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March 18th. 1839 - We sailed from Bahia. A few days afterwards, when 

not far distant from the Abrolhos Islets, my attention was called to a 

reddish-brown appearance in the sea. The whole surface of the water, as it 

appeared under a weak lens, seemed as if covered by chopped bits of hay, 

with their ends jagged. These are minute cylindrical confervae, in 

bundles or rafts of from twenty to sixty in each. Mr. Berkeley informs 

me that they are the same species (Trichodesmium erythraeum) with that found over large 

spaces in the Red Sea, and whence its name of Red Sea is derived. Their numbers must be 

infinite: the ship passed through several bands of them, one of which was about ten yards 

wide, and, judging from the mud-like colour of the water, at least two and a half miles long.  

 
The Voyage of the Beagle – Charles Darwin  
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Summary 

1 Summary / Zusammenfassung 

The main motivation for this thesis was to describe the responses of the N2 fixing 

cyanobacterium Trichodesmium to elevated pCO2 and to provide a detailed understanding of 

underlying processes. The focus was hereby to characterize inorganic carbon acquisition and its 

interaction with photosynthesis and N2 fixation. Based on these findings, the potential influence 

of Trichodesmium on the ecosystem and elemental cycles in the future oceans was assessed. 

First, a comparison of the 14C disequilibrium technique and membrane inlet mass 

spectrometric (MIMS) approaches on modes of carbon acquisition was conducted. This method 

comparison provided experimental confirmation of key assumptions and demonstrated strengths 

and weaknesses of the different approaches. The 14C disequilibrium technique was found to be a 

robust and accurate method to determine the preference of inorganic C species (CO2 and/or 

HCO3
-) taken up by phytoplankton cells. The MIMS approach obtained nearly identical results 

on the contribution of HCO3
- and CO2 relative to net carbon fixation. In addition, the C fluxes 

measured by MIMS provided details on the kinetics of HCO3
- and CO2 uptake. Regarding 

extracelluar carbonic anhydrase (eCA), the two methods differed in their estimates on activities. 

Errors in the 14C-based estimates on eCA activities were also much higher than those obtained by 

the MIMS approach. In view of the applicability, the 14C disequilibrium technique has a 

significant advantage for field studies, whereas MIMS approaches are required for a more 

detailed characterization of the carbon concentrating mechanism (CCM). Both methods were 

applied in subsequent studies on Trichodesmium. 

Second, Trichodesmium was incubated to different CO2 concentrations (150, 370, and 1000 

μatm pCO2) to test for its CO2 sensitivity. In these acclimations, the production of particulate 

organic carbon (POC) and particulate organic nitrogen (PON) was strongly stimulated under 

1000 μatm pCO2. To explain this effect, modes of carbon acquisition were characterized by 

means of MIMS and 14C disequilibrium technique. Trichodesmium was found to operate an 

efficient CCM based primarily on the uptake of HCO3
-. Apparent affinities for DIC decreased 

with increasing CO2 concentrations. Changes in affinities were even more pronounced over the 

diurnal cycle, being inversely correlated with N2 fixation. Activities for eCA were low and did 

not change with pCO2, indicating a minor role of this enzyme in carbon acquisition. The 

presence of an efficient CCM clearly negates a direct effect of ambient CO2 on the carboxylation 

efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) in Trichodesmium. 

Instead, the findings point to changes in resource allocation as an explanation for the observed 

CO2-sensitivity. 
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To determine the effect of energy availability on the CO2-sensitivity, Trichodesmium was 

subsequently grown under a matrix of low and high levels of pCO2 (150 and 900 μatm) and 

irradiance (50 and 200 μmol photons m-2 s-1). Growth rates as well as cellular C and N content 

increased with increasing CO2 and light levels in the cultures. The CO2-dependent stimulation in 

POC and PON production was highest under low light. To understand these CO2-effects and 

their modulation by light, energy sources (gross photosynthesis) and sinks (C-aquisition, N2 

fixation, Mehler reaction) were assessed by means of mass spectrometry and gas 

chromatography. Gross photosynthesis was found to increase with light, yet being insensitive to 

CO2. High CO2 levels, however, stimulate rates of N2 fixation and prolonged its duration. 

Although HCO3
- was the dominant carbon source for C fixation in all treatments, CO2 uptake 

increased under elevated pCO2. Mehler reaction was generally low under growth condition but 

instantaneously induced when cells were exposed to high light, indicating that this process rather 

functions as photo-protective than O2-scavenging mechanism in Trichodesmium. In summary, 

the observed stimulation in growth and production rates under elevated pCO2 cannot be 

explained by changes in energy production via PSII activity but it can be attributed to the CO2-

dependent regulation in CCM and N2 fixation. Owing to this improved “energy use efficiency” 

under elevated pCO2, Trichodesmium is likely to benefit from ocean acidification. 

In addition to the experiments looking at the effect of changes in carbonate chemistry on 

Trichodesmium, the consequences of a bloom situation on carbonate chemistry was investigated 

under different availabilitiy of inorganic phosphorus (P). During exponential growth, the 

concentration of DIC decreased while pH increased until cell densities peaked in all treatments. 

Once P became depleted, DIC decreased even further and total alkalinity (TA) dropped. These 

pronounced changes in carbonate chemistry were accompanied by precipitation of CaCO3, 

subsequently identified as aragonite. Under P-replete conditions, however, TA remained 

constant, DIC returned to initial concentrations and no aragonite was formed in the post bloom 

phase. The ability of Trichodesmium to shift carbonate chemistry from equilibrium was further 

investigated by applying a diffusion-reaction model to the data. These findings demonstrate the 

capability of Trichodesmium to induce precipitation of aragonite from seawater as a function of 

P availability. Possible consequences on the marine carbon cycles are discussed. 

 

 



Zusammenfassung 

Zusammenfassung 

Ziel dieser Arbeit war es, die Reaktion des N2-fixierenden Cyanobakteriums Trichodesmium auf 

eine Erhöhung von atmosphärischem CO2 zu beschreiben und ein detailliertes 

Prozessverständnis der gefundenen Effekte zu erlangen. Der Schwerpunkt der Forschung lag 

hierbei auf der Charakterisierung des Kohlenstofferwerbs und dessen Wechselwirkung mit 

Fotosynthese sowie N2-Fixierung. Auf Grundlage der erzielten Ergebnisse wurden zukünftige 

Veränderungen im marinen Ökosystem sowie von Stoffkreisläufen abgeschätzt.  

Zu Beginn der Doktorarbeit wurden zwei Ansätze zur Bestimmung des Kohlenstofferwerbs 

von Phytoplankton miteinander verglichen. Dieser Vergleich bestätigte Schlüsselannahmen der 

“14C disequilibrium“-Technik sowie Methoden der Membran-Einlass Massenspektrometrie 

(MIMS) und zeigte deren Stärken und Schwächen. Die “14C disequilibrium“-Technik ist ein 

robuster and präziser Ansatz zur Spezifizierung der Kohlenstoffaufnahme (CO2 und/oder HCO3
-) 

von Phytoplankton. Der MIMS-Ansatz zeigte nahezu identische Ergebnisse in Bezug auf den 

Anteil von HCO3
- und CO2 relativ zur Netto-Kohlenstofffixierung. Des Weiteren ergaben die 

Kohlenstoffflussmessungen mittels MIMS detaillierte Angaben über HCO3
-- und CO2-

Aufnahmekinetiken. Bei der Bestimmung der Aktivität von extrazellulärer Karboanhydrase 

(eCA) unterschieden sich beide Ansätze in ihren Abschätzungen. Der methodische Fehler der 

“14C disequilibrium“-Technik war hierbei erheblich größer als die Fehler des MIMS-Ansatzes. 

Hinsichtlich der Anwendbarkeit zeigte sich, dass die “14C disequilibrium“-Technik bedeutende 

Vorteile für den Einsatz in Feldstudien hat, wohingegen der MIMS-Ansatz für eine genauere 

Charakterisierung der Kohlenstoff-Konzentrierungsmechanismen (CCM) erforderlich ist. Beide 

Methoden wurden in den nachfolgenden Studien mit Trichodesmium angewendet. 

Um die Sensitivität von Trichodesmium auf Veränderungen in der CO2 Konzentration zu 

untersuchen, wurde dieses Cyanobakterium an verschiedene CO2 Partialdrücke (pCO2) von 150, 

370 und 1000 μatm akklimatisiert. Ein starker Anstieg der Produktion des partikulären 

organischen Kohlenstoffs (POC) sowie des partikulären organischen Stickstoffs (PON) konnte 

hierbei unter 1000 μatm pCO2 gemessen werden. Um diese CO2-bedingten Veränderungen 

besser verstehen zu können, wurde der Kohlenstofferwerb mit Hilfe der MIMS- und der “14C 

disequilibrium“-Technik charakterisiert. Es zeigte sich, dass Trichodesmium einen effizienten 

CCM besitzt, der hautsächlich auf aktiver Aufnahme von HCO3
- basiert. Die apparenten 

Affinitäten für gelösten anorganischen Kohlenstoff (DIC) reduzierten sich dabei mit erhöhten 

CO2 Konzentrationen. Über den Tagesverlauf waren die Veränderungen in diesen Affinitäten 

noch ausgeprägter und mit der Aktivität der N2-Fixierung antikorreliert. Für Trichodesmium 

wurde nur eine geringe Aktivität von eCA gemessen, welche unabhängig vom pCO2 der 
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Akklimatisation war und somit eine nur geringe Rolle im CCM von Trichodesmium spielt. Die 

Existenz eines effizienten CCM in Trichodesmium beweist eindeutig, dass Veränderungen im 

pCO2 keinen direkten Einfluss auf die Karboxilierungseffizienz der Ribulose-1,5-Bisphosphate 

Carboxylase/Oxygenase (RubisCO) hat. Die gemessene CO2-Sensitivität scheint stattdessen 

durch Veränderungen im zellulären Energiehaushalt hervorgerufen zu werden. 

Um Auswirkungen von Energieverfügbarkeit auf die CO2-Sensitivität zu bestimmen, wurde 

Trichodesmium in einer Matrix aus niedrigen und hohen Konzentrationen von pCO2 (150 und 

900 μatm) und Licht (50 und 200 μmol photons m-2 s-1) akklimatisiert. Die Wachstumsraten 

sowie zelluläre Kohlenstoff- und Stickstoffgehalte steigerten sich durch erhöhte pCO2 sowie 

erhöhte Lichtintensitäten in den Kulturen. Die CO2-abhängige Steigerung in der POC und PON 

Produktion war unter der niedrigen Lichtintensitäten am größten. Um diese Reaktionen und ihre 

Regulierung durch Licht zu verstehen, wurden die zelluläre Energieproduktion (Brutto- 

Fotosyntheseraten) sowie energieverbrauchende Prozesse (Kohlenstoff-Aufnahme, N2-Fixierung, 

Mehler Reaktion) über MIMS und Gas-Chromatographie abgeschätzt. Die Brutto- 

Fotosyntheseraten steigerten sich mit erhöhter Lichtintensität, waren jedoch unbeeinflusst von 

pCO2. Erhöhte CO2-Konzentrationen zeigten jedoch einen Stimulierungseffekt auf Raten sowie 

Dauer der N2-Fixierung über den Tagesverlauf. Obwohl HCO3
- die hauptsächliche 

Kohlenstoffquelle für C-Fixierung in allen Akklimatisationen darstellte, steigerte sich die CO2-

Aufnahme unter erhöhtem pCO2. Unter den Akklimatisationsbedingungen wurde nur eine 

niedrige Aktivität der Mehler Reaktion gemessen, welche sich allerdings stark steigerte, sobald 

die Zellen höherer Lichtintensität ausgesetzt waren. Diese Beobachtungen deuten darauf hin, 

dass die Mehler Reaktion eher zum Schutz der Fotosynthese bei hohen Lichtintensitäten als zur 

Senkung der zellulären O2-Konzentrationen fungiert. Zusammenfassend zeigt sich, dass die 

beobachtete Erhöhung der Wachstums- sowie der Produktionsraten unter erhöhtem pCO2 nicht 

durch eine Veränderung in der Fotosyntheseaktivität und demzufolge der primären 

Energieproduktion erklärt werden kann. Die starke CO2-Sensitivität kann vielmehr auf die CO2-

abhängige Regulation des CCMs und der N2-Fixierung zurückgeführt werden. Aufgrund der 

verbesserten „Energienutzungs-Effizienz“ unter erhöhtem pCO2 wird Trichodesmium 

voraussichtlich von der Ozeanversauerung profitieren. 

Ergänzend zu den Studien über die Auswirkungen von veränderter Karbonatchemie auf 

Trichodesmium, wurden die Effekte einer Blütensituation von diesem Cyanobakterium auf die 

Karbonatchemie unter verschiedener Phosphatverfügbarkeit (PO4
3-) betrachtet. Die Ergebnisse 

zeigten, dass während des Zellwachstums die DIC-Konzentration abnahm wohingegen der pH 

im Medium anstieg. Dieser Trend war unter allen Bedingungen bis zum Erreichen der 
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maximalen Zellkonzentration vergleichbar. Nach vollständiger Aufnahme von PO4
3- verringerte 

sich DIC auch nach Erreichen der maximalen Zellkonzentration weiter. Außerdem wurde ein 

Abfallen der Alkalität (TA) im Medium beobachtet. Diese ausgeprägten Veränderungen in der 

Karbonatchemie korrelierten mit einer Ausfällung von aragonitischem CaCO3. In dem Ansatz, 

bei dem PO4
3- nicht aufgebraucht wurde, blieb TA konstant und DIC kehrte zu den initialen 

Konzentrationen zurück. Auch konnte hier keine Aragonitfällung beobachtet werden. Um die 

Veränderung in der Karbonatchemie in Aggregaten von Trichodesmium abschätzen zu können, 

wurde ein “diffusion-reaction“ Modell verwendet. Diese Studie zeigt das Potential von 

Trichodesmium, Aragonitfällung in Abhängigkeit von Phosphatverfügbarkeit in Seewasser zu 

induzieren. Mögliche Auswirkungen auf den marinen Kohlenstoffkreislauf wurden diskutiert. 
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General introduction 

2  General introduction 

2.1 Setting the scene 

In the Hadean, around 4.6 billion years ago, life would have been impossible for most modern 

life forms due to a hostile environment. Average temperatures of about 100°C and a primal 

atmosphere devoid of oxygen, mainly composed of water vapor, dinitrogen (N2), carbon dioxide 

(CO2) and methane (CH4) prevailed (Holland, 1984; Kasting et al., 1988; Kasting and Siefert, 

2002). With Earth’s cooling, water vapor condensed and in the Archaean (4 billion years ago), 

the ancestral ocean became home to the first prokaryotic life forms. These so-called Archaea 

exploit a large variety of sources for biomass production, ranging from organic compounds and 

the use of NH4
+, metal ions or even hydrogen gas as energy source. About one billion years later, 

prokaryotic life forms evolved, able to use sunlight for energy production, the so-called 

photoautotrophic bacteria (Xiong et al., 2000; Blankenship, 2001). 

Cyanobacteria were the first using sun energy to split the water molecules for the production 

of biochemical energy (Des Marais, 2000), which was used to convert CO2 into biomass. These 

prokaryotes and their descendants changed the destiny of our planet, altering the atmosphere by 

consuming CO2 and producing O2 via the process of photosynthesis. Initially, the O2 reacted 

mainly with iron-containing minerals and as soon as those were oxidized, O2 started to 

accumulate in the atmosphere (Rye and Holland, 1998; Farquhar et al., 2000). It took another 1.5 

billion years before the eukaryotic photosynthetic organisms entered the scene (Javaux et al., 

2001). All these photosynthetic organisms strongly influenced environmental conditions and 

climate by driving many of the global elemental cycles. 

Although environmental conditions have undergone major changes over geological time, the 

presently observed global change is occurring at an unprecedented rate, mainly caused by  

changes in land use and the burning of fossil fuel (Solomon et al., 2007). A large proportion of 

the anthropogenically released CO2 is absorbed by the oceans, buffering the increase of this 

greenhouse gas in the atmosphere and thus global warming. However, the CO2 uptake by the 

oceans causes complex changes in the carbonate chemistry that are reflected by a decreasing pH 

(Wolf-Gladrow et al., 1999; Solomon et al., 2007). This process, often referred to as ocean 

acidification, is likely to affect marine organisms in general and phytoplankton in particular 

(Raven et al., 2005; Rost et al., 2008). 

Marine phytoplankton comprises approximately 5000 species (Sournia et al., 1991; Tett and 

Barton, 1995) and represents about one percent of the photoautotrophic vegetation on Earth. 

Despite their little overall biomass, these photoautotrophs are responsible for about half of the 
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global primary production (Field et al., 1998). This apparent paradoxon is caused by the capacity 

for rapid growth and a corresponding high turnover. Despite the high variety in phytoplankton, 

only a relatively small number of species dominate elemental cycling. Among these key species, 

marine N2 fixing cyanobacteria, so-called diazotrophs, play an important role in the nitrogen 

cycle, thus marine productivity and Earth’s climate (Zehr and Ward, 2002). It is a key question 

in climate research, marine ecology and biogeochemistry to understand the complex interplay 

between ecosystem functioning and climate variability.  

2.2 The marine carbon cycle 

Understanding the responses and feedbacks of phytoplankton to changes in atmospheric CO2 

requires the knowledge of processes influencing the CO2 exchange between ocean and 

atmosphere. The uptake of atmospheric CO2 by the ocean is mediated by the so-called physical 

and biological carbon pumps (Volk and Hoffert, 1985). The physical pump describes the vertical 

carbon flux resulting from differences in CO2 solubility of warm and cold water. As warm 

surface water moves from low to high latitudes, successive cooling results in an increasing 

solubility for CO2. Owing to deep-water formation at high latitudes, this cold water, rich in 

dissolved inorganic carbon (DIC), is then transported to the deep ocean (Fig. 1).  

Biological fixation of DIC into biogenic matter, its subsequent sinking, remineralization 

and/or dissolution drives the biological pumps, which are thought to cause about 75% of the 

vertical DIC gradient (Sarmiento et al., 1995). These pumps can be separated into the organic 

carbon pump and the carbonate pump. The organic carbon pump is driven by photosynthetic CO2 

fixation into particulate organic carbon (POC), causing a drawdown of CO2 from the atmosphere 

into the ocean (Fig. 1). Organisms that precipitate calcium carbonate (CaCO3) and sink to depth 

provide a CO2 source for the atmosphere. This counterintuitive effect is caused by consumption 

of DIC as well as total alkalinity (TA) during the process of calcification (Zeebe and Wolf-

Gladrow, 2007). The extent of both biological pumps, expressed in the so-called rain ratio 

(CaCO3 : POC), largely determines the flux of CO2 between surface ocean and atmosphere, and 

was estimated to range between 0.05 and 0.25 in the contemporary ocean (Sarmiento et al., 

2002). Cyanobacteria are known to be important primary producers (Paerl and Bebout, 1992; 

Waterbury, 2005) and a source for reactive nitrogen (Karl et al., 1997), and thus play a key role 

in the marine carbon cycling (Capone et al., 1997; Partensky et al., 1999; Waterbury, 2005).  
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Figure 1: Schematic illustration of the physical and biological driven carbon pumps (see text). Solid lines indicate 
the flow of particulate carbon and dotted lines indicate mass redistribution by physical-chemical processes such as 
gas exchange or water mass movements. Abbreviations: DIC – dissolved inorganic carbon; POC – particulate 
organic carbon; TA – total alkalinity. 

2.2.1 Seawater carbonate chemistry 

To understand global carbon cycles and biological processes involved in C assimilation, the 

basics of the carbon system have to be known. Next to N2 (71%), O2 (21%) and Argon (1%), 

CO2 (0.038%) is the most abundant gas in the contemporary Earth’s atmosphere. When 

atmospheric CO2 dissolves in seawater, it follows Henry’s law (see Eq. 1): 

[CO2] = ����pCO2.        (1) 

where [CO2] is the concentration of dissolved (aqueous) CO2, ��represents the temperature- and 

salinity-dependent solubility coefficient and pCO2 denotes the atmospheric partial pressure of 

CO2. Despite the relatively low concentration of CO2 in the atmosphere compared to N2 or O2, 

the relative amount of inorganic carbon in the ocean is an order of magnitude higher. This is 

caused by the fact that CO2 is not simply dissolved in seawater like other gases, but it reacts with 

the water and forms carbonic acid (H2CO3), which subsequently dissociates to the anions 

bicarbonate (HCO3
-) and carbonate (CO3

2-):  

CO2 + H2O  H2CO3 �  HCO3
- + H+ �  CO3

2- + 2H+    (2) �
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The [CO2] usually comprises [H2CO3], which exists only in very low concentrations. The sum of 

the three dissolved species [CO2], [HCO3
-] and [CO3

2-] is summarized as dissolved inorganic 

carbon (DIC): 

DIC = [CO2] + [HCO3
-] + [CO3

2-]      (3) 

While the [DIC] in the surface ocean is relatively constant, the proportion of the DIC species 

vary as a function of pH (Fig. 2), temperature and salinity. An increase in temperature and/or 

salinity will increase the relative proportion of [CO3
2-] with respect to [CO2] and [HCO3

-]. 
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Figure 2: Relative proportions of CO2, HCO3

- and CO3
2- in seawater as a function of pH (20°C, S=34). In the 

contemporary ocean, the pH is around 8.0 to 8.3 (indicated by the grey bar). Thus, HCO3
- represent about 85-94%, 

followed by CO3
2- with 5-15%, while CO2 comprises only 0.3-1.2% of DIC. Please note that the relative proportions 

of the DIC species control the pH and not vice versa (modified after Zeebe and Wolf-Gladrow, 2007). 
 

For an accurate description of the carbonate system, total alkalinity (TA) is required. This 

parameter can be regarded as an electrochemical charge balance or the buffer capacity. The 

surplus of strong cations (e. g. Na+, Mg2+, Ca2+ K+, Sr+) over strong anions (e. g. Cl-, CO4
2- NO3

-, 

F-) in seawater is balanced by the charge of weak ions and defines TA (Dickson, 1981):  

TA = [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] – [H+] + [X]   (4) 

While most of the charge difference between strong cations and strong anions is compensated by 

[HCO3
-] and [CO3

2-], other constituents such as [Si(OH)3
-], [HPO4

2-], [PO4
3-] or [NH3], here 

defined as X, only have minor influence on TA. For a more detailed description of alkalinity in 

seawater the reader is referred to Wolf-Gladrow et al. (2007). 
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Various biogeochemical processes affect DIC as well as TA (Fig. 3). Invasion or release of 

CO2 into seawater changes DIC, while TA remains constant. The production of organic matter 

decreases DIC due to photosynthetic CO2 fixation. The concomitant increase in TA is caused by 

NO3
- uptake, which is compensated by H+ or OH- exchange of the cell to keep electroneutrality 

(C:N ratio according to Redfield was assumed). Remineralization changes DIC and TA in the 

opposite direction. The precipitation of CaCO3 reduces DIC by 1 and TA by 2 units, thereby 

increasing CO2 levels and decreasing pH. Dissolution of CaCO3 has the reverse effect.  

 
Figure 3: Effect of various processes (arrows) on dissolved inorganic carbon (DIC) and total alkalinity (TA). Lines 
indicate levels of constant dissolved CO2 (in �mol kg-1) as a function of DIC and TA. See text for details (modified 
after Zeebe and Wolf-Gladrow, 2007). 

2.3 The marine nitrogen cycle 

The flow of nitrogen compounds between the oceans and the atmosphere is central to life, as 

nitrogen is a fundamental component of biomass. In most of the oceans’ surfaces, bio-available 

nitrogen sources like ammonia (NH4
+), nitrate (NO3

-) and nitrite (NO2
-) are scarce (Capone, 

2000) and therefore often restrict primary production. Only a few phytoplankton species like 

some marine bacteria and cyanobacteria are able to make use of the abundant N2 for growth and 

biomass buildup. As a product of N2 fixation processes, cells often release NH4
+ (Mulholland et 

al., 2004), which subsequently can be oxidized by nitifying bacteria to NO2
- and NO3

- (Fig. 4) at 

the oceans’ surface. As these dissolved inorganic nitrogen sources are used by phytoplankton 

species to build particulate organic nitrogen (PON), most of it will sooner or later sink and 

become remineralized. After ammonification, NH4
+ can be oxidized to NO2

- and subsequently to 
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NO3
-. When upwelled, these nitrogen sources, become available for phytoplankton biomass 

production (Gruber and Sarmiento, 1997).  

In so-called oxygen minimum zones of the ocean, the process of denitrification reduces NO3
- 

to NO2
-
, nitric oxide (NO), nitrous oxide (N2O) and subsequently to N2. The anammox reaction, 

a recently discovered process, directly converts NH4
+ and NO2

- to N2 (Devol, 2003; Kuypers et 

al., 2005). The gaseous products of both processes (NO, N2O, N2) can be lost from the oceanic 

system via exchange with the atmosphere (Gruber and Sarmiento, 1997; Devol, 2003).  

 
Figure 4: Schematic representation of the marine N cycle showing the major N fluxes. Atmospheric deposition and 
riverine input of NH4

+, NO3
- and dissolved organic nitrogen is not shown here. Solid lines indicate processes that 

involve biology. Dotted lines indicate mass redistribution by physical-chemical processes such as gas exchange or 
water mass movements. Numbers in parentheses refer to the valence of N in each molecule or ion. Abbreviation: 
PON – particulate organic nitrogen. 

 

Nitrogen fixation and denitrification/anammox are generally assumed to dominate the flow of 

nitrogen into and out of the ocean, respectively (Capone, 2001; Gruber, 2005; Capone and 

Knapp, 2007). Human activity, however, affects the nitrogen cycle via the use of fertilizers or 

increasing atmospheric N deposition, causing eutrophication of costal areas and the open ocean 

(Codispoti et al., 2001; Doney et al., 2007). Model calculations on N2 fixation and denitrification 

suggest a depletion of nitrogen in the contemporary oceans (Codispoti et al., 2001). Although 
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this apparent N loss is not yet supported by geochemical evidence (Karl et al., 2002), it may 

reflect an underestimation of important processes like N2 fixation. The latter process has been 

proposed to be a key in several interactions and feedbacks between the ocean and atmospheric 

CO2 (Falkowski, 1997). 

2.4 Cyanobacteria and Trichodesmium 

Within the phylogenetic tree of life, cyanobacteria are classified in the domain of bacteria. These 

organisms are found in Antarctic melt water ponds as well as in hot springs, hyper-saline lakes 

and arid areas such as the dry valleys in Antarctica as well as the Atacama Desert and thus are 

nearly ubiquitous in all ecosystems (Rai et al., 2000). Cyanobacteria are also associated with 

fungi in a symbiosis called lichens, or with eukaryotes and higher plants. As an ancestor of 

eukaryotic photoautotrophs, this phylum is of significant interest in the endosymbiotic theory 

which describes the origin of specialized organelles inside eukaryotes (Mereschkowsky, 1905; 

Margulis, 1971, 1996).  

Marine cyanobacteria like the species Synechococcus and Prochlorococcus present two of the 

most abundant organisms on Earth, yet they were only discovered around 30 years ago (Johnson 

and Sieburth, 1979; Waterbury et al., 1979). Despite being less than 1 μm in size, they contribute 

essentially to marine carbon cycling as well as the food web (Paerl and Bebout, 1992; 

Waterbury, 2005). As one of the most important diazotrophs, Trichodesmium is a key player in 

the marine nitrogen cycle. The N2 annually fixed by this species is calculated to range between 

60 and 110 Tg (Capone et al., 1997; Gruber and Sarmiento, 1997; Mahaffey et al., 2005), which 

is proposed to support up to 50% of the primary production in the tropical and subtropical oceans 

(Paerl and Bebout, 1992; Capone et al., 1997). The ecology and physiology of this important 

diazotroph is described in the following.  

2.4.1 Ecology of Trichodesmium 

Trichodesmium was first described by Ehrenberg in 1830, classifying this genus within the order 

of oscillatoriales (Ehrenberg, 1830). Today, five different Trichodesmium species have been 

differentiated. Morphologically, Trichodesmium spp. cells range between 5 and 20 μm in 

diameter, forming filaments that consist of up to 340 single cells. These trichoms are found in 

the ocean as single filaments or as aggregates (Fig 5 A, B). Aggregates occur as puffs, 

spherically arranged filaments, and tufts, elongated rafts (Paerl and Bebout, 1988; Paerl, 1994).  

As a photoautotroph, Trichodesmium spp. thrives in the oceans upper layer down to 100 m 

with maximal abundance at 20-40 m depth (La Roche and Breitbarth, 2005 and references 

therein). Its distribution is restricted to warmer waters in between the 20°C isotherm (Fig. 5 D). 
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Notably, highly-stratified oligotrophic waters favor its growth and occurrence (Capone et al., 

1997). Under optimal conditions, blooms can cover up to 106 km2 of the ocean surface (i.e. Fig. 5 

C; Capone et al, 1998). With cell densities of up to 5.7 x 109 cells L-1 (Suvapepun, 1992), such 

blooms strongly influnece primary production and ecosystem structure. Besides, mass 

development of Trichodesmium can have detrimental effects on higher trophic levels as some 

strains produce toxins causing massive mortality of zooplankton and fish (Sato et al., 1966; 

Hawser et al., 1992) or human respiratory diseases (“Trichodesmium fever”). 
Figure 5: Morphology and distribution of 
Trichodesmium. A) Single filament of 
Trichodesmium erythraeum IMS101, 
consisting of ~40 cells. B) Filaments of 
Trichodesmium erythraeum IMS101 
aggregated as a tuft. One aggregate can 
contain several hundreds of filaments. C) 
Typical appearance of Trichodesmium during 
late bloom situation, also called sea sawdust 
(Great Barrier Reef; Heron Island. D) Global 
distribution of Trichodesmium based on field 
studies (La Roche and Breitbarth, 2005). The 
pink line represents the 20°C isotherm, red 
dots indicate physiologically active cells, 
blue dots inactive inactive cells. The 
distribution is likely to be much larger than 
indicated by these observations.  
 
 
 
 

 

 

 

Although relatively slow-growing, Trichodesmium is a highly competitive genus due to a 

number of adaptations to oligotrophic waters. Next to to the ability to fix N2, inorganic nitrogen 

and other nutrients can be obtained from deeper layers as Trichodesmium can vertically migrate 

by regulating its buoyancy (Villareal and Carpenter, 1990). Moreover, organic nutrients like 

phosphonates can be taken up (Dyhrman et al., 2006). High irradiances can be tolerated by 

effective photochemical quenching mechanisms (Subramaniam et al., 1999). Regarding 

predation, the ability to form aggregates may effectively reduce grazing pressure (La Roche and 

Breitbarth, 2005).  

Recent studies on Trichodesmium observed strong responses in growth, POC production and 

N2 fixation under elevated pCO2 (Barcelos é Ramos et al., 2007; Hutchins et al., 2007; Levitan et 

al., 2007). The underlying processes responsible for the CO2-sensitivity in this genus are 

currently unknown. In the following, physiological key processes are outlined. 
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2.4.2 Physiology of Trichodesmium 

In contrast to eukaryotic photosynthetic organisms, cyanobacteria lack organelles (like 

chloroplasts or mitochondria) and thus have to operate all metabolic pathways in one 

compartment. In fact, some biochemical pathways even share the same protein complexes. To 

avoid futile cycling and disadvantageous feedbacks, most pathways are therefore tightly 

regulated (Fig. 6).  

 

 
Figure 6: Schematic representation of major cellular complexes involved in energy flow (electron, ATP, 
NADPH+H+, N2 fixation, carbon acquisition, carbon fixation, carbon respiration, Mehler reaction) in 
Trichodesmium. Photosynthetic complexes are green, respiratory complexes are marked in brown, N2 fixation and 
assimilation is marked in red and complexes involved in carbon acquisition and fixation are blue. The shared 
metabolic components are indicated by a mix of the respective colors. Dotted lines represent diffusive fluxes, solid 
lines represent fluxes where protein or enzymes are involved. (1) illustrates the outer membrane (2) illustrates 
periplasmatic space, consisting of a glycolipid layer (3) the plasma membrane and (4) the thylacoid membrane. 
Thylakoids are invaginations of the plasma membrane. Abbreviations: ADP – adenosine-5'-diphosphate; APX – 
ascorbate-peroxidase; ATP – adenosine-5'-triphosphate; ATPase – adenosine-5'-triphosphat synthase; BicA – BicA 
(HCO3

--transporter); CA – carbonic anhydrase; Cyt b6/f – cytochrome b6/f protein complex; Cyt C oxidase aa3 – 
cytochrome C oxidase; e- – electron; Fd – ferredoxin; GS/GOGAT – glutaminsynthase/glutamine-2-oxoglutarate-
amidotransferase; H+ – Proton; NADPH – nicotinamide-adenine-dinucleotide-phosphate; NDH – NADPH 
dehydrogenase; PC – plastocyanin; PQ – plastoquinone; POC – particulate organic carbon; PON – particulate 
organic nitrogen; PSI – photosystem 1; PSII – photosystem 2; PQ – plastocyanin; QA – Quinone A; QB – Quinone 
B; RubisCO – Ribulose-1,5-bisphosphat-carboxylase/-oxygenase; SDH – succinate-dehydrogenase; SOD – 
superoxide-dismutase. 
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2.4.2.1 Photosynthesis  

The photosynthetic apparatus in photoauthotrophs consists of two photosystems (PSI and PSII). 

These photosystems are located in the thylakoid membrane, which is an invagination of the 

plasma membrane (Fig. 6). Light energy absorbed by chlorophyll and phycobilins in the light 

harvesting complexes (LHC) is transferred to specific chlorophylls of the reaction centre, 

causing the excitation of electrons. The PSII associated electrons of the reaction centre are 

donated to the electron acceptors of the photosynthetic electron transport chain (ETC). The 

“missing” electrons in the chlorophyll are replaced by the oxidation of a water molecule via the 

oxygen evolving complex. 

In the ETC, electrons are further transported via the electron acceptors QA, QB, the 

plastoquinone-pool (PQ-pool) and the cytochrome b6/f complex towards a mobile electron 

carrier, the plastocyanin (PC). The reduced PC can either donate the electron towards a 

cytochrome C oxidase, where O2 is reduced to H2O, or it is transferred to oxidized PSI. The latter 

is formed by light excitation of electrons and their subsequent transfer to ferredoxin (Fd). In the 

linear electron transport, Fd then binds to NADP reductase, forming the reductant NADPH+H+. 

The described electron transfer drives a translocation of protons (H+) through the membrane. 

Together with H+ obtained from the water splitting process at PSII, a proton gradient across the 

thylakoid membrane is established. This gradient is used for the production of biochemical 

energy in form of adenosine-triphosphate (ATP) by the ATP synthase in the thylakoid 

membrane.  

One important difference between cyanobacteria and eukaryotic photoautrophs is the PSI:PSII 

ratio. Cyanobacteria have high and variable ratios (Myers et al., 1980; Papageorgiou, 1996), so 

that in comparison with plants, PS II accounts for relatively little of the cellular chlorophyll. A 

high ratio favors the cyclic electron flow around PSI in which electrons cycle from PSI/Fd 

through the PQ-pool and the cytochrome b6/f complex back to PSI. This cycling of electrons 

contributes to the proton gradient, increasing the ATP synthesis but does not lead to NADPH+H+ 

production (Vermaas, 2001). Another reason for the relatively large amount of PSI in 

cyanobacteria is the reduction of the ETC by electrons originating from respiration. Specifically, 

the thylakoid-bound succinate dehydrogenase (SDH) of the tricarboxylic acid cycle introduces 

electrons into the PQ-pool (Schmetterer, 1994; Vermaas, 2001). In the dark, these electrons are 

donated to the thylakoid-bound cytochrome C oxidase (Schmetterer, 1994). In the light, 

however, the high abundance of PSI guarantees an oxidized PQ-pool which is important to 

minimize photodamage. Moreover, high PSI:PSII ratio may also serve to compete effectively 
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with the cytochrome C oxidase for electrons, thus maximizing the number of electrons that can 

be used for NADP reduction and reductive pathways like CO2 and N2 fixation.  

In Trichodesmium, a distinct diurnal regulation of both, photosynthesis as well as respiration 

is known. This pattern involves a decline in O2 production caused by a reversible down-

regulation of PSII activity (Berman-Frank et al., 2001; Küpper et al., 2004). In terms of 

respiration, high rates were observed at the beginning of the photoperiod, which decline towards 

midday and evening (Berman-Frank et al., 2001). The diurnal pattern in photosynthesis and 

respiration was modulated by light (Breitbarth et al., 2008) and correlated with N2 fixation 

activity (Berman-Frank et al., 2001). 

2.4.2.2 Carbon acquisition 

Most of the reductive power and biochemical energy generated in the light reactions of 

photosynthesis are allocated for uptake of inorganic carbon and its subsequent reduction into 

organic compounds (Falkowski and Raven, 2007). The rate of CO2 fixation largely depends on 

the carboxylation efficiency of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). This 

ancient and highly conserved enzyme, which evolved at times of high CO2 and low O2 levels 

(Falkowski and Raven, 2007), is generally characterized by low affinities to CO2, slow 

maximum turnover rates, as well as susceptibility to a competing and wasteful reaction with O2 

(photorespiration). As cyanobacterial RubisCO possesses one of the lowest CO2 affinities among 

phytoplankton (KM 105-185 �mol L-1 CO2; Badger et al. 1998), a considerable amount of 

resources has to be invested to circumvent this bottleneck in photosynthesis. To achieve 

sufficient rates of C fixation, cyanobacteria as well as other phytoplankton groups operate so-

called CO2 concentrating mechanisms (CCMs) which enhance the CO2 levels in the close 

proximity of RubisCO, thereby increasing the carboxylation reaction. 

Cyanobacterial CCMs comprise several functional elements. In so-called carboxysomes, 

RubisCO is condensed and closely associated with carbonic anhydrase (CA). The latter enzyme 

accelerates the otherwise slow interconversion between CO2 and HCO3
-. Next to this structural 

characteristic for cyanobacteria, CCMs involve the active uptake and accumulation of CO2 

and/or HCO3
- (Giordano et al., 2005). There are large species-specific differences but also within 

a single species, the CCM has been shown to vary depending on environmental conditions, for 

instance, changes in CO2 supply (Ogawa and Kaplan, 2003; Giordano et al., 2005). For 

Trichodesmium IMS101, genomic analysis identified constituents of a beta type carboxysome as 

well as a Na+-dependent HCO3
- transporter (BicA) and the CO2 transport system NDH14, which 

is located at the thylakoid membrane (Fig. 6). Genes encoding for external CA were not 

identified (Giordano et al., 2005).  
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The ability to take up HCO3
- is advantageous since concentrations of HCO3

- are an order of 

magnitude higher than concentrations of CO2. Especially in cyanobacteria, HCO3
- transport 

allows for high accumulation of inorganic carbon within the cell to compensate for the poor 

substrate affinities of RubisCO (Badger et al., 1998; Price et al., 2004). Uptake of CO2, on the 

other hand, may be less costly than the ionic form HCO3
- but its accumulation bears the risk of 

high CO2 efflux (Price and Badger, 1989). Thus, CO2 molecules entering the cell have to be 

converted to HCO3
-, for which membranes are less permeable. This conversion is accomplished 

by a protein complex at the thylakoid membrane (NDH) and the reaction is thought to be 

catalyzed by electrons or NADPH+H+ (Price and Badger, 1989; Friedrich and Scheide, 2000).  

The characteristics of the CCM will partly determine whether and how Trichodesmium will 

respond to environmental changes like ocean acidification. The CCM of Trichodesmium has not 

yet been characterized, neither its regulation in response to changes in CO2 supply. This 

information is urgently required as it may provide an explanation for responses of 

Trichodesmium to elevated CO2. 

2.4.2.3 N2 fixation 

As a diazotroph, Trichodesmium mainly fuels its N demand by N2 fixation (Mulholland et al., 

2004). The reduction of N2 by the enzyme nitrogenase, which evolved under O2-free conditions 

in the Archean (Falkowski, 1997; Falkowski and Raven, 2007), is highly energy-demanding and 

sensitive to O2. Thus, photosynthetic energy generation and N2 fixation within the same cell 

appear to be mutually exclusive processes (Falkowski, 1997). To circumvent this inhibitory 

effect, diazotrophs evolved biochemical as well as morphological adaptations to separate 

photosynthetic O2 evolution and N2 fixation in time and space. In this respect, Trichodesmium 

differs from other diazotrophs as it lacks the clear spatial (i.e. heterocysts) and temporal 

separation (day vs. night activity) of both processes. In Trichodesmium, nitrogenase is localized 

in subsets of neighboring cells, so-called diazocytes, which also contain photosynthetic 

components and comprise about 15 to 20 % cells within a trichome (Durner et al., 1996; 

Berman-Frank et al., 2003). To protect the nitrogenase from photosynthetic O2 evolution, 

Trichodesmium has developed a distinct diurnal rhythm in photosynthesis and N2 fixation (Lin et 

al., 1999; Berman-Frank et al., 2001). Also O2-reducing mechanisms, like the Mehler reaction, 

have been proposed (Berman-Frank et al., 2001; Küpper et al., 2004). In the latter, electrons 

from the ETC are transferred to an O2 molecule, forming superoxide radicals, which are 

disproportionate by superoxide dismutase to H2O2 and O2. The H2O2
 is rapidly detoxified to H2O 

by the ascorbate peroxidase pathways. 
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Regarding energy requirements for N2 fixation, the splitting of the triple-bond of N2 to form 

NH3 requires at least 16 ATP as well as 8 electrons (Kana, 1993; Milligan et al., 2007). ATP is 

proposed to be mainly supplied through linear, but also cyclic electron transport, while electrons 

are donated by reduced Fd. Since there is competition between N2 fixation and C assimilation for 

energy and reductants, a concerted regulation of these processes is essential to survive, especially 

under oligotrophic conditions. To fully understand responses to environmental changes one 

therefore has to look at the interplay rather than the processes in isolation. 

2.5 Outline of the thesis 

This thesis investigates the response of the diazotroph Trichodesmium IMS101 to different 

environmental conditions with emphasis on ocean acidification. In dilute batch cultures, the 

effect of CO2 concentration and light regime on growth, elemental composition and production 

rates is investigated. In addition to describe these responses, the study aim to understand the 

underlying metabolic processes, such as photosynthesis, carbon acquisition and N2 fixation. Next 

to the influence of pCO2 on ecophysiology of Trichodesmium, the effect of a bloom situation on 

carbonate chemistry is described. The findings of the different experiments will be used to make 

prediction about the fate of this important cyanobacterium. 

Publication I compares the two most common approaches to quantify different aspects of 

carbon acquisition and tests their key assumption and reliability. The methods are applied on a 

range of different phytoplankton species from different taxa including Trichodesmium. 

Publication II investigates the ecophysiological responses of Trichodesmium to different pCO2 

levels (150, 370 and 1000 μatm). To explain the observed CO2-sensitivity in biomass production, 

the CCM and its regulation by CO2 and diurnal changes are described.  

Publication III examines the combined effect of light and CO2 on Trichodesmium. To 

understand the strong CO2-dependent ecophysiological responses and their modulation by light, 

gross photosynthesis, carbon acquisition, N2 fixation and Mehler reaction are investigated in 

detail. Implications for biogeochemical cycles are discussed.  

Publication IV describes the effect of a Trichodesmium bloom on carbonate chemistry under 

different availability of inorganic phosphorus. To explain the observed aragonite precipitation 

under P-depletion, changes in bulk carbonate chemistry are measured and additionally modeled 

for the diffusive boundary layer of Trichodesmium aggregates.  
 

In a concluding discussion, main results of this study are summarized and evaluated in the 

context of physiology, ecology and biogeochemistry. At the end, perspectives are given for 

future research. 
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Publication III: Die Laborexperimente wurden von mir geplant und durchgeführt. Ich habe die 

Daten ausgewertet und das Manuskript in Zusammenarbeit mit den Koautoren verfasst. 

 

Publication IV: Die Laborexperimente wurden von mir geplant und durchgeführt. Ich habe die 

Daten ausgewertet und das Manuskript in Zusammenarbeit mit den Koautoren verfasst. 
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4 General Discussion 

Trichodesmium spp. challenged scientists for decades since Dugdale et al. (1961) reported the 

fixation of N2 by this species. It became of particular interest for biogeochemistry when its 

contribution to the overall N2 fixation in the tropical and subtropical areas was estimated 

(Carpenter and McCarthy, 1975). Several studies henceforward postulated a significant influence 

of Trichodesmium on the global carbon and nitrogen cycles (Falkowski, 1997; Gruber and 

Sarmiento, 1997). Considering the current increase in atmospheric CO2 as well as global 

temperatures and their effects on the marine environment (Solomon et al., 2007), it is necessary 

to elucidate Trichodesmium’s response to those changes. This thesis describes the effects of 

different CO2 levels on the ecophysiology of the diazotroph Trichodesmium erythraeum and 

investigates potential underlying processes. In the following, the main conclusions are 

summarized and discussed in terms of consequences for ecology and biogeochemistry. Finally, 

perspectives for future research are outlined. 

4.1 Ecophysiology and underlying processes 

Responses of Trichodesmium erythraeum were assessed in different CO2 perturbation 

experiments. In these acclimations, Trichodesmium showed increased production of POC and 

PON under CO2 levels predicted for the future ocean (Publication II). Further investigations 

showed that light levels strongly modify CO2-sensitivity in POC and PON production as well as 

cell division rates (Publication III), observing the highest stimulation by CO2 under limiting light 

conditions. Such responses in growth and production rates due to elevated pCO2 exceed those 

reported for other important marine phytoplankton functional groups such as diatoms and 

coccolithophores (Burkhardt et al., 1999; Zondervan et al., 2002; Langer et al., 2006) and 

demonstrate an exceptionally high CO2-sensitivity of Trichodesmium. Similar responses were 

also found in other studies on Trichodesmium (Hutchins et al., 2007; Levitan et al., 2007), for 

which various reasons have been discussed, including CO2 limitation of photosynthetic C 

fixation. Since cyanobacteria possess a RubisCO with one of lowest CO2-affinities among 

phytoplankton, strong changes in C fixation with increasing CO2 levels can be expected, 

especially when cells depend on diffusive CO2 uptake. 

To understand the observed CO2 effects on growth, elemental composition and production 

rates (Publication II & III), information about modes of C acquisition in Trichodesmium is 

required. These processes have been increasingly studied in marine phytoplankton as they were 

identified to explain CO2 effects on marine primary productivity and phytoplankton ecology 

(Giordano et al., 2005). A variety of methods to examine these processes have been used, but as 
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they differ in concepts and protocols, obtained results and interpretations may not match. In 

Publication I, 14C and MIMS-based approaches were applied to quantify the uptake of CO2 

and/or HCO3
- as well as CA activities for several phytoplankton species including 

Trichodesmium. The 14C disequilibrium technique was confirmed as a robust and accurate 

method to differentiate between CO2 and HCO3
- as inorganic carbon source. Although data from 

this technique lack central information on C acquisition, e.g. affinities, one can quantify species-

specific differences in the preference for CO2 and HCO3
- or assess changes in the use of carbon 

sources under different conditions. Being easily adaptable, the approach is ideal for field 

applications, especially in combination with other 14C-based incubations (Tortell et al., 2008).  

A more precise characterization of cellular carbon fluxes, such as rates and affinities for CO2 

and HCO3
- uptake, can only be obtained by the instrumentally more sophisticated MIMS 

approach. Such detailed data are needed to fully describe the acclimation responses in 

photosynthetic C acquisition to ocean acidification. Although based on different assumptions, 

both approaches yield comparable estimates on the relative contribution of CO2 versus HCO3
- 

uptake. Regarding estimates for activity of extracellular carbonic anhydrase (eCA), results 

differed significantly between the two approaches. Assessing eCA activities by the 14C approach 

was found to be only applicable when cells take up mainly CO2 and possess only low activities 

of eCA. For more precise estimates, covering a range of activities in CO2 as well as HCO3
- users, 

MIMS provides the ideal tool. This method comparison provided experimental confirmation of 

key assumptions and demonstrated strengths and weaknesses of the different approaches, which 

were further considered for the detailed characterization of the CCM in Trichodesmium 

(Publication II & III). 

Data in Publication II & III clearly demonstrated the presence of a CCM in Trichodesmium, 

primarily based on HCO3
- uptake. The uptake and accumulation of HCO3

- allows Trichodesmium 

to saturate its RubisCO, even under low DIC concentrations. Consequently, a direct effect of 

CO2 on the carboxylation efficiency of RubisCO, as suggested by Hutchins et al. (2007), can be 

excluded as main reason for the CO2-sensitivity observed for Trichodesmium. Despite the 

predominance of HCO3
- transport, the gross CO2 uptake rate increased under elevated CO2 

(Publication III). Due to the high CO2 permeability of membranes, uptake and accumulation of 

this carbon species do not appear efficient for Trichodesmium. To prevent diffusive CO2 loss, 

cyanobacteria typically convert CO2 to HCO3
- at the thylakoid membrane by the NDH14 

complex utilizing reductants from cyclic or linear electron transport (Friedrich and Scheide, 

2000; Badger et al., 2006). Changes in uptake kinetics found for the HCO3
- transport at the 

different CO2 levels (Publication II) as well as the changes in the CO2 to HCO3
- uptake ratios 
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(Publication III) may be caused by variations in the reductive state of the electron transport 

chain. This in turn will affect the balance between cyclic and linear electron transport and thus 

alter the energy supply for transporters (Li and Canvin, 1998). Post-translational modification of 

the transport proteins may also be a cause for changes in the transport affinities (Sültemeyer et 

al., 1998). Underlying mechanisms for affinity changes have, however, not been investigated to 

this level in this study.  

In addition to direct uptake of HCO3
-, extracellular carbonic anhydrase (eCA) may represent 

another important component of the CCM. This enzyme accelerates the chemical equilibrium 

between HCO3
- and CO2 and thus replenishes the inorganic carbon species mainly taken up. In 

diatoms, Trimborn et al. (2008) found high eCA activities to be correlated with high HCO3
- 

uptake. The authors suggested that eCA converts effluxing CO2 to HCO3
-, subsequently being 

transported back into the cell via the HCO3
- transporter. Such a C recycling mechanism would be 

most efficient when CA-mediated conversion is localized to the periplasmic space, i.e. in close 

vicinity of the HCO3
- transporter. Despite being a HCO3

- user, Trichodesmium showed only low 

eCA activities (Publication II). In contrast to eukaryotic phytoplankton, cyanobacteria like 

Trichodesmium have developed other strategies that do not involve eCA. In analogy to the 

proposed role of eCA in HCO3
- users by Trimborn et al. (2008), NDH14 functions to convert 

CO2 to HCO3
- in cyanobacteria. As this process is located at the thylakoid membrane, it seems to 

be involved in the prevention of CO2 loss rather than its uptake.  

The CO2 efflux is important to consider, as the CCM efficiency not only depends on the 

uptake kinetics but also on the loss of inorganic carbon. In Publication II & III, MIMS and the 

interpretation of 13C fractionation patterns were used to assess information on cellular leakage 

(i.e. C efflux/gross C uptake). Although approaches attained different absolute values, which can 

partly be attributed to differences in concepts (e.g. instantaneous versus integrated estimates), 

both indicated CO2- and/or light-dependent regulations within this parameter. Based on 13C 

fractionation, estimated leakage was found to increase with pCO2 as well as light availability 

(Publication III). The higher leakage under these conditions can partly be explained by the 

increasing overall C uptake relative to C fixation under high CO2 levels. Since CO2 efflux is the 

key driver for changes in leakage, the underlying biochemical explanation may rest upon the 

function of NDH14. While at high-light and low CO2 levels, NDH14 may be used primarily as a 

CO2-scavenging mechanism (consistent with the observed low leakage), high CO2 levels may 

lead to a higher CO2 diffusion to the proximity of the NDH14 when it maily functions as a 

system for CO2 uptake (consistent with high rates of CO2 uptake). As NDH14 is proposed to be 

driven by reductants from cyclic or linear electron transport, this protein complex may represent 
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a switch for the regulation of reductant-demanding metabolic processes. Further investigations 

on leakage and possible regulations by NDH14 in Trichodesmium have to be conducted, but in 

view of the current uncertainties in leakage estimates, new approaches are required to assess this 

essential process within CCMs. 

As discussed above, various aspects of the CCM in Trichodesmium were regulated as a 

function of pCO2. Equally or even more pronounced changes in the CCM were observed over 

the diurnal cycle (Publication II). Apparent affinities for HCO3
- uptake as well as leakage 

changed markedly over the day. Lower overall CCM efficiency was found to be correlated with 

highest activities of the nitrogenase during midday (Publication II & III). In addition to this 

typical diurnal pattern in N2 fixation (Berman-Frank et al., 2001; Mulholland et al., 2004; 

Milligan et al., 2007) observed under low and ambient CO2 levels, high CO2 resulted in a 

prolonged high N2 fixation and low CCM efficiency until the end of the photoperiod (Publication 

II & III). Such CO2-dependent changes in diurnal patterns as well as the light-dependent changes 

in CO2 effects suggest altered energy allocation to be the key to the strong CO2-sensitivity in 

Trichodesmium. 

To investigate the energy budget and energy allocation, Publication III assessed major energy 

sources and sinks such as gross photosynthesis, nitrogenase activity, carbon acquisition and 

Mehler reaction simultaneously. Data presented in Publication III showed that the CO2 effects on 

growth, POC and PON production could not be attributed to changes in gross photosynthesis (i.e. 

energy generation via linear electron transport). This finding supports the hypothesis that CO2 

effects are caused by improved energy allocation (Publication II). The high energetic costs 

associated with the operation of a CCM represent a large fraction of the overall energy budget in 

Trichodesmium. The ability to regulate the CCM activity to its actual demand reduces the 

energetic costs and allows reallocation of energy to N2 and C fixation. Moreover, enhanced 

cyclic electron transport around PS I, as indicated by the high PSI:PSII ratio at high CO2 

(Appendix I), suggest an increased ATP production (Wolk, 1982). Overall, the high CO2-

sensitivity in Trichodesmium is not caused by a direct CO2 effect on the carboxylation efficiency 

of RubisCO (Publication II), but rather can be attributed to CO2-dependent reallocation of 

resources between the CCM, N2 fixation, the Calvin cycle (Publication III).  

The allocation of electrons to O2 via pseudocyclic electron transport was often discussed as 

another way to enhance N2 fixation. This photocatalyzed reduction of O2 via the so-called 

Mehler reaction can scavenge O2 and thus protect the O2-sensitive nitrogenase. For 

Trichodesmium, Mehler reaction has been observed especially during N2 fixation (Kana, 1993; 

Milligan et al., 2007). In Publication III, Mehler reaction was not correlated with N2 fixation but 
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mainly found to be induced when cells were exposed to high light. These results contradict with 

the proposed function and rather hint to a photo-protective mechanism under high light. This 

process may be advantageous in view of the high and variable light levels typical for the natural 

environments of Trichodesmium (La Roche and Breitbarth, 2005).  

Although having added another piece to the metabolic jigsaw of the diazotroph 

Trichodesmium, many uncertainties remain regarding the interdependent regulation of different 

metabolic pathways. Nontheless, data presented provide the potential to predict how this 

organism will thrive in the future ocean. 

4.2 Implications for ecology and biogeochemistry 

As elevated CO2 yield in increasing growth, improved N2 fixation and C acquisition as well as P 

utilization (Publication II & III), this sensitivity is likely to increase the competitive fitness of 

Trichodesmium. Consequently, “CO2-fertilization” may increase the performance and dominance 

of Trichodesmium in the oligotrophic tropical and subtropical areas. The resulting “N-

fertilization” may in turn be advantageous for cells like picocyanobacteria and nanoflagellates 

specialized for the uptake of NH4
+ (Hutchins et al., 2009). Even though the increased N2 fixation 

may alleviate the effect of an enhanced stratification on productivity caused by global warming 

(Doney, 2006), it will shift areas typically N-limited to be limited by inorganic phosphorus (P) 

and/or iron (Fe) in the future. As global warming will also result in an expansion of oligotrophic 

areas, a wider distribution of Trichodesmium can generally be expected (Breitbarth et al., 2007; 

Carpenter and Capone, 2008). In view of consequences on higher trophic levels, the increased 

C:P ratio under elevated pCO2 (Publication III) may reduce the nutritional value of the produced 

organic matter (Boersma, 2000; Sterner and Elser, 2002; Van de Waal et al., 2009). As 

Trichodesmium is hardly grazed by heterotrophic eukaryotes (La Roche and Breitbarth, 2005), 

the lower nutritional values will mostly impact on bacterial production. In summary, the findings 

within this thesis and other recent studies on Trichodesmium (Barcelos é Ramos et al., 2007; 

Hutchins et al., 2007; Levitan et al., 2007) suggest this genus to be among the “winners” of 

global change. The consequences for the ecosystem structure and functioning, e.g. shift in 

species dominance or interactions within the food web, remain uncertain. 

The changes in production rates (Publication II & III) and a possible increase in dominance 

of Trichodesmium, will have severe implications for future marine elemental cycling and climate 

feedback. Assuming that the CO2-dependent increase in biomass and N2 fixation can be scaled 

up to the ocean, the potential increase in new N inputs by Trichodesmium can be calculated for 

the future. The current annual N2 fixation by Trichodesmium spp. has been estimated to be 
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around 60 Tg N yr-1 (Mahaffey et al., 2005). Data on CO2-dependency in N2 fixation rates 

obtained within this thesis and recent publications (see Hutchins et al., 2009 for review) suggest 

that N2 fixation by Trichodesmium spp. might increase by 30 to 120 % to around 80 to 130 Tg N 

yr-1 until the end of this century. With respect to global N2 fixation, Trichodesmium spp. would 

increase its contribution from about 25 to about 50 % (Galloway et al., 2004), which underline 

the role of Trichodesmium in the current and future global N budget. The high variability in 

estimates may be attributed to differences in methodology or growth conditions in the laboratory 

studies. Publication III explains part of these discrepancies as CO2-effects were found to be 

strongly modulated by light.  

In terms of vertical transport of organic matter, a fraction of senescent Trichodesmium sinks 

and contributes to the biological carbon pump. As enhanced pCO2 results in higher production of 

biomass (Publication II & III), a correspondingly larger amount is expected to sink down to the 

oceans interior in the future. The CO2 effect on the biological carbon pump may expand to other 

phytoplankton as more N become available via N2 fixation by Trichodesmium. Moreover, 

exudation of transparent exopolymeric particles (TEP) was observed for senescent 

Trichodesmium cells (Berman-Frank et al., 2007). Assuming that CO2 would not only stimulate 

the production of POC but also TEP (Engel et al., 2004), especially at the end of a bloom, 

relatively more biomass may sink to depth caused by TEP-mediated aggregate formation. But 

not only the amount and the sinking velocity of particulate organic material impact the efficiency 

of the biological pump, also the C:N:P stoichiometry is important to consider. The observed 

increase in C:P (Publication III) may increase the remineralization depth and thus the export of 

organic material. Since only a few measurements of sedimentation rates have been performed to 

date in order to quantify the vertical flux of material produced by Trichodesmium (Karl et al., 

1997), sinking and sedimentation rates are poorly constrained. Nonetheless, the observed CO2-

dependency in POC production, C:N:P stoichiometry, and possibly TEP formation will increase 

the CO2 drawdown in Trichodesmium-dominated areas. 

While most experiments in this thesis are concerned with the effect of carbonate chemistry on 

Trichodesmium, working in dilute semi-continuous cultures, Publication IV monitored the effect 

of biomass buildup on carbonate chemistry in a Trichodesmium bloom. The observed DIC 

decrease and pH increase during exponential growth of Trichodesmium was comparable to those 

variations in natural phytoplankton bloom events (Arrigo et al., 1999; Watson et al., 2000). A 

diffusion-reaction model has been applied, demonstrating, that the carbonate chemistry at the 

cell surface of a Trichodesmium aggregate largely deviated from the situation in bulk water. 

Such changes in DIC and pH alter the CO2 availability for photosynthesis and thus may impose 
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restriction on bloom development (Hansen et al., 2007; Hansen, 2002). The CCM activity in 

Trichodesmium (Publication II), however, enables the cells to perform high photosynthetic rates 

even under low DIC and CO2 availability and thus circumvent limitation effects. Unexpected 

changes in carbonate chemistry were observed at the transition from exponential to stationary 

phase once P was consumed. The observed drop in TA could be explained by the precipitation of 

inorganic carbon in form of aragonite. This phenomenon demonstrates the capability of 

Trichodesmium to induce precipitation of CaCO3, a process known for cyanobacteria in the past 

oceans (Riding, 2006). If this aragonite precipitation by Trichodesmium also occurs in the natural 

environment, this bears new implications for the biogeochemical role of this cyanobacterial 

species, as it may alter vertical profiles of TA and DIC in the oligotrophic ocean. If aragonite 

formation is a typical phenomenon at the end of a Trichodesmium bloom, it may act as ballast 

material and increase the export of organic matter (Armstrong et al., 2002; Klaas and Archer, 

2002).  

In this thesis, potential changes on future C and N cycling were discussed based on the 

stimulation in POC and PON production in Trichodesmium (Publication II & III). In order to get 

a more general view on the marine N budget, one also has to look at nitrification as well as 

denitrification and how these processes may be affected by ocean acidification. Nitrification is 

driven by organisms such as proteobacteria like Nitrosomas, Nitrosococcus (NH3-oxidizing) and 

Nitrobacter, Nitrospina (NO2-oxidizing). Since these bacteria are autotrophs, they depend on 

CO2 fixation by RubisCO and thus may benefit from elevated pCO2. Investigations on responses 

of these organisms to ocean acidification indicated, however, a reduction in the global 

ammonium oxidation rate in the surface ocean (Huesemann et al., 2002; Blackford and Gilbert, 

2007; Yool et al., 2007). This scenario would ultimately reduce surface ocean nitrate 

concentrations and thus nitrate-supported primary production. The marine denitrification may be 

indirectly affected from ocean acidification as more organic matter may reach deeper waters 

(Riebesell et al., 2007) and cause O2 minimum zones to expand. This decline on O2 

concentration in turn favors denitrification by bacteria likes Pseudomonas or anammox by 

Scalindua-related species (Kuypers et al., 2003), resulting in the production of gaseous N 

species. In summary, the overall marine N inventory and thus primary productivity will critically 

depend on whether the N gain via N2 fixation will be larger than the N loss via denitrification 

and anammox.  
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4.3 Perspectives for future research 

The results obtained in this thesis provide new information on ecophysiological responses of 

Trichodesmium erythraeum to variations in CO2 availability and give details on underlying 

processes. Several questions for future research arise from the findings presented here. As shown in 

Publication II and III, growth and primary production of the non-heterocystous filamentous 

Trichodesmium was stimulated by increasing CO2 levels, which in turn will have large implications 

on the future marine C and N cycle. Significant uncertainties remain, whether the observed 

responses of this diazotroph can be generalized to other important cyanobacteria like filamentous 

heterocyst-containing or unicellular diazotrophic as well as endosymbiontic species associated to 

e.g. diatoms. To assess the full diversity in responses of marine N2 fixers to climate change, 

species like marine Anabaena, Synecchocystis or Richelia should be included in future surveys.  

Most studies investigated CO2 effects in isolation from other environmental factors. 

Publication III found strong modulation in CO2-sensitivity under different light levels. This 

illustrates the need to look at multiple variables in combination with CO2. The availability of 

nutrients generally has strong effect on the physiology of phytoplankton and thus will most 

likely alter the CO2-sensitivity. Future CO2 perturbation experiments on diazotrophs should for 

instance address the availability of iron, as this micro-nutrient is highly required for their 

nitrogenase enzyme as well as the photosynthetic apparatus and often limits growth in the natural 

environment. As P-limitation in oligotrophic areas is expected to intensify in the future, CO2 

effects should be investigated under different P availability. Experiments may also investigate 

the effect of different nitrogen sources like nitrate or ammonia, as eutrophication in coastal areas 

may reduce the competitiveness of diazotrophs.  

Likewise to the approach taken in this thesis, future studies should go beyond the descriptive 

level and unravel the underlying mechanisms for the observed responses. Such process-

understanding will allow for extrapolation to other species or growth conditions. To improve our 

knowledge about metabolic key processes, methods have to be developed or optimized. In 

comparison to the indirect approaches to assess N2 fixation by acetylene-reduction, a MIMS-

based method to directly measure N2 fixation would improve our estimates for this important 

process. Additionally, these measurements could be combined with C and O2 fluxes, allowing 

for the characterization of key processes in Trichodesmium and their regulation under different 

growth conditions.  

Regarding the uncertainties in photosynthetic and respiratory electron transport, fluorescence 

methods should be coupled with MIMS-based approaches. This combination provides a new tool 

to investigate CO2 leakage and the function of NDH14 (Publication III) in cyanobacteria but also 
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more general aspects of the electron transport. Additionally, processes like the Mehler reaction 

and photorespiration could be quantified with these methods by the use of specific inhibitors. A 

first step towards this combined approach has been taken with the review on “Fluorescence as an 

assay to understand aspects of the physiology of light regulation” (Appendix II). In this book 

chapter, different inhibitors and their function to quantify electron flux in phytoplankton are 

presented.  

Future experiments should be expanded to the level of gene and proteins expression of key 

enzymes (Appendix I). Those data on the molecular level in combination with ecophysiological 

studies will maximize our current understanding of the CO2-sensitivity in this intriguing group of 

cyanobacteria. Laboratory experiments shall ideally be complemented by field studies. These 

may cover different perturbation experiments (CO2, N, P, Fe) during cruises or at field stations 

like TENATSO on Cape Verde Islands. Data from this thesis as well as future projects shall be 

exploited to develop cell models and to improve the parameterization of ecosystem and 

biogeochemical models. The anticipated results from these models will significantly improve our 

predictive capabilities on how the marine biosphere will respond to future environmental 

changes. 
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