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1 Introduction

The study focuses on the effects of different observational error
covariance structures on the assimilation in ensemble based
Kalman filter with domain localization. With the domain
localization methods, disjoint domains in the physical space
are considered as domains on which the analysis is performed.
Therefore, for each subdomain an analysis step is performed
independently using observations not necessarily belonging only
to that subdomain. Results of the analysis local steps are pasted
together and then the global forecast step is performed.

The method of observational error covariance localization
(Hunt et al. 2007) modifies the structure of the observa-
tional error covariance matrix for the subdomain depending
on the distance of observation to the analysis point. We
investigate use of different correlation structures together with
this method in order to examine the relationship between
correlational function used for weighting of observations and
true observational error covariance of the data being assimilated.

Comparisons are done for estimation of ocean circulation via as-
similation of satellite measurements of dynamical ocean topogra-
phy (DOT) into the global finite-element ocean model (FEOM).
The DOT data are derived from a complex analysis of multi-
mission altimetry data combined with a referenced earth geoid.
We are using domain localized SEIK algorithm with observa-
tional error covariance localization and different correlation mod-
els for localization.

2 Covariance function of observed dy-
namic ocean topography

The dynamical ocean topography is obtained by combining alti-
metric data with a high resolution reference geoid. In first ap-
proximation the altimetric data can be considered uncorrelated
and the correlations of the DOT can be identified with the cor-
relations of the geoid plus a constant variance of the altimetry
part.

Correlation between the geoid at the point φ = −35o, λ = −10o

and points of the South Atlantic area in latitude direction (upper
panel) and in longitude direction (lower panel).

3 Experimental set-up

The data cover the period between January 2004 and January
2005. They are interpolated onto the model grid so that the
observations are available at every point of the model grid every
ten days. In the polar areas, part of Indonesian region and in
Mediterranean sea, the observational data were substituted by
the values of the RIO05 mean dynamical topography (MDT).
These areas are characterized by low data accuracy due to
presence of ice or of complex coastal/bottom topography.

The study was performed using the Finite-Element Ocean
circulation Model (FEOM) [3] configured on a global almost
regular triangular mesh with the spatial resolution of 1.5◦.
There are 24 unevenly spaced levels in the vertical direction.
FEOM solves the standard set of hydrostatic ocean dynamic
primitive equations using continuous linear representations
for the horizontal velocity, surface elevation, temperature and
salinity.

The local SEIK filter algorithm as implemented within PDAF
[4] is used in order to update the full ocean state, consisting of
temperature, salinity, SSH and velocity fields at a given time at
all grid points.

The analysis for each water column of the model depends only
on observations within a specified influence region. Thirteen
ensemble members are used in the implementation of the local
SEIK algorithm. Observational error variance was set to 25 cm2.

4 Effects on accuracy of weighting of
observations

The two correlation models used are plotted in Fig. 4 and
compared to uniform weighting. The use of correlation models
improves the accuracy of forecast compared to uniform weight-
ing (figure not shown here).

Correlation functions used for weighting of observations: 5th or-
der polynomial weighting (blue line), and weighting using corre-
lation model from [1] as shown with black line.

Evolution of RMS error of the SSH for the global ocean (ex-
cept zones corresponding to RIO05 MDT location in the data).
Experiment with observational radius of 900 km and 5th order
polynomial weighting (left), and weighting as shown with black
line in Fig. 4 (right).

Left: The mean difference between the dynamical topography
obtained from the observations and from analysis for experiment
with 5th order polynomial weighting and 900 km observational
radius.

Right: The mean difference between the dynamical topography
obtained from the observations and from forecasted fields.
Results for experiment with weighting as shown with black line
in Fig. 4 are similar (not shown).

5 Spectral results

Following the same iterative procedure used in the computation
of the geodetic DOT, it is possible to extend also the forecast
field and the analysis field over the entire Earth’s surface.
Then spherical harmonic analysis can be applied to obtain the
harmonic spectrum of each field or of their differences. The
same procedure is applied to the forecast and to the analysis field.

In this first study only the error in the mean DOT (stationary
part) obtained by averaging over 10 day outputs is considered.
We consider the differences as function of the harmonic degree
and order, computing the following index

εoi` =
∑
m

(
T o`m − T i`m

)2

where T i`m are spectral coefficients and (i) can be i = a for the
analysis result or i = f for the forecast result.
Spectral properties in forecast field show similar structure as for
analysis, only the amplitudes have increased. This is true for all
three methods.

The weighting by 5th order polynomial shows almost evenly dis-
tributed error structures for all scales. Note that since data itself
have spectral coefficients only up to order 35, everything above 35
is the error that was introduced by analysis scheme and further
amplified by the forecast. For the two weighting results shown
this error is quite small.

Upper: Log plot of spectral difference between analysis and the
data depending on length scale.

Lower: Log plot of spectral difference between analysis forecast
and the data depending on length scale.

6 Effects on non-observed model vari-
ables

Finally we consider the effects on temperature field and steric
height. We compared the standard deviation of the observations
and standard deviation of the steric height calculated from the
analysis. In many regions of the world ocean there is a good
correspondence between these two fields. However also struc-
tures that are not present in the observations appear in the steric
height standard deviations indicating scales introduced by assim-
ilation.

Standard deviation of DOT data from January 2004 till January
2005. The deep-blue rectangular areas correspond to the loca-
tions where the RIO05 MDT was substituted in the data (no
variability).

Standard deviation of steric height of analysis field from

Left: Experiment with 5th order polynomial weighting.

Right: Experiment with weighting as shown with black line in
Fig. 4 .

7 Conclusion

• The use of observational weighting improves the accuracy of
the analysis. In the case considered the true covariance matrix
of the observations has a long length scales and the best possi-
ble approximation for use with domain decomposition method
is searched after.

• The results of two correlation models used are similar, and
more accurate then use of uniform weighting.

•Weighting of the observations by the 5th order polynomial
produced spectral results that are closest to the data. The
weighting by 5th order polynomial shows almost evenly dis-
tributed error structures for all scales.

• Structures that are not present in the observations appear in
the steric height standard deviations indicating scales intro-
duced by assimilation.
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