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During the late Pliocene global climate changed drastically as the Northern Hemisphere glaciation (NHG)
intensified. It remains poorly understood how the North Atlantic Current (NAC) changed in strength and
position during this time interval. Such changes may alter the amount of northward heat transport and
therefore have a large impact on climate in the circum-North Atlantic region and the growth of Northern
Hemisphere ice sheets. Using the alkenone biomarker we reconstructed orbitally resolved sea surface
temperature (SST) and productivity records at Integrated Ocean Drilling Project (IODP) Expedition 306 Site
U1313 during the late Pliocene and early Pleistocene, 3.68–2.45 million years ago (Ma). Before 3.1 Ma, SSTs
in the mid-latitude North Atlantic were up to 6 °C higher than the present and surface water productivity
was low, indicating that an intense NAC transported warm, nutrient-poor surface waters northwards.
Starting at 3.1 Ma, surface water characteristics changed drastically as the NHG intensified. During glacial
periods at the end of the late Pliocene and beginning of the Pleistocene, SSTs decreased and surface water
productivity in the mid-latitude North Atlantic increased, reflecting a weakened influence of the NAC at our
site. At the same time the increase in surface productivity suggests that the Arctic Front (AF) reached down
into the mid-latitudes. We propose that during the intensification of the NHG the NAC had an almost pure
west to east flow direction in glacials and did not penetrate into the higher latitudes. The diminished
northward heat transport would have led to a cooling of the higher latitudes, which may have encouraged
the growth of large continental ice sheets in the Northern Hemisphere.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Pliocene epoch1 is the most recent period in geological history
when global temperatures were several degrees higher than today
(e.g., Dowsett et al., 2009; Haywood et al., 2009). Atmospheric pCO2

was approximately 100 ppm higher than pre-industrial levels (Pagani
et al., 2010) and ice sheets in the Northern Hemisphere were
relatively small. The general surface current system was similar to
the present one (Dowsett et al., 2009), but sea surface temperatures
(SSTs) in the North Atlantic Oceanwere up to 10 °Cwarmer compared
to the present as an intense North Atlantic Current (NAC) led to a
reduced meridional SST gradient (e.g., Cronin, 1991; Dowsett et al.,
1992; Robinson, 2009).

During the late Pliocene these warm conditions terminated as the
Northern Hemisphere glaciation (NHG) intensified and the Quaternary-
style climate that characterizes the Pleistocene epoch developed. The
exact timing of the intensification of NHG is not well constrained and
differs between studies and site locations. In benthic foraminiferal δ18O
records, a measure for high latitude temperature and continental ice
volume, the increase started around 3.6 Ma, indicating the built-up of
continental ice sheets in theNorthernHemisphere (Mudelsee andRaymo,
2005). However, the threshold towards full glacial/interglacial conditions
is locatednear 2.7 Maduring theMarine Isotope Stage (MIS)G6when the
amplitude of the 41-ka component increased (Ruggieri et al., 2009).
Around the same time ice-rafted debris (IRD) became widespread in
sediments from thehigher latitudes (e.g., Kleiven et al., 2002;Maslin et al.,
1998; Shackleton et al., 1984). MIS G6 is therefore considered as the first
intense glacial period with large Northern Hemisphere ice sheets.

Various hypotheses such as a change in orbital configuration, a
decrease in atmospheric pCO2 via polar ocean stratification, and/or
changes in oceanic and atmospheric heat transport, possibly related to
the closing of the Central American Seaways (CAS), have been
proposed as cause for the intensification of the NHG (Bartoli et al.,
2005;Driscoll andHaug, 1998;Haug and Tiedemann, 1998;Haug et al.,
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1999, 2005; Haywood et al., 2000; Lawrence et al., 2009; Maslin et al.,
1998; Mudelsee and Raymo, 2005; Ravelo et al., 2004; Sarnthein et al.,
2009; Seki et al., 2010). So far, none of these have given a complete
satisfactory explanation and the ultimate cause remains an enigma.
Nevertheless, recent studies suggest that cooling of the higher
latitudes and increase in meridional SST gradient were crucial for the
intensification of NHG (Berger andWefer, 1996; Brierley and Fedorov,
2010; De Schepper et al., 2009; Lunt et al., 2008). This means that the
NAC, by which the excess in heat from the tropics was transported
northwards during the Pliocene, had toweaken and/or change its path
during the intensification of the NHG in order to allow the higher
latitudes to cool and the meridional SST gradient to increase. This
contradicts other hypotheses in which an increase in northward heat
transport, related to closure of the CAS, and associated feedback
mechanisms are suggested as the main cause for the intensification of
the NHG (e.g., Bartoli et al., 2005; Driscoll and Haug, 1998; Haug and
Tiedemann, 1998).

Therefore reconstructing the influence of the NAC on the North
Atlantic during the late Pliocene is crucial for a better understanding
of the mechanisms behind the intensification of the NHG. At present,
only one study discussing variations in northward heat transport is
available for the complete late Pliocene (Lawrence et al., 2009).
However, that study used samples from Ocean Drilling Project (ODP)
Site 982. This site is located at the northern end of the NAC and
probably does not reflect major variations in the position and strength
of the main branch of the NAC. This is obvious in view of the high-
amplitude SST variability, which is most likely related to short-term
variability in the most northern position of the NAC (Lawrence et al.,
2009). More important, the age model of Site 982 for the late Pliocene
might require revision (Khélifi and Sarnthein, 2010). Therefore, this
study is based on sediment samples from the more southerly located
Integrated Ocean Drilling Project (IODP) Expedition 306 Site U1313.
Themain objective of this paper is to reconstruct variations in the NAC
and the subsequent change in northward heat transport during the
late Pliocene, when the NHG intensified.

2. Regional setting

The North Atlantic is characterized by a continuous northward
flow of warm and salty surface water that constitutes the upper part
of the meridional overturning circulation (Fig. 1). At the origin of the
surface current system is the Gulf Stream, which continues as the
North Atlantic Current (NAC) and finally the North Atlantic Drift
Current in the northeast North Atlantic. We use the term NAC to refer
to the whole warm surface current that continues after the Gulf
Stream into the northeast North Atlantic. The NAC forms the
transition zone between the two different regimes: in the higher
latitudes the cold and productive Arctic waters, in the subtropics the
warm and oligotrophic waters from the subtropical gyre (Fig. 1). The
region of high surface water productivity just north of the NAC is
associated with the location of the Artic Front (AF), which is
characterized by high eddy activity that promotes surface water
productivity.

Various studies showed that surface water characteristics in the
(mid-latitude) North Atlantic mainly depend on the strength and
position of the NAC, which in turn determines the position of oceanic
fronts (e.g., Calvo et al., 2001; Lawrence et al., 2009; Robinson, 2009;
Stein et al., 2009; Versteegh et al., 1996; Villanueva et al., 2001). High
SSTs indicate an intense NAC transporting warm surface waters
northwards across the mid-latitude North Atlantic, whereas cooler
SSTs reflect a weakened influence of the NAC.

Alkenone ARs provide a second measure of variability in the NAC.
Both coccolith carbonate and alkenone abundance have been used to
track the movement of the high productivity zone associated with the
AF during the middle and late Pleistocene (e.g., McIntyre et al., 1972;
Stein et al., 2009; Villanueva et al., 2001). These studies showed that
during glacials the productivity maximum moved southwards as the
AF shifted into the mid-latitude North Atlantic, cold polar waters
expanded to lower latitudes, and the NAC did not influence the higher
latitudes in the northeast Atlantic. A reconstruction of SSTs for the Last
Glacial Maximum depicts this almost purely west to east flow
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Fig. 1. Map of the North Atlantic Ocean showing modern mean annual SSTs at the surface (Locarnini et al., 2006) together with the position of the Gulf Stream and North Atlantic
Current (NAC). Dashed line shows the position of the Arctic Front (AF), which separates warm Atlantic waters in the mid-latitudes from cold subpolar waters in the higher latitudes
(Pflaumann et al., 2003; Swift, 1986). Insert shows annual primary productivity (pp.) in the North Atlantic (modified fromWilliams and Follows, 1998). The NAC forms the transition
zone between warm and oligotrophic waters of the subtropical gyre to the south and cold and productive Arctic waters associated with the AF in the north. In this study we used
samples from IODP Site U1313, a re-drill of DSDP Site 607, which at present is located under the direct influence of the NAC. Other sites discussed in the text are also shown.
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direction of warm surface waters and southern position of the AF
between 37 and 45 °N (Pflaumann et al., 2003), which led to increased
surface water productivity in the mid-latitude North Atlantic
(Villanueva et al., 2001).

Since surface water characteristics are so different to the north and
the south of theNAC, a change in position of theNAC as described above
can lead to large changes in SSTs and productivity at Site U1313, which
at present is located under the direct influence of the NAC. Records of
surface water characteristics at site U1313 are therefore well suited to
reconstruct changes in the position and strength of the NAC.

3. Material and methods

3.1. Age model Site U1313

Site U1313 is a re-drill of Deep Sea Drilling Project (DSDP) Site 607
and is located at the base of the upper western flank of theMid-Atlantic
Ridge (3426 mwater depth, latitude 41º00′N, longitude 32º57′W). Four
holes were drilled at Site U1313 to obtain a continuous sedimentary
record (Expedition 306 Scientists, 2006). Using the holes U1313B and
U1313C a complete spliced stratigraphic section was obtained. The
original meter composite depth (mcd)-scale was updated to an
adjusted, so-called amcd-scale, to improve the overall correlation of
distinct features in the lightness, susceptibility, and paleomagnetic data
between the holes. Slight adjustments were made to the mcd-scale of
Hole U1313C, which was tied to the mcd-scale for Hole U1313B (G.
Acton, personal communication). We obtained an age model for the
period between 3.65 and 2.45 Ma by improving and extending the
preliminary shipboard age model for Site U1313 (Expedition 306
Scientists, 2006). The age model is based on tuning the lightness record

of the primary splice to the global benthic foraminiferal δ18O LR04 stack
(Lisiecki and Raymo, 2005), using the Match 2.0 software (Lisiecki and
Lisiecki, 2002). We assumed that the variability in lightness, caused by
changing carbonate content due to variations in terrestrial input,
mimicked changes in benthic foraminiferal δ18O without any temporal
offset during the late Pliocene and early Pleistocene (Expedition 306
Scientists, 2006). This assumption is supported by data from DSDP Site
607 where changes in carbonate content, hence lightness, are in phase
with benthic foraminiferal δ18O at the obliquity rhythm (Ruddiman et
al., 1989). Depth–age tie-pointswere based on themagnetostratigraphy
of Site U1313 (Expedition 306 Scientists, 2006) and visual correlation
between the two records. The resulting sedimentation rates vary
between 2 and 10 cm/ka (Fig. 2). The ages obtained for magnetic
reversals at Site U1313,which can clearly be identified in the inclination
record (Fig. 2), allmatch the ages as givenby Lisiecki andRaymo, (2005)
within the error margin.

3.2. Sample preparation and methods

Samples of 10 cc were taken from the primary splice at a 20 cm
(±4 ka) resolution. Between 2.78 and 2.65 Ma (MIS G9–G3) sampling
resolution was 10 cm (±2 ka). All samples were freeze-dried after
sampling and stored at 4 °C until further processing.

A LECO Pegasus III GC/TOF-MS system was used to measure the
biomarker content of the sediment samples. This method has recently
been established as alternative for alkenone analyses and has the
advantage over classical GC/FID methods that it significantly reduces
instrumental time andhas a higher sensitivity (Hefter, 2008). Full details
of the methods applied are discussed elsewhere (Hefter, 2008; Stein et
al., 2009). In short, organic compoundswere obtained fromaround6 gof
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Fig. 2. Age model for Site U1313. The age model is based on tuning of the lightness of the primary splice (orange) to the global benthic foraminiferal δ18O stack (blue) (Lisiecki and
Raymo, 2005). The resulting sedimentation rates vary between 2 and 10 cm/ka (red). Also shown are the inclination data for the primary splice of Site U1313 (black) and matching
polarity chrons.
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freeze-dried and homogenized sediment using dichloromethane and
accelerated solvent extraction (ASE 200, DIONEX, 5 min. at 100 °C and
1000 psi). For quantification purposes, 2.1435 μg of n-hexatriacontane
(n-C36 alkane) were added to each sample as standard prior to
extraction. Total extracts were concentrated, dried under a nitrogen
flow and then re-dissolved in 0.5 ml hexane before being measured by
theGC/TOF-MS system.The alkenoneunsaturation index (U37

k′ )was used
together with the global core-top calibration (Müller et al., 1998; Prahl
and Wakeham, 1987) to reconstruct mean annual temperatures at the
surface (top 10 meters). Total C37 alkenone (C37:2+C37:3) accumulation
rates (ARs) in ng/cm2/ka were calculated using linear sedimentation
rates (Fig. 2), biomarker concentrations obtained by the GC/TOF-MS
system, and dry bulk densities (DBD), calculated from shipboard
measured wet bulk densities (WBD) using DBD=−1.6047+1.5805 *
WBD (Expedition 306 Scientists, 2006; Stein et al., 2009).

3.3. Reliability of U37
k′ in the late Pliocene

In themodern ocean alkenones are produced by themembers of the
class Prymnesiophyceae, primarily Emiliania huxleyi as well as Gephyr-
ocapsa oceanica (e.g., Volkman et al., 1995). Both species first appeared
in the mid-latitude North Atlantic during the (middle) Pleistocene
(Expedition 306 Scientists, 2006), but alkenones are found in much
older sediments. Then, other extant and extinct members of the class
Prymnesiophyceae presumably produced the alkenones. Although the
alkenone producers changed over time, previous work has shown that
U37
k′ and global core-top calibration are applicable beyond the first

occurrence of E. huxleyi (McClymont et al., 2005; Villanueva et al., 2002).
In recent years the alkenone thermometer was therefore used to
produce several long-term SST records (e.g., Dekens et al., 2007;
Lawrence et al., 2009), showing the capability to provide reliable
temperature estimates for at least the last 5 Ma.

In the mid-latitudes seasonal fluctuations in alkenone production
most likely cause only a small bias in SST reconstructions towards the
temperature of the growing season (Conte et al., 2006; Müller et al.,
1998). Therefore our SST record is interpreted to reflect mean annual
temperatures. This is supported by an alkenone-derived SST of 18.2 °C
from our core-top sample, within the error identical to the modern
mean annual SST of 18.3 °C at Site U1313 (Locarnini et al., 2006). Even
so, recent work has suggested that at least during the interglacials of
the late Pleistocene, alkenone-based SSTs in the mid-latitude North
Atlantic reflect spring temperatures (Leduc et al., 2010). If this was
also the case in the late Pliocene then the increase in Pliocene SSTs
compared to the modern is underestimated (compare Pliocene SSTs
with modern spring SST instead of annual mean SST in Fig. 3).

The input of allochthonous alkenones likely did not significantly
affect our biomarker records from the mid-latitude North Atlantic
since this is more important in the higher latitudes such as the Nordic
Seas (Bendle et al., 2005) or at sites located on or close to continental
margins (e.g., Mollenhauer et al., 2005).

4. Results

The SST record from Site U1313 ranges from 3.65 to 2.45 Ma and
demonstrates both long- and short-term variability during this period
(Fig. 3). SST variability is similar to the global benthic foraminiferal δ18O
stack (Lisiecki and Raymo, 2005). Intervals of low benthic foraminiferal
δ18O coincide with periods of increased SSTs at Site U1313 and vice
versa. During most of the late Pliocene, SSTs were higher than the
present with interglacial temperatures occasionally as high as 24 °C, in
accordance with the general consensus of a warm North Atlantic Ocean
during the late Pliocene (see Lawrence et al., 2009 and references
therein). SSTs decreased between 3.5 and 3.3 Ma by 5 °C, culminating in
MIS M2 with values as low as 17 °C. The Pliocene Research Interpre-
tation and Synoptic Mapping (PRISM)-interval between 3.29 and
2.97 Ma (Dowsett et al., 2009), is characterized by high SSTs with

both glacial and interglacial values higher than the present. From3.1 Ma
onwards SSTs got progressively lower. Especially glacial SSTs decreased
by several degrees at the end of our record with the lowest SSTs found
during MIS G6 (15 °C) and 100 (13 °C).

Alkenone ARs are generally low and show little variation during
most of our record with typical values of around 500 ng/cm2/ka. The
exception is during MIS G6, 104, 100, and 98 when intense cooling of
surface waters coincides with an increase in alkenone ARs by one order
of magnitude, reaching values as high as 8000 ng/cm2/ka (Fig. 3).

5. Discussion

Variations in the surface water characteristics at Site U1313 are
interpreted to reflect changes in the influence of the NAC. The shift
from warm and oligotrophic conditions at our site towards cold and
more productive surface waters during the latest Pliocene and early
Pleistocene (Fig. 3) suggests a process comparable to that of glacials of
the late Quaternary when the NAC had an almost purely west to east
flow direction and the AFwas located close to our study site. Belowwe
discuss the changes in surface water characteristics at Site U1313 and,
hence, the influence of the NAC for different time intervals of the late
Pliocene and early Pleistocene.

5.1. Period between 3.68 and 3.45 Ma: warm beginning of the late Pliocene

High SSTs and low alkenone ARs during this period suggest that
throughout this interval an intense NAC transported warm waters
northwards, keeping the higher latitudes warm. SSTs at Site 982 in the
northern North Atlantic also record warm surface waters during this
interval (Lawrence et al., 2009), suggesting that the entire North Atlantic
was influenced by an intense NAC. At that time, Site U1313 was likely
bathed with waters from the subtropical gyre since this gyre likely
expanded in thewarmPliocene. The NAC thenmay have followed amore
northern pathway compared to present, keeping the high productivity
region associated with the AF far to the north of our study site.

A short alkenone-based SST record from DSDP Site 607 (Lawrence
et al., 2009), of which U1313 is a re-drill, is in good agreement with
our record. The only difference is the low SSTs at Site U1313 during
MIS MG12 (±3.59 Ma). At Site 607 lowest SSTs occur during MIS Gi2
(±3.63 Ma). Lowest SSTs during MIS Gi2 seem to better fit benthic
foraminiferal δ18O, with heavier values during MIS Gi2 (Lisiecki and
Raymo, 2005). However at Site U1313 the excellent resolved
inclination data (Fig. 2) shows that the Guass/Gilbert magnetic
boundary coincides with these low SSTs. The Gauss/Gilbert boundary
in the LR04 stack has an age of 3.588 Ma and is placed within MIS
MG12 (Lisiecki and Raymo, 2005). We are therefore certain that the
low SSTs at Site U1313 occur during MIS MG12. At Site 607
identification of magnetic polarity chrons is problematic in this
interval, preventing us to be certain that the SST records are truly
different. Possibly future benthic oxygen isotope stratigraphy at Site
U1313 can help to resolve this.

5.2. Period between 3.45 and 3.29 Ma: towards MIS M2

Decreasing SSTs during this period suggest the influence of the
NAC, and hence northward heat transport, weakened prior to MIS M2.
Low alkenone ARs suggest that despite the weakening of the NAC, it
was still strong enough to prevent nutrient rich waters and the AF to
reach the core site. This is supported by data of IRD, which is recorded
only at sites north of 50 °N (Kleiven et al., 2002). The absence of IRD in
more southern sites suggests that warm surface waters were still
influencing the mid-latitude North Atlantic and prevented icebergs
from reaching further south.

Although covering only a small time interval aroundMISM2, Mg/Ca
based SST and dinoflagellate cyst assemblages from the northern North
Atlantic (DSDP Site 610 and IODP Site U1308) also show a reduction in
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northward heat transport during this time period (De Schepper et al.,
2009). In agreement with our interpretation, the palynological records
at Sites 610 and 1308 suggest that the AFmoved southward duringMIS
M2, but still remained to the north of 53 °N (De Schepper et al., 2009).
Our results show that a long-termweakening in the influence of theNAC
is precedingMISM2 and the development of a more glacial-like surface
circulation in the North Atlantic. This points to a long (N100 ka) and
gradual process, which might have crossed a threshold during MIS M2,
as a cause for this global cooling event.

5.3. Period between 3.29 and 2.94 Ma: warm interval

Warm and oligotrophic conditions quickly returned at Site U1313
afterMISM2, suggesting that northward heat transport by the NACwas
increased and the AF located far north of our site. This period includes
the well-studied PRISM-interval between 3.29 and 2.97 Ma (e.g.,
Dowsett et al., 2009). Numerous studies using sites in the North Atlantic
demonstrate increased northward heat transport by an intensified NAC
during this period (e.g., Cronin, 1991; Dowsett et al., 1992; Haywood
and Valdes, 2004; Robinson, 2009). These reconstructions use “snap-

shots” and represent warm peak averages (Robinson, 2009), making
comparison with our SST record difficult.

Multi-proxy SST records, including alkenone based-SST, obtained
from several sites in the North Atlantic (e.g., DSDP Sites 607 and 610)
also show higher SSTs for the PRISM-interval compared to the present
(Robinson et al., 2008). Although the age model and SST-calibration
are slightly different, our SST estimates agree very well with the short
alkenone-based SST from Site 607 for the PRISM-interval in both
absolute values and trend.

The only other continuous SST record for the late Pliocene in the
North Atlantic comes from ODP Site 982 (Lawrence et al., 2009).
However for this interval the record differs significantly from that at Site
U1313. Site 982 records a continuous cooling of surface waters that
started already at 3.5 Ma, suggesting a decrease in strength of the NAC
from the beginning of the late Pliocene onwards. The interval between
3.29 and 2.94 Ma is characterized by decreasing SSTs with values
occasionally as low as those during MIS M2 and G6, both major global
cooling events. Especially the lack of high SST duringMIS KM5 and KM3
at Site982, bothcharacterizedbyvery light benthic foraminiferal δ18O, is
different from our findings. The SST record from Site 982might reflect a
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shift in position of the northern end of the NAC and decrease in heat
transport to the northern North Atlantic since 3.5 Ma (Lawrence et al.,
2009), in agreementwith other studies that suggested that the built-up
of continental ice sheets in the Northern Hemisphere began as early as
3.7 Ma (Meyers and Hinnov, 2010; Mudelsee and Raymo, 2005).
However, a detailed revision of composite depths and magnetostrati-
graphy, and renewed fine-tuning of the benthic foraminiferal δ18O
record at Site 982 led to a significant revision of the SST record of
Lawrence et al. (2009) by 20 to 120 ka (Khélifi, 2010; Khélifi and
Sarnthein, 2010). These authors suggested that the age of the benthic
foraminiferal δ18O signal formally assigned to MIS KM2 (±3.135 Ma) is
replaced by the age of MIS G20 (±3.015 Ma). The possible absence of
the Kaena subchron in the sediment sequence of Site 982 may explain
the discrepancies with our SST record.

5.4. Period between 2.94 and 2.45 Ma: intensification of the NHG

Although alkenone ARs can be influenced by various factors, we
interpret the order of magnitude increase in alkenone ARs during MIS
G6, 104, 100, and 98 as an increase in total surface water productivity.
Because the modern North Atlantic phytoplankton community is
dominated by coccolithophores, predominantly the alkenone pro-
ducing E. huxleyi (Gregg and Casey, 2007), variations in the alkenone
ARs reflect changes in the dominant phytoplankton group. Secondly,
other studies showed that alkenone abundances in sediment cores
and sediment traps track surface productivity in the North Atlantic
(Incarbona et al., 2010; Rosell-Melé et al., 2000; Villanueva et al.,
2001). Moreover, our alkenone ARs agree with a palynological study
from Site 607 for the period between 2.85 and 2.3 Ma (Versteegh et
al., 1996). That study displays increased concentrations of dinoflagel-
late cysts during MIS G6, 104, 100, and 98, also suggesting increased
mixed layer productivity during these glacial periods.

A more than ten-fold increase in alkenone ARs is considered too
large to be explained by preservation alone (Lawrence et al., 2007).
Nevertheless, preservation of organic matter, including dinoflagellate
cysts, can be influenced by oxygenation of the bottom waters and
sediment (Versteegh and Zonneveld, 2002; Zonneveld et al., 2010).
Therefore it could be argued that a decrease in bottom water
ventilation during glacial periods could account for the observed
increase in alkenone ARs and dinoflagellate cyst concentrations.
During MIS 104, 100, and 98 benthic foraminiferal δ13C values were
approximately 1‰ lower than during interglacials (Raymo et al.,
1992), reflecting increased influence of less ventilated Antarctic
bottom waters at our core site. However, when a reduction in bottom
water ventilation caused the increase in alkenone ARs in the North
Atlantic, we would expect low benthic foraminiferal δ13C during all
glacial periods with increased alkenone ARs. This is not the case in for
example MIS G6, which is characterized by high alkenone ARs, when
benthic foraminiferal δ13C remained high. If bottom water ventilation
plays a role, then Heinrich(-like) events in the North Atlantic during
the middle and late Pleistocene should also be characterized by an
increase in alkenone ARs. During these events North Atlantic deep-
water formation came to a halt and the deep North Atlantic basin was
poorly ventilated (Vidal et al., 1997). Published alkenone records
demonstrate the opposite with periods of low alkenone abundances
during Heinrich(-like) events, reflecting a collapse of the phytoplank-
ton community due to harsh surface water conditions (Stein et al.,
2009; Villanueva et al., 1997). Recent high-resolution work from the
Iberian Margin also shows no major influence of changes in bottom
water ventilation on alkenone concentrations during the last 70 ka
(Incarbona et al., 2010).

`The increased surface water productivity together with cooler SST
duringMIS G6, 104, 100, and 98 at Site U1313 suggests that at the end of
thePliocene the influenceof theNACweakened. TheNAC then likelyhad
a more west to east flow direction and the AF was located closer to our
site (Fig. 4), comparable to the glacial conditions of the middle and late

Pleistocene (McIntyre et al., 1972; Stein et al., 2009; Villanueva et al.,
2001). Such interpretation is supported by evidence from Site 607 with
(1) an increase in IRD during glacials fromMIS G16 onwards (Kleiven et
al., 2002, updated to LR04 ages), (2) the appearance of larger sized IRD
during MIS 100 and 98 (Raymo et al., 1989), and (3) occurrence of
Heinrich(-like) events during MIS 100 (Becker et al., 2006). This all
indicates that during peak glacial conditions icebergs could travel as far
south as 41 °N and accounts for a changed North Atlantic surface
circulation, including aweakened influence of theNAC and proximity of
the AF at Site U1313 during glacial periods.

5.5. Implications of changing NAC during the intensification of the NHG

Our study demonstrates a close correspondence between the
influence of the NAC at Site U1313 and the size of Northern
Hemisphere ice sheets. Periods of intense NAC at U1313 coincide
with periods of small ice sheets (light benthic foraminiferal δ18O) and
absence of IRD in the North Atlantic (Kleiven et al., 2002). On the other
hand, the influence of the AF at Site U1313 together with a weak NAC
is observed for the first time during MIS G6, when the amplitude of
benthic foraminiferal δ18O increased as continental ice volume grew
larger and IRD became widespread in sediments from the North
Atlantic (Kleiven et al., 2002; Ruggieri et al., 2009).

Changes in surface water characteristics in the North Atlantic
led changes in ice volume (benthic foraminiferal δ18O) by a few ka
during the late Pliocene and early Pleistocene (De Schepper et al.,
2009; Lawrence et al., 2009; Versteegh et al., 1996). This suggests that
changes in the NAC and subsequent decrease in northward heat
transport were a cause for the intensification of NHG rather than a
result. This agrees with recent modeling results (Brierley and Fedorov,
2010; Lunt et al., 2008), which show that cooling of the higher
latitudes was a necessity for the development of large continental ice
sheets in the Northern Hemisphere. Although closing of the CASmight
have led to a more intense northward heat transport in the early
Pliocene (e.g., Haug and Tiedemann, 1998), our results show that
during the late Pliocene northward heat transport diminished as
continental ice volume increased. Our results support the long-
standing proposal, dating back to Croll (1875), that the eastward
diversion of the NAC and a positive ice-albedo feedback played a
central role in the growth of Northern Hemisphere ice sheets during
the Pleistocene. Moreover, the changes in polar ocean conditions such
as would result from the observed NAC changes have the potential to
alter ocean storage of carbon dioxide, introducing an additional
dimension of climate feedback (Haug et al., 1999; Sigman et al., 2010).

5.6. Cause for variability in NAC

Our record of late Pliocene surface water characteristics suggests
that an intense NAC transported warm tropical waters northwards,
leading to a reduced meridional SST gradient during most of the late
Pliocene. How such increased northward heat transport was main-
tained together with a weak meridional SST gradient remains
controversial. Intense Atlantic deep-water circulation during the
Pliocene has been proposed as a cause for increased northward heat
transport (Cronin, 1991; Dowsett et al., 1992; Robinson, 2009).
However, changes in surface water characteristics lead the changes in
deep-water formation and ice volume by a few ka (De Schepper et al.,
2009; Lawrence et al., 2009; Versteegh et al., 1996). Thus, changes in
deep-water formation could only have acted as positive feedbacks for
the intensity of the NAC.

Lawrence et al. (2009), similar to Versteegh et al. (1996), proposed
that increased wind forcing, as modeled for the late Pliocene
(Haywood et al., 2000), was responsible for maintaining the increased
advection of warm surface water northwards. In their concept
orbitally driven changes in solar insolation, possibly amplified by
changes in sea-ice extent, altered the strength and latitudinal position
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of the strongest westerly winds. This would influence the position and
strength of the NAC and subsequent northward heat transport. Such
mechanism agrees with recent observations in which a link was found
between the strength of North Atlantic pressure systems and the
intensity and northward extent of the NAC on decadal (Flatau et al.,
2003) and millennial time scales (Giraudeau et al., 2010).

Possibly the Northern Hemisphere ice sheets provided a positive
feedback to the initial changes inwind forcing.When the ice sheets grew
large enough they could start to interact with atmospheric circulation.
Together with changes in deep-water formation and an increase in sea-
ice formation as positive feedbacks, this could have led to the observed
shift in theposition of theNAC. Futurework should focus on testing such

hypothesis by palaeorecords of variations in wind strength from the
mid-latitude North Atlantic, e.g. grain sizes of detrital sediments.

6. Conclusions

We obtained new SST and marine productivity records from the
mid-latitude North Atlantic (IODP Site U1313) for the period between
3.68 and 2.45 Ma. Changes in surface water characteristics at Site
U1313 provide new insights into the variations of the NAC during this
critical time period. Warm SSTs and low alkenone ARs during the
period between 3.65 and 2.94 Ma indicate the presence of an intense
NAC in the mid-latitude North Atlantic, transporting warm tropical
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waters northwards. The final cooling of SSTs in the mid-latitude North
Atlantic started around 3.1 Ma as the influence of the NAC weakened.
This is later than previously suggested for the northern North Atlantic
(Lawrence et al., 2009). During peak glacial conditions at the end of the
Pliocene and beginning of the Pleistocene (MISG6, 104, 100, and 98) the
NAC transported less heat to the north due to a more west to east flow
direction and theAFhad a closer location to our study site. Surfacewater
characteristics at our site during these glacials were similar to glacials of
the late Pleistocene (Stein et al., 2009). Our results argue against an
increase in northward heat transport in the North Atlantic during the
intensification of NHG (Bartoli et al., 2005). The observed weakening of
the NAC and subsequent decrease in northward heat transport during
the late Pliocene and early Pleistocene would have led to a cooling of
the higher latitudes, a condition necessary for the growth of large
continental ice sheets surrounding the North Atlantic.
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