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Dynamics of the atmosphere

p(λ, φ, z , t) ≡ Pressure

T (λ, φ, z , t) ≡ Temperature

Wind field:

u(λ, φ, z , t) ≡ zonal wind
v(λ, φ, z , t) ≡ merdional wind
w(λ, φ, z , t) ≡ vertical wind

q(λ, φ, z , t) ≡ specific humidity

z

Ω



Dynamics of the atmosphere-represented by model

Thermodynamic energy equation in Cartesian coordinates
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Dynamics of the atmosphere represented with numerical model.



Dynamics of the atmosphere

The state x ≡ x(λ, φ, z , t) of the atmosphere at time tk :

x(λ, φ, z , tk) ≡

u(λ, φ, z , tk)
...

T (λ, φ, z , tk)


109 unknowns and 107 observations per 24 hour period

Ocean: 106 unknowns and mostly surface observations per 10 days



Data assimilation algorithms

xa
k = xf

k + Kk(yo
k −Hkx

f
k),

xf
k is a prior estimate, i.e. forecast, at time tk , of size n

Pf
k is forecast error covariance matrix,

Hk is the observation operator,
yo
k is the pk -vector of observations.

Kk is taken as
Kk = Pf

kH
T
k (HkP

f
kH

T
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Ensemble approach

The complete error structure of a time-evolving model trajectory requires a
multidimensional pdf which is impossible to know or even represent
accurately

Covariances represented through

Pf
k =

1

r

r+1∑
i=1

[xf ,i (tk)− xf
k ][xf ,i (tk)− xf

k ]T .

Pf
k is the ensemble derived forecast error covariance;

xf ,i (tk) are ensemble members i = 1, . . . , r + 1 of size n at time tk ;
xf
k is the average over ensemble.

xf
k =

1

r + 1

r+1∑
i=1

xf ,i (tk)

Pf
k is by definition positive semi-definite covariance with rank at most r.



Covariances are important

One observations at location j, state vector of size n

H = [0 . . . 0 1 0 . . . 0]

xa
k = xf

k + Kk(yo
k −Hkx

f
k),

Kk = Pf HT (HPf HT + R)−1

xa
k = xf

k +
(yo

k −Hkx
f
k)

σobs

Pf
1j
...

Pf
nj


Correction to the forecast field is proportional to a column j of matrix
Pf .
This matrix determines how information from single observations is
spread to neighborhood grid points
This matrix determines how information is spread to other variables of
the model



Covariances are important

Poten2al advantage of EnKF: 
flow‐dependent  

background‐error covariances 

Output from a “single‐observa2on” experiment.  The EnKF is cycled for a long 
2me.  The cycle is interrupted and a single observa2on 1K greater than the mean 
prior is assimilated. Maps of the analysis minus first guess are ploeed. These 
“analysis increments” are propor2onal to the background‐error covariances 
between every other model grid point and the background at the observa2on 
loca2on.  17 

from Hamill and Whitaker 2009



Properties of ensemble derived covariances

Cross corelations are represented naturally

Evolutions can be calculated over long time period

Covariances are flow dependent

However

only small number of ensembles can be evolved due to complexity of
the dynamical systems

Due to the small ensemble numbers covariances are far from
representing correctly uncertainty

=⇒ Localization needed



Outline localization

What is localization?

Two basic approaches for localization:

Covariance localization or direct forecast error localization (used in
Houtekamer and Mitchell (1998, 2001))

Domain localization (used in Haugen and Evensen 2002; Brusdal et al.
2003; Evensen 2003; Brankart et al. 2003; Ott et al. 2004; Nerger et al.
2006; Hunt et al. 2007; Miyoshi and Yamane 2007)

Simple 1D experiment

Localization and Balance

Conclusion



What is localization?

“Covariance localiza2on” 

20 

Es2mates of covariances from a small ensemble will be noisy, 
with signal‐to‐noise small especially when covariance is small 

Estimates of the covariance from small ensemble size will be noisy,
especially signal to noise ratio is large when covariances are small (from
Hamill and Whitaker 2009).



Direct forecast error localization or covariance localization

By covariance localization we cut out distance correlation. Therefore we
include two more sources of information when constructing covariance
from ensemble:

Distant correlation are not important
Positive definite correlation matrix (Gaspari and Cohn QJ 1999)



Direct forecast error localization or covariance localization

Covariance localization: The ensemble derived forecast error covariance
matrix is Schur multiplied with a stationary a priori chosen correlation
matrix that is compactly supported.

Let C be a matrix of rank M that is used for the Schur product. Let vj

represent eigenvectors of matrix C multiplied with the square root of the
corresponding eigenvalue.

C =
M∑
i=1

vjv
T
j .

Let ◦ denotes the element-wise product (Schur product)
Schur product theorem: If A, B are positive semi-definite matrices, then
A ◦ B is also positive semi-definite. If A, B are positive definite matrices,
then A ◦ B is also positive definite.



Covariance localization

For any vectors a,b, c and d:

(a ◦ c)(b ◦ d)T = (abT ) ◦ (cdT ).

Basic properties:

The localized error covariance Pf
k ◦ C can be represented as

r+1,M∑
i ,j=1

ui ,ju
T
i ,j with ui ,j =

1√
r

[xf ,i (tk)− xf
k ] ◦ vj

This representation implies that instead of using ensemble members
xf ,i for the calculation of the analysis error covariance, we can use the
ensemble ui ,j , and the same formulas as in original algorithms apply.
C full rank, positive definite, isotropic matrix, compactly supported.
Usually 5th order polynomial correlation function (Gaspari and Cohn
1999).
min(diag(Pf

k))λmin(C) ≤ λmin(Pf
k ◦ C) ≤ λmax(Pf

k ◦ C) ≤
max(diag(Pf

k))λmax(C)



Example

The state vector w to be estimated will be taken as a realization of
normally distributed random function w(y) ∼ N (0,W (y1, y2)) on the
circle of radius D/2π, where the covariance W (y1, y2) is either

W (y1, y2) = (1 +
|y1 − y2|

L
)e
−|y1−y2|

L , (1)

or

W (y1, y2) = e−
|y1−y2|

L . (2)

Here, |y1 − y2| represents the chord length between the points y1 and y2

on the circle of radius D/2π.

The observations are given as a vector of values of the realization at all
grid points contaminated by normally distributed random noise with
standard deviation of 0.05, the observations from two subdomains were
removed.



Example

Upper Left: True covariance (black) and approximate B covariance (blue). Upper Right: True state (black) and analysis (red) after
one assimilation step with approximate B covariance. Lower Left: True state (black) and analysis (red) after one assimilation step
with ensemble covariance from 30 ensemble members. Lower Right: True state (black) and analysis (red) after one assimilation
step with localized ensemble covariance.



Example nonsmooth field cont.

Upper Left: True covariance (black) and approximate B covariance (blue).
Upper Right: True state (black) and analysis (red) after one assimilation step with approximate B covariance.
Lower Left: True state (black) and analysis (red) after one assimilation step with ensemble covariance from 30 ensemble members.
Lower Right: True state (black) and analysis (red) after one assimilation step with localized ensemble covariance.



Covariance localization

Distant correlation are removed

Positive definite correlation matrix (Gaspari and Cohn QJ 1999) is
introduced that increases the rank of forecast error covariance and
this way

increases space where the solution can be searched for

usually correlation function is chosen with full rank

More accurate solution are obtained

Data sparse areas are estimated well



Domain localization

Domain localization: Disjoint domains in the physical space are considered
as domains on which the analysis is performed. Therefore, for each
subdomain an analysis step is performed independently using observations
not necessarily belonging only to that subdomain. Results of the local
analysis steps are pasted together and then the global forecast step is
performed.
Basic properties:

The localized error covariance is calculated using

Pf ,loc
k =

r+1,L∑
i ,j=1

ui ,ju
T
i ,j (3)

where ui ,j = 1√
r
[xf ,i (tk)− xf

k ] ◦ 1Dj with j = 1, . . . , L and L is the

number of subdomains. Here 1Dj is a vector whose elements are 1 if
the corresponding point belongs to the domain Dj .



Domain localization

C positive semidefinite, has block structure and is the sum of rank
one matrices 1Dj1

T
Dj . The rank of matrix C corresponds to the

number of subdomains.

In case that rank(C)rank(Pf
k) < n, the matrix C ◦ Pf

k is singular.

Why is domain localization used?

As for OI, one of the major advantages of using domain localization is
computational. The updates on the smaller domains can be done
independently, and therefore in parallel.

In certain algorithms this is more natural way of localizing. Examples
of such methods are the ensemble transform Kalman filter ETKF and
the singular evolutive interpolated Kalman filter SEIK.



Why is domain localization used?

In these algorithms, the forecast error covariance matrix is never
explicitly calculated. Therefore, direct forecast localization as in
Houtekamer and Mitchell (1998, 2001) is not immediately possible.

In these methods an ensemble resampling in SEIK or transformation
is used that ensures that the ensemble statistics represent exactly the
analysis state and error covariance matrix.

Ways of including full rank, positive definite and isotropic matrix in
domain localized algorithms were developed. Two methods will be
presented Method SD+Loc and Method SD+ObsLoc introduced by
Hunt et al. 2007.



Method SD+Loc

Let 1Dmj be a vector that has a value of 1 if the observation belongs to
the domain Dm otherwise has a value of 0, and let Dj ⊆ Dmj .

1

r

r+1∑
i=1

L∑
j=1

[Hkx
f ,i (tk) ◦ 1Dmj −Hkx

f
k ◦ 1Dmj ][x

f ,i (tk) ◦ 1Dj − xf
k ◦ 1Dj ]

T

=
L∑

j=1

(1Dmj1
T
Dj) ◦HkP

f
k

where matrix
∑L

j=1 1Dmj1
T
Dj has entries of zeros and ones since the

domains Dj are disjoint.

Method (SD+Loc): An modification to this algorithm is to use for each
subdomain (1Dmj1

T
Dj) ◦HkP

f
k ◦HkC and 1Dmj1

T
Dmj ◦HkP

f
kHk

T ◦HkCHk
T .



Observational error localization: Method (SD+ObLoc)

The observation localization method modifies the observational error
covariance matrix R.

Let us consider a single observation example, in observation error
localization method, the observation error σ2

obs is modified to
σ2

obs/weightd where weightd can be calculated using any of the correlation
functions.

Accordingly, the analysis increment is multiplied by
weightdpf /(weightd + σ2

obs), where weightd depends on the distance
between observation and analysis point.

Note, for direct forecast error localization this factor is
weightdpf /(1 + σ2

obs).



Example domain localization cont.

Upper Left: True covariance (black) and approximate B covariance (blue). Upper Right: True state (black) and analysis (red) after
one assimilation step with domain localized covariance. Lower Left: True state (black) and analysis (red) after one assimilation
step with domain localized with overlapping observations. Lower Right: True state (black) and analysis (red) after one assimilation
step with localized ensemble covariance with overlapping observations and B.



Example domain localization cont.

Upper Left: True covariance (black) and approximate B covariance (blue). Upper Right: True state (black) and analysis (red) after
one assimilation step with domain localized covariance. Lower Left: True state (black) and analysis (red) after one assimilation
step with domain localized with overlapping observations. Lower Right: True state (black) and analysis (red) after one assimilation
step with localized ensemble covariance with overlapping observations and B.



Model Lorenz40

dXidt = (Xi+1 − Xi−2)Xi−1 − Xi + F

Lorenz40 model is governed by 40 coupled ordinary differential
equations in domain with cyclic boundary conditions.

The state vector dimension is 40.

The observations are given as a vector of values contaminated by
uncorrelated normally distributed random noise with standard
deviation of 1.

The observations are assimilated at every time step.

After a spin-up period of 1000 time steps, assimilation is performed
for another 50 000 time steps.

A 10-member ensemble is used.



L40 results: σobs = 1

RMS error for different covariance localization techniques.

See Janjic et al. 2011 MWR for more details.



L40 results: σobs = 0.1

RMS error for different covariance localization techniques.



Domain localization conclusion

The domain localization technique has been investigated here and
compared to direct forecast error localization on simple example and
L40 model.

It was shown that domain localization is equivalent to direct forecast
error localization with a Schur product matrix that has a block
structure and is not isotropic.

The rank of the matrix corresponding to the domain localization
depends on the number of subdomains that are used in the
assimilation. This matrix is positive semidefinite.

Inclusion of positive definate matrix either through method SD+Loc
or SD+ObsLoc is beneficial for domain localization methods



Localization and balance

Assume we have two variables h and v defined at the model grid points,
i.e. h and v :

Pf
k ≡

[
cov(h,h) cov(h, v)
cov(v,h) cov(v, v)

]
Let us assume that we want to apply direct forecast error localization with
diagonal matrix then

Pf
k ◦ I ≡


cov(h1, h1) 0 · · · 0

0
. . .

. . .
. . .

0 0 cov(hn, hn) 0

0
. . .

. . . 0
0 0 0 · · · 0 cov(vn, vn)





Localization and balance

By applying localization we destroyed correlation given by numerical model
between h and v.

Lets look at one example from Greybush et al. MWR 2011

fvg = g
∂h

∂x

h = hdepth + hamp cos k(x − xps)

vg = −g

f
hamp sin k(x − xps)

Solve for h and v using observations of both h and v and methods

(SD+ObsLoc) and direct forecast error localization with exp −d(i ,j)2

2L2 .



Example from Greybush et al. MWR 2011

Since each ensemble is in geostrophic balance and observations are also,
analysis should be too.



Realistic example–Assimilated Data Set

The DOT was obtained by means of geodetic approach from carefully
cross-calibrated multi-mission-altimeter data and GRACE gravity
fields.

Spectral consistency is achieved by applying a Gauss-type filter
(Jekeli/Wahr) on sea surface and geoid. The filter length is set to
241km. (Savcenko and Bosch 2010)



Data assimilation method

Correlation function used for
localization.

Different correlation function
are used for the method
SD+ObsLoc.

The observational error standard
deviation is 5 cm.

Observations within radius of
900 km are used.



RMS errors

RMS error for different covariance localisation techniques.



Spectral properties of the errors

Logarithm of the spectral difference between analysis and
the data (left) and forecast and the data (right) depending on
spherical harmonic degree.

εoi
` =

∑
m

(
T o

`m − T i
`m

)2
See Janjic et al. 2011 MWR for more details



Conclusion

Localization is necessary for application of ensemble Kalman filter
algorithms for large scale probelms.

Several localization techniques are in use.

Localization is topic of active research especially concerning the effect
of localization on balance.

Proper ways of performing multivariate localization are still not fully
understood.

Proper localization scales depend on the properties of dynamical
system and observations.


