

Unifying principles of ocean acidification effects on marine ectotherms?

F C Mark, A Stark, K Walther, A Strobel, C E Schaum, C Kreiss, K Deigweiher, T Sun, M Lucassen, C Bock, F J Sartoris, H O Pörtner

ntroduction

Atmospheric CO₂ accumulation elicits climate change and associated impacts on marine ecosystems, emphasizing the need for an integrative understanding of the driving forces and their specific and synergistic effects. Besides indirectly inducing ocean warming, CO₂ directly causes ocean acidification, but the specific contribution of this process to ongoing ecosystem change is not yet clear. Learning about the principles involved can benefit from the observed organism and ecosystem responses to the warming trend. Understanding the specific effects of CO₂ and the synergisms with temperature requires the identification of sensitive physiological mechanisms.

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

Organisms from polar areas are exposed to the largest changes in PCO₂ and may be most sensitive due to low capacities of physiological functions and low metabolic rates.

• 710 ppm 3000 ppm Megalopa • Normocapnia 3000 ppm Crab I Normocapnia 710 ppm Walther et al., 2010

In Megalopae and post larvae of the spider crab Hyas araneus from Arctic and temperate regions, hypercapnia leads to developmental delay and enhanced mortality, illustrating the high sensitivity of early life stages³.

loss of performance, abundance

Serripes groenlandicus

(Serripes groenlandicus) only passively regulate extracellular pH regardless of temperature.

Working model for acid-base regulation under hypercapnia in the gills of the marine teleost Zoarces viviparus⁴. Red circles: gene expression during short-term hypercapnia (24 to 96 h), green circles: long-term response (6wks). mRNA levels were found to be up-regulated (+), down-regulated (-) or unchanged (=). HA: H^+ -ATPase, NHE1/2/3: Na⁺/H⁺-exchanger isoforms, CA: Carbonic anhydrase, AE1: CI^{-}/HCO_{3}^{-} -exchanger, NKA: Na⁺/K⁺-ATPase, NBC1: Na⁺/HCO₃⁻ co-transporter, NKCC: Na⁺/K⁺/2Cl⁻ co-transporter. Open arrows: changes in substrate concentrations.

passive tolerance range passive short term tolerance short long

The concept of oxygen and capacity limitation of thermal tolerance (OCLT) provides a matrix integrating the synergistic effects of environmental stressors including ocean acidification. The thermal window is narrowed through CO2 specific effects on molecular to whole organism functions. Available evidence suggests that the OCLT concept closely defines the sensitivity and response of individuals to climate change at ecosystem level. It also provides causality and quantifies the levels and changes of organism performance and resistance as a reason for changes in species interactions¹. An understanding of ecosystem-level processes results as needed to achieve more realistic estimates of species and ecosystem sensitivities to environmental change.

Which physiological mechanisms explain the different sensitivities and synergistic effects observed?

Antarctic fish (Notothenia rossii) show a compensation of blood pH by active HCO_{3⁻} uptake at low temperatures and even overcompensation at warm temperatures.

Synergistic effects: Mechanisms underneath

Mitochondrial level: Mitochondrial capacities that generally are in excess of whole organism functional capacities and energy turnover are thermally less responsive under elevated Pco2 in Antarctic notothenioids.

At thermal extremes, mitochondria may not display sufficient capacity to meet whole organism energy demand causing an earlier onset of thermal stress.

Genetic level: mRNA expression (x-fold) of gill Na⁺/HCO₃⁻ cotransporter (NBC1) is reduced in long-term warm acclimated Antarctic eelpout P. brachycephalum. Expression was normalized to B-actin and given relative to the expression of the respective control group animals.

CO₂ may reduce the capacity of the warm acclimation response in Antarctic fish gills and thereby contribute to an earlier onset of thermal stress.

Whole organism level: CO₂ sensitivity is temperature dependent, and, vice versa, temperature sensitivity is CO_2 dependent.

The thermal window of the spider crab Hyas araneus is progressively narrowed by elevated CO₂ levels, indicated by the shift in upper critical temperature (Tc) to lower values².

References: 1) Pörtner (2010) J Exp Biol 213:881-893 2) Walther et al. (2009) Biogeosciences 6:2207-2215 3) Walther et al. (2010) Mar Ecol Prog Ser 417:159-170 4) Deigweiher et al. (2008) Am J Physiol 295:R1660-1670 Correspondence: Felix Mark, Hans Pörtner | Integrative Ecophysiology | Alfred Wegener Institute for Polar & Marine Research, 27570 Bremerhaven, Germany | e: fmark@awi.de, hans.poertner@awi.de | p: +49-471-4831-1015, -1307