenates for the detection of Pseudo-nitzschia in sandwich hybridization assays. For

the use of the biosensor by layperson an adaptation of analysis and hybridization procedures 

was required. An easy to use lysis protocol was successfully developed, thus manual rRNA 

isolation is no longer necessary, only water sample filtration has to be performed manually.

For the simultaneous detection of several toxic species, a multiprobe chip with 16 working

electrodes was generated. An automated, portable device, which is easy to handle even for 

laypersons, was designed and extensively tested in combination with the multiprobe chip and

molecular probes for Alexandrium minutum. Isolated RNA and cells from Alexandrium

minutum were analyzed with the device and the data was compared. It was observed that after 

500 seconds of measurement a saturation of the reaction takes place. Clearly distinguishable 

signals were determined for low and high concentration of rRNA and when compared to

hybridization signals for dissolved cells of A. minutum, decreased signals were observed. The 

signal variations can be explained by the quality of the analyzed sample. The isolated rRNA 

had a high quality, whereas the crude cell lysate contains still proteins and polysaccharides, 

which can disturb the hybridization. During a demonstration of the device to mussel farmers,

a field sample containing Pseudo-nitzschia cells was analyzed and resulted in a strong 

positive signal for Pseudo-nitzschia. Hence, the device is able to contribute to monitoring

programs to provide an early warning system for the aquaculture and tourist sectors, which 

are affected by toxic algal blooms the most. The probes presented in Publication I and

Publication II can be adapted to the use on the multiprobe chip, thus area chips for different

regions in Europe can be developed. 
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In summary, a stand-alone, semi-automated system in combination with multiprobe chips was

developed. A multiprobe chip with 16 gold electrodes was designed and adapted for the use in

a sandwich hybridization assay. Long-term stability of the sensors was examined and the 

sensors found to be stable over a year. A lysis protocol was adjusted and manual RNA 

isolation is not longer required. Analysis of different concentrations of isolated total rRNA 

and crude cell lysates revealed clearly distinguishable signals, but lower signals for the cell

lysate. The analysis of all samples was performed in less than two hours with the semi-

automated device in comparison to other routine monitoring methods that need at least a day 

for analysis.
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4. Future Research 

Two potential monitoring methods for toxic algal species were presented in this study. 

However, both methods can be improved through several measures. The microtiter plate assay

presented in Publication I was applied for natural water samples and showed a signal

reduction in comparison to experiments using pure laboratory cultures. Sediment seems to 

disturb the RNA isolation; additionally it was observed that total rRNA cannot be isolated 

from diatoms, such as Pseudo-nitzschia spp., using a conventional Kit but can be using a

phenol-chloroform method (Publication II). An improvement of the existing protocol has to 

be examined and the development of an independent system without RNA isolation, such as 

method described by Scholin et al. (1999), should be included in further experiments. The 

RNA concentration per cell has to be determined for every target species at optimum growth 

conditions, because this corresponds most closely to bloom development in the field (Ayers et 

al. 2005). Subsequently, calibration curves allow the correlation of signal to cell numbers.

Detection limits of each probe set for the different toxic species have to be identified. Final 

test of the microtiter plate assay should include field samples.

The sensitivity of the semi-automated system presented in Publication V has to be optimised

and probes developed in Publication I and Publication II need to be adapted to the

multiprobe chip to allow the development of chips specific for different geographic areas. For

this requirement, the probes have to be dispensed onto the multiprobe chips automatically to 

achieve a regular signal formation. Recommended action cell concentrations are emphasized

for the different harmful algal species (Rensel and Whyte 2003), thus the different probes 

have to be examined for their detection limit. The detection limit needs to be below the

allowed cell numbers limits to meet monitoring requirements. Furthermore, the sensors have 

to be calibrated for each probe set to convert the electronic signal into concentration of toxic 

cells with the help of the software. Subsequently, field samples need to be tested for

evaluation. A total of 17 different probe sets can be applied to the multiprobe chips, however, 

about 97 toxic species are known today (Moestrup 2004) and the number is increasing. 

Consequently, further experiments should include the development of new probe sets and 

their adaptation to the biosensor. The biosensor presented in this study is a prototype and has

to be improved in terms of system integration and maintenance for commercial purpose. 

Furthermore, the device could also be integrated into buoy systems for continuous analysis of 
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coastal waters. Finally, the biosensor can also be adapted for several other fields, such as the 

detection of microbial pathogens in water or for clinical diagnostics.
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5. Summary

This doctorial thesis aimed at the development and evaluation of fast and reliable monitoring

methods using molecular technologies. The detection of harmful algal species in coastal areas 

and shellfish farms is an important requirement of monitoring programs, because of their 

responsibility for poisoning of consumers through ingesting contaminated seafood and for 

fish and shellfish kills. Current monitoring methods include the statutory application of the 

mouse-bioassay for the monitoring of toxin contamination of shellfish, toxin determination

using HPLC and standard light microscopy. The methods are time-consuming, expensive and 

require high trained personnel. Molecular technologies using probes can improve the

detection of phytoplankton.

The first potential method for the detection of harmful algae is presented by an assay that is 

based on the discrimination of the genetic variation of the different species. The PCR ELISA 

Dig Detection Kit is commercially available and was adapted for the detection of the toxic

dinoflagellate Alexandrium minutum using sandwich hybridization. Sandwich hybridization 

requires two probes for each species, a capture probe and a nearly adjacent signal probe. A set 

of two probes for the species-specific identification was designed and were found to be highly 

specific. The mean concentration of total rRNA per cell was determined from three different

strains of A. minutum and found to be 0.028 ng. A standard calibration curve for different 

RNA concentrations and thus cell counts was established for the assay. Spiked water samples

were used to evaluate the assay and the standard curve. The results demonstrated the ability of

the assay to detect A. minutum cells at different cell counts in the presence of a complex

background. The assay has the potential to be a fast and reliable method for the detection of 

toxic algae by eliminating the need to count algae manually. The microtiter plate assay was 

applied for further species-specific identification of the toxic algal species Gymnodinium

catenatum, Protoceratium reticulatum, Lingulodinium polyedrum, Prymnesium parvum, 

Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, P. seriata and P.

pungens and the genus Pseudo-nitzschia. Probe sets were designed to target the large or the 

small subunit ribosomal RNA genes. The specificity of the different probes sets was tested 

with ribosomal RNA isolated from laboratory strains of the target species and closely related 

species. Eight probe sets proved to be highly specific in the assay. Two probe sets, GCAT and 

PRYM 694, detect one other species, in addition to the target species. The designed probe sets 
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are valuable tools for the monitoring of toxic algae and can also be adapted to the semi-

automated biosensor. The microtiter plate assay is an effective and fast method to test probes 

for use in a sandwich hybridization formats, similar to the way that dot blots are used to 

screen for specificity for FISH probes.

The detection of toxic algae can also be electrochemically achieved using a biosensor and 

sandwich hybridization. Biosensors can measure on-site and sample transport to the 

laboratory is unnecessary. The protocol introduced by Metfies et al. (2005) using a biosensor 

for the detection of Alexandrium ostenfeldii was modified and illustrated for easy application 

by inexperienced users. The modifications included the adaptation of single electrode sensors

and the measurement device from different manufacturer as well as the total RNA isolation

protocol. Improved quality of the rRNA led to an enhanced signal intensity of the 

electrochemical measurements. An enhancement of both the specificity and sensitivity of 

molecular probes can also be achieved by introduction of locked nucleic acids (LNAs). The 

specificity and sensitivity of conventional molecular probes and LNA modified probes were 

compared in two different solid phase hybridization methods; sandwich hybridization on 

biosensors and on DNA-microarrays. Conventional molecular probes and LNA probes that

target Alexandrium ostenfeldii were examined for signal formation in combination with the

biosensor. In addition to A. ostenfeldii also A. minutum and A. tamutum were tested for cross-

hybridization. However, signal enhancement for A. ostenfeldii could not be observed. 

Furthermore, the LNA capture probes could not discriminate only one mismatch in the 18S 

rRNA sequence of A. tamutum. In addition, the conventional probes showed a higher cross-

hybridization signal for A. minutum in comparison to the data previously presented by Metfies 

et al. (2005), because of the higher quality of the rRNA. However, both species, A. ostenfeldii

and A. minutum are toxic and need to be monitored. In combination with the DNA-

microarrays, the LNA-probes displayed an enhancement of sensitivity, but also more false-

positive signals. In summary, the conventional DNA probes showed equal or better results 

than the LNA probes. LNA technology could not improve signal intensity under certain solid 

surface-hybridization applications.

In addition to the microtiter plate assay and the single electrode assay, a multiprobe chip and a 

semi-automated rRNA biosensor for the in situ detection of toxic algae were developed. The 

design of the multiprobe chip with an array of 16 gold electrodes was conducted by testing

different materials for the electrodes and the carrier material with the help of single electrode 
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sensors. The multiprobe chip can detect up to 14 target species using the previously designed

molecular probes. An easy to handle, automated, portable device was designed and 

extensively tested in combination with the multiprobe chip and molecular probes for

Alexandrium minutum. A peristaltic pump moves the reagents from the reservoirs into the

hybridization/fluidic chamber, thus the main steps of the analysis are processes automatically. 

Furthermore, a lysis protocol was successfully developed for use of the device by 

inexperienced staff and manual rRNA isolation is no longer required. The device was 

evaluated using isolated total rRNA and cells from algae cultures and clearly distinguishable 

signals were determined. The stand-alone system can analyse samples in less than two hours 

and can be applied in the field. Thus, the device and the multiprobe chip have the potential to 

serve as an early warning system for the aquaculture and tourist sectors.

6. Zusammenfassung

In dieser Dissertation wurden schnelle und verlässliche Monitoring-Methoden mit Hilfe 

molekularer Techniken entwickelt und bewertet. Aufgrund der Vergiftungen von 

Konsumenten durch kontaminierte Fische und Meeresfrüchte, sowie von Fisch- und 

Schalentiersterben, ist der Nachweis von schädlichen Algenarten in Küstenzonen und in 

Zuchtgebieten für Meeresfrüchte und Fische eine wichtige Voraussetzung für Monitoring-

Programme. Die derzeitigen Monitoring-Methoden beinhalten den gesetzlich

vorgeschriebenen Maus-Bioassay für die Überwachung von kontaminierten Meeresfrüchten, 

den chromatographischen Toxin-Nachweis sowie die Standard-Lichtmikroskopie. Die 

beschriebenen Methoden sind zeitaufwendig, teuer und verlangen die Erfahrung von 

geschultem Personal. Der Nachweis von Phytoplankton kann durch den Einsatz von 

molekularer Techniken und Sonden deutlich vereinfacht und verbessert werden.

Ein auf der Unterscheidung von genetischer Variation der verschiedenen Arten basierender 

Assay stellt eine erfolgsversprechende Nachweismethode für schädliche Algen dar. Ein 

handelsüblicher PCR ELISA Dig Detection Kit wurde für den Nachweis der toxischen 

Dinoflagellate Alexandrium minutum durch Sandwich Hybridisierung angepasst. Für jede 

Spezies werden eine Fänger-Sonde und eine benachbarte Signal-Sonde in der Methode der 

Sandwich Hybridisierung verwendet. Folglich wurde ein Satz von zwei Sonden für die 

artspezifische Identifikation entworfen und als höchstspezifisch nachgewiesen. Anschließend 

wurde die durchschnittliche Gesamt-rRNA-Konzentration pro Zelle anhand von drei 
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verschiedener Stämme von A. minutum erfasst und auf 0.028 ng ermittelt. Für den Assay 

wurde eine Standard-Kalibrierungskurve für verschiedene RNA- Konzentrationen und den 

korrespondierenden Zellzahlen erstellt. Eine Bewertung des Assays und der Standard-

Kalibrierungskurve wurde mit Hilfe Algen-beimpfter Wasserproben durchgeführt. Die 

Ergebnisse zeigen eindeutig, dass der Assay in der Lage ist, eine verschiedene Anzahl an A.

minutum Zellen in einem komplexen Hintergrund nachzuweisen. Der beschriebene Assay hat 

das Potential einer schnellen und verlässlichen Methode für den Nachweis von giftigen 

Algen, wodurch eine aufwendige, manuelle Zellzählung vermieden werden kann. Zusätzlich

wurde der Mikrotiterplatten-Assay für die artspezifische Identifikation der toxischen 

Algenarten Gymnodinium catenatum, Protoceratium reticulatum, Lingulodinium polyedrum, 

Prymnesium parvum, Chrysochromulina polylepis, Pseudo-nitzschia multiseries, P. australis, 

P. seriata and P. pungens und der Gattung Pseudo-nitzschia verwendet. Sonden-Sätze 

wurden entwickelt, die an die große oder kleine Untereinheiten der ribosomalen RNA-Gene 

binden. Die Spezifität der verschiedenen Sonden-Sätze wurde mittels isolierter ribosomaler

RNA von betrachteten Zielarten und nah verwandter Arten getestet. Acht der Sonden-Sätze

erwiesen sich in dem Assay als höchstspezifisch. Zwei Sonden-Sätze, GCAT und PRYM 694, 

weisen zusätzlich zur Zielart auch eine andere Art nach. Die entwickelten Sonden stellen ein 

wertvolles Werkzeug für das Monitoring von toxischen Algen dar und können auch für den 

halbautomatischen Biosensor verwendet werden. Der Mikrotiterplatten-Assay ist eine

effektive und schnelle Technik für die Überprüfung der Sondenspezifität für Sandwich 

Hybridisierungs-Formate, vergleichbar mit der Ermittlung der Spezifität von FISH-Sonden

durch Dot Blots.

Der Nachweis von toxischen Algen kann auch elektrochemisch mit Biosensoren und 

Sandwich Hybridisierung erfolgen. Biosensoren können auch vor Ort für Messungen 

verwendet werden, folglich entfällt der Transport von Proben ins Labor. Metfies et al (2005)

präsentierte ein Protokoll für die Detektierung von Alexandrium ostenfeldii mit Hilfe eines 

Biosensors, welches nun modifiziert und bildlich dargestellt wurde, um den Zugang für Laien 

zu vereinfachen. Die Modifizierungen beinhalten die Anpassung von Einzelelektroden und 

eines Messgerätes von unterschiedlichen Herstellern, sowie des RNA-Isolationsprotokolls. 

Die erhöhte Qualität der rRNA führte zu verstärkten Signalintensitäten der elektrochemischen

Messung. Eine Verstärkung von Spezifität und Sensitivität von molekularen Sonden kann 

auch durch die Verwendung von Locked Nucleic Acids (LNAs) erreicht werden. Die 

Spezifität und Sensitivität von herkömmlichen molekularen Sonden und LNA-modifizierten

Sonden wurde mit Hilfe von zwei verschiedenen Festphasen-Hybridisierungsmethoden, der 
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Sandwich Hybridisierung auf Biosensoren und den DNA-Mikroarrays, verglichen. In 

Kombination mit dem Biosensor wurden die herkömmlichen molekularen Sonden und die 

LNA Sonden mit Alexandrium ostenfeldii als Zielart auf ihre Signalbildung untersucht. 

Zusätzlich zu A. ostenfeldii wurden auch A. minutum und A. tamutum auf Kreuz-

Hybridisierung überprüft. Es konnte jedoch keine Signalverstärkung für A. ostenfeldii

beobachtet werden. Des Weiteren war mit den LNA-Fänger-Sonden eine Unterscheidung von 

nur einer Fehlpaarung in der 18S-Sequenz von A. tamutum nicht möglich. Darüber hinaus 

wurde im Vergleich zu den Daten, die von Metfies et al (2005) vorgestellt wurden, eine 

erhöhte Kreuz-Hybridisierung für A. minutum mit den herkömmlichen Sonden festgestellt.

Dieses Phänomen kann durch die verbesserte Qualität der rRNA begründet werden. Jedoch 

sind beide Arten toxisch und müssen überwacht werden. Die LNA-Sonden zeigen in 

Kombination mit den DNA-Mikroarrays eine erhöhte Sensitivität, jedoch zusätzlich mehr

falsch-positive Signale. Zusammengefasst zeigen die herkömmlichen Sonden gleiche oder 

bessere Ergebnisse als die LNA-Sonden. Die LNA-Technologie konnte unter diesen 

Festphasen-Hybridisierungsanwendungen nicht die Signalstärke erhöhen.

Zusätzlich zu dem Mikrotiter-Platten Assay und der Einfachelektroden-Anwendung, wurden 

ein Mehrfach-Sonden-Chip und ein halbautomatischer rRNA Biosensor für den vor Ort 

Nachweis von giftigen Algen entwickelt. Das Design des Mehrfach-Sonden-Chips mit einer 

Reihe von 16 Goldelektroden wurde durch den Test von verschiedenen Materialien für die 

Elektroden und des Trägermaterials mit Hilfe von Einfachelektroden bestimmt. Der 

Mehrfach-Sonden-Chip kann mit den vorher entwickelten molekularen Sonden bis zu 14 

Arten nachweisen. Ein praktisches, sowie automatisiertes und tragbares Gerät wurde 

entwickelt und ausgiebig in Kombination mit dem Mehrfach-Sonden-Chip und molekularen

Sonden für Alexandrium minutum getestet. Eine Peristaltikpumpe befördert die Lösungen aus 

den Vorratsbehältern in eine Hybridisierungs- bzw. Strömungskammer, wodurch alle 

wichtigen Schritte der Analyse automatisch ausgeführt werden. Zusätzlich wurde erfolgreich

ein Lyse-Protokoll für die Anwendung des Gerätes von Laien entwickelt, welches eine 

manuelle rRNA-Isolation erübrigt. Das Gerät wurde anhand isolierter Gesamt-rRNA und 

Zellen aus einer Algenkultur bewertet und eindeutige, unterscheidbare Signale wurden 

ermittelt. Dieses autonome System kann Proben in weniger als zwei Stunden analysieren und

auch im Freiland angewendet werden. Somit weisen das Gerät und der Mehrfach-Sonden-

Chip Potential für die Anwendung als Frühwarnsystem im Aquakulturbereich und dem

Tourismussektor auf.
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