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Abstract

The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the

underside of the sea ice, and phytoplankton growing in open waters. Long chain omega-3 fatty acids, a subgroup of

polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for

successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we

followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their

relative PUFA content. The first PUFA-peak occurred in late April during solid ice cover at the onset of the ice algal

bloom, and the second PUFA-peak occurred in early July just after the ice break-up at the onset of the phytoplankton

bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two

bloom events. Females of C. glacialis utilized the high-quality ice algal bloom to fuel early maturation and

reproduction, whereas the resulting offspring had access to ample high-quality food during the phytoplankton

bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production

regime due to earlier ice break-up and onset of the phytoplankton bloom. A potential mismatch between the two

primary production peaks of high-quality food and the reproductive cycle of key Arctic grazers may have negative

consequences for the entire lipid-driven Arctic marine ecosystem.
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Introduction

Although the dramatic loss of Arctic sea ice during the

last decade is indisputable (Smetacek & Nicol, 2005;

Stroeve et al., 2007; Comiso et al., 2008), the conse-

quences of this loss on key biological processes remain

largely unknown. Of the studies addressing potential

impacts of climate change on polar marine ecosystems,

few have focused on the biochemical aspects of trophic

interactions (e.g., food quality and transfer) (but see

(Falk-Petersen et al., 2007; Kaartvedt, 2008).

Sea ice plays a dual role for primary production in

polar seas (Smetacek & Nicol, 2005), both providing a

habitat for ice algae and regulating the available light

for primary production. Ice algae begin growing in low

light levels in March and continue growing until their

sea ice substratum melts (Hegseth, 1998). In contrast,

phytoplankton production starts after the ice break-up,

giving a temporal discontinuity between sea ice

and open-water production. As the window of oppor-

tunity for primary production becomes narrower at

higher latitudes, the timing and availability of essential

omega-3 fatty acids become increasingly crucial for all

marine organisms. The long-chain eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA) are

omega-3 fatty acids produced exclusively by marine

algae. These polyunsaturated fatty acids (PUFAs) play a

key role in reproduction, growth, and physiology for all

organisms in marine ecosystems (Ackman, 1989), as

well as for human health (Riediger et al., 2009). The

importance of omega-3 fatty acids for copepod egg

production, egg hatching, and zooplankton growth

has been well documented in field (Pond et al., 1996;

Swadling et al., 2000; Jonasdottir et al., 2005) and experi-

mental studies (Breteler et al., 2005; Jonasdottir et al.,

2009), and has furthermore been proven to be essential

for proper fish development (Watanabe et al., 1983).

Among the zooplankton in the arctic shelf seas, the

arctic grazer Calanus glacialis accounts for up to 80% of

the biomass (Tremblay et al., 2006; Blachowiak-Samolyk

et al., 2008; S�reide et al., 2008) and plays a key role in

the pelagic lipid-based arctic food web (Falk-Petersen

et al., 1990). C. glacialis accumulates essential PUFAs

from its algal diet, and converts the low-energy carbo-

hydrates and proteins in algae into high-energy wax

ester lipids (Lee et al., 2006; Falk-Petersen et al., 2009).

These lipids make it an extremely energy-rich food
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(470% lipids of dry weight) for higher trophic levels

(Falk-Petersen et al., 1990).

C. glacialis has a 1–3 year life cycle, depending on the

temperature and food regime. The life-cycle includes six

nauplii and six copepodite stages that follow a pro-

nounced seasonal migration pattern. C. glacialis devel-

ops through the various stages mainly during summer.

In autumn, it accumulates lipids before it descends

towards the deep and enters a diapause to survive the

long and dark food-poor winter. The main overwinter-

ing stages are copepodite stage IV (CIV) and V (CV)

(Falk-Petersen et al., 2009). Overwintering CV indivi-

duals develop into females in mid-winter and ascend to

surface waters in spring to feed and reproduce (Koso-

bokova, 1999). The evolutionary success of C. glacialis

depends on its ability to synchronize its seasonal mi-

gration, reproduction, and growth to the primary pro-

duction regime in Arctic shelf seas (Falk-Petersen et al.,

2009). As sea ice becomes thinner and has less coverage,

the underwater light climate will change significantly

(Tremblay et al., 2006; Pabi et al., 2008). This change will

alter the onset, duration, and magnitude of the sea ice

algal and phytoplankton blooms. Because the peak

growing season for ice algae is confined to consolidated

ice, the qualitative and quantitative importance of sea

ice algae for the development of key Arctic grazers

remain poorly studied.

To predict ecological consequences of climate change

on the algal blooms and PUFA production, we carried

out an extensive field study during the International

Polar Year (IPY, 2007) in the seasonally ice-covered

Rijpfjord in northern (4801N) Svalbard. We followed

the seasonal development of ice algae and phytoplank-

ton, including biomass variation and food quality (i.e.,

the proportion of PUFAs) simultaneously with popula-

tion development of the key grazer C. glacialis. This

study aimed at unravelling the intimate coupling be-

tween the solar cycle, food quality peaks, and the onset

and duration of primary and secondary production.

Materials and methods

Study area

The study was performed in 2007 in Rijpfjorden, Svalbard

(Appendix S1) as part of the Norwegian IPY-project CLEOPA-

TRA (Climate effects on planktonic food quality and trophic

transfer in Arctic marginal ice zone). Rijpfjorden is a north-

facing, relatively shallow fjord (max. 240 m deep) that opens

towards the Arctic Ocean. It has a wide opening that is in

direct contact with a broad shallow shelf (100–200 m deep),

which extends to the shelf-break of the Polar Basin at �811 N

(Appendix S1). Rijpfjorden is dominated by cold Arctic water

masses and is covered by sea ice up to 9 months a year

(Ambrose et al., 2006; Wallace et al., 2010). The zooplankton

community in Rijpfjorden is dominated by Arctic species, with

C. glacialis representing up to 90% of the zooplankton biomass

(Daase & Eiane, 2007; Blachowiak-Samolyk et al., 2008).

Physical data

Temperature, salinity, and in situ fluorescence were measured at

hourly intervals by a mooring placed in close vicinity of our

main sampling station (Stn. SH; Appendix S2). The mooring was

equipped with SBE microcats (model: 37-SM MicroCAT; Sea-

Bird Electronics, Bellevue, WA, USA) at 27 and 205 m that

recorded temperature, conductivity, and pressure. In addition,

Vemco temperature mini loggers (Minilog12; accuracy � 0.1 1C)

were located at 3–30 m intervals between 20 and 200 m. At 17 m

deep, a Seapoint Chlorophyll Fluorometer (Seapoint Sensors

Inc., Exeter, NH, USA) was attached to the mooring. Only

approximate chlorophyll a data were available from this fluo-

rometer due to absence of suitable water samples for exact

calibration, but for identifying the approximate timing of the

phytoplankton bloom is was useful. Samples for exact chloro-

phyll a concentrations were collected at lower resolution,

monthly from April to August, and in October. The mooring

was deployed in September 2006 and recovered in August 2007.

For more detailed information about the mooring, see Berge et al.

(2009) and Wallace et al. (2010).

We measured the photosynthetically active radiation (PAR;

400–700 nm) hourly with a PAR LITE Kipp & Zonen Quantum

Sensor (Campell Scientific, Edmonton, AB, Canada), mounted

4 m above sea level at the Rijpfjorden field station. Sea ice

thickness and snow depth were determined for all sites from

which ice cores for ice algae analyses were taken.

Primary producers

Samples of primary producers were collected monthly from

March to August and in October (Appendix S2). We took core

samples of ice algae using a SIPRE type corer (12.5 cm dia-

meter). For each sampling spot, we took three core replicates

(50–100 cm apart). We sawed off the lowest part (5–8 cm) of the

core that contained visible amounts of ice algae. This core

section was protected against light exposure and immediately

transported to the field station. In the field laboratory, we

slowly (24–36 h) thawed the cores in the dark in 500 mL of GF/

F filtered seawater. After the samples were completely thawed,

subsamples were filtered through precombusted GF/F-filters

(1 h at 450 1C) to estimate the concentration of chlorophyll a,

the total particulate carbon (C), and the fatty acid composition

of the total lipids. Pelagic algae (phytoplankton) were sampled

with a 10 L Niskin-bottle (Ocean Test Equipment Inc., Fort

Lauderdale, FL, USA) at six depths between 0 and 50 (80) m

(Appendix S2). At each depth, samples were measured in

triplicate (0.5–3 L depending on the algae concentrations)

and filtered on precombusted GF/F-filters (1 h at 450 1C) to

estimate the concentration of chlorophyll a, the total particulate

C, and the fatty acid composition of the total lipids.

Chlorophyll a concentration was determined by high-perfor-

mance liquid chromatography (HPLC). The pigments were
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extracted from the filters with 1.6 mL methanol. The extract was

sonicated for 30 s using a Vibra-cell sonicator (Sonics and

Materials Inc., Danbury, CT, USA) equipped with a 3 mm

diameter probe. The extraction and HPLC analysis continued

according to Wright & Jeffrey (1997), using an absorbance diode-

array detector (Spectraphysics UV600LP, Newport Corp., Ther-

mo Fisher Scientific, Waltham, MA, USA). The column was a

C18 Phenomenex Ultracarb (Torrance, CA, USA) 3mm ODS (20)

(150� 3.20 mm). The HPLC system was calibrated with pigment

standards from DHI, Water and Environment, Denmark.

For particulate C analyses, samples of 20–100 mL for ice algae,

and 250–2000 mL for phytoplankton, depending on biomass

density, were filtered. All filter samples were frozen (�20 1C)

until analysis. Particulate C was analyzed on a Thermo Finnigan

FlashEA 1112 elemental analyser (Waltham, MA, USA).

Secondary producers

Zooplankton was sampled monthly by WP2 closing nets with a

0.225 m2 opening, vertically at four standard depths: 0–20, 20–50,

50–100, and 100 m bottom (Appendix S2). To gather data on

Calanus copepodites and nauplii, we used WP2 nets with mesh

size 200mm. To estimate Calanus egg abundance, we used

modified WP2 nets with mesh size 63mm. In August and

October, Calanus copepodites and nauplii were sampled with a

multiple plankton sampler (MPS; Hydro-Bios, Kiel, Germany)

consisting of five closing nets with the same opening diameter

and mesh size (200mm) as the WP2 closing net. Calanus speci-

mens were identified to the species level based on morphology

and prosome lengths of individual copepodite stages (Kwas-

niewski et al., 2003). Eggs and nauplii were identified to Calanus

genus level. Although sampling depth ranged from 130 m in July

and October to 186 m in September, Calanus density (ind. m�2)

was calculated for 0–140 m in all months (Appendix S2).

To estimate egg production rates, we incubated females for

24 h at near to in situ temperatures, obtained by placing the

incubator chambers in a large cooling box filled with sea water

and sea ice. Each female was placed alone in a 200 mL chamber

with a false bottom of 500mm mesh. Incubations started within

2–3 h of sampling in prescreened (60 mm mesh size) surface sea

water collected from the same site as the females.

Fatty acid analysis

Fatty acids of particulate organic matter (POM) were analyzed

at Unilab (Troms�, Norway), whereas fatty acid and fatty

alcohol of C. glacialis were analyzed at Alfred-Wegner-Institute

(Bremerhaven, Germany).

For POM, triplicate samples of 100–200 mL from each ice

core and 0.5 to 3 L from each water depth (Niskin samples)

were filtered onto precombusted glass fibre filters (GF/F). The

filters were transferred to glass vials with Teflon-lined caps

and 8 mL dichloromethane–methanol (2 : 1, v/v) was added.

The vials were stored at �80 1C until analyzed. Total lipid was

extracted according to the procedure described in Folch et al.

(1957). A known amount of heneicosanoic acid (21 : 0) was

added as internal standard, and an acid-catalysed transester-

ification was carried out with 1% sulfuric acid in methanol

(Christie, 1982). The extract was then cleaned using a silica

column (Christie, 1982). The relative composition of the fatty

acid methyl esters (FAME) was determined in an Agilent 6890

N (Agilent Technologies Deutschland GmbH & Co. KG,

Waldbronn, Germany) gas chromatograph, equipped with a

fused silica, wall-coated capillary column (50 m� 0.25 mm i.d.,

Varian Select FAME, Agilent Technologies Deutschland GmbH

& Co. KG) with an oven thermal gradient from an initial 60 to

150 1C at 30 1C min�1, and then to a final temperature of 230 1C

at 1.5 1C min�1. Individual components were identified by

comparison with two known standards and were quantified

using HPChemStation software (Hewlett-Packard, Agilent

Technologies Deutschland GmbH & Co. KG).

For Calanus, 10–30 individuals were pooled and transferred to

glass vials with Teflon-lined caps and 8 mL dichloromethane–

methanol (2 : 1, v/v) was added. These vials were stored at

�80 1C until analyzed. Specimens from two discrete layers, the

surface (0–50 m) and bottom layer (4100 m), were analyzed

separately. Calanus specimens were homogenized and lipids

were extracted according to Folch et al. (1957). Methyl esters of

fatty acids and free fatty alcohols were prepared by transester-

ification of the lipid extract with 3% concentrated sulfuric acid in

methanol for 4 h at 80 1C under nitrogen atmosphere. FAME and

free alcohols were then simultaneously analyzed with a gas

liquid chromatograph (HP 6890N, Agilent Technologies Deutsch-

land GmbH & Co. KG) on a 30 m� 0.25 mm i.d. wall-coated

open tubular column (film thickness: 0.25mm; liquid phase: DB-

FFAP), equipped with split/splitless injector (250 1C) and flame

ionization detector (280 1C) using temperature programming as

described above. Fatty acids and fatty alcohols were quantified

with an internal 19 : 0 fatty acid standard added to the sample

before the extraction. Individual components were identified by

comparisons to standards or, if necessary, by additional GC-mass

spectrometry runs. The samples were quantified using ChemSta-

tion software (Agilent, Agilent Technologies Deutschland GmbH

& Co. KG). Total lipid composition was calculated as sum of total

fatty acids and fatty alcohols.

All identified PUFAs and omega-3 fatty acids (Appendix S4)

were included when calculating the proportions of PUFAs and

omega-3 fatty acids in algae and C. glacialis.

Statistical analyses

Statistical tests were performed using STATISTICA 7.0 (StatSoft Inc.,

Tulsa, OK, USA): t-tests were used when comparing two inde-

pendent groups, and one-way ANOVA followed by the post hoc

tests Tukey’s honestly significantly different (HSD) and unequal

Tukey’s HSD were used when comparing multiple groups with

similar or unequal number of replicates per group, respectively

(Winer et al., 1991). If the variance between independent groups

was unequal (i.e., Levene’s T-test P � 0.05), we used the Mann–

Whitney U-test (MWU-test) and Kruskal–Wallis multiple com-

parisons of mean ranks for all groups (Siegel & Castellan, 1988).

The significance level was set to P � 0.05 in all tests.

Results

Physical properties: hydrography, sea ice, and light

Rijpfjorden froze solid February 2, 2007 (J. Berge, per-

sonal observations). During the ice covered period from
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February to end of June there was a cold (�1.8 1C)

homogenous water mass from surface to bottom

(Fig. 1). The sea ice thickness was on average 0.5 m in

March, and around 1 m thick from April to June (mean

0.9 � 0.1 m). By the end of June, the sea ice started to

break up, and on 12 July, the fjord was ice free (J. E.

S�reide, personal observations). In Rijpfjorden (80.271N

and 22.291E), the sun appeared for the first time in late

February (22 February) (http://www.esrl.noaa.gov/

gmd/grad/solcalc/). The mean daily light intensities

increased rapidly the following months (Appendix S3),

and the midnight sun appeared from 11 April to 31

August. The 4 months of the long polar night period

began when the sun disappeared on 21 October.

Primary producers: ice algae and phytoplankton

Between March and October there were two distinct

algal blooms, corresponding to the two peaks in PUFA-

production. The earlier PUFA-peak was associated with

the ice algal bloom in late April, and the later PUFA-

peak corresponded to the phytoplankton bloom just

after ice break-up in early July (Figs 1 and 2). Omega-

3 fatty acids accounted for most of the PUFAs in both ice

algae (65%–74%) and phytoplankton (57%–83%) (Table

1, Appendix S4). Ice algae were present as early as

March, but biomass began to build up in April and

lasted until June. Similarly high biomass in terms of

particulate carbon was found in April and June, but the

Fig. 1 The temperature profile measured from September 2006 to September 2007 in Rijpfjorden by a mooring equipped with

temperature loggers spaced through the water column. Timing of sea ice and ice algae are indicated by drawings at the plot, whereas

phytoplankton are chlorophyll a (Chl a) measurements from a fluorometer placed at the mooring at 17 m depth. Peak biomass of ice algae

occurred from mid-April to approx. mid-June. The phytoplankton chlorophyll a values are only approximate values due to lack of

suitable water samples for proper calibration.

Fig. 2 The relative polyunsaturated fatty acids (PUFA) content (as percentage of total fatty acids; mean � SD) in algae and females,

copepodite stage V (CV) and stage IV (CIV) of Calanus glacialis from March to October 2007 in Rijpfjorden. Only ice algae were present

from April to June, whereas from July to October only phytoplankton was available for grazers. Hatched lines were drawn when data

between monthly points were missing. For algae average values per month are shown, based upon three to five independent station

measurements for ice algae (with three replicate ice cores each), and two to four stations with six sampling depths for phytoplankton. For

C. glacialis average values based upon three to nine samples of 10–30 individuals per sample are shown per month.
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ice algal PUFA content decreased from 37% in April to

22% in June (t-test, P 5 0.001) (Table 1, Fig. 2). The

phytoplankton biomass was negligible during the ice-

covered period from February to June (Fig. 1). The ice

break up in June/July was followed by a phytoplankton

bloom in early July (Table 1, Fig. 1). The quality of the

phytoplankton as food also peaked during this bloom

when the phytoplankton contained up to 40% PUFAs

(Table 1, Fig. 2). The pelagic POM (P-POM) had a low

PUFA content in April (o15%). In June, P-POM con-

sisted primarily of ice algae sloughed off the bottom of

the sea ice, so in June, ice algae and P-POM had a

similar PUFA content (t-test, P 5 0.667).

Secondary producers: C. glacialis

During April and May, females of C. glacialis had a

pronounced increase in their relative PUFA content

(Fig. 2; Appendix S5a). In contrast, CIV and CV indivi-

duals in these months had no significant increases in

relative PUFA content (Fig. 2, Appendix S5b and c). C.

glacialis females produced eggs during the ice algal

bloom (Table 2), which mirrored an increase in egg

abundance in the net samples from April to June

(Fig. 3). We could not estimate egg production after June

due to very low female abundance in this period

(o1 ind. m�3 in the upper 50 m). Similarly, we found

very low egg abundance from July to October (Fig. 3).

The total lipid content in surface dwelling females

dropped in April at the onset of spawning, but re-

mained stable during the spawning period from April

to June (Kruskal–Wallis median test, P 5 0.0563) (Fig. 5).

In contrast, the total PUFA content in females slightly

increased from March to June (Fig. 5).

The peak abundance of C. glacialis nauplii and young

copepodites coincided with the pelagic bloom in July,

which provided the offspring with excellent food (Figs 3

and 4). Young nauplii stages dominated during the ice-

covered period, whereas older feeding nauplii stages

(� NIII) dominated at the onset of the phytoplankton

bloom (Fig. 4b). In July, the youngest copepodite stages

(CI–CIII) accounted for most of the population (70%),

whereas the overwintering stages CIV and CV domi-

nated from August (Fig. 4a). Females (40%–69%) and

CIV individuals (17%–46%) were the most common C.

glacialis stages from March to June, followed by CIV

(17%–46%) (Fig. 4a). C. glacialis males were absent from

March to September, but started to appear below 100 m

depth (0.5 ind. m�3) in October.

By early March, 23% of the female population had

already migrated to the upper 50 m (Fig. 5). In contrast,

during the same time, only 1% of C. glacialis CIV

Table 1 Integrated (0–50 m) total carbon (C) and chlorophyll a (Chl a) biomass, and relative amount of polyunsaturated fatty acids

(PUFAs) of total lipids and the relative amount of omega-3 fatty acids of total PUFAs (mean � SD; nd, not determined) in ice- and

pelagic-particulate organic matter (POM) in Rijpfjorden 2007

Total C (g m�2) Chl a (mg m�2) PUFAs/total lipids (%) Omega-3/PUFAs (%)

Ice-POM

April 0.2 � 0.1 22.4 � 15.3 36.7 � 1.4 65.0 � 1.5

June 0.2 � 0.1 9.2 � 8.8 22.3 � 2.8 73.7 � 2.6

Pelagic-POM

April nd 3.5 � 0.6 14.3 56.5

June 4.4 � 0.2* 15.9 � 2.2* 20.2 � 2.8* 75.9 � 1.1*

July 21.6 � 4.8 77.5 � 30.5 40.3 � 3.1 83.4 � 4.1

August 12.7 � 3.2 12.7 � 3.2w 32.5 � 4.5 82.4 � 2.6

October 9.7 � 3.1 23.1 � 9.1 23.9 � 5.4 80.4 � 3.1

*Mainly ice algae sloughed off from the bottom ice.

wApproximate values estimated from fluorometer readings.

Table 2 Calanus glacialis egg production measurements from Rijpfjorden in 2007

3–4 March 25–26 April 1–2 May 5–6 June 7–8 June

Number of females incubated 30 29 29 33 30

Incubation temperature ( 1C) �1.7 �1.6 �1.5 0 0.5

Prosme length in mm (mean � SD) 3.3 � 0.3 3.4 � 0.3 3.5 � 0.3 3.5 � 0.2 3.7 � 0.4

% Egg laying females 0 27.6 13.8 27.3 63.3

Egg production day�1 (mean � SE)* 0 7.4 � 2.8 5.7 � 4.7 14.8 � 5.2 17.4 � 3.6

Max egg clutch size day�1 0 16 15 46 59

*Per egg laying female.
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individuals were present in surface waters. The seaso-

nal descent started in August (data not shown), and

by October, o1.5% of the population remained in

the upper 50 m. The copepods that did remain at the

surface in October were almost entirely of young cope-

podites (CI–CIII). From August to October, CIV and CV

specimens in the bottom layer were more lipid-rich than

their counterparts in the surface (Fig. 6).

Discussion

Our findings show a close coupling between the solar

cycle, onset of ice algae and phytoplankton blooms, and

the reproductive success and growth of C. glacialis in a

high Arctic ecosystem. More specifically, both the tim-

ing of the reproduction and the ontogenetic develop-

mental time for C. glacialis are synchronized with the

two distinct blooms of available high-quality algal food.

C. glacialis females efficiently use the ice algae bloom as

food for maturing and fueling early egg production.

The progress of C. glacialis development then allows the

offspring to take advantage of the second bloom of

high-quality food produced by phytoplankton (Fig.

7a). As the Arctic ice cap shrinks and sea ice thins, the

ice will break-up earlier in the season, resulting in an

earlier onset of the pelagic bloom (Arrigo et al., 2008).

However, the overall ice algal growth season will short-

en as its onset is limited by light availability, which

again is restricted by the low solar angle at high

latitudes. Hence the onset of ice algal growth season

will not be influenced by a thinner Arctic ice cap, but

the end will be shifted forward following the earlier ice

break-up. The time lag between the ice-associated and

pelagic blooms will therefore shorten, resulting in a

potential mismatch between the phytoplankton bloom

and the temperature-controlled ontogenetic develop-

ment of C. glacialis (Fig. 7b) (McLaren et al., 1988).

Fig. 3 Seasonal abundances of eggs, nauplii and copepodites of

Calanus glacialis in Rijpfjorden 2007. Eggs collected with mesh

size 63 mm (hatched line from April to June since data from May

is missing), whereas nauplii and copepodites were collected with

mesh size 200mm.

Fig. 5 Total lipids and polyunsaturated fatty acids (PUFAs) in

surface dwelling (0–50 m) Calanus glacialis females (mean � SD)

from March to June 2007 in Rijpfjorden.

Fig. 4 Relative copepodite (a) and nauplii (b) composition of

Calanus glacialis from March to October 2007 in Rijpfjorden (CAF;

adult females).
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Female reproduction

The exact effect of food in C. glacialis maturation and

reproduction remains unclear (Hirche & Bohrer, 1987;

Hirche, 1989; Hirche & Kattner, 1993). It has been

suggested that early reproduction in C. glacialis can be

fueled by internal lipid reserves (Hirche & Kattner,

1993), but there is no doubt that food speed up matura-

tion (Tourangeau & Runge, 1991) and increases egg

production (Hirche, 1989; Hirche & Kattner, 1993).

Females of C. glacialis may need up to 4 weeks to

mature, dependent on the food accessibility (Touran-

geau & Runge, 1991). C. glacialis can produce up to 90

eggs per day during bloom conditions (Melle & Skjol-

dal, 1998), suggesting that we missed the peak egg

production period when measuring the egg production

rates in late April and June. During prebloom and late

bloom conditions, the egg production rates of C. glacialis

are highly variable (Melle & Skjoldal, 1998) and com-

parable to the egg production rates we measured in

April/May and June, respectively. Based on the pre-

vailing sea water temperatures and the peak nauplii

abundance, the peak egg production most likely oc-

curred in late-May in Rijpfjorden 2007. C. glacialis needs

about 3 weeks to develop to the first nauplii feeding

stage (NIII) at temperatures below �1 1C (M. Daase &

J. E. S�reide, unpublished results), suggesting that the

total time from female maturation and spawning to

when the new generation is ready to feed takes about

2 months. This timeline fits our monthly population

data from Rijpfjorden and appears optimized for suc-

cessful C. glacialis recruitment and growth, which is

reflected in the high population biomass of C. glacialis in

this fjord (Daase & Eiane, 2007; Blachowiak-Samolyk

et al., 2008; S�reide et al., 2008).

Particularly females took advantage of the ice algae

bloom of high food quality. During the ice cover from

February to June, both the fluorescence measurements

and high nutrient levels (E. Leu , J. Wiktor, J.E. S�reide,

J. Berge & S. Falk-Petersen, unpublished results) indi-

cated very low phytoplankton biomass and production.

Active ice algae grazing in females were supported by a

pronounced increase in PUFA content during the ice

algal growth season and green guts already in April

(field observations, not shown). The difference in fe-

male abundance – high during the ice algal bloom and

few at the onset of the phytoplankton bloom – further

supports the importance of the ice algae bloom for C.

glacialis reproduction. Gonad maturation is energeti-

cally costly (Jonasdottir, 1999; Rey-Rassat et al., 2002;

Fig. 6 Total lipid content (mean � SD) in Calanus glacialis copepodite stage IV (CIV, a) and stage V (CV, b) in the upper 50 m (surface)

and in the deep (100–140 m) from March to October 2007 in Rijpfjorden.
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Lee et al., 2006). C. glacialis females can loose up to half

of their lipid content during gonad maturation despite

access to food (Hirche & Kattner, 1993). After matura-

tion is completed, however, the lipid content stabilizes

since egg production is being driven by ingested food

(Hirche & Kattner, 1993). Although the lipid content in

females from Rijpfjorden decreased and stabilized as

descried above, the PUFA content remained constant or

slightly increased during gonad development and egg

formation (Fig. 5). This maintenance of PUFAs might

reflect their role as essential structural units in mem-

branes (Ackman, 1989). C. glacialis eggs have high

proportions of both EPA (417%) and DHA (413%)

(Hirche & Kattner, 1993). As such, senescent diatoms

with low PUFA content are poor food for copepods,

resulting in lower egg production (Mayzaud et al., 1989;

Jonasdottir, 1994; Breteler et al., 2005) and lower hatch-

ing success (Jonasdottir et al., 2005).

Ontogenetic development

Ice algae provided females high-quality food for early

and successful reproduction. In turn, there was also

high-quality food during nauplii and early copepodite

development. Later in the season, the PUFA content of

food may be less important because the overwintering

stages CIV and CV that dominated at this time (Fig. 4a)

mainly invested food into storage lipids (monounsatu-

rated fatty acids and alcohols) for overwintering (Lee

et al., 2006).

C. glacialis needs approximately 2 months to develop

from CI to their overwintering stages CIV and CV at

temperatures around 3 1C (Corkett et al., 1986). CI

individuals started to appear in Rijfjorden in June and

July, which corresponded to the dominance of CIV and

CV in late August (Fig. 4a) and known sea water

temperatures in the upper 50 m from July to August

(Fig. 1). The earlier C. glacialis reaches its overwintering

stage, the earlier it can accumulate lipids and descend

to its overwintering depth, reducing the predation risk

(Dale et al., 1999; Varpe et al., 2007). In October, CV

dominated (55%), followed by CIV (29%), suggesting

that C. glacialis completes its life cycle in 1–2 years

despite the relative extreme environment in Rijpfjorden.

In general, the C. glacialis life cycle is biennial north of

the polar front and annual over the rest of its range

(Conover, 1988). However, in Rijpfjorden, C. glacialis can

take advantage of both ice algae and phytoplankton

production and have optimized timing of reproduction

and growth in accordance with the two bloom- and

PUFA-peaks. This schedule ensured early reproduction

and a long growth season for C. glacialis, allowing this

Arctic population to complete its life cycle within 1 year.

Concluding remarks

C. glacialis elongated its grazing and growth season by

efficient use of both the early ice algae and the late

phytoplankton as food resources. The effects of a short-

er ice algal growth season and a corresponding earlier

onset of the phytoplankton bloom on the C. glacialis

population remains unknown, and further research is

required to examine the adaptability of C. glacialis

under these future scenarios. However, based on this

study and an earlier study (Tourangeau & Runge, 1991),

we propose that an earlier onset of the pelagic spring

Fig. 7 Current primary production regime in Arctic shelf seas

(a) with highest food quality [highest poly unsaturated fatty acid

(PUFA) content] during the ice algal and phytoplankton blooms.

Calanus glacialis efficiently uses the high-quality ice algal food in

early spring to fuel reproduction, which allows the offspring

(nauplii and copepodites) to fully exploit the high food quality in

the later occurring phytoplankton bloom. This perfect primary

producer–grazer match ensures high population biomass of C.

glacialis. Future primary production regime (b) with shorter

growth season for ice algae due to earlier ice break up, will lead

to shorter time between the two PUFA-peaks associated with the

ice algal and phytoplankton blooms. This decrease may lead to a

mismatch between primary producers and the ontogenetic de-

velopment of the offspring. Because C. glacialis requires roughly

3 weeks to develop to first feeding nauplii stage (NIII) after

spawning, it may partially or totally miss the high-quality

phytoplankton bloom during its most critical growth phase.
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bloom will decrease the time between the two bloom-

and PUFA-peaks, since the onset of the ice algal bloom

is mainly determined by the solar angle. This decrease

may not only have a direct and negative influence on

the reproduction, growth, and abundance of C. glacialis,

but may also potentially affect the entire lipid-driven

Arctic marine ecosystem. Many important predators in

the Arctic ecosystem such as the little auk (Karnovsky

et al., 2003; Steen et al., 2007) and the bowhead whale

(Rogachev et al., 2008) depend on the small but very

energy rich C. glacialis as their main prey.

The current dramatic reduction is sea ice thickness

and coverage area may therefore have direct negative

impacts on higher trophic levels, such as sea birds and

large predators, since lipid-rich key Arctic grazers are

likely to be replaced by temperate and less lipid-rich

organisms (Falk-Petersen et al., 2007; Steen et al., 2007).

Acknowledgements
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