Measuring Paleo-(Climate)-Sensitivity

Peter Köhler

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

Colloquium "Constraining estimates of future climate variability from geological records " Royal Netherlands Academy of Arts and Sciences, Amsterdam, 29–31 March 2011

In collaboration with

Richard Bintanja, Hubertus Fischer, Bas de Boer, Fortunat Joos, Reto Knutti, Gerrit Lohmann, Lucas Lourens, Valérie Masson-Delmotte, Manfred Mudelsee, Roderik van de Wal

Outline

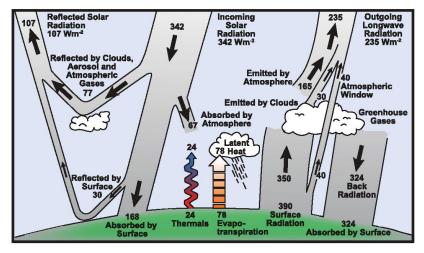
2 Application 1: Late Pleistocene — last 800 kyr

3 Application 2: Late Cenozoic — Last 20 Myr

Pleistocene

Cenozoic

Present Day Radiative Forcing



(IPCC, 2007, based on Kiehl & Trenberth, 1997) (revised by Trenberth et al 2009 BAMS (not included here))

Earth's Radiative Budget

Equilibrium temperature change $\Delta T_{E,\infty}$ for a given radiative forcing ΔR (or ΔF or ΔQ)

$$\Delta T_{\mathrm{E},\infty} = rac{-\Delta R}{\lambda}$$

Climate feedback parameters

 $\lambda = \lambda_{\text{Planck}} + \lambda_{\text{water vapour}} + \lambda_{\text{lapse rate}} + \lambda_{\text{clouds}}(+\lambda_{\text{albedo}})$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{else}}$$

Initially: only Planck feedback, others (λ_{else}) ignored

$$\Delta T_{\rm E,P} = \frac{-\Delta R}{\lambda_{\rm Planck}} = \frac{-\Delta R}{-3.2 \text{ W m}^{-2} \text{ K}^{-1}}$$

Earth's Radiative Budget

Equilibrium temperature change $\Delta T_{E,\infty}$ for a given radiative forcing ΔR (or ΔF or ΔQ)

$$\Delta T_{\mathrm{E},\infty} = \frac{-\Delta R}{\lambda}$$

Climate feedback parameters

 $\lambda = \lambda_{Planck} + \lambda_{water \ vapour} + \lambda_{lapse \ rate} + \lambda_{clouds}(+\lambda_{albedo})$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{else}}$$

(specific) climate sensitivity S $S = rac{\Delta T_{\mathrm{E},\infty}}{\Delta R}$

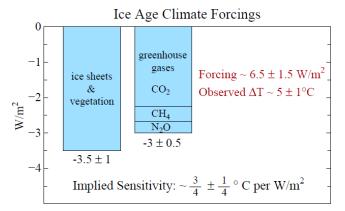
Climate sensitivity ($\Delta T_{2 \times CO_2}$)

equilibrium temperature change for doubling CO₂ concentration Problem: When is equilibrium?

Calculated range of $\Delta T_{2 \times CO_2}$ (IPCC 2007 or others): 2.1–4.4 K Problem: Factor \geq 2 uncertainty, depending on the climate model

Forcing
$$\Delta R_{2 \times CO_2} = 5.35 \text{ W m}^{-2} \cdot \ln(2) = 3.7 \text{ W m}^{-2} \cdot \frac{\Delta T_{2 \times CO_2}}{\Delta R_{2 \times CO_2}} = S_{2 \times CO_2} = 0.6 - 1.2 \text{ K (W m}^{-2})^{-1}$$

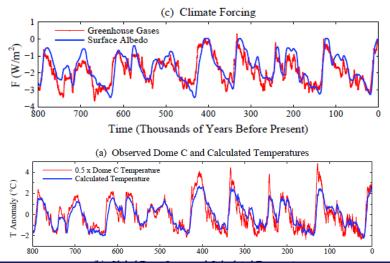
Other Approaches (e.g. Hansen et al, 2007, 2011)



Pleistocene

Other Approaches (e.g. Hansen et al, 2007, 2011)

- **(**) Use LGM for ΔT and $\Delta R \Rightarrow S = 0.75 \pm 0.25$ K (W m⁻²)⁻¹
- **2** Keep *S* constant and calculate ΔT out of given ΔR .



Other Approaches (e.g. Hansen et al, 2007, 2011)

- **()** Use LGM for ΔT and $\Delta R \Rightarrow S = 0.75 \pm 0.25$ K (W m⁻²)⁻¹
- **2** Keep *S* constant and calculate ΔT out of given ΔR .

Points for improvements:

- ΔT (observed) is $0.5 \times$ EPICA-Dome-C ΔT which is wrong, because the polar amplification changes with climate / time.
- 2 There is no global time series of ΔT , urgently wanted.
- S might depend on climate (S = f(T)), thus taking $S_{2 \times CO_2}$ for LGM and vice versa might be wrong.
- More knowledge on changes in albedo available.

Our Approach:

Pleistocene

Cenozoic

Refine ΔR as far as possible out of data sets.

 $\Delta T_{\mathrm{E},\infty} = \frac{-\Delta R}{\lambda}$

Two applications:

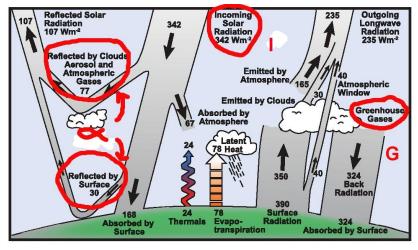
Late Pleistocene:

(a) Refine ΔR over last 800 kyr (b) For LGM: use a ΔT and our $\Delta R \Rightarrow S = \Delta T / \Delta R$.

2 Late Cenozoic:

(a) Use data-based ΔT and constant *S* for $CO_2 = f(\Delta R)$ (b) Use ΔT and ice core CO_2 to calculate variability in *S*

Our Approach

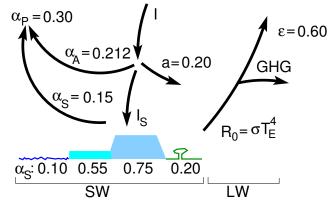


Our Approach: Processes change in the radiative budget based on **data Considered paleo changes:** *I*: incoming solar radiation; *G*: GHG; *α*: albedo

Pleistocene

Cenozoic

Simplified View on the Radiative Budget



Considered paleo changes:

I: incoming solar radiation; *GHG*: greenhouse gases α_{s} : surface: land ice, snow, sea ice, vegetation α_{a} : atmosphere dust

annual mean and zonally averaged view

2 Application 1: Late Pleistocene — last 800 kyr

3 Application 2: Late Cenozoic — Last 20 Myr

Orbital Forcing

GHG Forcing (CO₂, CH₄, N₂O)

Surface albedo (1): Land Cryosphere (land ice, sea level, snow cover)

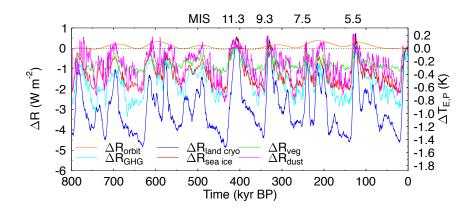
Surface albedo (2): Sea ice

Surface albedo (3): Vegetation

Atmospheric albedo: Aerosols (Dust)

Pleistocene

Individual radiative forcings



Considering orbital variation, GHG, surface albedo (land ice sheets, snow, exposed shelves, sea ice) and atmospheric albedo (dust)

Conceptual Basics

Cenozoic

Individual radiative forcings for LGM

Process	Uncertainties	$\Delta R \pm 1\sigma$	upper err
		$(W m^{-2})$	$(W m^{-2})$
Orbit	_	0.01 ± 0.00	. ,
GHG		-2.81 ± 0.25	±0.37
CO_2	$\sigma_{\rm CO_2} =$ 2 ppmv; $\sigma_B =$ 10%	-2.10 ± 0.22	
CH_4	$\sigma_{CH_4} = 10 \text{ ppbv}; \sigma_R = 10\%;$		
	$\sigma_{\rm efficacy} = 5\%$; $\sigma_{\rm interN_2O} = 0.02 \ {\rm W \ m^{-2}}$	-0.40 ± 0.05	
N_2O	$\sigma_B = 0.1 \text{ W m}^{-2}$	-0.30 ± 0.10	
land cryosphere		-4.54 ± 0.90	± 1.50
land ice	$\sigma_I = 0.2\%$; $\sigma_{area} = 10\%$; $\sigma_{\alpha_{II}} = 0.1$	-3.17 ± 0.63	
sea level	$\sigma_I = 0.2\%; \sigma_{area} = 20\%; \sigma_{\alpha_I} = 0.05$	-0.55 ± 0.29	
snow cover	$\sigma_l = 0.2\%; \sigma_{area} = 20\%; \sigma_{\alpha_l} = 0.05$	-0.82 ± 0.58	
sea ice	-	-2.13 ± 0.53	±0.64
sea ice N	$\sigma_l = 0.2\%; \sigma_{area} = 20\%; \sigma_{\alpha_{Sl}} = 0.1$	-0.42 ± 0.12	
sea ice S	$\sigma_{I} = 0.2\%; \sigma_{\text{area}} = 20\%; \sigma_{\alpha_{SI}} = 0.1$	-1.71 ± 0.51	
vegetation	$\sigma_l = 0.2\%; \sigma_{\alpha_l} = 0.05$	-1.09 ± 0.57	
dust	$\sigma_I = 0.2\%; \sigma_{\alpha_A} = 50\%$	-1.88 ± 0.94	
subtotal		-12.43 ± 1.39	±3.19
for 'Charney' sensitivity S_C (no snow cover and sea ice)		-9.48 ± 1.15	± 2.55
Other enpression (e.g. Llenson)			

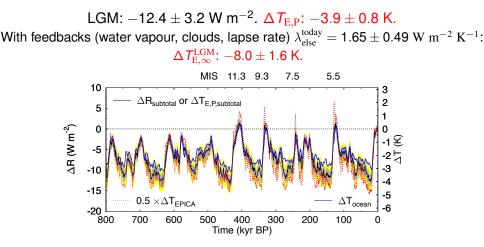
Other approaches (e.g. Hansen)

 -6.5 ± 1.5

Pleistocene

Cenozoic

Total radiative forcing



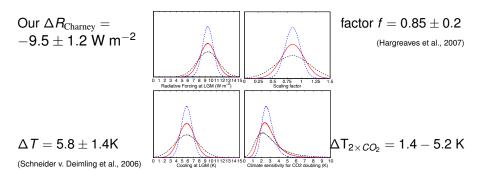
 \Rightarrow Feedbacks strength λ_{else} and then also *S* depends on climate.

Pleistocene

Cenozoic

Climate Sensitivity for $2 \times CO_2$ based on LGM data

Asymmetry in S for warming and cooling (Hargreaves et al., 2007).



$$\Delta T_{2 \times CO_2} = \frac{\Delta T}{\Delta R} \cdot \frac{\Delta R (2 \times CO_2)}{\text{scale}} = \frac{5.8 \text{K}}{9.46 \text{Wm}^{-2}} \cdot \frac{3.71 \text{Wm}^{-2}}{0.85} \approx 2.6 \text{K}$$
(Köhler et al., QSR 2010)

Conclusions I

- Improved $\Delta R \Rightarrow \Delta T_{E,P}^{LGM} = -3.9 \pm 0.8$ K without feedbacks.
- Peedback strength is climate dependent.
- **(a)** $\Delta T_{2 \times CO_2}$ based on our LGM ΔR compilation is 2.4 K (1.4–5.2 K).

Wanted Improvements

- **()** Global mean surface ΔT time series over 800 kyr wanted.
- Inconsistent picture of △T between deep ocean and ice cores in the warmer-than-Holocene-interglacials.
- Understand the climate dependency of S.

Outline

Conceptual Basics

2 Application 1: Late Pleistocene — last 800 kyr

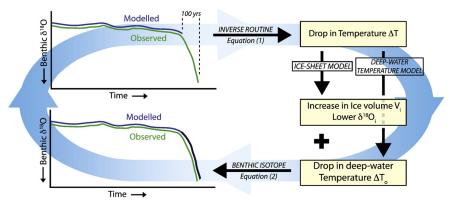
Application 2: Late Cenozoic — Last 20 Myr

Necessary Ingredients

Two out of three ΔT ΔR S

are necessary to calculate the third after

$$S = \Delta T / \Delta R$$

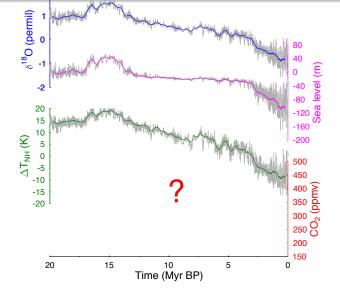


Deconvolute stacked benthic δ^{18} O into climate variables ($\Delta T_{deep o}, \Delta T_{atm (40-80^{\circ}N)}$, size of ice sheets, sea level, snow cover)

(Bintanja et al., 2005; de Boer et al., 2011)

Cenozoic

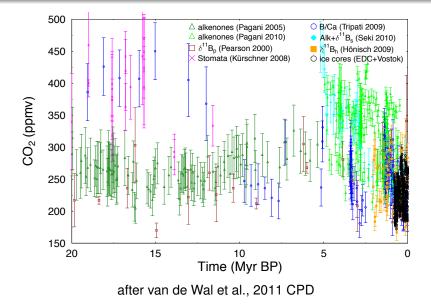
ΔT : =f(benthic $\delta^{18}O$)



(after Bintanja et al., 2005; van de Wal et al., 2011; de Boer et al., 2011)

Cenozoic

CO₂: proxy diversity



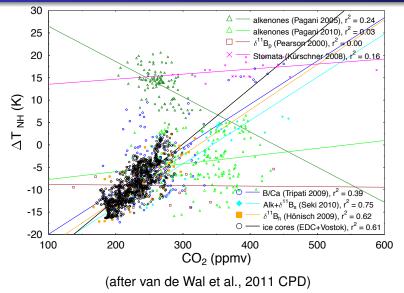
Initial Approach

Use data-based $\Delta T = f(\delta^{18}O)$, assume constant $S = \Delta T / \Delta R$ to calculate $CO_2 = f(\Delta R)$

 $\Rightarrow \Delta R = \Delta T/S$

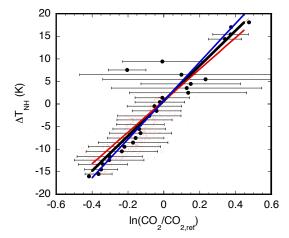
Cenozoic

Relationship ΔT_{NH} —CO₂



Cenozoic

ΔT_{NH} —CO₂ 1: Empirical Relationship



resampled and binned data in intervals of $\Delta(\Delta T_{NH}) = 1$ K

 $C = 39 \pm 4K$ regression slope from modelled ΔT_{NH} and CO₂ data (van de Wal et al., 2011, CPD) 28

ΔT_{NH} —CO₂ 2: Theoretical Relationship

 $\Delta T = S \cdot \Delta R$

$$\Delta T_{NH} = C \cdot \ln rac{\mathrm{CO}_2}{\mathrm{CO}_{2,\mathrm{ref}}}$$
 with $C = rac{lpha eta \gamma \mathcal{S}_C}{1-f}$

LGM parameters:

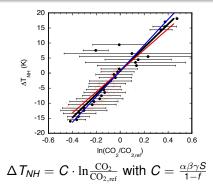
 $\begin{array}{l} \alpha = \Delta T_{\text{NH}} / \Delta T_{global} = 15 \text{ K} / 6 \text{ K} = 2.5 \\ \beta = 5.35 \text{ W m}^{-2} \text{: radiative forcing of CO}_2 \\ \gamma = 1.3 \text{: enhancement factor for non-CO}_2 \text{ GHG (CH}_4, \text{N}_2\text{O}) \\ S_C = 0.72 \text{ K (W m}^{-2})^{-1} \text{: Charney climate sensitivity (fast feedbacks: Planck, water vapour, lapse rate, clouds, sea ice, albedo)} \\ f = 0.72 \text{: feedbacks of slow processes (land ice, dust, vegetation)} \end{array}$

C = 43K theoretical calculation based LGM data and constant S

For comparision:

pure
$$S_{\text{Charney}}$$
 ($f = 0$; $\gamma = 1$; $\alpha = 1$) $\Rightarrow C_C = 3.9 \text{ K and } \Delta T_{global} = 2.7 \text{ K}$
(van de Wal et al., 2011, CPD)

Develop relationship atmospheric ΔT_{NH} —CO₂



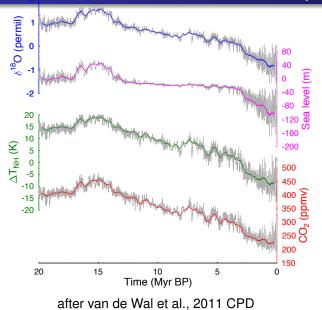
Two independent approaches to calculate the slope:

- **(1)** $C = 39 \pm 4K$ regression slope from modelled ΔT_{NH} and CO₂ data
- 2 C = 43K theoretical calculation based LGM data and constant S

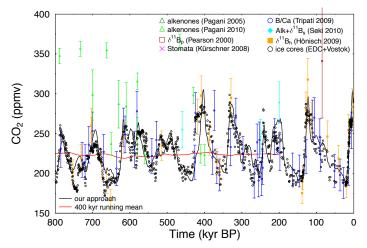
(van de Wal et al., 2011, CPD)

Cenozoic

Deconvolute benthic δ^{18} O over the last 20 Myr



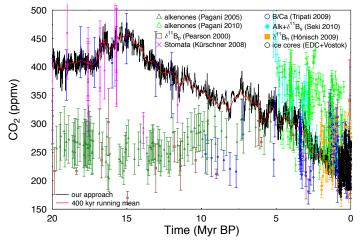
CO₂ reconstructions, the last 20 Myr



Glacial/interglacial amplitudes captured, details wrong

after van de Wal et al., 2011 CPD

CO₂ reconstructions, the last 20 Myr



Assumption: relation $CO_2 - \Delta T$ unchanged with time!!!

after van de Wal et al., 2011 CPD

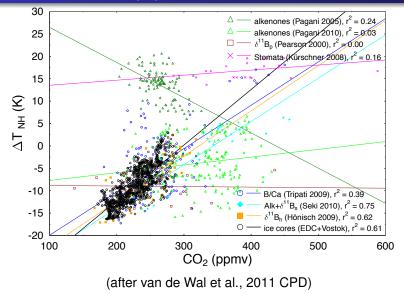
Alternative Approach

Use data-based $\Delta T = f(\delta^{18}O)$, and the best constrained $\Delta R = f(CO_2, \text{ ice core})$ to calculate the variability in S = f(T)

 $\Rightarrow S = \Delta T / \Delta R$

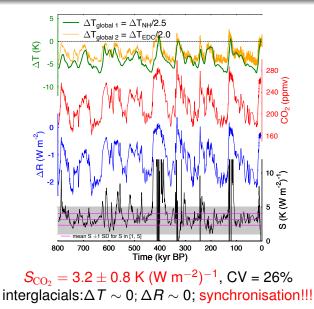
Cenozoic

Alternative: S = f(T) based on ice core data



Cenozoic

Alternative: S = f(T) based on ice core data



Pleistocene

Cenozoic

Revise Theoretical Relationship ΔT_{NH} —CO₂

$$\Delta T_{NH} = C \cdot \ln \frac{CO_2}{CO_{2,ref}} \text{ with } C = \frac{\alpha \beta \gamma S_C}{1-f}$$
$$\Rightarrow: S_{CO_2}^{LGM} = \frac{\Delta T_{global}^{LGM}}{\Delta R_{CO_2}^{LGM}} = \frac{\gamma S_C}{1-f} = \frac{1.3 \cdot 0.72}{1-0.72} = 3.3 \text{ K (W m}^{-2})^{-1}$$

C = 43K theoretical calculation based LGM data and constant S

Pleistocene

Cenozoic

Revise Theoretical Relationship ΔT_{NH} —CO₂

$$\Delta T_{NH} = C \cdot \ln \frac{CO_2}{CO_{2,ref}} \text{ with } C = \frac{\alpha\beta\gamma S_C}{1-f}$$
$$\Rightarrow: S_{CO_2}^{LGM} = \frac{\Delta T_{global}^{LGM}}{\Delta R_{CO_2}^{LGM}} = \frac{\gamma S_C}{1-f} = \frac{1.3 \cdot 0.72}{1-0.72} = 3.3 \text{ K (W m}^{-2})^{-1}$$

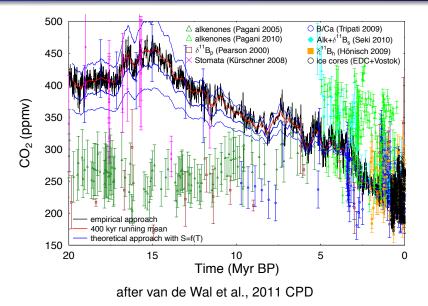
C = 43K theoretical calculation based LGM data and constant S

Revision:
$$S_{CO_2}^{ice \ cores} = 3.2 \ K \ (W \ m^{-2})^{-1} \pm 26\%$$
 \Rightarrow Ice cores suggest a variability in S of $\pm 26\%$,
thus $C = 43 \pm 11K$

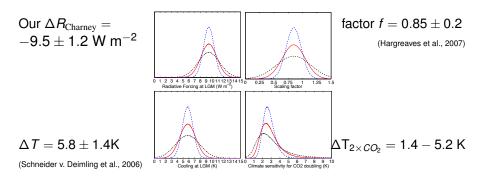
Pleistocene

Cenozoic

Revise CO₂ reconstructions, the last 20 Myr



Open Questions: Asymmetry in *S* for cooling and warming

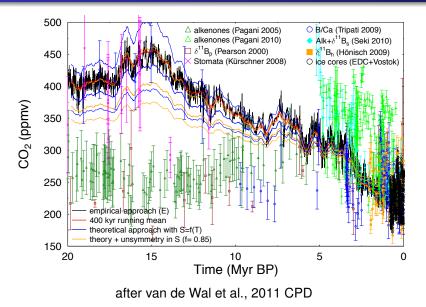


Asymmetry in *S* (scaling factor *f*) not considered so far.

Pleistocene

Cenozoic

Revise CO₂, consider unsymmetry in S (here: f= 0.85)

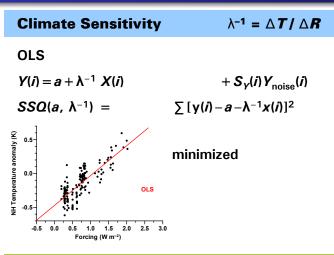


Peter Köhler

Conclusions II

- If one assumes constant $S \Rightarrow CO_2$ can be calculated out of ΔT .
- 2 Alternatively, if we believe in a ΔT we can obtain a climate-dependent *S* from the ice core CO₂.
- Solution For which forcing ΔR is *S* calculated? e.g. S_{Charney} , S_{all} , S_{CO_2} .
- **④** Approach is weak in MIS 5, 7, 9, 11 with both ΔR and $\Delta T \sim 0$.
- Solution S (scaling factor f) not considered so far.
- We need to agree on global temperature records!.
- (Precise uncertainty treatment will change slope of regression.)

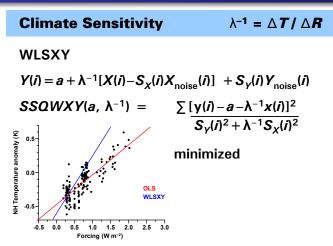
Open Questions: Uncertainties versus slope of regression



Draper & Smith 1981

Mudelsee et al., unpublished

Open Questions: Uncertainties versus slope of regression



Draper & Smith 1981, Deming 1943, York 1966, Press et al. 1992, Mudelsee 2010

Mudelsee et al., unpublished

Implict versus explicit

Equilibrium temperature change $\Delta T_{E,\infty}$ for a given radiative forcing ΔR (or ΔF or ΔQ)

 $\Delta T_{\mathrm{E},\infty} = \frac{-\Delta R}{\lambda}$

Here, forcings & feedbacks are only used to calculate $\Delta T_{E,\infty}$. They say nothing about CAUSE and EFFECT (leads and lags).

- glacial/interglacial: GHG (ΔR_{GHG}), but GHG are NOT the underlying cause for the temperature change, they contribute to it by changing the radiative budget.
- pure GHG forcing (ΔR_{GHG}) and ice sheet albedo feedback does NOT imply the GHG is causing the changes in the ice sheets.

Because of that we can use whatever we want to (can provide by data) of forcing (explicitly) and everything else as feedback (implicitly).

Names

- Climate sensitivity after IPCC: $\Delta T_{2 \times CO_2}$ (K) equilibrium temperature change for doubling CO₂ concentration
- **2** specific climate sensitivity S (K (W m⁻²)⁻¹)

$$S = rac{\Delta T_{\mathrm{E},\infty}}{\Delta R}$$

(or specific paleo climate sensitivity or Earth system sensitivity)

3 information wanted: which forcing ΔR , temperature ΔT , time slice

$$\begin{array}{c} \underset{\Delta R}{\overset{\text{time}}{}} S_{\Delta R}^{\Delta T} & \text{or} & S_{\Delta R}^{\Delta T} @ \text{time} \\ \end{array}$$

$$\begin{array}{c} \text{xample: ice core CO}_2 \text{ over 800 kyr with } \delta^{18} \text{O-model-inverted } \Delta T \\ \end{array}$$

$$\begin{array}{c} \underset{CO_2}{\overset{\text{Pleis}}{}} S_{CO_2}^{f(\delta^{18}O)} & \text{or} & S_{CO_2}^{f(\delta^{18}O)} @ \text{Pleistocene} \end{array}$$

F