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Abstract
The ratio of the stable carbon isotopes, §*3C, contains
valuable information on the processes which are opera-
ting on the global carbon cycle-climate system. It can
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help to pinpoint, which exchange processes among the

different reservoirs of the global carbon cycle significantly
alter atmospheric CO, as 8'3C is recorded in ice cores

and benthic organisms buried in the sediments, respec-
tively. Here we show with the help of the carbon cycle box
model BICYCLE [K&hler et al., 2005; Kdhler and Fischer,
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Conclusions

(1) Based on our model convolution of various independently
dated climate records there is no 100-kyr cycle in atmosphe-
ric CO,.

(2) Millennial-scale climate variability leads to fast changes
in the terrestrial C cycle. The corresponding 6*>CO signal is
dilluted quickly through gas exchange with the ocean.

(3) The 6**CO, amplitude which is recorded in ice cores de-
pends on the gas age distribution in the firn, which dampens
the recorded signal (60% at LGM in EPICA Dome C).

2006] how much additional information on carbon cycle
and climate dynamics might be extracted from §*°C and
where we find significant limitations. Our time frame of in-
terest is spanning from the variability during fast climate
fluctuations of the Dansgaard/Oeschger (D/O) events to
the rise in the glacial/interglacial amplitudes and the shift
in the frequency spectra from 40 kyr to 100 kyr during the
Mid Pleistocene Transition (MPT) [K&hler and Bintanja,
2008].

(4) We suggest a decoupling of SST in the Southern Ocean
from the vertical mixing rates before the Mid Pleistocene
Transition (before 1,000,000 years) to find glacial /interglacial
amplitudes in §*3C in the deep Pacific which are in line with
reconstruction.

(5) The 400 kyr cycle found in all deep ocean §'3C recon-
structions and its complete lack in 680 (and in our simula-
tion results) still holds some surprises in the understanding
of the carbon cycle-climate interactions.
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Southern Ocean vertical exchange (red arrow) is related to SST after MPT,
but decoupled from SST before, which we call Southern Ocean Decoupling

Hypothesis.

Millennial-scale variability in atmospheric §3CO, Mid Pleistocene Transition in deep Pacific §:3C
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Simulated atmospheric §°°CO; record over the last 740 kyr (A) does not contain any significant power in the 100 kyr related to the LRO4 benthic 5180 prior and after the MPT. Scenario SODH: The Southern Ocean Decoupling Hypothesis.

periods (see power spectra below) due to opposing effects of the terrestrial biosphere and the different marine carbon
pumps (B) Also: Taylor Dome ice cores data [Smith et al., 1999]. C: No millennial scale variability in CTRL: TB+: Fast
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Left top: Maximum entropy spectral analysis (MESA) of §°COq in CTRL . Left bottom: Gas age distribution as function
of climate state, here preindustrial (PRE) and LGM conditions. Calculation by Joos & Spahni [2008], approximated by SO SST [O C] AT [K]
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