A regulated localization scheme 1

A regulated localization scheme for ensemble-based Kalman

filters

L. Nerger, Tijana Janjt, Jens Scliter, and Wolfgang Hiller
Alfred Wegener Institute, Bremerhaven, Germany
*Correspondence to: Lars Nerger, Alfred Wegener Institiite Handelshafen 12, D-27570 Bremerhaven, Germany.

E-mail: Lars.Nerger@awi.de

Localization is an essential element of ensemble-based Kadn filters in large-
scale systems. Two localization methods are commonly used&ovariance
localization and domain localization. The former applies alocalizing weight
to the forecast covariance matrix while the latter splits the assimilation into
local regions in which independent assimilation updates & performed. The
domain localization is usually combined with observation dcalization, which
is a weighting of the observation error covariance matrix, esulting in a
similar localization effect to that of covariance localizel filters. It is shown
that the use of the same localization function in covariancéocalization and
observation localization results in distinct effective Igalization length scales
in the Kalman gain. In order to improve the performance of observation
localization, a regulated localization scheme is introdued. Twin experiments
with the Lorenz-96 model demonstrate that the regulated loalization can lead
to a significant reduction of the estimation errors as well asncreased stability

of the assimilation process. Copyright© 0000 Royal Meteorological Society
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1. Introduction denotectovariance localizatiorfCL) and uses an element-
wise (i.e. Schur/Hadamard) product of the ensemble

covariance matrix with a chosen correlation matrix of
Ensemble-based Kalman filter algorithms have evolved

compact support. Frequently, a 5-th order polynomial
significantly since the introduction of the original so-

function, which mimics a Gaussian function but has
called Ensemble Kalman Filter (EnKF, Evensen 1994).

compact support (Gaspari and Cohn 1999), below referred
Among the recent developments are ensemble square-root

to as 'GC function’, is used for the localization. CL is
Kalman filters like the Ensemble Transform Kalman Filter

only possible if the forecast covariance matrix, or its
(ETKF, Bishop et al. 2001) the Ensemble Adjustment

projection onto observation space, is explicitly computed
Kalman Filter (EAKF, Anderson 2001), and the Ensemble

Although this is the case for the EnSRF, this matrix is
Square-root Kalman filter with sequential processing of

never computed in the ETKF and the SEIK filter (for a
observations (EnSRF, Whitaker and Hamill 2002). These

discussion of this issue see Jangital. 2011). To enable
algorithms avoid the need to generate an ensemble of

localization in these filters, so-calletbmain localization
perturbed observations required in the EnKF (Burgée.

(DL) is applied (e.g. Ott04a, NergerO6a, Hunt07a). Here a
1998; Houtekamer and Mitchell 1998). Instead, the analysis

sequence of local analyses is performed in which disjoint
equation of the Kalman filter is expressed in a square-

domains in the physical space are updated independently
root form and combined with an explicit transformation

by the filter analysis. For each local analysis, observation
of the state ensemble (see Tippettal. 2003). Similar

within some defined cut-off radius are considered. The
computations are performed by the Singular “Evolutive”

_ observational domains can be larger than the local analysis
Interpolated Kalman (SEIK) filter (Phaet al. 1998; Pham

2001).

domains, which ensures some smoothness of the state

analysis estimate. This localization method was standhard i

The computation time of a data assimilation applicgptimm Interpolation (see, e.g. Coletal. 1998) and was

tion using an ensemble-based Kalman filter is dominatgdy ysed for the EnkKF (Haugen and Evensen 2002; Brusdal

by the time integration of the ensemble of model states. dp5| 2003).

keep the computation time low, the ensemble is typically The method ofobservation localization(OL) was

chosen to be small, even for large scale models. Sn}%“roduced (Huntet al. 2007; Nerger and Gregg 2007)

ensembles, however, will lead to significant sampling STQL Cbtain with DL a similar localization effect to CL

of the estimated error covariance matrix in particular f%r a general localization function. In OL the inverse

long-range covariances. This sampling error can lead to]g;\,t . . . .
of the observation error covariance matrix corresponding

divergence of the filter in which the state estimate diverg[%s a local analysis domain is Schur-multiplied with

from the true state without accurately estimating the error o . . .
a chosen localization matrix that is constructed using

(Houtekamer and Mitchell 1998). This finding has mOtIc'orrelation functions of compact support. Thus, the weight

vated the localization of covariance matrices, such thego of observations is reduced as a function of their distance

istan varian r m r negl .In ition : : . . .
distance covariances are damped or neglected. In add t*(r)om the local analysis domain by increasing their assumed

he localization incr he rank of the for nee . . . .
the localization increases the rank ot the forecast co 982 o ror variance. Miyoshi and Yamane (2007) discussed that

matrix and incr he local number of r ffr m .
atrix and increases the local number of degrees o eedt e effect of OL is similar to CL but generally results in a

for the analysis. weaker localization. The relation of OL and CL has been
Houtekamer and Mitchell (1998, 2001) appliedtudied in detail by Sakov and Bertino (2011), Greybush

localization to the forecast covariance matrix. The metbocet al. (2011) as well as Janjiét al. (2011). Janjicet al.
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A regulated localization scheme 3

(2011) found, by using twin experiments with the Lorenze sort the observations for optimal performance). Here,
96 model, that CL leads to smaller estimation errors if tlee very simple square-root formulation of an ensemble
observation error variance is smaller than the initiaheate Kalman filter (following Sakov and Bertino 2011), denoted
of forecast variance. If observation errors dominate, bd#mKF-sqrt, is considered that allows to apply CL when
localization methods showed analogous performance.agsimilating all observations at once.

similar behavior was described by Sakov and Bertino ag |ocalization is an additional feature that can be

(2011). Greybustet al. (2011) describe that the optimalmposed onto a filter algorithm, the global formulations of
localization length is wider for CL than for OL. the SEIK filter and the EnKF-sqrt are discussed here before

In this study, the relation of the localization effectge |gcalization methods are discussed in section 3.1.

of CL and OL is utilized to formulate a scheme for OL In filter methods based on the Kalman filter, the

that computes a regulated localization function. The mthgtate vectow? of dimensionn at some timet;, estimates

adaptively regulates the width of the localization funntlothe true state of a physical system, such as the ocean

based on the estimated variances of the observations an(iih . . .
or the atmosphere. The corresponding covariance matrix

the forecast state. Hence, it will be denoted regulated Olgz represents the error estimate of the state vector. The

below. The regulated localization method introduced here S . e
Superscript 'a’ denotes the analysis, while 'f' denotes

only aims at avoiding the disadvantage of the commor{h/e forecast. In ensemble based filters these quantities

used fixed OL. Thus, its motivation is different fromare represented by an ensembleMofvectorsxe(®), ¢ =

adaptive localization methods (e.g., Anderson 2007, E;jsh?
and Hodyss 2009).

., N, of model state realizations

The regulated localization scheme will be examined X0 — qu) .”’XZ(N) . 1)

here in the context of the domain-localized SEIK filter
(Nergeret al.2006). However, it can be applied analogousl.?,/he state estimate is given by the ensemble mean
in domain-localized ensemble square-root filters like the

LETKF (Huntet al. 2007). The SEIK filter and an EnKF — 1 i

=Y XI=FF] @

square-root formulation will be reviewed in section 2. —1

Section 3 discusses the common localization methods. ) ) ) .
andP¢ is approximated by the ensemble covariance matrix
Subsequently, the regulated localization will be formedit

in section 4. The influence of regulated localization will be 1

P¢ = — XX ~ Py . (3)
studied in twin assimilation experiments with the Loreriz-9

model in section 5. Finally, conclusions are drawn in sectio — ,
Here, X’ = X — X denotes the matrix of ensemble
6.

perturbations.

2. Filter algorithms

As a prototype of a filter algorithm that applies DI2.1. The SEIK filter

combined with OL, the SEIK filter is considered. CL

is commonly applied with the EnSRF and the EAKHhe SEIK filter is presented here shortly, following the
However, as the EnSRF and EAKF operate sequentially fmnmulation used by Nerger and Gregg (2008). As all
the observations, their result will depend on the order operations of the analysis step are performed at the time

the observations (Whitakest al. 2008, discuss a scheme;,, we omit the time inde%. P/ can be computed from the
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4 L. Nerger et al.

forecast ensembl¥/ according to where a Cholesky decomposition is applied to the matrix
U-!toobtainC~}(C~ )T = UL
P/ = LGL” (4)

with .
2.2.  An EnKF square-root formulation

L=X'T, G=(N-1)"(T7T)"". (5

The EnKF-sqgrtis a simple formulation of a square-rootfilter
The matrix G has size(N — 1) x (N —1) and T is a that allows to apply CL (see Sakov and Bertino 2011). The
matrix of sizeN x (N — 1) with all entries being equal tOupdate of the state estimate is performed according to
— N~ except for those in the diagonal, which are equal to o .
1 — N~ Matrix T has zero column sums and implicitly x*=x/+K (yo B fo) (10)
subtracts the ensemble mean when compuifig

) ] o with the Kalman gairK given by
The analysis update of the state estimate is given by

~ ~ —1
= K = P/H” (HPfHT n R) , (11)
x% =xf + La (6)
where the vectoa of size NV — 1 is The ensemble transformation is performed by multi-
plying the forecast ensemble perturbatidéié from the left
a = UMHL)TR™! (yo _ HF) . (7) accordingto
U—l pG—l + (HL)TR—IHL (8) X/a == CX/f (12)
with
Here,H is the observation operatgr® denotes the vector ¢ (I . f’fHTR—lﬂ) —-1/2 . (13)

of observations of sizex with observation error covariance

matrix R. p with 0 < p < 1, is denoted forgetting factor. The square-root in Eq. (13) is computed as the symmetric
It is the inverse of the covariance inflation factor used, féfluare-root. Under these conditions, the ensemble transfo
example, in the ETKF. The analysis covariance matrix fation preserves the ensemble mean. A forgetting factor

given by P* = LUL”, but does not need to be explicitly? can be applied in this algorithm by dividing'/ by

computed. p before computing the analysis update. The matrix of
The analysis ensemb® is obtained by transforminganalySis ensemble perturbations can be multiplied by a

random rotation matriX2 similar to matrix$2 used in the

SEIK filter.

the forecast ensemble such that it represamtand P¢.
The transformation is performed by\a x (N — 1) random
matrix 2 that is generated from uniformly distributed  The ensemble transformation according to Eqgns. (12)
random numbers. The columns 6Ff are constrained toand (13) is only applicable if the matrix+ P/H”R~'H

be orthonormal and orthogonal to the vector...,1)”, is symmetric. This will be the case if the state is fully
which implies that each column has zero mean and i®hserved and iR is diagonal with equal variance for all
vector of unit norm. The analysis ensemble is observations. Under these constrains, the EnKF-sqrt rdetho

allows to access the influence of CL in small scale systems

X*=Xa+4+/N-1LCTQ” (9) like the Lorenz-96 Model used in section 5.
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A regulated localization scheme 5

3. Localization methods vary for different local analysis domains. For the ensemble

transformation, the same mati$X has to be used for each

3.1. Domain localization local analysis domain to ensure consistent transformstion
throughout all local domains.
Domain localization is discussed here shortly for the SEIK

filter. More details can be found in Nerget al. (2006). 3.2. Observation localization

The localization method is similar to that applied in the i N
OL is commonly described as an addition to DL. Thus, OL

LETKF (Huntet al. 2007) and analogous to the practical S ) .
always implies DL. With OL, each local observation error

implementation discussed by Miyosttial. (2007).
P vy ( ) covariance matrix is weighted such that the influence of

For the DL, the operations of the analysis and th . . o . .
P 4 o%servatlons is reduced with increasing distance from the

ensemble transformation are organized in a loop throulgféal analysis domain (Huret al. 2007: Nerger and Gregg

disjoint local analysis domains of the model grid. For
J 4 d 2007). The localization is performed by a Schur product of

simplicity, a local analysis domain can be a single vertic%l . . . 1
the inverse observation error covariance maRix" with a

column of a 3-dimensional model or a single grid point. =~ | = .
localization matrixD. Hence, equations (15) and (16) are

This reordering of the operations will not change the result
rewritten as

of the analysis and ensemble transformation steps as long

as all globally available observations are consideredén th

as Us(HsL)T (f) ° Rgl) (yg - H(gx_f) (18)

analysis step and if OL (see section 3.2) is not applied. .
U;' = psGl 4+ (HL)T (D ° Rgl) H,L . (19)
For each local analysis domain, the analysis is

performed using only observations within a prescribed o
Hereo denotes the Schur produd.is usually constructed

influence distance from the local analysis domain. Let the ) ) )
using correlation functions of compact support. Possible

subscripts denote a local analysis domain. The domain of )
choices are, for example, an exponential decrease or the

the corresponding observations is denoted by the subscript _ _ _
GC function. Under the common assumption that the matrix

0. Then, the equations for the local SEIK analysis and . . - i .
R is diagonal D can be a diagonal matrix with elements

ensemble transformation can be written analogously to the . ) _
varying according to the distance of an observation from

global analysis equations (6 — 9) as . )
the local analysis domain.

An alternative to the localization @& ' was used by

x% = xb+Lyas, (14) . o
Nerger and Gregg (2008). Here, the covariance localization
a; = Up(H;L)"(Ry)™ (y§ - H‘Sx_f) > (19) yas performed by a Schur product of a localization matrix
U;' = psG™'+ (HsL)" (Rs) "H;L,  (16) with the matrix H;L. Sakov and Bertino (2011) stressed
X% = X24+/N-1L,(Cs)TQT (17) that the localizations dfi;L andR;; ' are equivalent if the

Schur product with the localization matrix is also applied t

whereC; 1 (C;1)” = Uj . H; is the observation operatotthe residuay§ — Hjx/.
that projects a global state vector onto the local obsemati

] ) ) ) 3.3. Covariance localization
domain. Thus, it combines the operation of a global
observation operator with the restriction of the obseoratiln the EnKF-sqrt method as well as the EnSRF and the
vector to the local observation domaiRs is the original EnKF CL can be directly applied to the forecast
observation error covariance matrix on the local obseswatierror covariance matrix. In practice, the matrig®91” and

domain.ps denotes the local forgetting factor, which cafIP/H” are Schur-multiplied with correlation matrices
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6 L. Nerger et al.

Wy andW g py of compact support. Thus, the localizedV py in Eq. (20) reduces to a scalar that is given by

matrices the correlation functiorw(%L whose value is defined by

the distance between location of the i'th element and the

(P/H"),  =Wpyo (P/HT) (20) observation. The matridW ;p5 in Eq. (21) becomes a
scalar with value one. The i'th element of the localized gain
and for CL is now (see Miyoshi and Yamane 2007)
(HP'H"), =Wpypyo (HPTHT)  (21)
wSl

CL _ () fyT

- W (pP/HT),. (22)
are used. If observations are processed sequentially as ® HPHT+U?3( )

in the EnSRF, only the part of the localized matrices

The localized gain for OL is obtained by dividing the
that corresponds to each single observation needs to be

observation error variance in the gain®§'”. Then it is
computed. The matridW gz py in Eq. (21) reduces to a

scalar in this case. wOlk
OL __ (7)

it KG) = —orgpyr 1 o2
Analogously to OL, the application of CL to the wiy HPHT + o,

(PTHT) ;). (23)

matricesPfH? and HP/HY7 relates to the observation

space. The difficulties to define distance for vertically To exemplify the different effects of both localization
integrated measurements have been pointed out R¥thods, the following example is considered?” and
Campbellet al. (2010). These difficulties exist analogously,©L zre identical and given by a Gauss function with
for the OL and CL. In this study, the observations aigyriance 1000, whilél PHT and(P/H") ;) are setto one.
assumed to be defined on grid points. A distance measgjgure 1 shows the value of ith element of the Kalman
is thus well defined. gains in (22) and (23) as a function of the distance of the
4. Regulated localization observation from the analysis location for this example.

Three values of% are considered: 10, 1, and 0.1.

4.1. Effective localization of the Kalman gain
Figure 1 allows to discuss the effective localization

Janjic et al. (2011) discussed on the example of thiength scale of the analysis, which is the localization
Lorenz-96 model that CL can lead to superior assimilatibtength scale of the gain. For simplicity, the length scale
estimates compared to OL. Also the experiments discusgedonsidered to be the distance at which the gain or the
by Greybushet al. (2011) exhibited a slightly bettercorrelation function is one half of the value at zero dis&anc
performance of CL than OL. These studies motivate The length scale of the localization in the gain for CL is
examine the reason for the different performances of @lways equal to the length scale of the functiofi”. In
and OL. contrast, the localization length scale in the gain for OL
Miyoshi and Yamane (2007) pointed out that OL i distinct from the length scale of the functiar’”. For
not equivalent to CL. The different influences can be seef = 10, i.e. ten times the value off PH”, the gains
on the Kalman gaiK of the traditional analysis equationgor CL and OL are almost identical. Thus, the effect of
(10) and (11) of the Kalman filter. For a single observatighe localization schemes should be nearly indistinguihab
with variancec? the matrix HP/H” becomes a scalarFor decreasing ratio ob? to HPHT, the difference
value, which is denoted/ PH™. The gainK as well as between the length scales increases. Wit andw®’
P/HT are now of sizex x 1. Below, only the i'th element remain identical, the localization length scale in the gain

of these vectors is considered. In this case, the matbe@comes wider for OL. Thus, while the functiof’” might
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A regulated localization scheme 7

indicate a very small influence of a distant observation, itsll have a larger influence in the analysis. However, if the
weight in the analysis might be much larger because otarrelation functionv®” has compact support, the effective
larger effective localization weight in the gain. To obtailocalization function reaches zero at the same distance as
comparable localization length scales one would needthe prescribed function®”. In this case, the total number
decrease the length scale fof’”. However, the gains in of observations that are used in the local analysis remains
Egs. (22) and (23) are distinct functions of the distance. Fepnstant.
comparable length scale, the gain with OL will be larger for  During the transient phase the effective localization
short distances and smaller for long distances than with Géngth will become shorter until it reaches an asymptotic
The effective localization length scale discussed abdesel. In general, one could choose the support radius for OL
provides an explanation for the findings of Greybestkal. such that the effective localization width is comparable to
(2011). They found on the basis of assimilation experimenitsit of CL when the asymptotic phase is reached. However,
that for an optimal assimilation performance a smaller the numerical experiments discussed below, the inytiall
localization radius is required for OL than for CL (Fig. 4 ofarge effective localization length led to instabilitiegriohg
Greybustet al.2011). In addition, the OL resulted in slighthe transient phase of the assimilation process.
larger errors than CL. Considering the effective local@at
length, the smaller localization radius is required beeaug2  Regulating the localization width
of the longer effective localization length scale of OL. The
better performance of CL might be caused by the differe avoid a long effective localization length, one can atljus
shape of the effective localization functions for compéeaidhe width of the effective localization that depends on
localization length scales. Similarly a different effedt ghe ratio of the observation variance to the forecast state
the CL and OL on imbalance (Fig. 5 and 6 of GreybugHror variance. This adjustment is achieved by the regtilate
et al. 2011) can be attributed to the different effectiviocalization function that is derived in this section.
localization length scales. In addition, the differentfss For the regulated localization method, the single-
of the effective localization functions for comparabledém observation example of the previous section is considered
scales can lead to different levels of imbalance. again. The same effective localization length for OL and CL
The dependence of the effective localization length 6N be obtained by requiring that right hand sides of Eqns.
OL on the relative size of the forecast error variance (82) and (23) are equal. This condition leads to the equation
the observation error variance can also be relevant durfagthe regulated weight©“* as a function ofv“":
the initial transient phase of a data assimilation expentme or oL N
Typically, the initial errors of the state estimate are targ w?™" = # (1 - %) (24)
+ 0% HPH* + 0%
They are reduced during the initial transient phase of the
data assimilation sequence until they reach some asyroptbi$ing Eq. (24) for OL will result in identical effective
level. In contrast, the errors of the assimilated obseowati localizations of the gain for OL and CL. Furthep®“%
are independent of the transient phase. Frequently, e correlation function as long as“” is a correlation
initially estimated variance of the state is of the same ordgnction.
as the observation error variance or larger than thigf The regulated localization functian®’% is exempli-
is identical tow“”, the assimilation with OL will start fied in Fig. 2 for three values of% (10, 1, and 0.1). As
with a significantly longer effective localization lengthain in Fig. 1, w“" is chosen to be a Gaussian function with

with CL. Thus, observations at an intermediate distaneariance 1000. While fos? = 10 both weight functions
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8 L. Nerger et al.

lie on top of each othery®~E narrows with decreasing?, 5. Numerical experiments

to keep the effective localization length of the gain consta _
To examine the performance of the regulated OL method,

identical twin experiments are conducted using the Lorenz-

Eq. (24) for the regulated OL is only exact in case of a
a- (24) g y 96 model (Lorenz 1996; Lorenz and Emanuel 1998). This

single observation. In general, the exact regulated fancti i . . .
nonlinear model has been used in several studies to examine

varies with the number of observations. Appendix . . .
bp %e behavior of different ensemble-based Kalman filters

discusses the case of 2 observations. The computation of the ) )

(e.g. Anderson 2001; Whitaker and Hamill 2002; éttal.
exact regulated localization function becomes increzkysin%

004; Lawson and Hansen 2004; Sakov and Oke 2008). Our

costly for multiple observations. However, Eq. (24) is an i i _ )

experiments use the same configuration as in Jaatjil.
approximation in the case of multiple observations that N L

?2011) who found significant lower estimation errors for the

reduces the variation of the effective localization length ) i i i
EnSRF with CL compared to the LSEIK filter using a fixed

with the ratio of the error estimates. .
OL for small observation errors.

In domain localized filters like the local SEIK filter9-1- Experimental setup

several observations within the influence radius aroundl-f.-}e Lorenz-96 model is prescribed by the non-dimensional
local analysis domain are assimilated. For each Obsewa%%uations

a weight has to be computed. The malxP/HI needed

to extract the termH PHT for each observation is never da; = (241 — Tj_2) Tj_1 —2; + F (25)

dt
explicity computed in the analysis step of the SEIK

filter. However, the matriH L is computed in Eq. (19)’Wherej —1,...,J is the grid point index with cyclic

which is a square-root of the required matrix. To Obtaﬁbundary conditions. The common configuration with=

a value for HPHT there are two obvious possibilitiesyy and F = 8 is used. Time stepping is performed using a

First, one can use the estimated variance flgL that 4 rth-order Runge-Kutta scheme with a non-dimensional

corresponds to a single observation. This will be an enti,o step size of 0.05. The model as well as the filter

from the diagonal offlsP/HJ . If the variance estimatesy|gorithms have been implemented within the Parallel Data

vary strongly within the local domain, this method would ssimilation Framework (PDAF, Nerget al. 2005b).

result in a non-smooth weighting functiar”*** over all For the twin experiments, a trajectory over 60000 time

observations. This could lead to numerical instability %fteps is computed from an initial state of constant value

the data assimilation scheme. The second possibility isjf0g o put 220 = 8.008, following Lorenz and Emanuel

use the mean variance of the covariance matiP/Hy . (1998). This trajectory represents the "truth”. Obsevagi

In both cases the diagonal 8,P/H] can be computed of the full state are generated by disturbing the true

directly fromH;L without computing the full matrix. trajectory by uncorrelated random normal noise. Three
cases are examined in which the standard deviatigmof

The regulated OL method was exemplified here f@e observation erroris 1, 0.5, and 0.1.
the LSEIK filter. In general, it can be applied in all filter  The initial ensemble for all experiments is generated
methods that apply OL, like the LETKF. The additionaly second-order exact sampling from the true trajectory

computational cost to compute the regulated localizatipgfbe Appendix A). An ensemble of 10 members is used.

from a fixed OL is generally negligible compared to the cost
) ] “Note, that the relative behavior of the localization methabes not
of the full analysis steps of the LSEIK filter and the LETKFdepend on the choice of the method used to generate the elesdiasts
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A regulated localization scheme 9

The assimilation is performed at each time step over 5008€erior performance of LSEIK-fix (see below) remains, as
time steps using observations starting from time step 100@ later part of each experiment is influenced by the initial
of the true trajectory. Because the results depend on trensient phase.
set of random numbers used in the ensemble generation, For the observation error ofy = 1.0 (top row of Fig.
all experiments are repeated ten times with varying rand@nthe distributions of the errors obtained with the three
numbers. localization methods are very similar. For LSEIK-reg, a
The experiments are performed using the LSEIK filtgrarticularly small mean error of 0.1988 is obtained for a
with regulated localization, referred to as LSEIK-reg. Thiergetting factor of 0.95 and a support radius of 18 grid
estimates will be compared with estimates obtained pwints. As this value is only obtained for a particular pair
the EnKF-sqrt filter with CL (EnKF-sqrt) and the LSEIKof these parameters, it will in practice be difficult to obtai
filter with fixed OL (LSEIK-fix). The localization functions this value. Obviously, the range of pairs of forgetting fact
wt andw®F are given by the compactly-supported G@nd support radius that provide errors close to the minimum
function. The width of the GC function is defined by ahould be as large as possible. Only in this case the chances
support radius that describes the distance beyond whichdlne high that a good choice for these parameters can be
function is zero. obtained with a limited number of tests. Both, the EnKF-
For LSEIK-reg, two variants to compufé PH” were sqrt and the LSEIK-reg, show a comparable region of errors
described in section 4.2. Experiments were conducted usiiggow 0.205. This region is smaller for LSEIK-fix, while the
both the mean variance estimate as well as the singithimum error obtained with this method is statisticallyt no
variable estimate at the observation location. The resulifferent from that obtained with the EnKF-sqrt. The irlitia
obtained with both methods were not significantly differerRMS error estimated by the ensemble standard deviation is
Also, no stability problem, as discussed in section 4.2, walsout 2.5. Thus, the effective localization length of LSEIK
observed. Due to this, only results from LSEIK-reg usirfix is for oz = 1.0 already wider than that of the EnKF-sqgrt.
the mean variance estimate are discussed in the sequel.Nonetheless, this difference appears to have only a small
effect over the 50000 analysis step of each experiment.

5.2.  Assimilation performance
The area of smallest errors extends from parameter-

Figure 3 shows the time-mean RMS errors averaged obajrs with large forgetting factor but small support radiuis
each set of 10 experiments for a range of forgetting factdy@irs with small forgetting factor and large support radius
and support radii of the GC function. The correspondifi@" Very small support radii (below 8 grid points), the
minimum mean RMS errors and their standard deviatioffé€r Process is stable for all examined forgetting factors
are shown in table I. The RMS errors are computed as fi@Wever, the mean RMS errors are about twice as large
mean error over the 50000 analysis steps of each experinfénth® minimum errors that can be obtained with larger
and then averaged over 10 experiments. This computafSPPort radii. Itis striking that the smallest estimatiores
includes the initial transient phase of the assimilation ffcur close to the edge at which filter divergence happens.
which the errors are larger than during the later phaseRjfectly at the edge, there are configurations at which a
the experiment. However, the relative behavior of the thridher large mean RMS error is obtained. The reason for
compared methods is similar if the initial transient phad@s Pehavior will be discussed below.

of about 2000 analysis steps is excluded. In particular, the When theoy is reduced to 0.5, LSEIK-fix performs

visibly worse than EnKF-sgrt and LSEIK-reg. This
using an ensemble generated by random selection of statestifie true ] o S
trajectory, showed analogous behavior to that discusstueitext. difference is statistically significant.
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10 L. Nerger et al.

The difference of the three methods becomes ewgenerally a band of parameters where the standard deviation
more obvious, when the observation error is reducedischigh. In addition, a larger variance occurs if the foripett
or = 0.1. The case LSEIK-fix results in significantly largefactor is close to one. In these regions, the value of the
RMS errors than both EnSRF and LSEIK-reg. In additioestimation error from the experiment varies strongly for
the parameter region where the filter process convergéerent sets of random numbers. In addition, the higher
is much smaller for LSEIK-fix. Thus, the regulated OIRMS errors are typically located in these regions. The
can significantly improve the filter performance over thatrong variability is mostly caused by varying length of the
obtained with fixed OL. The error distributions obtaineihitial transient phase. In the cases with large RMS errors,
with EnKF-sqrt and LSEIK-reg are very similar up tdhe assimilation process typically takes very long to reach
a support radius of 28 grid points. Table | shows thttte asymptotic phase. These cases are already close to the
the minimum mean RMS errors are almost identical. Tli@/ergent cases, where the error in the state estimatememai
divergence of the EnKF-sqgrt method for support radii abosenilar to the error of the initial state estimate. In theesas
28 grid points can be attributed to a large condition numbeith large standard deviations there is actually a chance to
of the matrix I+ P/HT”R~'H that is decomposed toobtain a very small RMS estimation error for some choice
compute the square root in Eq. (13). For support radii random numbers. However, there is no possibility to do
above 28 grid points, the matrix exhibits very small singuléhis in a systematic way. Thus, the optimal choice of the
values. These result in the dominance of single ensempéér of forgetting factor and support radius is in the region
members and an effective rank-reduction of the ensemblef small standard deviation where also the smallest mean

The influence of the regulated OL is similar in lesRMS errors occur.
optimal cases. For example, if only each second grid point For decreasing observation error, there is a growing
is observed, the regulated OL results in smaller mean RVESJion at the edge to filter divergence, where the EnSRF
errors compared to fixed OL (not shown). The effect @hd LSEIK-reg methods show stable behavior with a small
smaller RMS errors and an increased stability region is agf@ndard deviation and small RMS error. Most striking is the
preserved when the assimilation interval is increased td8havior of LSEIK-reg and EnKF-sqrt for an observation
time steps (not shown). error of 0.1. In this case, both methods shows no unstable

Next to the minimum RMS error that can be obtainefiiter processes in the region of convergence. The variance
it is important how likely it is to obtain it in a singlef€mains always below0~". In contrast, LSEIK-fix shows
experiment. As noted above, the assimilation result depeH@stable filter behavior for a support radius above 14. For
on the set of random numbers that is used to generate tRE!K-reg and EnKF-sqrt, the stable behavior is combined
initial ensemble. The mean RMS errors discussed abdVih the strongly enlarged parameter region of convergence
were obtained by performing ten experiments with different

6. Conclusion

random numbers for each pair of forgetting factor and
support radius. Figure 4 shows the corresponding baséis study introduced a method to perform observation
10 logarithm of the standard deviations correspondingltxalization (OL), i.e. weighting of elements of the
the errors. For each filter method and observation eraiyservation error covariance matrix by a localization
there exists a large region where the standard deviatioriusction of variable width. The function is motivated by
very small (e.g. belowi0—2 for an oz = 1.0). In these the different localizing effects of covariance localizati
regions, the RMS error varies only slightly with the randoCL) and OL on the Kalman gain. The effective localization

numbers. Toward the edge of filter divergence there length scale for CL is identical to the prescribed local@at
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A regulated localization scheme 11

function. In contrast, for 'normal’ (fixed) OL, the effecév This study used the LSEIK filter and the simple
localization length of the Kalman gain grows if thé&nKF square-rootformulationto exemplify the localizatio
observation error variance becomes smaller than thethods. The findings regarding the different effective
estimated error of the state. We refer to the new methodesalization length scales of OL and CL are, however,
‘regulated OL' because it counters this effect by regutatiindependent of the particular filter method. Accordingly,
the width of the localization function by the amplitudethe regulated OL can be applied with all filter methods that
of the estimated error variance of the state and of thpply OL and the effect of the regulation of the localization
observation error variance. The regulation is formulatedlength scale should be the same for all these filters.

result in equal effective localization length scales in the The regulated OL becomes identical to the fixed OL
Kalman gain for OL and CL in case of a single observatioim the case that the observation errors are much larger than

the estimated state error. For smaller observation errors,

Identical twin experiments using the nonlinear Lorenz- ) o )
the regulated OL avoids the widening of the effective

96 model were conducted to compare the effect of requlated = . o
localization length that can deteriorate the assimilation

OL with fixed OL and CL. For CL, a simple square-root - )
performance. Further, the additional computational cbst o

formulation was applied while for both methods of OL the ) o
regulated OL is negligible compared to the total cost of the

LSEIK filter (Nergeret al. 2006) was used. The covariance )
analysis step. For these reasons, the use of the regulated

inflation was varied in the experiments as was the support
localization method should be always recommended when

radius of the localization function. For cases when the ] ) ) )
filter algorithms like LSEIK or LETKF are applied with OL.

observation error is comparable to the estimated error of .
In this work, the effect of the regulated OL was studied only

the state, the differences between the three methods were )
in the simplified test case of the Lorenz-96 model. Its impact

negligible. However, regulated OL outperforms fixed OL, o o o ) ) )
in realistic assimilation applications will be examinedhie

if the observation error is considerably smaller than trf1et
uture.
estimated error. The results from the LSEIK filter with
regulated OL are almost identical to those obtained W'prpendix
the square-root filter with CL. When the regulated OL and
CL outperform the fixed OL, smaller estimation errors ak Ensemble generation by second-order exact
obtained. In addition, the range of parameters that rest#mpling
in the smallest estimation errors is increased compared to
_ -~ To initialize the filter algorithm, an ensemble of state
fixed OL. As these parameters are problem specific and are
_ . . _ . realizations is required that represents the initial state
typically determined using experiments in order to obtain
estimatex§ and the initial covariance matriRy.

satisfactory assimilation results, it will be easier to fyobd
Ensemble-based filters do not base on a particular

parameter choices with regulated OL and CL than with CL.
scheme to initialize the ensemble (Nergdral. 2005a).

The advantage of the regulated OL becomes visiie the numerical experiments discussed in section 5
when the observation error is smaller than the error estimtite second-order exact sampling method (Pham 2001)
of the state. This situation is not untypical during theiatit was applied. This sampling method ensures an exact
transient phase of an assimilation process but can algpresentation of a covariance matrix of given rank with an
happen during the later stages of the assimilation proeedeinsemble of minimum size.
when the ensemble forecast by a nonlinear model can result ConsiderP§ to be a rank= matrix. It can be written

in locally increased error estimates. asP¢ = VoU,V{ whereU, andV, are matrices of size
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12 L. Nerger et al.

r x r andn x r, respectively. This decomposition can be  For OL, the observation variances are multiplied by
obtained by singular value decomposition such tigtis the localization function. FoR; the weight is one, because
a diagonal matrix holding singular values. Now a randothe distance is zero. FdR,, let 5 denote the localization
ensemble of minimum siz& = r + 1 is generated whosefunction for OL. In this case, it is:

statistics represent andP§ exactly. This can be achieved

-1

by transforming the columns of matri¥, by a N x r P+ Ry Pry

KOL _

1 =| Pn P2

random matrix€2, generated from uniformly distributed Py Pay + R

. 29

random numbers. The columns £, are constrained to (29)

be orthonormal and orthogonal to the vector. .., 1)7. The regulated localization function is derived from

UsingQ, the ensemble of state realizations is given by équiring that the elemenk(;" andK ()" are equal. These

entries specify the effect of the observation at the second

X¢ =X+ VN —1Vy(Up)/2Ql. (26) 9rid pointon the analysis update at the first grid point. Afte

same algebra one obtains:

B. Regulated localization with multiple observations oun _ PiaRy — (P11 Pas + Pos Ry — ProPay) KGE
(P11R2 + RlRQ)Kl%L

(30)
Greybuskhet al. (2011) showed that the effect of OL in the o .
The regulated localization function is controlled by the

case of two observations is different from the situationwhe . )
variance estimates of both observations as well as all

only a single observation is considered. In this Appendix, . .
elements of the state error covariance matrix.

it is examined how the regulated OL is influenced by the

. . The effective localization function, can be visualized
presence of multiple observations.

by plotting the element& ;" and K} of the gains as a

Following Greybuslet al. (2011 ider two grid
ollowing Greybusfet al. ( ) we consider two gri function of the distance of the observation from the first

points, indexed 1 and 2. We assume that the model variables . ) - .
grid point. An example is shown in Fig. 5 for an observation

at both locations are observed. THiiss the identity. In this ) )
variance of 0.1, forecast error variances of 1 and 0.5, and a

case, the Kalman gain defined by Eq. (11) can be written for . . .
¢ yEa. (11) covariance of 0.25. As in the single-observation examples

a diagonal matriR as . _ o .
g discussed before, the effective localization length fori®L

-1 wider than that for CL. The effective localization function

P, P, Pi1+ R P,
K= o M ! 2 obtained using the regulated OL defined by Eq. (24) is

P P P Py + R . .
2t > 2t > 2 much closer to the function for CL. However, it shows a

where we dropped the inde¥ of the forecast error slightly shorter effective length scale. The regulated OL f

covariance matrix. the case of two observations (Eq. 30) results in an effective

localization function that is identical to CL.
For the localization, we consider the first grid point,

i.e. the first row of the gain. Let denote the localization This example illustrates that the regulated OL function

function for CL. To obtain the CL, theoff—diagonaleIement%e”VeOI for a single observation results in a similar

- i effective localization for cases when multiple observagio
of P/ are multiplied byo. Thus it is P

are assimilated. It is not exact in the case of multiple

—1 . . .
P+ Ry aPry observations, but still serves to avoid the growth of the

K{"=| P, aPp }
aPoy Poy 4+ Ro

effective localization length scale if the observations ar

(28) very accurate.
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Table I. Minimum mean RMS errors and their standard deviatieer each 10 experiments using different random numbeheimitialization for
three different filter configurations and three differens@tvation errorg g

OR

EnKF-sqrt LSEIK-fix LSEIK-reg

1.0
0.5
0.1

0.2006 £ 0.0010  0.2025+ 0.0021  0.1988 £ 0.0007
0.0963 £ 0.0003  0.0992 + 0.0005 0.0951 £ 0.0005
0.0187 £0.0001  0.0205 =+ 0.0002 0.0185 £ 0.0001
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Figure 1. Effective weighting in the Kalman gain for different obsatien error variances% and state error variance 1. (Solid): I'th element of the
Kalman gain for CL (Eqg. 22). (Dashed): I'th element of thegfar OL (Eg. 23). The effective weighting is increasinglyder for observation localization

for decreasingr?,.
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Figure 2. Gaussian weight functiow®~ and regulated weight functiom©Z % for three different observation error variantze%. The curves forw L
andw® L with o2, = 10 lie on top of each other.
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Figure 3. Mean RMS errors averaged over the full length of the expertrfa the EnKF-sqrt (left), LSEIK-fix (center), and LSElkeg (right) for three
different observational errors: 1.0 (top), 0.5 (middle}, (bottom). White fields denote filter divergence, whichesinked here as the case that the RSM
mean error is larger than the observational error.
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Figure 4. Logarithm of the standard deviation for the RMS errors odifferent realizations of random numbers in the ensenmilialization for the
EnSREF (left), LSEIK-fix (center), and LSEIK-reg (right) furree different observational errors: 1.0 (top), 0.5 (rfegid.1 (bottom). As in Fig. 3, white
fields denote cases in which the filter diverges.
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Figure 5. Effective weighting in the Kalman gain for the case of 2 okagons as discussed in Appendix B. Shown is the effect obtheervation at
the second grid point on the analysis update at the first gk ior CL (thick solid line), fixed OL (dash-dotted) and tdgted OL according to Eq.
(24) (dashed). The function for 2D-regulated OL accordm&4¢. (30) lies on top of the function for CL.
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