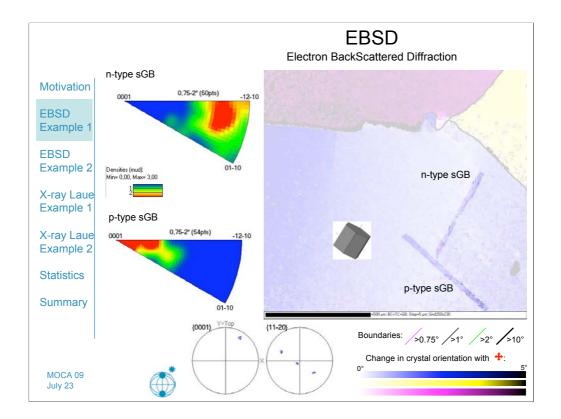


- 1. by shape with etched sublimation features in light microscopy
- 2. in combination with c-axes orientation (optical fabric measurements)
- P-type
- Z- and n-type

Description of sGB: Boundary plane + Misorientation Description of Misorientation: Rotation Axis + misorientation angle



grooving under sublimation due to thermal etching

Visualization of μS using light microscope

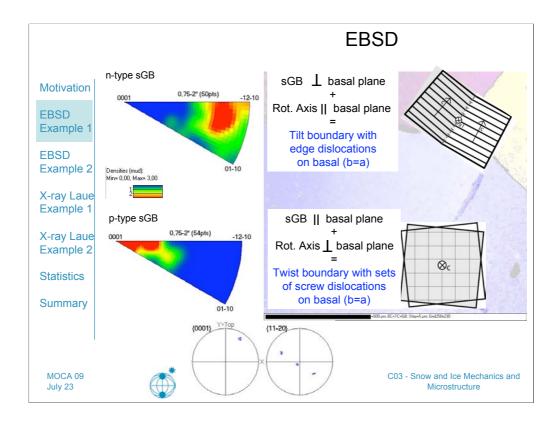
Large samples can be scanned and mapped (default sample size 10x5cm)

No quantitative information on crystallographic orientation

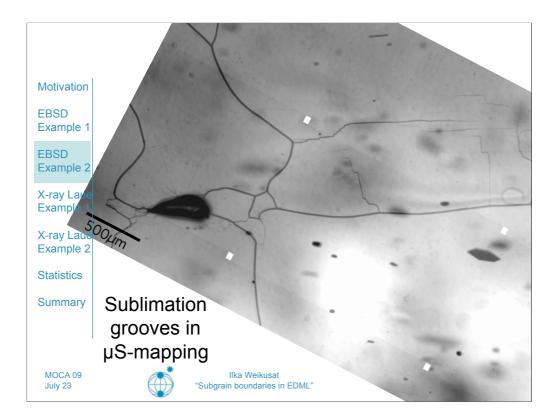
Same area: Crystallographic orientation from EBSPs EBSD: introduced by Baker this morning

Texture component map (change in orientation with reference point) and misorientation boundaries between neighbouring pixels reveal same sGB as μ S-mapping

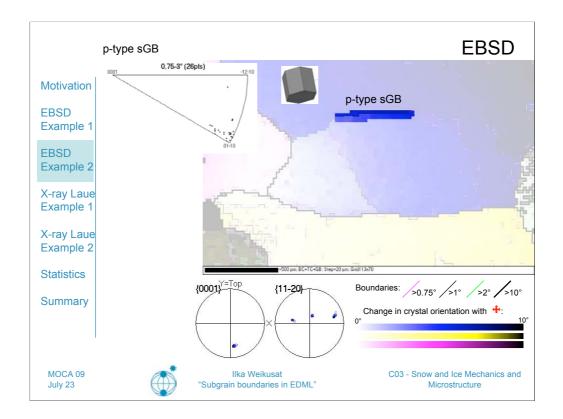
Bulging close to triple junction


Misorientation gradient

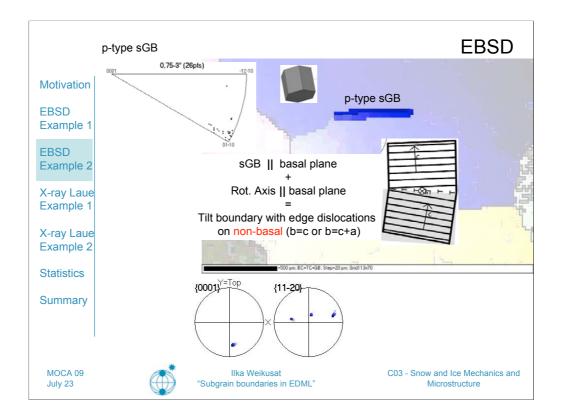
Focus on blue grain: overall orientation (3D & PoleFigure~Schmidt diagram (crystal axes in sample CoordSystem))


Subset of data along sGB +- normal to basal plane: RotAxes in inverse pole figure (RotAxes in crystal CoordSystem) -> RotAxes scatter around a-axis

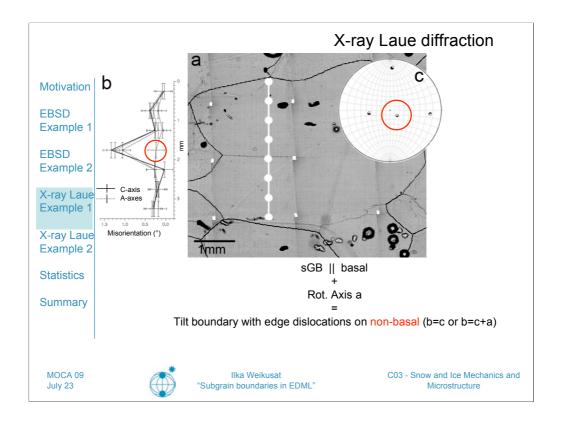
Subset of data along sGB +- parallel to basal plane: RotAxes in inverse pole figure -> RotAxes scatter around c-axis


(SP5n 2K3x3) 98.5% indexing after reanalysis Mud=multiples of uniform density

- Assumption: sGB steep in 3rdDimension of sample (close to perpendicular to section surface)
- Assumption: dominance of basal dislocations (see talk Hondoh 30 min ago)
- 1. RotAxis a lying in basal plane & sGB plane perp. To basal plane (RotAxis lying in sGB plane) -> basal tilt boundary
- 2. RotAxis c perp. To basal plane & sGB plane || to basal plane (RotAxis perp. To sGB) -> basal twist boundary


Another example

Texture component map Focus on blue grain Overall crystal orientation


Again: p-type sGB +- parallel to basal plane (3D & PolFigure) Inverse pole figure with RotAxes: cluster around prism-plane-normal -> RotAxis is in basal plane

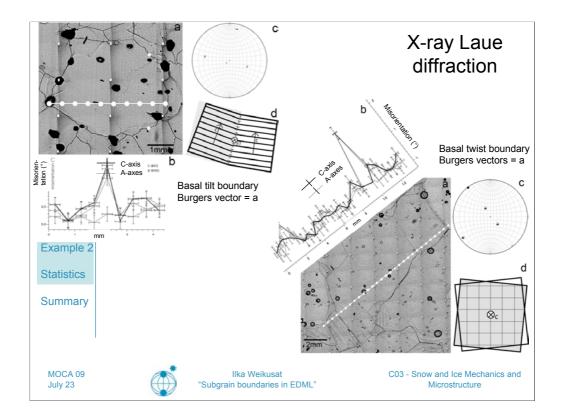
2(Sp5n) 2K3x3, 96.8% indexing (reanalyzed)

RotAxis AND sGB plane || to basal plane cannot be explained with basal dislocations

RotAxis lying in sGB plane -> tilt boundary

Same result found with X-ray Laue diffraction (oldest crystallographic method can be applied to polycrystalline ice, because of large grain sizes compared to other materials)

Semi-automatic method: line scan


Standard sample size can be used, but spatial resolution much lower (x-ray beam $200\mu m$)

Misorientation of c- and a-axes separately and dispersion in PoleFigure reveals RotAxis across sGB: a-axis

sGB trace obtained from µS-mapping in light microscopy

RotAxis AND sGB plane || to basal plane cannot be explained with basal dislocations

RotAxis lying in sGB plane -> tilt boundary

Basal tilt and twist boundaries also found in Laue

X-ray Laue diffraction						
Motivation				Non-basal tilt boundary Burgers vector = c or c+a		
EBSD Example 1		d				
EBSD Example 2	Basal tilt boundary Burgers vector = a					
X-ray Laue Example 1						
X-ray Laue Example 2	N _{sGB} =165; [%]	rotation axis: a-axes	c-axes	arbitrary	Basal twist boundary	
	ن normal (n and z-type)	39	0	9	Burgers vectors = a	
Statistics	is normal (n and z-type) parallel (p-type) no particular	27	7	9	F h	
Summary	no particular	4	1	5	V V	
			<u>.</u>		\A	
MOCA 09 July 23	Ilka Weikusat "Subgrain boundaries in EDML"			C03 - Snow and Ice Mechanics and Microstructure		

As standard size samples can be used with X-ray Laue, small (soft) statistic is available

Table: classification of sGB using arrangement of trace with basal plane (lines) and rotation axes describing the misorientation across sGB (columns)

Non-basal tilt boundaries are more common among p-type sGB (parallel to basal plane)

	 parallel n-type (class,polyg.) x n-type (zigzag) unspecific shape 		
Motivation	<u>60 -</u>		
EBSD Example 1			
EBSD Example 2	p from: Weikusat et		
X-ray Laue Example 1	0 500 1000 1500 2000 2500 al. 2009 depth (m) J. Glac.		
X-ray Laue Example 2	$N_{sGB} = 165$; [%] <i>notation axis:</i> a-axes c-axes arbitrary		
	ig normal (n and z-type) 39 0 9		
Statistics	is normal (n and z-type) 39 0 9 parallel (p-type) 27: 7 9 poparticular 4 1 5		
Summary	no particular 4 1 5		
MOCA 09 July 23	Ilka Weikusat C03 - Snow and Ice Mechanics and "Subgrain boundaries in EDML" Microstructure		

Statistics from sublimation features in µS-mapping (light microscopy): p-type sGB most frequent one in EDML

Relevance: discussion on rate-limiting processes, which determine the stress exponent n in Glen's flow law

- 1. n~3 in fast deformation (creep experiments) due to activation of non-basal slip systems
- 2. n~2 in slow deformation (ice sheet) process unknown

Summary					
Motivation					
EBSD Example 1	 Subgrain boundaries identified as Tilt boundary comprised of edge dislocations in basal plane (b=a) 				
EBSD Example 2					
X-ray Laue Example 1	 Twist boundary comprised of sets of screw dislocations in basal plane (b=a) 				
X-ray Laue Example 2	 Tilt boundary comprised of edge dislocations in NON-basal plane (b=c or b=c+a) Surprising: Non-basal tilt boundaries are quite common 				
Statistics Summary					
MOCA 09 July 23	Ilka Weikusat C03 - Snow and Ice Mechanics and "Subgrain boundaries in EDML" Microstructure				

