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Localization is an essential element of ensemble-based Kalman filters in large-

scale systems. Two localization methods are commonly used:Covariance

localization and domain localization. The former applies alocalizing weight

to the forecast covariance matrix while the latter splits the assimilation into

local regions in which independent assimilation updates are performed. The

domain localization is usually combined with observation localization, which

is a weighting of the observation error covariance matrix, resulting in a

similar localization effect to that of covariance localized filters. It is shown

that the use of the same localization function in covariancelocalization and

observation localization results in distinct effective localization length scales

in the Kalman gain. In order to improve the performance of observation

localization, a regulated localization scheme is introduced. Twin experiments

with the Lorenz-96 model demonstrate that the regulated localization can lead

to a significant reduction of the estimation errors as well asincreased stability

of the assimilation process. Copyrightc© 0000 Royal Meteorological Society
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1. Introduction

Ensemble-based Kalman filter algorithms have evolved

significantly since the introduction of the original so-

called Ensemble Kalman Filter (EnKF, Evensen 1994).

Among the recent developments are ensemble square-root

Kalman filters like the Ensemble Transform Kalman Filter

(ETKF, Bishop et al. 2001) the Ensemble Adjustment

Kalman Filter (EAKF, Anderson 2001), and the Ensemble

Square-root Kalman filter with sequential processing of

observations (EnSRF, Whitaker and Hamill 2002). These

algorithms avoid the need to generate an ensemble of

perturbed observations required in the EnKF (Burgerset al.

1998; Houtekamer and Mitchell 1998). Instead, the analysis

equation of the Kalman filter is expressed in a square-

root form and combined with an explicit transformation

of the state ensemble (see Tippettet al. 2003). Similar

computations are performed by the Singular “Evolutive”

Interpolated Kalman (SEIK) filter (Phamet al.1998; Pham

2001).

The computation time of a data assimilation applica-

tion using an ensemble-based Kalman filter is dominated

by the time integration of the ensemble of model states. To

keep the computation time low, the ensemble is typically

chosen to be small, even for large scale models. Small

ensembles, however, will lead to significant sampling errors

of the estimated error covariance matrix in particular for

long-range covariances. This sampling error can lead to a

divergence of the filter in which the state estimate diverges

from the true state without accurately estimating the error

(Houtekamer and Mitchell 1998). This finding has moti-

vated the localization of covariance matrices, such that long-

distance covariances are damped or neglected. In addition,

the localization increases the rank of the forecast covariance

matrix and increases the local number of degrees of freedom

for the analysis.

Houtekamer and Mitchell (1998, 2001) applied

localization to the forecast covariance matrix. The methodis

denotedcovariance localization(CL) and uses an element-

wise (i.e. Schur/Hadamard) product of the ensemble

covariance matrix with a chosen correlation matrix of

compact support. Frequently, a 5-th order polynomial

function, which mimics a Gaussian function but has

compact support (Gaspari and Cohn 1999), below referred

to as ’GC function’, is used for the localization. CL is

only possible if the forecast covariance matrix, or its

projection onto observation space, is explicitly computed.

Although this is the case for the EnSRF, this matrix is

never computed in the ETKF and the SEIK filter (for a

discussion of this issue see Janjićet al. 2011). To enable

localization in these filters, so-calleddomain localization

(DL) is applied (e.g. Ott04a, Nerger06a, Hunt07a). Here a

sequence of local analyses is performed in which disjoint

domains in the physical space are updated independently

by the filter analysis. For each local analysis, observations

within some defined cut-off radius are considered. The

observational domains can be larger than the local analysis

domains, which ensures some smoothness of the state

analysis estimate. This localization method was standard in

Optimal Interpolation (see, e.g. Cohnet al. 1998) and was

also used for the EnKF (Haugen and Evensen 2002; Brusdal

et al.2003).

The method ofobservation localization(OL) was

introduced (Huntet al. 2007; Nerger and Gregg 2007)

to obtain with DL a similar localization effect to CL

for a general localization function. In OL the inverse

of the observation error covariance matrix corresponding

to a local analysis domain is Schur-multiplied with

a chosen localization matrix that is constructed using

correlation functions of compact support. Thus, the weight

of observations is reduced as a function of their distance

from the local analysis domain by increasing their assumed

error variance. Miyoshi and Yamane (2007) discussed that

the effect of OL is similar to CL but generally results in a

weaker localization. The relation of OL and CL has been

studied in detail by Sakov and Bertino (2011), Greybush

et al. (2011) as well as Janjićet al. (2011). Janjićet al.
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(2011) found, by using twin experiments with the Lorenz-

96 model, that CL leads to smaller estimation errors if the

observation error variance is smaller than the initial estimate

of forecast variance. If observation errors dominate, both

localization methods showed analogous performance. A

similar behavior was described by Sakov and Bertino

(2011). Greybushet al. (2011) describe that the optimal

localization length is wider for CL than for OL.

In this study, the relation of the localization effects

of CL and OL is utilized to formulate a scheme for OL

that computes a regulated localization function. The method

adaptively regulates the width of the localization function

based on the estimated variances of the observations and

the forecast state. Hence, it will be denoted ’regulated OL’

below. The regulated localization method introduced here

only aims at avoiding the disadvantage of the commonly

used fixed OL. Thus, its motivation is different from

adaptive localization methods (e.g., Anderson 2007; Bishop

and Hodyss 2009).

The regulated localization scheme will be examined

here in the context of the domain-localized SEIK filter

(Nergeret al.2006). However, it can be applied analogously

in domain-localized ensemble square-root filters like the

LETKF (Hunt et al. 2007). The SEIK filter and an EnKF

square-root formulation will be reviewed in section 2.

Section 3 discusses the common localization methods.

Subsequently, the regulated localization will be formulated

in section 4. The influence of regulated localization will be

studied in twin assimilation experiments with the Lorenz-96

model in section 5. Finally, conclusions are drawn in section

6.

2. Filter algorithms

As a prototype of a filter algorithm that applies DL

combined with OL, the SEIK filter is considered. CL

is commonly applied with the EnSRF and the EAKF.

However, as the EnSRF and EAKF operate sequentially on

the observations, their result will depend on the order of

the observations (Whitakeret al. 2008, discuss a scheme

to sort the observations for optimal performance). Here,

a very simple square-root formulation of an ensemble

Kalman filter (following Sakov and Bertino 2011), denoted

EnKF-sqrt, is considered that allows to apply CL when

assimilating all observations at once.

As localization is an additional feature that can be

imposed onto a filter algorithm, the global formulations of

the SEIK filter and the EnKF-sqrt are discussed here before

the localization methods are discussed in section 3.1.

In filter methods based on the Kalman filter, the

state vectorxa
k of dimensionn at some timetk estimates

the true state of a physical system, such as the ocean

or the atmosphere. The corresponding covariance matrix

Pa
k represents the error estimate of the state vector. The

superscript ’a’ denotes the analysis, while ’f’ denotes

the forecast. In ensemble based filters these quantities

are represented by an ensemble ofN vectorsxa(α), α =

1, . . . , N , of model state realizations

Xa
k =

[

x
a(1)
k , . . . ,x

a(N)
k

]

. (1)

The state estimate is given by the ensemble mean

xa
k =

1

N

N
∑

i=1

x
a(i)
k , Xa

k =
[

xa
k, . . . ,xa

k

]

(2)

andPa
k is approximated by the ensemble covariance matrix

P̂a
k =

1

N − 1
X′a

k (X′a
k )T ≈ Pa

k . (3)

Here, X′ = X − X denotes the matrix of ensemble

perturbations.

2.1. The SEIK filter

The SEIK filter is presented here shortly, following the

formulation used by Nerger and Gregg (2008). As all

operations of the analysis step are performed at the time

tk, we omit the time indexk. P̂f can be computed from the
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4 L. Nerger et al.

forecast ensembleXf according to

P̂f = LGLT (4)

with

L = Xf T, G = (N − 1)−1
(

TT T
)−1

. (5)

The matrix G has size(N − 1) × (N − 1) and T is a

matrix of sizeN × (N − 1) with all entries being equal to

−N−1 except for those in the diagonal, which are equal to

1 − N−1. Matrix T has zero column sums and implicitly

subtracts the ensemble mean when computingP̂f .

The analysis update of the state estimate is given by

xa = xf + La (6)

where the vectora of sizeN − 1 is

a = U(HL)T R−1
(

yo − Hxf
)

, (7)

U−1 = ρG−1 + (HL)T R−1HL. (8)

Here,H is the observation operator.yo denotes the vector

of observations of sizem with observation error covariance

matrix R. ρ with 0 < ρ ≤ 1, is denoted forgetting factor.

It is the inverse of the covariance inflation factor used, for

example, in the ETKF. The analysis covariance matrix is

given by P̂a = LULT , but does not need to be explicitly

computed.

The analysis ensembleXa is obtained by transforming

the forecast ensemble such that it representsxa and P̂a.

The transformation is performed by aN × (N − 1) random

matrix Ω that is generated from uniformly distributed

random numbers. The columns ofΩ are constrained to

be orthonormal and orthogonal to the vector(1, . . . , 1)T ,

which implies that each column has zero mean and is a

vector of unit norm. The analysis ensemble is

Xa = Xa +
√

N − 1 LCT ΩT (9)

where a Cholesky decomposition is applied to the matrix

U−1 to obtainC−1(C−1)T = U−1.

2.2. An EnKF square-root formulation

The EnKF-sqrt is a simple formulation of a square-root filter

that allows to apply CL (see Sakov and Bertino 2011). The

update of the state estimate is performed according to

xa = xf + K
(

yo − Hxf
)

(10)

with the Kalman gainK given by

K = P̂fHT
(

HP̂fHT + R
)

−1

. (11)

The ensemble transformation is performed by multi-

plying the forecast ensemble perturbationsX′f from the left

according to

X′a = C̃X′f (12)

with

C̃ =
(

I + P̂fHTR−1H
)

−1/2

. (13)

The square-root in Eq. (13) is computed as the symmetric

square-root. Under these conditions, the ensemble transfor-

mation preserves the ensemble mean. A forgetting factor

ρ̃ can be applied in this algorithm by dividingX′f by

ρ̃ before computing the analysis update. The matrix of

analysis ensemble perturbations can be multiplied by a

random rotation matrix̃Ω similar to matrixΩ used in the

SEIK filter.

The ensemble transformation according to Eqns. (12)

and (13) is only applicable if the matrixI + P̂fHTR−1H

is symmetric. This will be the case if the state is fully

observed and ifR is diagonal with equal variance for all

observations. Under these constrains, the EnKF-sqrt method

allows to access the influence of CL in small scale systems

like the Lorenz-96 Model used in section 5.
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A regulated localization scheme 5

3. Localization methods

3.1. Domain localization

Domain localization is discussed here shortly for the SEIK

filter. More details can be found in Nergeret al. (2006).

The localization method is similar to that applied in the

LETKF (Hunt et al. 2007) and analogous to the practical

implementation discussed by Miyoshiet al. (2007).

For the DL, the operations of the analysis and the

ensemble transformation are organized in a loop through

disjoint local analysis domains of the model grid. For

simplicity, a local analysis domain can be a single vertical

column of a 3-dimensional model or a single grid point.

This reordering of the operations will not change the results

of the analysis and ensemble transformation steps as long

as all globally available observations are considered in the

analysis step and if OL (see section 3.2) is not applied.

For each local analysis domain, the analysis is

performed using only observations within a prescribed

influence distance from the local analysis domain. Let the

subscriptσ denote a local analysis domain. The domain of

the corresponding observations is denoted by the subscript

δ. Then, the equations for the local SEIK analysis and

ensemble transformation can be written analogously to the

global analysis equations (6 – 9) as

xa
σ = x

f
σ + Lσaδ, (14)

aδ = Uδ(HδL)T (Rδ)
−1

(

yo
δ − Hδxf

)

, (15)

U−1
δ = ρδG

−1 + (HδL)T (Rδ)
−1

HδL , (16)

Xa
σ = Xa

σ +
√

N − 1 Lσ(Cδ)
T ΩT (17)

whereC−1
δ (C−1

δ )T = U−1
δ . Hδ is the observation operator

that projects a global state vector onto the local observation

domain. Thus, it combines the operation of a global

observation operator with the restriction of the observation

vector to the local observation domain.Rδ is the

observation error covariance matrix on the local observation

domain.ρδ denotes the local forgetting factor, which can

vary for different local analysis domains. For the ensemble

transformation, the same matrixΩ has to be used for each

local analysis domain to ensure consistent transformations

throughout all local domains.

3.2. Observation localization

OL is commonly described as an addition to DL. Thus, OL

always implies DL. With OL, each local observation error

covariance matrix is weighted such that the influence of

observations is reduced with increasing distance from the

local analysis domain (Huntet al. 2007; Nerger and Gregg

2007). The localization is performed by a Schur product of

the inverse observation error covariance matrixR−1
δ with a

localization matrixD̃. Hence, equations (15) and (16) are

rewritten as

aδ = Uδ(HδL)T
(

D̃ ◦ R−1
δ

) (

yo
δ − Hδxf

)

,(18)

U−1
δ = ρδG

−1 + (HδL)T
(

D̃ ◦ R−1
δ

)

HδL . (19)

Here◦ denotes the Schur product.D̃ is usually constructed

using correlation functions of compact support. Possible

choices are, for example, an exponential decrease or the

GC function. Under the common assumption that the matrix

R is diagonal,D̃ can be a diagonal matrix with elements

varying according to the distance of an observation from

the local analysis domain.

An alternative to the localization ofR−1
δ was used by

Nerger and Gregg (2008). Here, the covariance localization

was performed by a Schur product of a localization matrix

with the matrixHδL. Sakov and Bertino (2011) stressed

that the localizations ofHδL andR−1
δ are equivalent if the

Schur product with the localization matrix is also applied to

the residualyo
δ − Hδxf .

3.3. Covariance localization

In the EnKF-sqrt method as well as the EnSRF and the

original EnKF CL can be directly applied to the forecast

error covariance matrix. In practice, the matricesPfHT and

HPfHT are Schur-multiplied with correlation matrices
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6 L. Nerger et al.

WPH andWHPH of compact support. Thus, the localized

matrices

(

PfHT
)

loc
= WPH ◦

(

PfHT
)

(20)

and
(

HPfHT
)

loc
= WHPH ◦

(

HPfHT
)

(21)

are used. If observations are processed sequentially as

in the EnSRF, only the part of the localized matrices

that corresponds to each single observation needs to be

computed. The matrixWHPH in Eq. (21) reduces to a

scalar in this case.

Analogously to OL, the application of CL to the

matricesPfHT and HPfHT relates to the observation

space. The difficulties to define distance for vertically

integrated measurements have been pointed out by

Campbellet al. (2010). These difficulties exist analogously

for the OL and CL. In this study, the observations are

assumed to be defined on grid points. A distance measure

is thus well defined.

4. Regulated localization

4.1. Effective localization of the Kalman gain

Janjić et al. (2011) discussed on the example of the

Lorenz-96 model that CL can lead to superior assimilation

estimates compared to OL. Also the experiments discussed

by Greybushet al. (2011) exhibited a slightly better

performance of CL than OL. These studies motivate to

examine the reason for the different performances of CL

and OL.

Miyoshi and Yamane (2007) pointed out that OL is

not equivalent to CL. The different influences can be seen

on the Kalman gainK of the traditional analysis equations

(10) and (11) of the Kalman filter. For a single observation

with varianceσ2
R the matrixHPfHT becomes a scalar

value, which is denotedHPHT . The gainK as well as

PfHT are now of sizen × 1. Below, only the i’th element

of these vectors is considered. In this case, the matrix

WPH in Eq. (20) reduces to a scalar that is given by

the correlation functionwCL
(i) whose value is defined by

the distance between location of the i’th element and the

observation. The matrixWHPH in Eq. (21) becomes a

scalar with value one. The i’th element of the localized gain

for CL is now (see Miyoshi and Yamane 2007)

KCL
(i) =

wCL
(i)

HPHT + σ2
R

(PfHT )(i). (22)

The localized gain for OL is obtained by dividing the

observation error variance in the gain bywOL. Then it is

KOL
(i) =

wOL
(i)

wOL
(i) HPHT + σ2

R

(PfHT )(i). (23)

To exemplify the different effects of both localization

methods, the following example is considered:wCL and

wOL are identical and given by a Gauss function with

variance 1000, whileHPHT and(PfHT )(i) are set to one.

Figure 1 shows the value of i’th element of the Kalman

gains in (22) and (23) as a function of the distance of the

observation from the analysis location for this example.

Three values ofσ2
R are considered: 10, 1, and 0.1.

Figure 1 allows to discuss the effective localization

length scale of the analysis, which is the localization

length scale of the gain. For simplicity, the length scale

is considered to be the distance at which the gain or the

correlation function is one half of the value at zero distance.

The length scale of the localization in the gain for CL is

always equal to the length scale of the functionwCL. In

contrast, the localization length scale in the gain for OL

is distinct from the length scale of the functionwOL. For

σ2
R = 10, i.e. ten times the value ofHPHT , the gains

for CL and OL are almost identical. Thus, the effect of

the localization schemes should be nearly indistinguishable.

For decreasing ratio ofσ2
R to HPHT , the difference

between the length scales increases. WhilewOL andwCL

remain identical, the localization length scale in the gain

becomes wider for OL. Thus, while the functionwOL might
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A regulated localization scheme 7

indicate a very small influence of a distant observation, its

weight in the analysis might be much larger because of a

larger effective localization weight in the gain. To obtain

comparable localization length scales one would need to

decrease the length scale forwOL. However, the gains in

Eqs. (22) and (23) are distinct functions of the distance. For

comparable length scale, the gain with OL will be larger for

short distances and smaller for long distances than with CL.

The effective localization length scale discussed above

provides an explanation for the findings of Greybushet al.

(2011). They found on the basis of assimilation experiments

that for an optimal assimilation performance a smaller

localization radius is required for OL than for CL (Fig. 4 of

Greybushet al.2011). In addition, the OL resulted in slight

larger errors than CL. Considering the effective localization

length, the smaller localization radius is required because

of the longer effective localization length scale of OL. The

better performance of CL might be caused by the different

shape of the effective localization functions for comparable

localization length scales. Similarly a different effect of

the CL and OL on imbalance (Fig. 5 and 6 of Greybush

et al. 2011) can be attributed to the different effective

localization length scales. In addition, the different shapes

of the effective localization functions for comparable length

scales can lead to different levels of imbalance.

The dependence of the effective localization length of

OL on the relative size of the forecast error variance to

the observation error variance can also be relevant during

the initial transient phase of a data assimilation experiment.

Typically, the initial errors of the state estimate are large.

They are reduced during the initial transient phase of the

data assimilation sequence until they reach some asymptotic

level. In contrast, the errors of the assimilated observations

are independent of the transient phase. Frequently, the

initially estimated variance of the state is of the same order

as the observation error variance or larger than this. IfwOL

is identical towCL, the assimilation with OL will start

with a significantly longer effective localization length than

with CL. Thus, observations at an intermediate distance

will have a larger influence in the analysis. However, if the

correlation functionwOL has compact support, the effective

localization function reaches zero at the same distance as

the prescribed functionwOL. In this case, the total number

of observations that are used in the local analysis remains

constant.

During the transient phase the effective localization

length will become shorter until it reaches an asymptotic

level. In general, one could choose the support radius for OL

such that the effective localization width is comparable to

that of CL when the asymptotic phase is reached. However,

in the numerical experiments discussed below, the initially

large effective localization length led to instabilities during

the transient phase of the assimilation process.

4.2. Regulating the localization width

To avoid a long effective localization length, one can adjust

the width of the effective localization that depends on

the ratio of the observation variance to the forecast state

error variance. This adjustment is achieved by the regulated

localization function that is derived in this section.

For the regulated localization method, the single-

observation example of the previous section is considered

again. The same effective localization length for OL and CL

can be obtained by requiring that right hand sides of Eqns.

(22) and (23) are equal. This condition leads to the equation

for the regulated weightwOLR as a function ofwCL:

wOLR =
wCLσ2

R

HPHT + σ2
R

(

1 − wCLHPHT

HPHT + σ2
R

)−1

(24)

Using Eq. (24) for OL will result in identical effective

localizations of the gain for OL and CL. Further,wOLR

is a correlation function as long aswCL is a correlation

function.

The regulated localization functionwOLR is exempli-

fied in Fig. 2 for three values ofσ2
R (10, 1, and 0.1). As

in Fig. 1, wCL is chosen to be a Gaussian function with

variance 1000. While forσ2
R = 10 both weight functions
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8 L. Nerger et al.

lie on top of each other,wOLR narrows with decreasingσ2
R

to keep the effective localization length of the gain constant.

Eq. (24) for the regulated OL is only exact in case of a

single observation. In general, the exact regulated function

varies with the number of observations. Appendix B

discusses the case of 2 observations. The computation of the

exact regulated localization function becomes increasingly

costly for multiple observations. However, Eq. (24) is an

approximation in the case of multiple observations that

reduces the variation of the effective localization length

with the ratio of the error estimates.

In domain localized filters like the local SEIK filter,

several observations within the influence radius around a

local analysis domain are assimilated. For each observation

a weight has to be computed. The matrixHδP
fHT

δ needed

to extract the termHPHT for each observation is never

explicitly computed in the analysis step of the SEIK

filter. However, the matrixHδL is computed in Eq. (19),

which is a square-root of the required matrix. To obtain

a value forHPHT there are two obvious possibilities:

First, one can use the estimated variance fromHδL that

corresponds to a single observation. This will be an entry

from the diagonal ofHδP
fHT

δ . If the variance estimates

vary strongly within the local domain, this method would

result in a non-smooth weighting functionwOLR over all

observations. This could lead to numerical instability of

the data assimilation scheme. The second possibility is to

use the mean variance of the covariance matrixHδP
fHT

δ .

In both cases the diagonal ofHδP
fHT

δ can be computed

directly fromHδL without computing the full matrix.

The regulated OL method was exemplified here for

the LSEIK filter. In general, it can be applied in all filter

methods that apply OL, like the LETKF. The additional

computational cost to compute the regulated localization

from a fixed OL is generally negligible compared to the cost

of the full analysis steps of the LSEIK filter and the LETKF.

5. Numerical experiments

To examine the performance of the regulated OL method,

identical twin experiments are conducted using the Lorenz-

96 model (Lorenz 1996; Lorenz and Emanuel 1998). This

nonlinear model has been used in several studies to examine

the behavior of different ensemble-based Kalman filters

(e.g. Anderson 2001; Whitaker and Hamill 2002; Ottet al.

2004; Lawson and Hansen 2004; Sakov and Oke 2008). Our

experiments use the same configuration as in Janjićet al.

(2011) who found significant lower estimation errors for the

EnSRF with CL compared to the LSEIK filter using a fixed

OL for small observation errors.

5.1. Experimental setup

The Lorenz-96 model is prescribed by the non-dimensional

equations

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F (25)

where j = 1, . . . , J is the grid point index with cyclic

boundary conditions. The common configuration withJ =

40 andF = 8 is used. Time stepping is performed using a

fourth-order Runge-Kutta scheme with a non-dimensional

time step size of 0.05. The model as well as the filter

algorithms have been implemented within the Parallel Data

Assimilation Framework (PDAF, Nergeret al.2005b).

For the twin experiments, a trajectory over 60000 time

steps is computed from an initial state of constant value

of 8.0 but x20 = 8.008, following Lorenz and Emanuel

(1998). This trajectory represents the ”truth”. Observations

of the full state are generated by disturbing the true

trajectory by uncorrelated random normal noise. Three

cases are examined in which the standard deviationσR of

the observation error is 1, 0.5, and 0.1.

The initial ensemble for all experiments is generated

by second-order exact sampling from the true trajectory∗

(see Appendix A). An ensemble of 10 members is used.

∗Note, that the relative behavior of the localization methods does not
depend on the choice of the method used to generate the ensemble. Tests
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A regulated localization scheme 9

The assimilation is performed at each time step over 50000

time steps using observations starting from time step 1000

of the true trajectory. Because the results depend on the

set of random numbers used in the ensemble generation,

all experiments are repeated ten times with varying random

numbers.

The experiments are performed using the LSEIK filter

with regulated localization, referred to as LSEIK-reg. The

estimates will be compared with estimates obtained by

the EnKF-sqrt filter with CL (EnKF-sqrt) and the LSEIK

filter with fixed OL (LSEIK-fix). The localization functions

wCL andwOL are given by the compactly-supported GC

function. The width of the GC function is defined by a

support radius that describes the distance beyond which the

function is zero.

For LSEIK-reg, two variants to computeHPHT were

described in section 4.2. Experiments were conducted using

both the mean variance estimate as well as the single

variable estimate at the observation location. The results

obtained with both methods were not significantly different.

Also, no stability problem, as discussed in section 4.2, was

observed. Due to this, only results from LSEIK-reg using

the mean variance estimate are discussed in the sequel.

5.2. Assimilation performance

Figure 3 shows the time-mean RMS errors averaged over

each set of 10 experiments for a range of forgetting factors

and support radii of the GC function. The corresponding

minimum mean RMS errors and their standard deviations

are shown in table I. The RMS errors are computed as the

mean error over the 50000 analysis steps of each experiment

and then averaged over 10 experiments. This computation

includes the initial transient phase of the assimilation in

which the errors are larger than during the later phase of

the experiment. However, the relative behavior of the three

compared methods is similar if the initial transient phase

of about 2000 analysis steps is excluded. In particular, the

using an ensemble generated by random selection of states from the true
trajectory, showed analogous behavior to that discussed inthe text.

inferior performance of LSEIK-fix (see below) remains, as

the later part of each experiment is influenced by the initial

transient phase.

For the observation error ofσR = 1.0 (top row of Fig.

3) the distributions of the errors obtained with the three

localization methods are very similar. For LSEIK-reg, a

particularly small mean error of 0.1988 is obtained for a

forgetting factor of 0.95 and a support radius of 18 grid

points. As this value is only obtained for a particular pair

of these parameters, it will in practice be difficult to obtain

this value. Obviously, the range of pairs of forgetting factor

and support radius that provide errors close to the minimum

should be as large as possible. Only in this case the chances

are high that a good choice for these parameters can be

obtained with a limited number of tests. Both, the EnKF-

sqrt and the LSEIK-reg, show a comparable region of errors

below 0.205. This region is smaller for LSEIK-fix, while the

minimum error obtained with this method is statistically not

different from that obtained with the EnKF-sqrt. The initial

RMS error estimated by the ensemble standard deviation is

about 2.5. Thus, the effective localization length of LSEIK-

fix is for σR = 1.0 already wider than that of the EnKF-sqrt.

Nonetheless, this difference appears to have only a small

effect over the 50000 analysis step of each experiment.

The area of smallest errors extends from parameter-

pairs with large forgetting factor but small support radiusto

pairs with small forgetting factor and large support radius.

For very small support radii (below 8 grid points), the

filter process is stable for all examined forgetting factors.

However, the mean RMS errors are about twice as large

as the minimum errors that can be obtained with larger

support radii. It is striking that the smallest estimation errors

occur close to the edge at which filter divergence happens.

Directly at the edge, there are configurations at which a

rather large mean RMS error is obtained. The reason for

this behavior will be discussed below.

When theσR is reduced to 0.5, LSEIK-fix performs

visibly worse than EnKF-sqrt and LSEIK-reg. This

difference is statistically significant.
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The difference of the three methods becomes even

more obvious, when the observation error is reduced to

σR = 0.1. The case LSEIK-fix results in significantly larger

RMS errors than both EnSRF and LSEIK-reg. In addition,

the parameter region where the filter process converges

is much smaller for LSEIK-fix. Thus, the regulated OL

can significantly improve the filter performance over that

obtained with fixed OL. The error distributions obtained

with EnKF-sqrt and LSEIK-reg are very similar up to

a support radius of 28 grid points. Table I shows that

the minimum mean RMS errors are almost identical. The

divergence of the EnKF-sqrt method for support radii above

28 grid points can be attributed to a large condition number

of the matrix I + P̂fHTR−1H that is decomposed to

compute the square root in Eq. (13). For support radii

above 28 grid points, the matrix exhibits very small singular

values. These result in the dominance of single ensemble

members and an effective rank-reduction of the ensemble.

The influence of the regulated OL is similar in less

optimal cases. For example, if only each second grid point

is observed, the regulated OL results in smaller mean RMS

errors compared to fixed OL (not shown). The effect of

smaller RMS errors and an increased stability region is also

preserved when the assimilation interval is increased to 5

time steps (not shown).

Next to the minimum RMS error that can be obtained,

it is important how likely it is to obtain it in a single

experiment. As noted above, the assimilation result depends

on the set of random numbers that is used to generate the

initial ensemble. The mean RMS errors discussed above

were obtained by performing ten experiments with different

random numbers for each pair of forgetting factor and

support radius. Figure 4 shows the corresponding base-

10 logarithm of the standard deviations corresponding to

the errors. For each filter method and observation error

there exists a large region where the standard deviation is

very small (e.g. below10−3 for an σR = 1.0). In these

regions, the RMS error varies only slightly with the random

numbers. Toward the edge of filter divergence there is

generally a band of parameters where the standard deviation

is high. In addition, a larger variance occurs if the forgetting

factor is close to one. In these regions, the value of the

estimation error from the experiment varies strongly for

different sets of random numbers. In addition, the higher

RMS errors are typically located in these regions. The

strong variability is mostly caused by varying length of the

initial transient phase. In the cases with large RMS errors,

the assimilation process typically takes very long to reach

the asymptotic phase. These cases are already close to the

divergent cases, where the error in the state estimate remains

similar to the error of the initial state estimate. In the cases

with large standard deviations there is actually a chance to

obtain a very small RMS estimation error for some choice

of random numbers. However, there is no possibility to do

this in a systematic way. Thus, the optimal choice of the

pair of forgetting factor and support radius is in the region

of small standard deviation where also the smallest mean

RMS errors occur.

For decreasing observation error, there is a growing

region at the edge to filter divergence, where the EnSRF

and LSEIK-reg methods show stable behavior with a small

standard deviation and small RMS error. Most striking is the

behavior of LSEIK-reg and EnKF-sqrt for an observation

error of 0.1. In this case, both methods shows no unstable

filter processes in the region of convergence. The variance

remains always below10−3. In contrast, LSEIK-fix shows

unstable filter behavior for a support radius above 14. For

LSEIK-reg and EnKF-sqrt, the stable behavior is combined

with the strongly enlarged parameter region of convergence.

6. Conclusion

This study introduced a method to perform observation

localization (OL), i.e. weighting of elements of the

observation error covariance matrix by a localization

function of variable width. The function is motivated by

the different localizing effects of covariance localization

(CL) and OL on the Kalman gain. The effective localization

length scale for CL is identical to the prescribed localization
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function. In contrast, for ’normal’ (fixed) OL, the effective

localization length of the Kalman gain grows if the

observation error variance becomes smaller than the

estimated error of the state. We refer to the new method as

’regulated OL’ because it counters this effect by regulating

the width of the localization function by the amplitudes

of the estimated error variance of the state and of the

observation error variance. The regulation is formulated to

result in equal effective localization length scales in the

Kalman gain for OL and CL in case of a single observation.

Identical twin experiments using the nonlinear Lorenz-

96 model were conducted to compare the effect of regulated

OL with fixed OL and CL. For CL, a simple square-root

formulation was applied while for both methods of OL the

LSEIK filter (Nergeret al.2006) was used. The covariance

inflation was varied in the experiments as was the support

radius of the localization function. For cases when the

observation error is comparable to the estimated error of

the state, the differences between the three methods were

negligible. However, regulated OL outperforms fixed OL,

if the observation error is considerably smaller than the

estimated error. The results from the LSEIK filter with

regulated OL are almost identical to those obtained with

the square-root filter with CL. When the regulated OL and

CL outperform the fixed OL, smaller estimation errors are

obtained. In addition, the range of parameters that result

in the smallest estimation errors is increased compared to

fixed OL. As these parameters are problem specific and are

typically determined using experiments in order to obtain

satisfactory assimilation results, it will be easier to findgood

parameter choices with regulated OL and CL than with CL.

The advantage of the regulated OL becomes visible

when the observation error is smaller than the error estimate

of the state. This situation is not untypical during the initial

transient phase of an assimilation process but can also

happen during the later stages of the assimilation procedure

when the ensemble forecast by a nonlinear model can result

in locally increased error estimates.

This study used the LSEIK filter and the simple

EnKF square-root formulation to exemplify the localization

methods. The findings regarding the different effective

localization length scales of OL and CL are, however,

independent of the particular filter method. Accordingly,

the regulated OL can be applied with all filter methods that

apply OL and the effect of the regulation of the localization

length scale should be the same for all these filters.

The regulated OL becomes identical to the fixed OL

in the case that the observation errors are much larger than

the estimated state error. For smaller observation errors,

the regulated OL avoids the widening of the effective

localization length that can deteriorate the assimilation

performance. Further, the additional computational cost of

regulated OL is negligible compared to the total cost of the

analysis step. For these reasons, the use of the regulated

localization method should be always recommended when

filter algorithms like LSEIK or LETKF are applied with OL.

In this work, the effect of the regulated OL was studied only

in the simplified test case of the Lorenz-96 model. Its impact

in realistic assimilation applications will be examined inthe

future.

Appendix

A. Ensemble generation by second-order exact

sampling

To initialize the filter algorithm, an ensemble of state

realizations is required that represents the initial state

estimatexa
0 and the initial covariance matrixPa

0 .

Ensemble-based filters do not base on a particular

scheme to initialize the ensemble (Nergeret al. 2005a).

In the numerical experiments discussed in section 5

the second-order exact sampling method (Pham 2001)

was applied. This sampling method ensures an exact

representation of a covariance matrix of given rank with an

ensemble of minimum size.

ConsiderPa
0 to be a rank-r matrix. It can be written

asPa
0 = V0U0V

T
0 whereU0 andV0 are matrices of size
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r × r andn × r, respectively. This decomposition can be

obtained by singular value decomposition such thatU0 is

a diagonal matrix holding singular values. Now a random

ensemble of minimum sizeN = r + 1 is generated whose

statistics representxa
0 andPa

0 exactly. This can be achieved

by transforming the columns of matrixV0 by a N × r

random matrixΩ0 generated from uniformly distributed

random numbers. The columns ofΩ0 are constrained to

be orthonormal and orthogonal to the vector(1, . . . , 1)T .

UsingΩ0, the ensemble of state realizations is given by

Xa
0 = Xa

0 +
√

N − 1 V0(U0)
1/2ΩT

0 . (26)

B. Regulated localization with multiple observations

Greybushet al. (2011) showed that the effect of OL in the

case of two observations is different from the situation when

only a single observation is considered. In this Appendix,

it is examined how the regulated OL is influenced by the

presence of multiple observations.

Following Greybushet al.(2011) we consider two grid

points, indexed 1 and 2. We assume that the model variables

at both locations are observed. ThusH is the identity. In this

case, the Kalman gain defined by Eq. (11) can be written for

a diagonal matrixR as

K =





P11 P12

P21 P22













P11 + R1 P12

P21 P22 + R2









−1

(27)

where we dropped the indexf of the forecast error

covariance matrix.

For the localization, we consider the first grid point,

i.e. the first row of the gain. Letα denote the localization

function for CL. To obtain the CL, the off-diagonal elements

of Pf are multiplied byα. Thus it is

KCL
1 =

[

P11 αP12

]









P11 + R1 αP12

αP21 P22 + R2









−1

(28)

For OL, the observation variances are multiplied by

the localization function. ForR1 the weight is one, because

the distance is zero. ForR2, let β denote the localization

function for OL. In this case, it is:

KOL
1 =

[

P11 P12

]









P11 + R1 P12

P21 P22 + βR2









−1

(29)

The regulated localization function is derived from

requiring that the elementsKCL
12 andKOL

12 are equal. These

entries specify the effect of the observation at the second

grid point on the analysis update at the first grid point. After

same algebra one obtains:

βOLR =
P12R1 − (P11P22 + P22R1 − P12P21)K

CL
12

(P11R2 + R1R2)KCL
12

(30)

The regulated localization function is controlled by the

variance estimates of both observations as well as all

elements of the state error covariance matrix.

The effective localization function, can be visualized

by plotting the elementsKCL
12 andKOL

12 of the gains as a

function of the distance of the observation from the first

grid point. An example is shown in Fig. 5 for an observation

variance of 0.1, forecast error variances of 1 and 0.5, and a

covariance of 0.25. As in the single-observation examples

discussed before, the effective localization length for OLis

wider than that for CL. The effective localization function

obtained using the regulated OL defined by Eq. (24) is

much closer to the function for CL. However, it shows a

slightly shorter effective length scale. The regulated OL for

the case of two observations (Eq. 30) results in an effective

localization function that is identical to CL.

This example illustrates that the regulated OL function

derived for a single observation results in a similar

effective localization for cases when multiple observations

are assimilated. It is not exact in the case of multiple

observations, but still serves to avoid the growth of the

effective localization length scale if the observations are

very accurate.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 2–?? (0000)

Prepared usingqjrms4.cls



A regulated localization scheme 13

References

Anderson JL. 2001. An Ensemble Adjustment Kalman Filter fordata

assimilation.Mon. Wea. Rev.129: 2884–2903.

Anderson JL. 2007. Exploring the need for localization in ensemble data

assimilation using a hierarchical ensemble filter.Physica D230: 99–

111.

Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with

the Ensemble Transform Kalman Filter. Part I: Theoretical aspects.

Mon. Wea. Rev.129: 420–436.

Bishop CH, Hodyss D. 2009. Ensemble covariances adaptivelylocalized

with ECO-RAP. Part 1: Tests on simple error models.Tellus61A: 84–

96.

Brusdal K, Brankart JM, Halberstadt G, Evensen G, Brasseur P, van

Leeuwen PJ, Dombrowsky E, Verron J. 2003. A demonstration of

ensemble based assimilation methods with a layered OGCM from the

perspective of operational ocean forecasting systems.J. Mar. Syst.40-

41: 253–289.

Burgers G, van Leeuwen PJ, Evensen G. 1998. On the analysis scheme

in the Ensemble Kalman Filter.Mon. Wea. Rev.126: 1719–1724.

Campbell WF, Bishop CH, Hodyss D. 2010. Vertical covariance

localization for satellite radiances in ensemble Kalman filters.Mon.

Wea. Rev.138: 282–290.

Cohn SE, Silva AD, Guo J, Sienkiewicz M, Lamich D. 1998. Assessing

the effects of data selection with the DAO physical-space statistical

analysis system.Mon. Wea. Rev.126: 2913–2926.

Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-

geostrophic model using Monte Carlo methods to forecast error

statistics.J. Geophys. Res.99(C5): 10 143–10 162.

Gaspari G, Cohn SE. 1999. Construction of correlation functions in two

and three dimensions.Q. J. Roy. Meteor. Soc.125: 723–757.

Greybush SJ, Kalnay E, Miyoshi T, Ide K, Hunt BR. 2011. Balance and

ensemble Kalman filter localization techniques.Mon. Wea. Rev.139:

511–522.

Haugen VE, Evensen G. 2002. Assimilation of SLA and SST data into

an OGCM for the indian ocean.Ocean Dynamics52: 133–151.

Houtekamer PL, Mitchell HL. 1998. Data assimilation using an

Ensemble Kalman Filter technique.Mon. Wea. Rev.126: 796–811.

Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman

filter for atmospheric data assimilation.Mon. Wea. Rev.129: 123–

137.

Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation

for spatiotemporal chaos: A local ensemble transform Kalman filter.

Physica D230: 112–126.
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Table I. Minimum mean RMS errors and their standard deviation over each 10 experiments using different random numbers inthe initialization for
three different filter configurations and three different observation errorsσR

σR EnKF-sqrt LSEIK-fix LSEIK-reg

1.0 0.2006± 0.0010 0.2025± 0.0021 0.1988± 0.0007
0.5 0.0963± 0.0003 0.0992± 0.0005 0.0951± 0.0005
0.1 0.0187± 0.0001 0.0205± 0.0002 0.0185± 0.0001
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Figure 1. Effective weighting in the Kalman gain for different observation error variancesσ2

R
and state error variance 1. (Solid): I’th element of the

Kalman gain for CL (Eq. 22). (Dashed): I’th element of the gain for OL (Eq. 23). The effective weighting is increasingly wider for observation localization
for decreasingσ2

R
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Figure 2. Gaussian weight functionwCL and regulated weight functionwOLR for three different observation error variancesσ
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. The curves forwCL

andw
OLR with σ
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= 10 lie on top of each other.
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Figure 3. Mean RMS errors averaged over the full length of the experiment for the EnKF-sqrt (left), LSEIK-fix (center), and LSEIK-reg (right) for three
different observational errors: 1.0 (top), 0.5 (middle), 0.1 (bottom). White fields denote filter divergence, which is defined here as the case that the RSM
mean error is larger than the observational error.
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Figure 4. Logarithm of the standard deviation for the RMS errors over 10 different realizations of random numbers in the ensemble initialization for the
EnSRF (left), LSEIK-fix (center), and LSEIK-reg (right) forthree different observational errors: 1.0 (top), 0.5 (middle), 0.1 (bottom). As in Fig. 3, white
fields denote cases in which the filter diverges.
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Figure 5. Effective weighting in the Kalman gain for the case of 2 observations as discussed in Appendix B. Shown is the effect of theobservation at
the second grid point on the analysis update at the first grid point for CL (thick solid line), fixed OL (dash-dotted) and regulated OL according to Eq.
(24) (dashed). The function for 2D-regulated OL according to Eq. (30) lies on top of the function for CL.
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