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1 Introduction

Ensemble Kalman filter methods are typically used in combina-
tion with one of two localization techniques. One technique is
covariance localization, or direct forecast error localization, in
which the ensemble derived forecast error covariance matrix is
Schur multiplied with a chosen correlation matrix. The second
way of localization is by domain decomposition. Here, the as-
similation is split into local domains in which the assimilation
update is performed independently. Domain localization is fre-
quently used in combination with filter algorithms that use the
analysis error covariance matrix for the calculation of the gain
like the ETKF and the SEIK filter. Further, domain localization
methods are used with method of weighting of the observations,
or localization of the observation error covariance matrix.

In this work we focus on explaining the effects of domain local-
ization in ensemble based Kalman filter algorithms and in par-
ticular effects of weighting of observations. We introduce a new
method for the localization and compare it first to the already
existing methods on Lorenz 40 system. On this simple example,
the method of weighting of observations is less accurate than the
new method, particularly if the observation errors are small.

We apply our finding to assimilation of geodetic dynamical ocean
topography (DOT) data into the global finite element ocean
model (FEOM) using the local SEIK filter. The geodetic DOT
was obtained by means of the geodetic approach from carefully
cross-calibrated multi-mission-altimeter data and GRACE grav-
ity fields. We show that, depending on the correlation function
used for weighting, the spectral properties of the solution can be
improved.

2 Domain localization

Disjoint domains in the physical space are considered as domains
on which the analysis is performed. Therefore, for each subdo-
main an analysis step is performed independently using observa-
tions not necessarily belonging only to that subdomain. Results
of the local analysis steps are pasted together and then the global
forecast step is performed.

Basic properties:

• The localized error covariance is calculated using
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•Using the simple property of Schur product (a ◦ c)(b ◦d)T =
(abT )◦(cdT ) the localized error covariance can be represented
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• The rank of matrix C corresponds to the number of subdo-
mains. In practice the subdomains may have to be made quite
small, to ensure that rank(C) is large enough.

• This is in contrast to the direct localization methods where
C is full rank, positive definite, isotropic matrix, compactly
supported. Usually 5th order polynomial correlation function
(Gaspari and Cohn 1999) is used.

We introduce new method (SD+Loc) and compare it to already
existing methods:

Method (SD+):Let 1Dmj be a vector that has a value of 1 if the
observation belongs to the domain Dm otherwise has a value
of 0, and let Dj ⊆ Dmj. where matrix
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Method (SD+ObsLoc): Its implementation requires for each ob-
servation a weight that depends on the distance of the observa-
tion from the analysis location (Penduff et al. 2002; Hunt et al.
2007).

Method (GLocEn): An ensemble square root filter as in
Whitaker and Hamill 2002 is applied with covariance localiza-
tion is applied.

3 Lorenz40 model experiments

• Lorenz40 model is governed by 40 coupled ordinary differential
equations in domain with cyclic boundary conditions.

• The experimental setup follows Whitaker and Hamill (2002).

• The observations are given as a vector of values contaminated
by uncorrelated normally distributed random noise with stan-
dard deviation of 1 and 0.1.

•A 10-member ensemble is used.

•After a spin-up period of 1000 time steps, assimilation is per-
formed for another 50 000 time steps.

L40 experiment results for σobs = 1. RMS error for different co-
variance localization techniques GLocEn (upper left), SD+ (up-
per right), SD+ObLoc (lower left) and method SD+Loc (lower
right).

L40 experiment results for σobs = 0.1. RMS error for dif-
ferent covariance localization techniques. GLocEn (upper left),
SD+ (upper right), SD+ObLoc (lower left) and method SD+Loc
(lower right).

4 DOT data assimilation experiments

• Localization is applied to a realistic oceanographic prob-
lem: the assimilation of absolute dynamical ocean topography
(DOT) into a global finite element ocean circulation model.

• Finite Element Ocean Model (FEOM) developed at the
Alfred-Wegener Institut (AWI), solves the standard set of
hydrostatic ocean dynamic primitive equations (Wang et al
2008).

• Prismatic mesh, 1o resolution global ocean model, 25 levels,
monthly forcing is used.

•Domain localized SEIK filter (Pham et al. 1998, Pham 2001,
Nerger et al. 2006) as coded within PDAF (Nerger et al. 2005)
is chosen for experiment.

• The DOT was obtained by means of geodetic approach from
carefully cross-calibrated multi-mission-altimeter data and
GRACE gravity fields.

• Spectral consistency is achieved by applying a Gauss-type fil-
ter (Jekeli/Wahr) on sea surface and geoid. The filter length
is set to 241km. (Savcenko and Bosch 2010)

Data assimilation scheme corrects all the ocean fields, although
only geodetic DOT is assimilated. Radar altimetry cannot be
used for those regions where the sea-ice coverage exceeds a certain
percentage during the entire year, as well as for ice shelves and
near-coastal zones. Therefore it is interesting to compare the
assimilation results in the area which is not well observed.

5 Choice of the correlation function

Goal: To study the filtering behavior when differ-
ent correlation functions for the weighting of obser-
vations are applied using one method (SD+ObsLoc).

Correlation function used for localization.

•Different correlation function are used with the method
SD+ObsLoc.

• The observational error standard deviation is 5 cm.

•Observations within radius of 900 km are used.

RMS error for different covariance localization techniques.

Spectral properties of the errors. Logarithm of the spectral
difference between analysis and the data (left) and forecast and
the data (right) depending on spherical harmonic degree.
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In-situ temperature at 800 m depth. Composite from the
ARGO data (1999 to 2010) courtesy of Dr. Klatt (upper left).
Model only (upper right). As result of assimilation of geode-
tic DOT filtered up to 241 km and UNIT (middle left), EXP
(middle right), EXP300 (lower left) and 5TH (lower right).

6 Conclusion

• The different domain localization techniques have been inves-
tigated here and compared to direct forecast error localization
on L40 model.

• It was shown that domain localization is equivalent to direct
forecast error localization with a Schur product matrix that
has a block structure, not isotropic, and positive semidefinate.

•An algorithm is presented that for each subdomain of ensemble
localization uses observations from a domain larger than the
ensemble subdomain and a Schur product with an isotropic
matrix on each subdomain.

• The algorithms that use the full rank covariances show su-
perior performance for both Lorenz 40 and the example of
assimilation of DOT.

• Localization function determents spectral properties and ac-
curacy of the solution as seen for both L40 model as for the
realistic global assimilation of DOT.
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