CO₂ reconstructions and carbon cycle in the past (20 Myr) ESSReS-L9 Earth System Science: a combined data-modelling paleoperspective

Peter Köhler

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven peter.koehler@awi.de

04 May 2011

Basics on the Carbon Cycle

CO₂ reconstructions

- δ¹¹B
- B/Ca
- Alkenones, $\delta^{13}C_{org}$
- Stomata
- Validation of different approaches
- Greenhouse Effect

Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

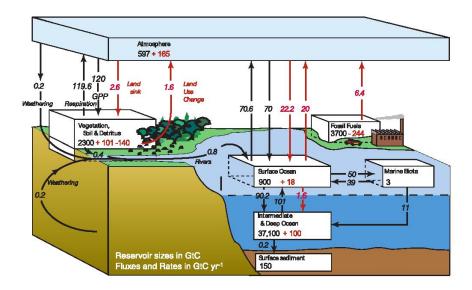
Basics on the Carbon Cycle

CO₂ reconstructions

• $\delta^{11}B$

• B/Ca

- Alkenones, δ^{13} C org
- Stomata
- Validation of different approaches
- Greenhouse Effect


Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Basics on the Carbon Cycle

C Pools and C fluxes

CO₂ in Seawater

 CO_2 in seawater reacts with water and dissociates immediately after: $CO_2(aq) + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H^+ \rightleftharpoons CO_3^{2-} + 2H^+$

Only the part of CO₂, which get dissolved after Henry's Law can exchange with the atmosphere.

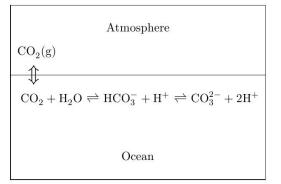
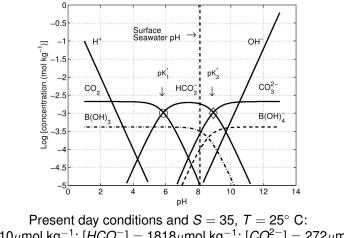


Figure 1.1.1: Schematic illustration of the carbonate system in the ocean. CO_2 is exchanged between atmosphere and ocean via equilibration of $CO_2(g)$ and dissolved CO_2 . Dissolved CO_2 is part of the carbonate system in seawater that includes bicarbonate, HCO_3^- , and carbonate ion, CO_3^{2-} .

Zeebe & Wolf-Gladrow 2001

Chemical System in Equilibrium


 $CO_2(aq) + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H^+ \rightleftharpoons CO_3^{2-} + 2H^+$ [H₂CO₃] is negligible and the equation reduced to

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \stackrel{K_1}{\rightleftharpoons} \mathrm{HCO}_3^- + \mathrm{H}^+ \stackrel{K_2}{\rightleftharpoons} \mathrm{CO}_3^{2-} + 2\mathrm{H}^+$$

 $\begin{array}{l} \mbox{Dissolved Inorganic Carbon} & - \mbox{DIC} \\ \mbox{DIC} \equiv \Sigma \mbox{CO}_2 = [\mbox{CO}_2] + [\mbox{HCO}_3^-] + [\mbox{CO}_3^{2-}] \end{array}$

DIC, $\sum CO_2$ also sometimes called PCO₂ Equilibrium constants: $K_1^*, K_2^* = f$ (temperature *T*, salinity *S*, pressure *P*).

Bjerrum Plot

 $[CO_2] = 10\mu \text{mol kg}^{-1}; [HCO_3^-] = 1818\mu \text{mol kg}^{-1}; [CO_3^{2-}] = 272\mu \text{mol kg}^{-1} \\ [CO_2] : [HCO_3^-] : [CO_3^{2-}] \sim 1\% : 90\% : 10\%$

Zeebe & Wolf-Gladrow 2001

Total Alkalinity

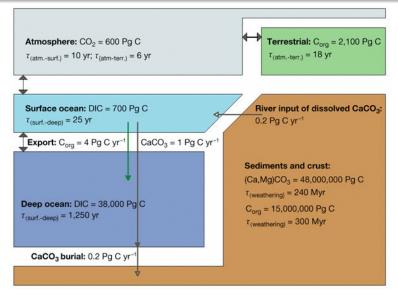
Total Alkalinity (TA or ALK) is the excess of proton (H⁺ ion) acceptors over proton donators (with respect to a zero level of protons).

Or even simpler: Proton acceptor: negative charged ion Proton donator: H⁺ or ion/molecule that can spend one H⁺ ion

 $\label{eq:result} \begin{array}{l} \mbox{Roughly:} \\ \mbox{$\mathit{TA} \sim 1 \times [\mathit{HCO}_3^-] + 2 \times [\mathit{CO}_3^{2^-}]$} \\ \mbox{also called carbonate alkalinity} \end{array}$

Or in detail: $TA = 1 \times [HCO_3^-] + 2 \times [CO_3^{2-}] + [B(OH)_4^-] + [OH^-] - [H^+] + \text{minors}$

Carbonate System


Total Alkalinity and DIC are conservative quantities, meaning, their concentrations are unaffected by changes in *p*H, pressure, temperature, or salinity

 CO_2 , HCO_3^- , or CO_3^{2-} are not conservative!

With two variables (out of DIC, TA, CO_2 , HCO_3^- , CO_3^{2-} , *p*H) together with T, S, P the carbonate system is fully described, the other four quantities can be calculated out of them.

Basics on the Carbon Cycle

C Pools and C fluxes

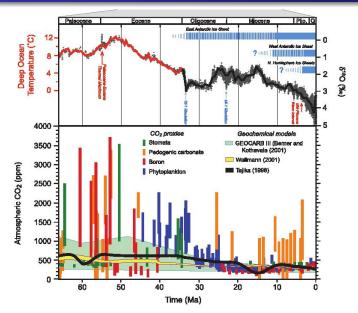
Sigman and Boyle 2000 N

Peter Köhler

Basics on the Carbon Cycle

CO₂ reconstructions

- $\delta^{11}B$
- B/Ca
- Alkenones, δ^{13} C org
- Stomata
- Validation of different approaches
- Greenhouse Effect


Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

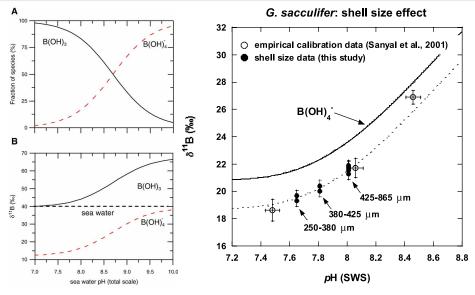
CO₂ reconstructions

CO₂ Reconstructions, 65,000,000 yr (IPCC 2007)

Basics on the Carbon Cycle

CO₂ reconstructions δ¹¹B

- B/Ca
- Alkenones, $\delta^{13}C_{org}$
- Stomata
- Validation of different approaches
- Greenhouse Effect


Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

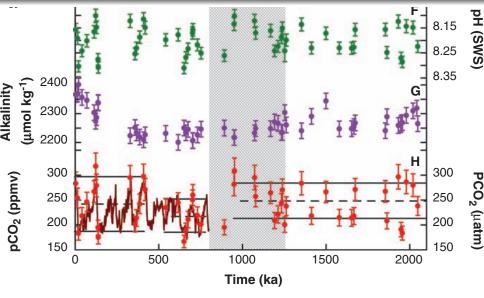
Summary

CO₂ reconstructions

δ^{11} B, *p*H— δ^{11} B, *p*H—B

 $\delta^{11}B$

Yu et al., 2010 EPSL; Hönisch 2004, P

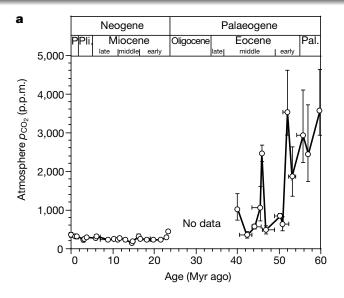

δ^{11} B, boron isotopes

General approach:

- Calculate surface water pH out of δ^{11} B.
- Determine independently another parameter of the carbonate system (CO₂, HCO₃⁻, CO₃²⁻, pH, DIC, alkalinity), mostly alkalinity is estimated.
- Surface water *p*CO₂ can be calcuated out of pH and 2nd parameter.
- Under the assumption that surface water pCO₂ and atmospheric pCO₂ stays (and stayed so in the past) in equilibrium this surface water pCO₂ is a proxy for atmospheric pCO₂.
- Advantage: Based on well understood marine chemistry
- **Disadvantage:** 2nd parameter needed, atm-surf-equilibrium might have changed over time, seems to work only for mono-specific selections

CO₂ reconstructions δ^{11} B

δ^{11} B example I, single species, last 2 Myr



Hönisch et al 2009, S

CO₂ reconstructions

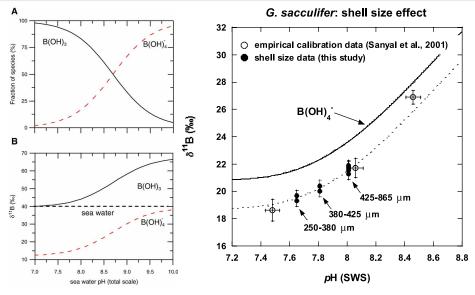
 $\delta^{11}B$

δ^{11} B example II, multi-species, last 60 Myr

Pearson and Palmer 2000 N

CO₂ reconstructions

• $\delta^{11}B$


B/Ca

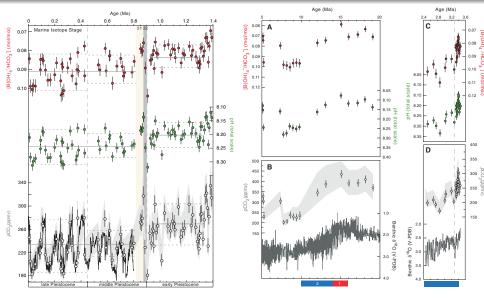
- Alkenones, $\delta^{13}C_{org}$
- Validation of different approaches
- Greenhouse Effect

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

CO₂ reconstructions

δ^{11} B, *p*H— δ^{11} B, *p*H—B

B/Ca


Yu et al., 2010 EPSL; Hönisch 2004, P

General approach:

- Planktic foraminiferal B/Ca ratios = f (seawater borate/bicarbonate ratios [B(OH)4-/HCO3-]) = f(pH).
- similar to the $\delta^{11}B$ approach.
- Advantage: Based on well understood marine chemistry
- **Disadvantage:** 2nd parameter needed, atm-surf-equilibrium might have changed over time.

CO₂ reconstructions B/Ca

B/Ca example I, last 20 Myr

Tripati et al 2009, S

Basics on the Carbon Cycle

CO₂ reconstructions

- $\delta^{11}B$
- B/Ca
- Alkenones, $\delta^{13}C_{org}$
- Stomata
- Validation of different approaches
- Greenhouse Effect

Processes

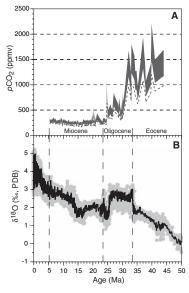
- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Alkenones, or $\delta^{13}C_{org}$

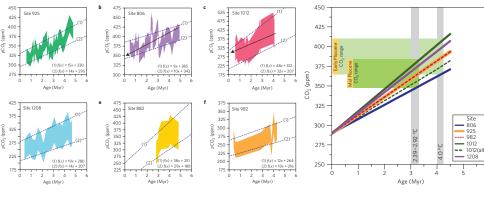
General approach:

Paleoatmospheric CO₂ concentrations can be estimated from the stable carbon isotopic compositions of sedimentary organic molecules known as alkenones. Alkenones are long-chained (C37-C39) unsaturated ethyl and methyl ketones produced by a few species of Haptophyte algae in the modern ocean. Alkenone-based pCO_2 estimates derive from records of the carbon isotopic fractionation that occurred during marine photosynthetic carbon fixation (ϵ_{D}). Chemostat experiments conducted under nitrate-limited conditions indicate that alkenone-based ϵ_p values ($\epsilon_{p37:2}$) vary as a function of the concentration of aqueous CO₂ (CO_{2 aa}) and specific growth rate. These experiments also provide evidence that cell geometry accounts for differences in ϵ_p among marine microalgae cultured under similar conditions.

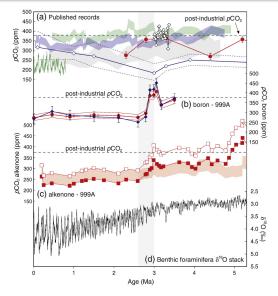

Alkenones, δ^{13} C or

• **Disadvantage:** Based on analogue, not on chemistry, atm-surf-equilibrium might have changed over time

CO₂ reconstructions


Alkenones, $\delta^{13}C_{org}$

Alkenones, example I, last 60 Myr


Pagani et al., 2005 S

CO₂ reconstructions Alkenones, δ¹³C ore Alkenones, example II, last 6 Myr

Pagani et al., 2010 NG

Alkenones mixed with δ^{11} B, example III, last 5 Myr

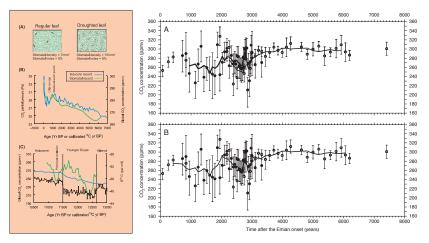
Seki et al., 2010 EPSL

Basics on the Carbon Cycle

CO₂ reconstructions

- $\delta^{11}B$
- B/Ca
- Alkenones, $\delta^{13}C_{org}$

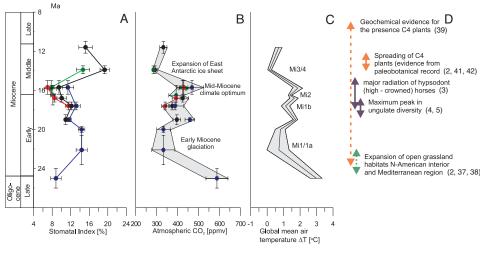
Stomata


- Validation of different approaches
- Greenhouse Effect

Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary


Stomata

Rundgren 2003 GGG, Rundgren 2005 GPC

Stomata

Stomata

Kuerschner 2008 PNAS

Basics on the Carbon Cycle

CO₂ reconstructions

- $\delta^{11}B$
- B/Ca
- Alkenones, δ^{13} C org
- Stomata

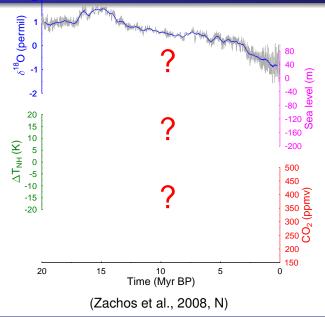
Validation of different approaches

Greenhouse Effect

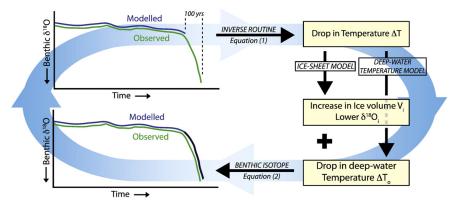
3) Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary


CO₂: proxy diversity

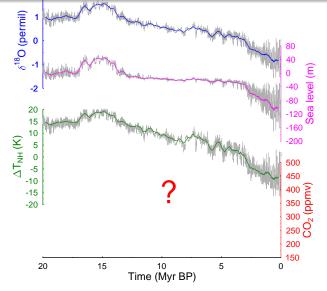
CO₂ reconstructions


Validation of different approaches

Climate Data: benthic δ^{18} O

CO₂ reconstructions Validation of different approaches

Ice Sheets, ΔT and benthic $\delta^{18}O$

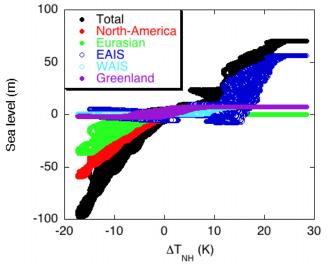


Deconvolute stacked benthic δ^{18} O into climate variables ($\Delta T_{deep o}, \Delta T_{atm (40-80^{\circ}N)}$, size of ice sheets, sea level, snow cover)

(Bintanja et al., 2005; de Boer et al., 2011)

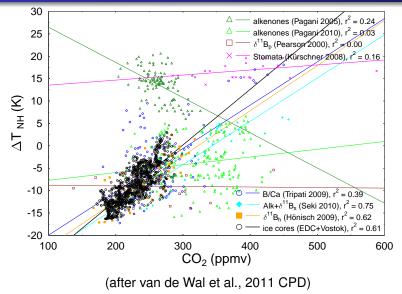
CO₂ reconstructions Validation of different approaches

 ΔT , Sea level =f(benthic $\delta^{18}O$)

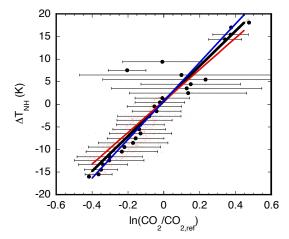


(after Bintanja et al., 2005; van de Wal et al., 2011; de Boer et al., 2011)

CO₂ reconstructions Validation


Validation of different approaches

Modelling ice sheets over last 20 Myr out of δ^{18} O


Van de Wal et al., 2011, CPD

Relationship ΔT_{NH} —CO₂

CO₂ reconstructions Validation of different approaches

ΔT_{NH} —CO₂ 1: Empirical Relationship

resampled and binned data in intervals of $\Delta(\Delta T_{NH}) = 1$ K

$C = 39 \pm 4K$ regression slope from modelled ΔT_{NH} and CO₂ data (van de Wal et al., 2011, CPD) 04/05/2011. AWI

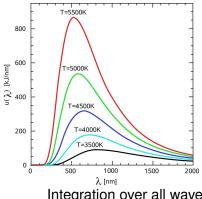
Outline

Basics on the Carbon Cycle

CO₂ reconstructions

- $\delta^{11}B$
- B/Ca
- Alkenones, δ^{13} C org
- Stomata
- Validation of different approaches
- Greenhouse Effect

B) Processes


- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Planck's Law

Planck's Law:
$$I(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

Radiation of every black body as function of temperature and wavelength.


 Birth of Quantum Mechanics: Light (photons) have discrete energies

- Plancks Constant $h \sim 6.6 \cdot 10^{-34}$ Js
- $E = h \cdot \nu$. ν : frequency
- Planck's Law brought together 2 approximations (Wien; Rayleigh-Jeans)
- Wien's displacement law: λ_{max} · T = 2.9 · 10⁻³ m K.
- Sun (*T* = 5500 K): λ_{max} = 527nm (VIS)

• Earth (
$$T = 255$$
 K): $\lambda_{max} = 11 \mu m$ (IR)

Integration over all wavelength: Energy emission = f(T) \Rightarrow Stefan-Bolzmann-Law: $R = \sigma T^4$ CO₂ reconstructions

Radiation at Earth

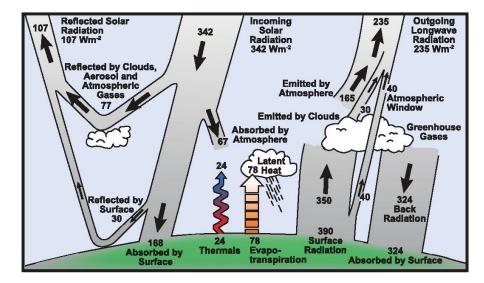
Ruddiman 2001

Black Body Radiation

Stefan-Bolzmann-Law: $R = \sigma T^4$

Stefan-Bolzmann-Constant: $\sigma = 5.6710^{-8} W/(m^2 \cdot K^4)$ Solarconstant: $S = 1367 W/m^2$; average radiation: $S_M = 342 W/m^2$. Albedo: $\alpha = 0.3$

Steady state:
Incoming = Outgoing

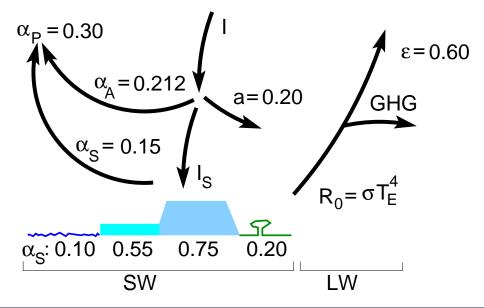

$$S(1 - \alpha)\pi r^2 = R4\pi r^2$$

or
 $S_M(1 - \alpha)4\pi r^2 = R4\pi r^2$
 $T_{e,0} = \left(\frac{S(1-\alpha)}{4\sigma}\right)^{(1/4)}$
 $T_{e,0} = 255K(-18^{\circ}C)$

Measured:

Land: $9.84^{\circ}C(1.077 \times 10^{14}m^2)$ [Leemans and Cramer(1991)] 1931–1960 Ocean: $18.1^{\circ}C(3.578 \times 10^{14}m^2)$ [Levitus and Boyer(1994)] Global Mean: 16° C Difference ($\Delta T = 34$ K) has to be explained by radiative forcing CO₂ reconstructions

Greenhouse Effect


Energy Budget of Atmosphere (IPCC 2007)

CO₂ reconstructions Gre

Greenhouse Effect

Simplified Energy Budget (Köhler et al., 2010, QSR)

CO₂ reconstructions G

Greenhouse Effect

ΔT_{NH} —CO₂ 2: Theoretical Relationship

$$\Delta T_{NH} = C \cdot \ln \frac{CO_2}{CO_2,_{ref}}$$
 with $C = \frac{lpha eta \gamma S_C}{1-f}$

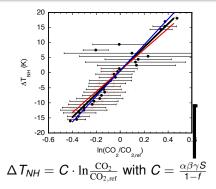
LGM parameters:

$$\alpha = \Delta T_{NH} / \Delta T_{global} = 15 \text{ K} / 6 \text{ K} = 2.5$$

- $\beta = 5.35$: radiative forcing of CO₂
- $\gamma = 1.3$: enhancement factor for non-CO₂ GHG (CH₄, N₂O)

 $S_{C} = 0.72$: Charney climate sensitivity (fast feedbacks: Planck, water vapour, lapse rate, clouds, sea ice, albedo)

f = 0.72: feedbacks of slow processes (land ice, dust, vegetation)

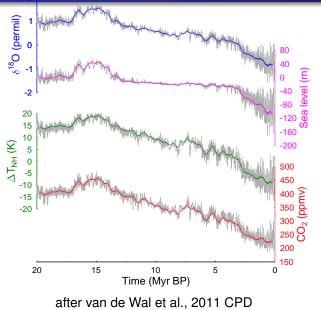

C = 43K theoretical calculation based LGM data and constant climate sensitivity

For comparision:

pure
$$S_{\text{Charney}}$$
 ($f = 0$; $\gamma = 1$; $\alpha = 1$) $\Rightarrow C_C = 3.9 \text{ K and } \Delta T_{global} = 2.7 \text{ K}$
(van de Wal et al., 2011, CPD)

CO₂ reconstructions Greenhouse Effect

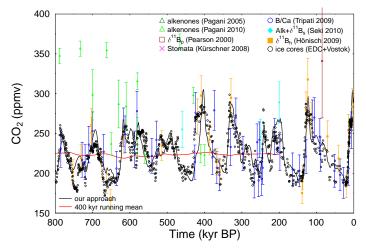
Develop relationship atmospheric ΔT_{NH} —CO₂


Two independent approaches to calculate the slope:

- **()** $C = 39 \pm 4K$ regression slope from modelled ΔT_{NH} and CO₂ data
- 2 C = 43K theoretical calculation based LGM data and constant S

(van de Wal et al., 2011, CPD)

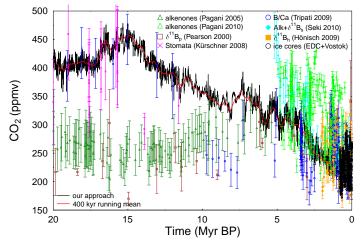
CO₂ reconstructions Greenhouse Effect


CO₂ based on data and model-based interpretation

CO₂ reconstructions Green

Greenhouse Effect

CO₂ reconstructions, the last 20 Myr



Glacial/interglacial amplitudes captured, details wrong

after van de Wal et al., 2011 CPD

CO₂ reconstructions Greenhouse Effect

CO₂ reconstructions, the last 20 Myr

Assumption: relation $CO_2 - \Delta T$ unchanged with time!!!

after van de Wal et al., 2011 CPD

Validation Summary

- Calculate sea level, ΔT within one modelling framework leads to self-consistent results.
- Evaluate proxy-based CO₂ with modelling ΔT shows inconsistencies in some of the proxies (stomata, alkenones, multi-species δ¹¹B)
- Regression of ΔT and best proxy-CO₂ can be understood based on theoretical background of radiative forcings
- Reconstructed CO₂ declines from 450 ppmv (20 Myr BP) to 280 ppmv at pre-industrial times.

Van de Wal et al., 2011, CPD

Outline

- Basics on the Carbon Cycle
- 2 CO₂ reconstructions
 - $\delta^{11}B$
 - B/Ca
 - Alkenones, $\delta^{13}C_{org}$
 - Stomata
 - Validation of different approaches
 - Greenhouse Effect

3

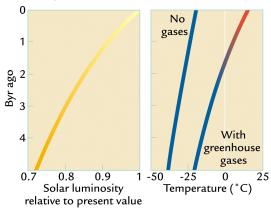
Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Outline

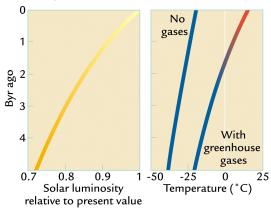
- Basics on the Carbon Cycle
- 2 CO₂ reconstructions
 - $\delta^{11}B$
 - B/Ca
 - Alkenones, $\delta^{13}C_{org}$
 - Stomata
 - Validation of different approaches
 - Greenhouse Effect


Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

The Faint young sun Paradox I


Solar luminosity increased over earth's history: Early sun was about 30% weaker than today.

At present-day atmospheric composition, temperature should have been below freezing point of water for most of earth's history

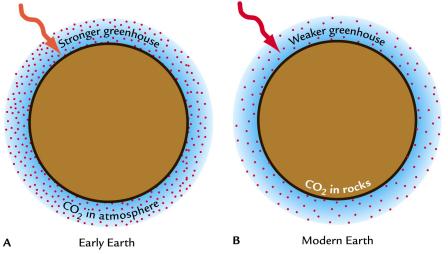
The Faint young sun Paradox I

Solar luminosity increased over earth's history: Early sun was about 30% weaker than today.

At present-day atmospheric composition, temperature should have been below freezing point of water for most of earth's history Processes The Faint young sun Paradox

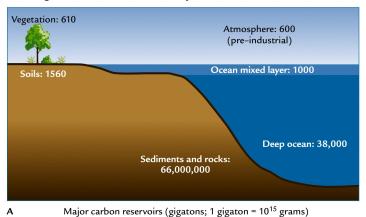
The Faint young sun Paradox II

But:


- Geologic evidence for liquid ocean over at least 3.5 billion years: Sediment rocks, microfossils showing presence of life
- Something must have prevented earth from freezing
- But if there is a heating process, it must be less active today
- Earth seems to posess a thermostat

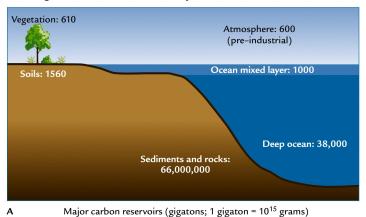
Stronger solar radiation

Greenhouse Effect


The main candidate: A stronger greenhouse effect in early earth

Weaker solar radiation

Carbon Pools


This requires more CO_2 in the early atmosphere. Where did it come from? The largest reservoir nowadays is in rocks

How can CO₂ exchange between atmosphere and rocks?

Carbon Pools

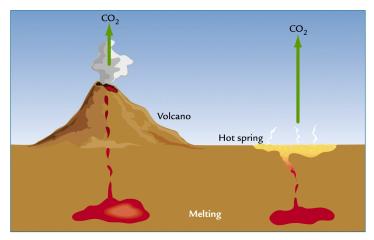
This requires more CO_2 in the early atmosphere. Where did it come from? The largest reservoir nowadays is in rocks

How can CO₂ exchange between atmosphere and rocks?

Outline

- Basics on the Carbon Cycle
- 2 CO₂ reconstructions
 - $\delta^{11}B$
 - B/Ca
 - Alkenones, $\delta^{13}C_{org}$
 - Stomata
 - Validation of different approaches
 - Greenhouse Effect

3 Pr


Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Rock to Atmosphere Flux: Volcanic Emissions

Volcanoes presently emit ca. 0.15 Pg C a^{-1} , mostly in the form of CO₂ (also some emission of CH₄). This activity might have been stronger.

Rock to Atmosphere Flux: Volcanic Emissions

Residence time of C in A/O/B with respect to volcanic outgassing: $\tau = \frac{41700 PgC}{0.15 PaC yr^{-1}} \approx 278000 yr.$

> Vegetation: 610 Atmosphere: 600 (pre-industrial) Ocean mixed layer: 1000 Soils: 1560 Deep ocean: 38,000 Sediments and rocks: 66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10¹⁵ grams)

Processes CO₂ outgassing

Rock to Atmosphere Flux: Volcanic Emissions

But:

- Volcanic emissions may be drivers of a changed CO₂ content, but they don't react to changes in climate.
- A thermostat requires some form of feedback.
- Some other process required!

Outline

- Basics on the Carbon Cycle
- 2 CO₂ reconstructions
 - $\delta^{11}B$
 - B/Ca
 - Alkenones, $\delta^{13}C_{org}$
 - Stomata
 - Validation of different approaches
 - Greenhouse Effect

3) F

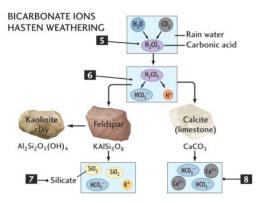
Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Atmosphere to Rock Flux: Weathering

The process opposing the long-term build-up of CO₂ through volcanic outgassing is continental weathering.


Continental weathering is the chemical transformation of exposed rocks with rainwater and dissolved reactive gases CO_2 and O_2 .

Atmosphere to Rock Flux: Weathering

weathering reactions with carbonic acid in rainwater

Bicarbonate reactions

Processes Weathering

Limestone

Peter Köhler

Limestone (CaCO₃) is easily broken down in the dissolution reaction

Processes

$$H_2O + CO_2 \Rightarrow H_2CO_3 \tag{1}$$

rain + atmosphere \Rightarrow carbonic acid
 $CaCO_3 + H_2CO_3 \Rightarrow Ca^{2+} + 2HCO_3^- \tag{2}$

Weathering

limestone + carbonic acid \Rightarrow continental weathering

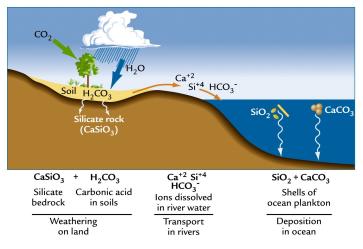
Silicate Minerals

Typical silicate minerals: Olivine, feldspar and quartz

Silicate Weathering

Typical silicate weathering reaction: Na-feldspar is converted to secondary mineral kaolinite

$$H_2O + CO_2 \Rightarrow H_2CO_3 \tag{3}$$


rain + atmosphere \Rightarrow carbonic acid

$$\begin{split} & 2\text{NaAlSi}_3\text{O}_8 + 2\text{H}_2\text{CO}_3 + 9\text{H}_2\text{O} \\ \Rightarrow & 2\text{Na}^{2+} + 2\text{HCO}_3^- + 4\text{H2SiO}_4 + \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 \end{split}$$

All C in silicate weathering comes from the atmosphere!

After Weathering

What happens with the dissolved minerals? They are precipitated inorganically or organically.

Carbonate Precipitation

carbonate Precipitation: done by several groups, e.g. coccolithophorids

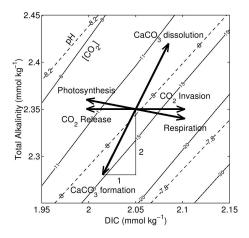
Weathering

Processes

Organic production of $CaCO_3$ in the ocean: Net reaction formula:

$$Ca^{2+} + 2HCO_3^- \Leftrightarrow CaCO_3 + CO_2 + H_2O$$
 (4)

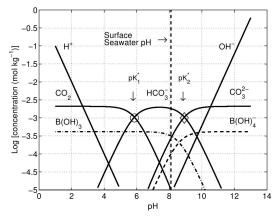
Weathering


- 1 mol CaCO₃ reduced DIC by 1 mol
- 1 mol CaCO₃ reduced alkalinity by 2 mol

It is not that each mol CaCO₃ produces 1 mol CO₂ as might be suggested from this equation and the illustrations. Most of the CO₂ is immediately transformed into HCO_3^- .

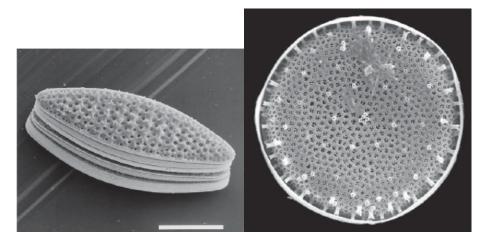
Processes

However, the asynchronous changes in alkalinity and DIC change the carbonate system.


Carbonate Cycle

- CO_2 gas exchange: $\Delta(TA) = 0$ $\Rightarrow: CO_2$ uptake reduces pH + increases [CO₂]
- CaCO₃ cycle: $\Delta(ALK) = 2 \times \Delta(DIC)$ $\Rightarrow: CaCO_3 \text{ production reduces pH + increases [CO_2]}$
- Org C cycle: $\Delta(ALK) = -1.14 \times \Delta(DIC)$ $\Rightarrow: Org C \text{ production increases pH +}$ decreases [CO₂]

Zeebe & Wolf-Gladrow 2001


Bjerrum Plot

A reduced pH shifts the carbonate system towards higher CO₂ values Zeebe & Wolf-Gladrow 2001

Silicate Precipitation

Silicate precipitation: today mostly done by diatoms

The net effect of weathering can be summarized into the basic equation:

igneous rocks + acid volatiles \Rightarrow sedimentary rocks + salty ocean

Silicate weathering and precipitation removes CO₂ from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect on CO₂.

But both weathering processes introduce alkalinity into the ocean. So long-term effects of weathering might exists via chemical reaction of the oceanic sediment.

The net effect of weathering can be summarized into the basic equation:

igneous rocks + acid volatiles \Rightarrow sedimentary rocks + salty ocean

Silicate weathering and precipitation removes CO₂ from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect on CO_2 .

But both weathering processes introduce alkalinity into the ocean. So long-term effects of weathering might exists via chemical reaction of the oceanic sediment.

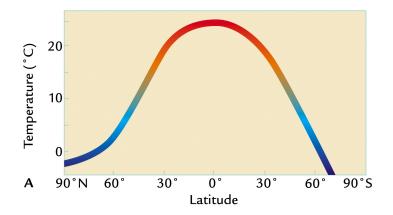
The net effect of weathering can be summarized into the basic equation:

igneous rocks + acid volatiles \Rightarrow sedimentary rocks + salty ocean

Silicate weathering and precipitation removes CO₂ from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect on CO_2 .

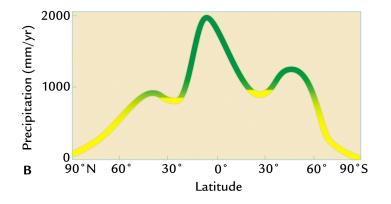
But both weathering processes introduce alkalinity into the ocean. So long-term effects of weathering might exists via chemical reaction of the oceanic sediment.


Rate of chemical weathering depends on:

- surface to volume ratio of rock: mechanical weathering increases chemical weathering!
- temperature: reactions proceed faster in warmer climate
- precipitation: water is needed
- acidity of ground water: atmospheric CO₂ and organics have an influence

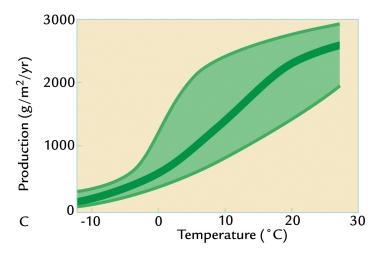
Weathering

Weathering Feedback


Temperature: higher weathering in warmer regions

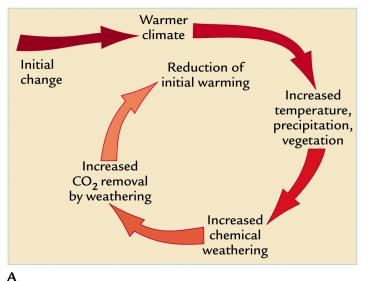
Weathering

Weathering Feedback


Precipitation: highest weathering in tropics

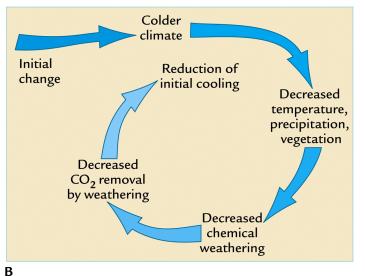
Weathering Feedback

Plant growth: increases with temperature


Latitude

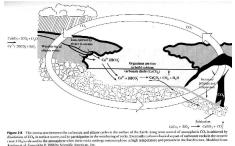
Weathering

Weathering Feedback


Warmer and wetter climate leads to increased weathering

Weathering

Weathering Feedback


Sediment yield is a measure for intensity of weathering

Summary Weathering

Over long timescales, greenhouse strength is driven by the balance between

- source of CO₂ from volcanism
- sink of CO₂ from silicate weathering

Important to notice:

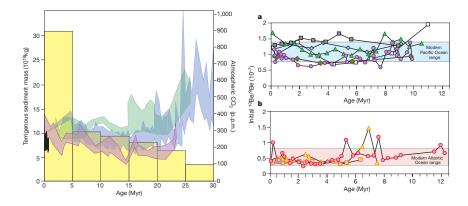
- Changes in climate driven e.g. by CO₂ changes from volcanism.
- Negative weathering feedback dampens climate changes.
- But that does not mean that climate does not change at all!

Peter Köhler

Stable Cenozoic Weathering???

Vol 465 13 May 2010 doi:10.1038/nature09044

nature


IFTTFRS

Long-term stability of global erosion rates and weathering during late-Cenozoic cooling

Jane K. Willenbring¹ & Friedhelm von Blanckenburg¹

Willenbring 2010 N

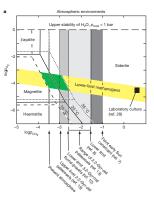
Stable Cenozoic Weathering???

Left: Increased sedimenation rate indicate increase in weathering Right: 10Be/9Be ratio as weathering proxy (only 10 Myr!!!) Willenbring 2010 N

No Faint Young Sun Paradox???

nature

Vol 464 | 1 April 2010 | doi:10.1038/nature08955



No climate paradox under the faint early Sun

Minik T. Rosing^{1,2,4}, Dennis K. Bird^{1,4}, Norman H. Sleep⁵ & Christian J. Bjerrum^{1,3}

Rosing 2010 N

No Faint Young Sun Paradox???

Existience of Fe(II-III) oxides (magenite) in banded iron formations is inconsitent with high CO₂ necessary under fain young sun paradox. Their solution: Lower albedo of early Earth sufficient for above freezing point.

Rosing 2010 N

Outline

- Basics on the Carbon Cycle
- 2 CO₂ reconstructions
 - $\delta^{11}B$
 - B/Ca
 - Alkenones, $\delta^{13}C_{org}$
 - Stomata
 - Validation of different approaches
 - Greenhouse Effect

Processes

- The Faint young sun Paradox
- CO₂ outgassing
- Weathering

Summary

Summary

- Pre-ice core CO₂ is estimated from different proxies (δ^{11} B, B/Ca, stomata, δ^{13} C _{ORG}) which rather low resolution and large uncertainties.
- Validation with model-based $\Delta T = f(\delta^{18}O)$ and theory on radiative forcing highlights "good" and "weak" CO₂ proxies.
- Faint Young Sun Paradox can be explained if continental weathering acts as a thermostat, which dampens climate change.
- Silicate weathering extracts CO₂ from the atmosphere and puts it in the ocean sediments.
- Carbonate weathering does not extract CO₂ from the atmosphere.
- New data weakens weathering hypothesis and Faint Young Sun Paradox.

Summary

References I

Bintanja, R., van de Wal, R., and Oerlemans, J.: Modelled atmospheric temperatures and global sea levels over the past million years, Nature, 437, 125–128, doi: 10.1038/nature03975, 2005.

de Boer, B., van de Wal, R. S., Lourens, L. J., and Bintanja, R.: Transient nature of the Earth's climate and the implications for the interpretation of benthic records, Palaeo³, In Press, doi:10.1016/j.palaeo.2011.02.001, 2011.

Hönisch, B. and Hemming, N. G.: Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects, Paleoceanography, 19, PA4010, doi: 10.1029/2004PA001026, 2004.

Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F.: Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition, Science, 324, 1551–1554, doi:10.1126/science.1171477, 2009.

Köhler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G., and Masson-Delmotte, V.: What caused Earth's temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity, Quaternary Science Reviews, 29, 129–145, doi:10.1016/j.quascirev.2009.09.026, 2010.

Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems, Proceedings of the National Academy of Sciences, 105, 449–453, doi:10.1073/pnas.0708588105, 2008.

Leemans, R. and Cramer, W. P.: The IIASA climate database for land areas on a grid with 0.5^o resolution, vol. RR-91-18 of *Research Reports*, International Institute for Applied Systmes Analysis, Laxenburg, Austria, 1991.

Levitus, S. and Boyer, T.: World Ocean Atlas Volume 4: Temperature, NOAA Atlas NESDIS 4, U.S. Department of Commerce, Washington, D.C., 1994.

Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene, Science, 309, 600–603, doi:10.1126/science.1110063, 2005.

Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geoscience. 3, 27–30, doi:10.1038/neco724, 2010.

Summary

Ruddiman, W. F.: Earth's Climate, past and future, Freeman, 2001.

Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, 2000.

Rosing, M. T., Bird, D. K., Sleep, N. H., and Bjerrum, C. J.: No climate paradox under the faint early Sun, Nature, 464, 744–747, doi:10.1038/nature08955, 2010.

Rundgren, M. and Beerling, D.: Fossil leaves: effective bioindicators of ancient CO₂ levels?, Geochemistry, Geophysics, Geosystems, 4, 1058, doi: 10.1029/2002GC000 463, 2003.

Rundgren, M., Björck, S., and Hammarlund, D.: Last interglacial atmospheric CO₂ changes from stomatal index data and their relation to climate variations, Global and Planetary Change, 49, 47–62, 2005.

Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth and Planetary Science Letters, 292, 201 – 211, doi:10.1016/j.epsl.2010.01.037, 2010.

Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years, Science, 326, 1394–1397, doi:10.1126/science.1178296, 2009.

van de Wal, R., de Boer, B., Lourens, L., Köhler, P., and Bintanja, R.: Continuous and self-consistent CO₂ and climate records over the past 20 Myrs, Climate of the Past Discussions, 7, 437-461, doi:10.5194/cpd-7-437-2011, 2011.

Willenbring, J. K. and von Blanckenburg, F.: Long-term stability of global erosion rates and weathering during late-Cenozoic cooling, Nature, 465, 211–214, doi:10.1038/nature09044, 2010.

Yu, J., Foster, G. L., Elderfield, H., Broecker, W. S., and Clark, E.: An evaluation of benthic foraminiferal B/Ca and δ^{11} B for deep ocean carbonate ion and pH reconstructions, Earth and Planetary Science Letters, 293, 114 – 120, doi:10.1016/j.epsl.2010.02.029, 2010.

Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, doi: 10.1038/nature06588, 2008.