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In vivo nuclear magnetic resonance (NMR) monitoring requires a high-density cell suspension, where cell
precipitation should be avoided. We have designed a miniaturized cell agitator that fits entirely into an 8-
mm NMR probe but that, being mounted into the instrument, is situated outside of the sensitive area. The
device consists of two glass tubes connected in a way that, when gas flow is blown through them, creates
influx of cell suspension into the device that returns through apertures. This flow creates continuous cir-
cular vortex of the cell suspension in the whole sample volume, whereas there are no moving mechanical
parts or gas bubbles crossing the instrument’s sensitive area. The gas flow controls conditions of the cell
suspension and removes volatile waste metabolites.

� 2009 Elsevier Inc. All rights reserved.
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Some methods allow on-line in vivo time-series measurements
(i.e., monitoring) of cellular metabolism. For example, nuclear
magnetic resonance (NMR)1 spectroscopy can monitor some impor-
tant intracellular metabolites, such as phosphorus-containing com-
pounds (e.g., phosphonucleotides, phosphosugars, polyphosphates),
in vivo by 31P NMR. With NMR, it is possible to determine in vivo
intracellular metabolite concentrations, pH levels, and kinetics of en-
zyme reactions as well as to identify metabolic pathways (see, e.g.,
Refs. [1–4]). However, NMR spectroscopy has relatively low sensitiv-
ity to physiological concentrations of cellular metabolites. Therefore,
limitations of in vivo metabolite concentrations can be overcome
only by a high concentration of cells.

Campbell-Burk and Shulman [3] stated that to distinguish
molecular species during the course of in vivo NMR measurements,
the experimental setup should employ high-resolution spectros-
copy, which is possible only if the following criteria are satisfied:
(i) high cell density (10–50% wet weight/volume), (ii) a wide-bore
NMR instrument (e.g., 20 mm), and (iii) a stirring setup that main-
tains the constant physiological state of cells within the NMR
instrument during the whole measurement period. Narrow-bore
31P NMR spectroscopy (8 mm) also brings the additional advantage
of measurements of in vivo kinetics for some reactions using mag-
netization transfer (see, e.g., Refs. [1,2,4]). However, this method
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requires long-term accumulation of the signal; therefore, cell pre-
cipitation during the course of the measurement must be avoided.
Cell precipitation results in heterogeneity of nutrient supply, such
as gases and carbon, nitrogen, and phosphorus sources, resulting in
variation of the cellular physiological state across the population.
Consequently, the cellular precipitation of the suspension must
be prevented and, at the same time, all of the required nutrients
must be distributed homogeneously to avoid excessive variation
of metabolic changes during the NMR monitoring. In addition,
the stirring device should not disturb the NMR magnetic field.

A number of approaches have been developed to prevent cell
settling during the course of in vivo NMR measurements to achieve
a high resolution [3], including a double-bubbler apparatus [5,6], a
perfused system by immobilization of cells in an agarose gel matrix
[4,7] or other porous materials, a hollow-fiber dialysis system [8],
and an NMR bioreactor (e.g., from Bioengineering AG, Switzerland).
Of course, an NMR bioreactor directly integrated into the NMR
instrument is the best solution for the on-line, in situ, and
in vivo measurement of fermentation systems with NMR monitor-
ing of cell cultures growing in a liquid phase (e.g., bacteria, yeast),
but this solution is quite expensive.

Yeast Saccharomyces cerevisiae strain CEN.PK 122 (from the
EUROSCARF yeast collection, http://web.uni-frankfurt.de/fb15/
mikro/euroscarf) were grown aerobically in CBS medium [9] in a
glucose-limited chemostat at a dilution rate of D = 0.05 h�1 with
18 g L�1 glucose in the feeding medium, 30 �C, and 250 rmp. Under
these conditions, the biomass density reached 5.36 ± 0.05 gDW
(grams dry weight) L�1 (or 60.92 ± 2.22 gWW [grams wet weight]
L�1). The initial biomass was condensed 40-fold, and 90 ml of yeast
culture from the chemostat was pelleted by filtering through a
or agitating a high-density yeast suspension that is suitable for in vivo nu-
.2009.10.011
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Fig. 1. Sketch of the cell agitating device inserted into a conventional 8-mm NMR
glass tube. Blue arrows represent gas flow, and red arrows represent movement of
the cell suspension. See the text for further explanations and notation. (For
interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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Sartorius cellulose acetate filter (Ø = 0.2 lm) under vacuum and
washed three times with working buffer (25 mM Mops [pH 7.0],
2 mM MgSO4, 1.7 mM NaCl, 2 mM KCl, and 100 mM glucose). Then
filtered cell pellet was resuspended in 2 ml of the working buffer
and 250 ll of D2O was added (final D2O content of 11.1%). This
was a very high-density cell suspension that would have precipi-
tated within a minute without agitation. After that, 750 ll of this
suspension was transferred to an 8-mm NMR probe equipped with
an agitating device (Fig. 1).

The cell agitating device was assembled completely from
dielectric materials such as glass and silicone tubes, rubber O-
rings, and plastic fasteners. The device includes a 200-mm-length
glass tube with an external diameter of 4 mm (called the main
tube). One of the ends of this tube is stretched out to the capillary
with a diameter of 0.1–0.05 mm at the tip. The capillary end of the
main tube is inserted into another glass tube with the same exter-
nal diameter of 4 mm (called the extension tube), and the joint is
firmly glued in place (Fig. 1). The length of the extension tube is
60 mm, and it has several 1-mm-diameter apertures close to the
glued joint. All apertures must be above the capillary tip (Fig. 1).
The main tube is then connected to the gas flow, and the device
can be inserted into an 8-mm-diameter NMR tube (8 � 230 mm,
Wilmad Labglass, USA). The device is vertically centered within
the NMR tube using three 6-mm-diameter rubber O-rings located
above the joint between the main and extension tubes (Fig. 1).
The device must be immersed in the cell suspension such that
the tip of the capillary is under the surface of the cell suspension
and the apertures are above the surface of the suspension. When
immersed, the main tube of the device sticks out of the NMR tube,
and a plastic fastener can be used to secure the depth of the device
immersion in the NMR tube. It is important to note that the lower
end of the extension tube must be above the sensitive volume of
the particular NMR instrument (Fig. 1).

In vivo 31P NMR spectra were acquired at 161.97 MHz on a ver-
tical 9.4T wide-bore NMR spectrometer (Bruker Avance 400 Ultra-
shield) using an 8-mm 1H/BBI probe with the following
parameters: bp pulse, 14 ms (pl 4.6); relaxation delay, 1 s; spectral
width, 8090 Hz (corresponding to 50 ppm); time domain, 4K;
number of acquisitions, 512 or 1024, with resulting scan time of
11 or 22 min, respectively. Spectra were processed automatically
by applying a user’s program with size of 16K, line broadening of
5 Hz, and an automatic baseline correction.

Gas (in this case air) was blown through the main tube toward
the capillary. The gas passes through the capillary tip and forms a
bubble that immediately escapes upward through apertures in the
extension tube. The 1-mm gap between the internal wall of the
NMR tube and the O-rings of the device is sufficient for the unre-
stricted gas flow out of the NMR tube. Consequently, it does not
cause a buildup of pressure. The movement of gas bubbles pulls
the cell suspension into the apertures. After passing the apertures,
the gas escapes from the NMR tube, whereas the cell suspension
drops back into the tube. The suction force of the agitating device
is dependent on the rate of gas flow and is sufficiently strong to re-
sult in stirring of the cell suspension across the whole volume of
the NMR tube. As a result, there is no cell sedimentation over the
measurement period. It is important to note that there are also
no gas bubbles crossing the sensitive volume of the NMR instru-
ment (Fig. 1); this is extremely important for the homogeneity of
the magnetic field within the sensitive volume of the NMR instru-
ment. In addition, the bottom of the NMR tube was filled with plas-
tic filler (Fig. 1) to reduce tube’s internal volume and consequently
increase the homogeneity of the suspension.

Furthermore, the gas flow controls experimental conditions
(e.g., degree of oxygenation) and also removes volatile metabolites
(e.g., CO2, ethanol) from the cell suspension, whereas nonvolatile
Please cite this article in press as: M. Zakhartsev, C. Bock, Miniaturized device for agitating a high-density yeast suspension that is suitable for in vivo nu-
clear magnetic resonance applications, Anal. Biochem. (2009), doi:10.1016/j.ab.2009.10.011
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Fig. 2. In vivo 31P NMR monitoring of high-density yeast S. cerevisiae CEN.PK 122 suspension agitated using the described device. Shown are two consecutive spectra, each
integrated from 3072 scans (66 min). SP, phosphosugars; Pi(cyto), cytoplasmatic inorganic phosphate; Pi(v), vacuolar inorganic phosphate; PP1 and PP2, oligophosphates; PPn,
polyphosphates.
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metabolic waste products (e.g., glycerol) are either innocuous or
nontoxic until they reach high concentrations. In addition, the cell
suspension can be fed with concentrated solutions of nutrients
through another supply line. Under such conditions, high-density
yeast suspensions remain viable and physiologically intact for
2 h, which is sufficient time to run high-resolution in vivo NMR
measurements in narrow-bore instruments (Fig. 2).
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