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Summary 

Arctic permafrost affected wetlands and tundra are known to be sources of the 

greenhouse gas methane (Christensen et al. 1995, 2000, Wagner et al. 2003, 

Kutzbach et al. 2004, Sachs et al. 2008, Wille et al. 2008). As a consequence of 

the rising surface temperatures and the degradation of permafrost, methane 

emissions from these Arctic habitats are predicted to increase in the future. 

Evolution of methane fluxes across the subsurface/atmosphere boundary will 

thereby strongly depend on the activity of obligately aerobic methane oxidizing 

Proteobacteria which are known to be abundant and to significantly reduce 

methane emissions in permafrost affected soils despite seasonal freezing and 

thawing and despite the mostly extremely low temperatures. Based on their 

function as the major (known) sink for methane, research is needed on 

quantifying in-situ activities of aerobic methane oxidizing Proteobacteria and on 

understanding their potential to adapt to the currently changing environment. 

Also, possible unknown sinks for methane in these regions as for example known 

for marine methane rich habitats need to be explored. 
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Introduction 

Methanotrophy, the consumption of methane, also occurs under the very harsh 

environmental conditions of cold environments (review by Trotsenko and 

Khmelenina 2005). Viable methane oxidizers were even detected in deep 

Siberian permafrost sediments with ages of 1000-100,000 years (Khmelenina et 

al. 2001). In permafrost affected tundra, methane is constantly bypassing the so 

called active layer during the period of Arctic summer (section B15.d.ii.). 

Wherever oxygen is present in these environments (elevated and dry sites, 

photosynthetically active polygonal ponds, rhizosphere), methane is oxidized to 

carbon dioxide. Though not yet quantified in-situ for permafrost affected soils, 

between 76 % and up to more than 90 % of the methane produced in wetlands 

gets oxidized before reaching the atmosphere (Roslev and King 1996, Le Mer 

and Roger 2001). During the last years, the group of microorganisms capable to 

consume methane (methanotrophs) has been observed to be very diverse 

comprising obligate aerobic members of the phyla Proteobacteria (Bowman 

1999, 2006), and Verrucomicrobiaea (Dunfield et al. 2007; Pol et al. 2007), as 

well as anaerobically methane oxidizing Archaea in marine habitats (e.g. Boetius 

et al. 2000), and bacteria of a yet unknown phylum carrying out methane 

oxidation in the presence of very high nitrate and methane concentration in 

freshwater habitats (Raghoebarsing et al. 2006). In permafrost affected tundra, 

however, only aerobic methane oxidizers of the Proteobacteria phylum, 

described in detail elsewhere in this book (section C20c.i.) have been observed 

so far. Based on their pronounced distribution and function as the primary sink for 

methane in Arctic permafrost affected tundra (Wagner 2008), they are of major 

importance for the greenhouse gas (GHG) budget of these often methane rich 

environments.  

 

Ecology of aerobic methanotrophic Proteobacteria in permafrost affected 

soils 

The group of aerobic methanotrophic Proteobacteria comprises three families, 

Methylococcaceae, Methylocystaceae, and Beijerinckiaceae (Bowman 1999, 

Dedysh et al. 2000, 2001, 2002, 2004, Wise et al. 2001, Heyer et al. 2005, 

Tsubota et al. 2005, Rahalkar et al. 2007). Methylococcaceae include the genera 

Methylobacter, Methylomonas, Methylomicrobium, Methylosarcina, Methylo-

sphaera, Methylohalobius, Methylosoma, Methylothermus, Methylococcus, and 

Methylocaldum. They belong to the gamma-subdivision of the Proteobacteria 

phylum and are termed type I methane oxidizing bacteria (MOB), except for the 
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last two which are also known as type X MOB. The families Methylocystaceae, 

and Beijerinckiaceae include the genera Methylosinus, Methylocystis, 

Methylocella, and Methylocapsa. Members of the Methylocystaceae and 

Beijerinckiaceae are termed type II MOB and belong to the alpha-subdivision of 

the Proteobacteria phylum. 

 

 

 

Figure 1: Phylogenetic relation (based on 16S rRNA gene sequences) of aerobic 

methanotrophic Proteobacteria. Grey squares illustrate sequences with Arctic 

tundra origin (or groups containing sequences from Arctic tundra environments). 

Trees represent maximum likelihood trees and were constructed using the ARB 

software package. 

 

Almost 200 isolates of MOB are known (http://www.ncbi.nlm.nih.gov/Taxonomy/) 

suggesting that MOB are ubiquitous in many environments. Some psychrophilic 

and psychrotrophic strains as well as several uncultivated methanotrophs were 

obtained from Arctic permafrost habitats (Figure 1 of this chapter). Methylobacter 

psychrophilus (type I) is a true psychrophilic organism with optimum growth 

between 3.5 and 10 °C that was isolated from Siberian tundra (Omelchenko et al. 

1996). Methylobacter tundripaludum (type I) with an optimum growth at 23 °C 

and Methylocystis rosea (type II) with an optimum growth at 27 °C are 

psychrotrophs isolated from Arctic wetland soils in Svalbard (Wartiainen et al. 

2006a, b), and Methylocella tundrae (type II) with an optimum growth between 15 
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and 25 °C, as well psychrotrophic, was isolated from Sphagnum tundra 

peatlands (Dedysh et al. 2004). Additional psychrotrophic methanotrophs are 

Methylosphaera hansonii (type I) isolated from Antarctic, marine salinity, 

meromictic lakes (Bowman et al. 1997), and Methylomonas scandinavica (type I), 

isolated from deep igneous rock ground water (Kaluzhnaya et al. 1999). In 

general, type I methanotrophs were reported to dominate over the type II group in 

Arctic permafrost affected soils (Wartiainen et al. 2003, Wagner et al. 2005, 

Liebner and Wagner 2007). 

Methane oxidizing Proteobacteria were shown to be highly abundant in 

permafrost soils of the Lena Delta, Siberia, with cell numbers ranging between 

3 x 106 and 1 x 108 cells g-1 soil and contributing up to 10 % to the total number 

of microbial cells (Liebner and Wagner 2007). In the same area, specific clusters 

of methane oxidizing Proteobacteria closely related to Methylobacter 

psychrophilus and to Methylobacter tundripaludum were detected indicating a 

micro-diverse community on the species level (Liebner et al. in press). Highly 

divergent functional gene sequences of methanotrophs were found in soils of the 

high Canadian Arctic (Pacheco-Oliver et al. 2002). In contrast, the diversity of 

methane oxidizing Proteobacteria in wetland samples from Svalbard was 

observed to be restricted to only two genera (Wartiainen et al. 2003), whereas 

most methanotrophic Proteobacteria were detected in a Russian sub-arctic 

tundra (Kaluzhnaya et al. 2002). A recent study observed a shift between a 

mesophilic methanotrophic community near the surface and a psychrophilic 

methanotrophic community near the permafrost table of Siberian permafrost soils 

(Liebner and Wagner 2007). This indicates that depending on the environmental 

conditions both mesophilic as well as psychrophilic methanotrophs are active in 

Siberian permafrost soils. Still, it remains to be proven which group is responsible 

for methane oxidation at low and subzero temperatures in deep permafrost 

sediments (Trotsenko and Khmelenina 2005).  

 

Methane oxidation in the context of thawing permafrost 

Model calculations suggest that methane currently emitted from Arctic permafrost 

environments may enhance the greenhouse effect with a portion of 

approximately 20 % (Wuebbles and Hayhoe 2002). Arctic surface temperatures 

on average increased to a greater extent than those of the rest of the earth (IPCC 

2001, 2007), causing a particular susceptibility of Arctic permafrost to 

degradation (Nelson et al. 2001). Global warming is assumed to degrade 25 % of 

the total permafrost area by 2100 (Anisimov et al. 1999). Serious concerns are 
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thus associated with the potential impact that thawing permafrost may have on 

the global climate system through release of greenhouse gases (Friborg et al. 

2003, Christensen et al. 2004, Wagner et al. 2007) highlighting the importance of 

the current and of the future methane oxidation capacity in these regions. In 

models on modern methane emissions from Arctic wetlands, methane production 

and oxidation rates are primarily determined as functions of substrate availability, 

substrate concentration, and temperature as well as indirectly of water table and 

thaw depth (Walter et al. 2001, Zhuang et al. 2004, Anisimov 2007). Changes of 

these parameters will consequently lead to short-term alterations of methane 

production and methane oxidation rates. Whether, however, the currently 

observed climate change will effectively alter modern methane fluxes from Arctic 

permafrost affected wetlands will particularly depend on its long-term impact on 

the methane cycling communities and on their ability to adapt to the new 

environmental conditions. This ability is very likely dependant on the level of 

specialisation and diversity of the indigenous microbial communities. It was, for 

example, observed that an increase of temperature and precipitation altered the 

community structure and relative abundance of methane oxidizers in rice, forest 

and grassland soils (Horz et al. 2005, Mohanty et al. 2007). Also, the overall 

relative abundance and diversity of methanogenic archaea in a high Arctic peat 

from Spitsbergen increased with increasing temperature, in accordance with a 

strong stimulation of methane production rates (Høj et al. 2008). In contrast, the 

population structure of methanogenic archaea in a permafrost affected peat in 

Siberia remained constant over a wide temperature range (Metje and Frenzel 

2007). There is, however, a lack of experimental research investigating the long-

term effect of simulated climate change on the methane cycling communities in 

permafrost affected soils. Also, an account of the entire plant-microbe-animal- 

system and the interactions between metabolic networks, which are important for 

the production of methane (Panikov 1999), are missing in modern methane flux 

models. 

 

Research needs 

Though well known that methanotrophy by aerobic Proteobacteria functions as a 

major sink for methane in permafrost affected tundra and wetlands, experimental 

data on the actual amount of methane flux reductions by methanotrophs are 

completely lacking. In-situ rate measurements of methane oxidation activities 

such as push-pull-tests (e.g. Urmann et al. 2005, 2007, 2008) as well as below 

ground flux measurements would essentially improve our knowledge in this 
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context and would help to validate current methane flux models from Arctic 

wetlands. Also, as discussed in the introduction to this chapter, methanotrophy 

can be carried out by a variety of different bacterial phyla and even by members 

of the domain Archaea. So far the group of aerobic methanotrophic 

Proteobacteria is the only one known to be responsible for methane consumption 

in permafrost affected wetlands and tundra. Nevertheless, much more attention 

should be paid on exploring yet unknown communities possibly capable to 

consume methane in these habitats as well. These additional methane sinks 

might be of particular benefit considering how important the future methane 

oxidizing capacity will be in the scope of continuously degraded permafrost. We 

will finally have to investigate how methane consuming communities respond to 

(simulated or actual) global climate change. This includes a generally improved 

understanding on what determines the stability of methane oxidizing communities 

and what implications may arise from that knowledge to the future GHG budget 

of Arctic permafrost affected wetlands. 
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