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Kurzfassung 

In dieser Arbeit wird ein konsistenter systematischer Vergleich von Filteralgorith- 
men vorgestellt, die auf dem Kalman-Filter basieren und fÃ¼ Datenassimilation 
mit nichtlinea,ren Modellen hoher Dimension entwickelt wurden. Betrachtet wer- 
den der Ensemble Kalman Filter (EnKF), der Singular Evolutiue Extended Kaiman 
(SEEK) Filter sowie der Singular Evolutive Interpolated Kalman (SEIK) Filter. In 
den zwei Teilen dieser Arbeit werden die Filteralgorithmen mit Schwerpunkt auf ihre 
mathematischen Eigenschaften als Fehler-Unterraum Kalman-Filter (Error Subspace 
Kaiman Filter, ESKF) verglichen. AuÂ§erde werden die Filter als parallele Algo- 
rithmen untersucht. Diese Untersuchung beinhaltet die Entwicklung eines effizienten 
Frameworks fÃ¼ paralleles Filtern. 

Im ersten Teil werden die Filteralgorithmen im Umfeld der statistischen SchÃ¤tz 
theorie motiviert. Die einheitliche Interpretation als ESKF-Algorithmen dient als 
Grundlage fÃ¼ den konsistenten Vergleich der Filteralgorithmen. Die effiziente Im- 
plementierung der Algorithmen wird diskutiert und ihre numerische Komp1exitÃ¤. 
verglichen. Numerische Datenassimilations-Experiment,e mit einem Testmodell auf 
Grundlage der Flachwassergleichungen zeigen wie die Auswahl des Assimilations- 
schemas und spezielle Zusta~ndsensembles fÃ¼ die Filterinitialisierung zu signifikanten 
Schwankungen der Datenassimilationsleistung fÅ¸hren Die Verbindung der Daten- 
assimilationsleistung zu verschiedenen Guten der vorhergesagten Fehler-UnterrrÃ¤um 
wird durch eine statistische Untersuchung der vorhergesagten Kovarianzmatrizen 
des Modellzustands demonstriert. Der Filtervergleich zeigt Schwierigkeiten in den 
Analyse-Gleichungen des EnKF-Algorithmus a,uf, die auf das verwendete Monte- 
Carlo Verfahren zur Erzeugung der EnsemblezustÃ¤nd zurÃ¼ckzufÃ¼hr sind. Ferner 
zeigt sich, daÂ der SEIK-Filter ein numerisch sehr effizienter Algorithmus mit hohem 
Potential fÃ¼ die Verwendung mit nichtlinearen Modellen ist. 

Die Anwendung der EnKF-, SEEK- und SEIK-Algorithmen auf Parallelcom- 
putern wird im zweiten Teil der Arbeit betrachtet. Hierbei werden die Paral- 
lelisierungsinÃ¶glichkeite der unterschiedlichen Phasen der Filteralgorithmen un- 
tersucht. Auflerdem wird ein Framework fÃ¼ paralleles Filtern entwickelt, daÂ es 
erlaubt Filteralgorithmen mit bestehenden numerischen Modellen in einer Weise 
zu kombinieren, die nur minimale Anderungen im Quelltext des Modells erfordert. 
Das Framework wird verwendet um die para.llelisierten Filteralgorithmen mit dem 
3-dimensionalen Finite-Elemente Modell FEOM zu kombinieren. Mit Hilfe von nu- 
merischen Datenassimilationsexperimenten wird die parallele Effizienz des Filter- 
Frameworks und der parallelen Filteralgorithmen studiert. Die Experimente zeigen 
eine exzellente parallele Effizienz des Filter-Fra,meworks. Auflerdem zeigt sich, da.Â 
das Framework und die Filteralgorithmen sehr gut fÃ¼ die Anwendung auf realistis- 
che groflskalige Datenassimilationsprobleme geeignet sind. 



Abstract 

A consistent systematic comparison of filter algorithms based on the Kaiman filter 
and intendecl for data assimilation wit.h high-din1ensiona.1 nonlinear numerical mod- 
els is presented. Considered are tlie Ensemble Kalman Filter (EnKF), the Singular 
Evolutive Extended Kalman (SEEK) filter, a,nd the Singular Evolutive Interpolated 
(SEIK) filter. Within the two parts of this thesis, the filter algorithms a e  comparecl 
with a focus 011 their mathematical properties as Error Subspace Kalman Filters 
(ESKF). Further. the filters are studied as parallel algorithms. This stucly includes 
the devclopn~ent of an efficient, framework for parallel filtering. 

In tlie first part; the filter algorithms are motivated in the context of ~t~atistical 
estiination. The unified interpreta,tioil of the algorithms as Error Subspace Kalman 
Filters provides tlie basis for the consistent comparison of the filter algorithms. 
The efficient impleinentation of the algorithms is discussed and their coniputational 
complexity is compared. Numerical data assimilation experiments with a test model 
based on tlie shallow water equations show how choices of the assimilation scheme 
and particular sta.te ensembles for the initialization of tlie filters lead to significant 
variations of the data assimilation perforniance. The relation of the data assimilation 
performance to different qualities of the predicted error subspaces is dernonstrated by 
a statist,ical examination of the predicted sta,te covaria~i~ce matrices. The compa.rison 
of the filters sliows that problerns of the analysis equations are apparent in the EnKF 
algorithm due to the Monte Carlo sampling of ensembles. In addition, the SEIK 
filter appears to be a. numerically very efficient algorithin with high potential for use 
with nonliilear models. 

The application of the EnKF. SEEK. and SEIK algorithms on parallel Computers 
is studied in the seconcl part. The pa,rallelizatioi~ possibilities of the different phases 
of the filter algorithms are exanlined. In addition. a. framework for parallel filtering is 
developed which allows to coinbine filter algorithms with existing numerical models 
requiring only minimal changes to the source code of the model. The framework 
has been used to combine the parallel filter algorithms with the 3-dimensional finite 
element ocean model FEOLI. Numerical data assimilation experiments are utilized 
to assess the parallel efficiency of the filtering framework and the parallel filters. 
The experiinents yield an excellent parallel efficiency for the filtering framework. 
Furthermore. the framework and the filter algorithms are well suited for application 
to realistic large-scale data assimilation problems. 



Introduction 

Simulating the ocean general circulation provides the possibility to improve the 
understanding of climate relevant phenomena in the ocean. Absolute currents can 
be simulated which determine, for example, oceanic heat transports. Furthermore, 
the stability and variability of oceanic flows can be examined. 

The numerical moclels used for siniulating the ocean are based 011 physical first 
principles formulated by partial differential equations. Due to the discretization. 
models of high dimension arise. In addition. several different fields have to  be 
modeled like. teniperature. salinity, velocities. and the sea surfa,ce elevation. These 
large-scale ocean models are con~puta.tionally demanding and hence require the use 
of parallel computers to cope with tlie huge memory and computing requirements. 
Despite t,heir complexity, t,he models comprise several errors. Due to the finite 
resolution of the discretization. there are unresolved processes. These remain either 
uiiniodeled or arc considered in paranieterized form. Some processes are not included 
in the model pliysics or base on empirical formulas. The numerical solution itself 
will also cause errors. Apart, froin tliis. the inodel ii1put.s also contain errors. That is. 
the model initialization is not exact ancl inputs during the simulation are uncertain. 
like fresh wa,ter inflows from rivers or interactions with the atniosphere. e.g. by tlie 
wind over the ocean. 

A different source of information about tlie ocean is provided by observational 
data. Nowadays. there are many observations of the ocean provided by satellites 
like TOPEX/POSEIDON. or the more recent satellite missions Envisat and Jason-1. 
These satellites measure the sea surface height and temperature. Wind speeds and 
directions a t  the sea surface are measured by other satellites like QuikSCAT. In ad- 
dition to satellite data. in situ measured observations a.re ava,ilable. These include. 
e.g., temperatures and salinities at different depths, or current measurements from 
ships. inoored instruments or drifting buoys. Despite the amount of ava,ilable mea- 
surements, t,he observational data are sparse in space as well as in time. Wliile there 
are niany measurements at the ocean surface a relative small amount of information 
is provided about the interior of tlie ocean. Thus. tlie available observations do not 
suffice to provicle a complete picture of tlie ocean. 

To obtain an enlianced knowledge about the ocean! the information provided by 
numerical moclels and observational data should be used together. The combina- 
tion of a numerical model with observations to determine the state of the modeled 
system is denoted inverse modeling. I11 nieteorology and oceanography, the quan- 
tita,tive framework to  solve inverse problems is known as "data assimilation". This 
technique incorporates - assiinilates - observational data into a numerical model to 
improve the ocean state simulated by the model. 



There are currently two main approaches to  data assimilation whicli are eithcr 
based on optimal control theory or on estimation theory, see e.g. [77, 241. 

e Va,riatzonaL data asszmzlatzon - This technique uses a criterion nieasuring t,he 
inisfit between niodel and observations. This criterion. typically denoted tlie 
cost function. has to be minimized by adjusting so called control variables of 
tlie model. These are usually initial conditions or certain parameters of tlie 
model such as the wind stress or hea,t flux. Variational data assimilation is 
basecl on the tlieory of optimal control. The most comnion method is t h e  so 
called adjoint methocl, see [14, 781, which is widely used in oceanography) See 
e.g. [93, 761. A relat.ed variational method is the representer method [3, 101. 

e Sequentiell data assimilatzon This technique is based on estimation theory and 
represents a filter inethod. The observations aiid the model predictioii of tlie 
state are coiiibined using weiglits computed from the estimated uncertainties of 
bot11 the predicted model state aiid the observational data. The schemes used 
for sequeiitial data assimilation are mostly based on the Kalman filter [41, 421. 
An alternative approach is represented by pa,rticle filters, See [2, 55, 85, 471. 

The advantage of sequential data assimilation algorithms is their flexibility. 
While the adjoint method requires to integrat,e the numerical model and its adjoiiit, 
multiple times over the time interval of interest, the sequential schemes assimilate 
observat,ional data a t  the time instance at  which tlie da,ta becomes availa,ble. Thus, 
with sequential algorithms it is not required to rest,art the assimilation cycle when 
new observations are provided. In addition! an adjoint of the numerical model is not 
requirecl by tlie sequeiitial methods. Also the potential for paralleliza.tion is liigher 
for the algorithms based on the Kalman filter. 

The first approaches to a.pply the Kaiman filter in oceanography relate ba,ck to 
the niiddle of the 1980's. Tlie Kalman filter is only suited for linea,r systems and the 
application of tlie f ~ l l  Kaiman filter is not feasible for realistic large-scale numerical 
ocean models. During tlie last decade several a.lgorithms have been developed on 
tlie basis of the Kalman filter which reduce the coinputational requirements of the 
Kaiman filter to feasible liinits and promise to handle nonlinearity in a better way. 

One of the newly developed algorithms is the Ensemble Kalman Filter (EnKF), 
introcluced by Evensen [17]. This filter is based on a Monte Carlo approach arid, 
due to its apparent simplicity, already widely used in oceanography and meteorology 
(see, e.g. [18] for a review of applicat.ions of tlie EnKF).  In addition, some va.riants 
of the EnKF have been proposed [34, 1, 5,941. Alternative algorithnis are the SEEK 
arid SEIK filters. introduced by Pham [65, 681. These filters represent the estimated 
error statistics by a low-rank matrix. Some variants of these filters have been pro- 
posed whicli permit to further reduce tlie computa,tional requirements 132, 331. The 
SEEK filter has been applied in several studies, e.g. [90, 9, 63, 7, 61, and some ap- 
plications of tlie SEIK algoritlim have been reported [66, 33, 831. Other approaches 
to a simplified filter are the reduced-rank squa,re root Kalman (RRSQRT) filter by 
Verlaan and Heeniink [88] and the concept of error subspace statistical estimation 
introduced by Lermusiaux aiid Robinson [49, 501. 

The comput,ational requirements of data assimilation problems is generally much 
higher than for numerical ocea,n models alone. Thus, the use of parallel coniputers 
is strongly required when data assimilation is performed with realistic large-scale 



nuinerical models. The algorithms based on the Kaiman filters offer a high potential 
for parallelization. The application of the filter algorithms on parallel computers has 
been discussed for the Ensen~ble Kalman filter by Keppenne and Rienecker [44, 451 
and by Hout,ekamer and Mitzchell [36]. Some approaches have also been investigated 
in the context of t,he RRSQRT algorithm [73, 701. 

Besides the use of parallel computers there is the requiren~ent to combine dat,a 
assin~ilation algorithins with existing models to obtain a data assimilat.ion system. 
This should be possible with minimal changes to the model source code. Verlaan [87] 
discussed an abstract coupling between model and filter algorit,hm. I11 addition, 
the programs SESAM [75] and PALM [GO] provide interface structures based 011 

strongly different concepts. 
In this work a consistent systematic comparison of filter algorithms based on 

the Kalman filter is presented. Considered are the Ensemble Kaiman filter and 
t.he SEEK filter. The former algorithm represents the Monte Carlo approach to 
filtering while the latter algorithm uses a low-ra,nk approximation to represent the 
error statistics of the model. Further, the SEIK filter. which unites aspects of both 
approaches, is included in the study. Besides the comparison. pa,rallel variants of 
the alg~rit~hms are developed and discussed. In addition. an efficient framework 
for parallel filtering is introduced. The framework defines an application program 
interface to combine the filter algorithms with existing nuinerical models. To fest 
the efficiency of the frainework. it is used to combine the filter algorithins wit,h 
the three-dimensional finite element ocean model FEOM which has been recently 
developed a.t the Alfred Wegener Institute [12]. 

The new unified interpretation of the filter algorithins as Error Subspace Kalman 
Filters (ESKF) provides the basis to compare the algorithins consistently. The in- 
t,erpretation corresponds to the concept of error subspace statistical estimation [49]. 
The experimental study of the ESKF algorithms under identical conditions presents 
the first quantitative comparison of these algorithms. I t  also shows the influence of 
higher order sampling scheines. Heemink et al. [31] performed a numerical compari- 
son of the RRSQRT and EnKF algorithms using a. 2-dimensional advection-diffusion 
equation. In addition, the EnKF algorithm was compared with the SEEK filter [7] 
using a model of the North Atlantic. In this study, however, the experimental con- 
figurations differed for the t,wo algorithms rendering the results difficult to interpret. 

The parallelization of the SEEK and SEIK filters has not yet been discussed. 
Furthermore, a separated parallelization of the filter algorithins and parallel model 
tasks is hardly considered [70, GO]. The filtering frainework presented in this work 
is, on the one hancl, simpler than the existing PALM coupler interface 1601, on the 
other hand it, is more efficient than SESAM [75]. The application of filter algo- 
rithins to a three-dimensional finite element ocean inodel has not yet been reported. 
The studies presented in this work, which use an idealized configuration of FEOM, 
yield promising results proving feasibility of the algorithms also for realistic model 
configurations. 



Outline 

Tliis work is subdivided into two parts. The first considers filter algorithnis based 
011 tlie Kaiman filter as sequential algorithms with a. focus on tlieir mathematical 
propertics. Thc sccond part discusses the filters as parallel algoritltms. 

In part I, the fundamentals of data assimilation a,re int,roduced in chapter 1. In 
chapter 2. the filter algorithms based on the Kalnian filter and intended for ap- 
plication to large-scale nonlinear nuinerical models are niotivated, presented, and 
discussed as Error Subspace Kaiman Filters (ESKF) in tlie context of st,a.tistical 
estiiiiation. Subsequently, in chapter 3;  the ESKF algorithnis are compared uncler 
tlie aspect of their application to large-scale nonlinear models. The efficient im- 
plement,ation and the numerical complexity of the algorithms are also discussed in 
this chapter. To assess the capabilities of the ESKF algorithms experimentally, the 
filters are applied in identical twin experiments to an ~ceanogr~phic  test model in 
chapter 4. Part I is concluded by chapter 5 summarizing the findings of the study 
of Error Subspace Kalnian Filters. 

Part I1 is coinmenced in chapter 6 with an overview and motivation of the appli- 
cation of ESKP algoritlinis as parallel algorithms. The parallelization possibilities 
of the ESKF algorithnis are exa.mined in chapter 7. Here different approaches are 
discussed and resulting parallel algorit,linis are presented. Chapter 8 introduces a 
franiework for parallel filtering. This framework defines an application progr8m 
interface whicli perniits to combine the parallel filter algorithms with existing nu- 
inerical models requiring minimal changes to the model source code. In Chapter 9 
tlie parallel efficiency of the filtering framework and the parallel filter algorithms is 
studied. For this. the framework is used to combine the filt,er algorit,hnis with the 
finite elenient inodel FEOM. Twin experiments are performed to assess the parallel 
efficiency of both the framework and the algorithins. Further, the dat,a assimilation 
capabilities of the ESKF algorithms when applied to a three-dimensional inodel are 
exainined. The results of this part are summarized ancl conclusions a,re drawn in 
Chapter 10 which completes part 11. 



Part I 

Error Subspace Kaiman Filters 





Chapter 1 

Dat a Assimilation 

1.1 Overview 

Data assimilation is the fra,n~ework to combine the information provided by measure- 
ments with a numerical model describing tlie physical processes of the considered 
geophysical system. There are three different application types of data assimilation. 
First, the future state of the physical system can be computed based 011 observa,tions 
ava.ila.ble until the present time. This application type is denoted as forecasting. Sec- 
ond. the current state can be estimated on the basis of all observations available until 
now. This situation is referrecl to as filtering or now-casting. The third &pplication 
type is smoothing 01- re-analysis. Here the state trajectory in t,he past is estimated 
based on all observations available until t,he present time. 

The teclinique of data assimilation originated in meteorology from the need to 
provide accurate weather forecasts. From the first st,eps of objective ana.lysis of 
observational data a,bout 50 yea.rs aso, the tecliniques evolved toward the current 
assimilation methods. A review 011 this history is given by Ghil and Malanotte- 
Rizzoli [25]. The method of optimal interpolation (see e.g. [51]), which was the 
most widely used method for operational numerical weather prediction in 1991 when 
this article was published, is today replaced by 4D-Var, see e.g. [69]. This is the 
space and time dependent variational dat,a assimilation using the adjoint method. 
In addition. approaches to the a.pplication of sequential algorithms based on the 
Kaiman filter exist [20, 211. 

The situat,ion for data assimilation in physical oceanography is different from 
that in meteorology. The spatial scales in the ocean are smaller than in the at- 
mosphere. In contrast. to this. the time scales a,re larger. In addition, the amount 
of observational data of the ocean is significantly smaller than the quantity of at- 
mospheric measurements. Due to this. oceanographic data as~irnil~tion is a rather 
young discipline motivated by the improvement in the understanding of the dynam- 
ics of ocean circulation. However, the avaihbility of remotely sensed observations 
from satellites increased the amount of data significa,ntly motivating further the ap- 
plication of data assimilation in oceanography (see e.g. [16] for a review on several 
data assimilation methods used with 0cea.n models). Today, there are first attempts 
for opera,tiona.l oceanography or ocean forecasting which involve advanced data assi- 
milation algorithms, e.g. by the projects DIADEM [13] a.nd MERCATOR [54]. 

Data assimilation algorithms are currently characterized by two main approaches. 
The first is variational data assin~il~tion wliich is based on optimal control theory. 
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One represcntative of this approach is the widely used adjoint methocl. Because of 
its cun'ent importance, this technique will be reviewed in the following section. The 
second approach is provided by sequential data assiinila,tion algorithms. These filter 
inethods are based on estimation theory and are typically derived from the Kaiman 
filter [41, 421. These alg~rit~hins are the subject of this work. Section 1.3 provides an 
overview on the sequential cla.ta assimilation algorithms based 011 the Kaiman filter. 
The inathematical foundations of these algorithms are introduced in Chapter 2. 

1.2 The Adjoint Method 

The adjoint methocl is a variational technique aiming at  the minimization of an 
empiric criterion measuring the misfit between a model and tlie observations. It is 
typically employed as a smoothing method or to provide state estimate used to 
compute a forecast,. The adjoint method is derived here according to the derivation 
by Le Diinet and Talagrancl (141. The notations follow the unified nota,tion proposed 
by Ide et al. [37]. 

The principle of the adjoint method is as follows: 
We consider a physical system which is represented by the state vector x ( t )  6 S 
where S is a Hilbert space with inner product < . >. The time evolution of t,he 
state is described by the model 

with the initial condition 

In addit,ion. observations 
stances {tz, i == 1 , .  . . , k } .  

Let the misfit between 

x ( t o )  = XQ . (1.2) 

{ y o ( t z ) }  of the state will be available a t  some time in- 

t,he state and the observations be described by the scalar 
cost functional J given by 

where u is the vector of control variables. For simplicity we consider the case that  
tlie initial st,ate is used as t-he control variables: 

The problem of varia,tional data assiinilation is now: Find the  optimal vector U 

of control variables which niinimizes the cost f~inctional J :  

To n~inimize J with respect to  U, e.g. by the quasi-Newton optimization method, 
the gradient Vu J has to be computed. The gradient is definecl by 
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where & J  is the first order variation of J with respect to U .  6 u  is the pertur- 
bation of U .  From equation (1.3) the first order variation of J resulting from a 
perturbation 6 x ( t o )  is given by 

where the first order variations {&X(<: , ) }  are related to the perturbation 6x( to)  by 

R(tz, to) is the resolvent of the linearization 

of equation (1.1)  about the state x ( t ) .  Here M ( t )  is the linearized model operator. 
Equation (1.9) is also denoted the tangent linear model. The resolvent R(ti. t o )  is 
the linear operator obt,ained by integrating equation (1.9)  from time to to time tz  
under the initial condition 6 x ( t o )  = du .  

For any continuous linear operator L  011 S  exists a linea,r operator L' on S  defined 

by 
a ,  ~ b > = < ~ ' a ,  b > ,  V a , b â ‚ ¬  (1.10)  

L' is denoted the adjoint operator of L. Introducing the adjoint resolvent R K  to) ,  
equa.tion (1.7) can be written as 

Hence, the gradient of J with respect to U is, according to equations (1.6) and (1.4):  

The adjoint resolvent can be determined in the following way: The adjoint model 
to the tangent linear model (1.9) is given by 

where 6xT(t) E S  and M t ( t )  is the adjoint of M ( t ) .  Now it can be shown, see [14], 
that the resolvent S(to,t,) of equation (1.13) is given by the adjoint resolvent of 
equation (1 .8 ) :  

S ( t o ,  t f )  = ~ ^ ( t i ,  to)  (1.14) 

Thus, the gradient of J is finally obtained as 



1.2 T h e  Adjoint Method  1 0  

The terin S ( t o ,  t i)  [ y O ( t i )  - X ( & ) ]  is evaluated by integrating the adjoint model (1 .13)  
backward in time from ti to to with the initial condition ^X%)  = y O ( t i )  - X ( & ) .  
Since equation (1.13) is linear, a single backwird integration suffices to compute 
the t,he gradient VuJ .  For this the integration is started at time t k  with the  ini- 
tial condition ^X'(^.)  = y O ( t k )  - x ( t k ) .  During tlie backward integration the term 
yO(t i}  - x(ti) is addecl to the current value h x f ( t ; )  at time instants ti where obser- 
vations are available. 

Suinmarizing, the adjoint method to compute the optimal initial conditions is 
given by the iterative algoritlim: 

1.  Choose some estimate X Q  of the initial state vector: x ( t o )  = X Q  

2. For j = 1 ,  Â . Â loop: 

3 .  Integrale the model (1 .1)  froni to to ti,. Store the obtained statc trajectory 

4. Evaluate the cost functional J according to equation (1 .3) .  

5.  Integrale the adjoint model (1.13) backward in time from tk to to starting 
from S^(t,:) = yO(tk)  - X ( & ) .  Add y o ( t z )  - X(<:,) to &(ti) at each observation 
time. Then, according to equation (1.15); it is V u J  = Jx"(to). 

6. If V u J  5 for some condition e, exit the loop over j 

7. Update the initial condition according to the chosen op t imi~~t ion  algorithm, 
e.g. quasi-Newton. 

8. End of the loop over J'. 

Remarks on tlie adjoint method: 
Remark  1: Tlie formulation of the adjoint method can be extended to optimize, 
e.g., physical parameters or lateral boundary conditions. In addition, the method 
can be extended to ha,ndle observations which are fuiictions of the state vector. 
Thus. it is not required tlia,t the complete sta.te vector itself is observed. 
R e m a r k  2: To apply the adjoint method, the adjoint operator M t ( t )  has to be 
implemented. For large-scale nonlinear models the propagation operator M is im- 
plicitly defined by its implementation in the source code of the model. Hence, also 
tlie adjoint operator has to be implemented as an operator rather than as an explicit 
ma,trix. The iiiiplementation is a difficult task. It can. however, be simplified by 
automatic differentiat,ion tools like TANG. See [53]. 
R e m a r k  3: The adjoint method does not provide an estimate of the error of the 
obtainecl optimal control variables. To obtain a,n error estimate, the Hessian matrix 
of the cost function J has to be determined [95] .  
R e m a r k  4: The adjoint method requires to integrate the model and the adjoint 
inodel multiple times during the optimization process. These integrations are the 
most time consuniing part of the algoritlim. 
R e m a r k  5: To evaluate the adjoint model operator M+), the state trajectory of 
the forward integration (point 2 )  has to be stored. If the time integration is per- 
formed over long time intervals wit,h large-scale models, huge memory requirements 
will result. 
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1.3 Sequential Data Assimilation 

Sequential data assimilation algorithms combine the predicted state estimate of a 
model with obser~~t ions  at  the time when the observational data becon~e available. 
The combination, denoted analysis, is computed using weights obtained from the 
estimated errors of both the model state and the observations. The computed state 
estimate can be used to perform a model forecast. Also it is possible to formulate 
smoothing algorithms which also modify the model state in the past on the basis of 
a newly amilable observation, See [86], This work will focus on filtering, that is, the 
current state is estimated using only the observations amilable up to the present 
time. 

Over the recent years there has been an extensive development of filter algorithms 
based on the Kalman filter (KF) [41, 421 in the atmospheric and oceanic context. 
These filter 81gorithms are of special interest due to their simplicity of implementa,- 
tion, e.g. no adjoint opera,tors are required, and their potential for efficient use on 
parallel computers with large-scale geophysical models [45]. In. addition, an error 
estimate is provided by the filter algorithms in form of an estimated error covariance 
matrix of the model state. 

The classical KF and the extended Kalman filter (EKF), See [38], share the prob- 
lern that for la,rge-scale models the requirements of computation time and storage 
are prohibitive. This is due to the explicit treatment of the error covariance matrix 
of the model state. Furthermore. the EKF shows deficiencies with the nonlinearities 
appearing, e.g., in ocea,nographic systems 1151. Due to this, algorithms 're required 
which reduce the memory and computation requirements and provide better abilities 
to handle nonlinearity. 

There have been different working directions over the recent years. One approach 
is based on a low-rank approximation of the state error covariance matrix of the EKF 
in order to reduce the computational costs. Using gradient approxima,tion of the 
linearized model which is required to evolve the covaria,nce ma,trix these 'lg~rit~hms 
also show better abilities to handle nonlinearity than the EKF. Examples of low- 
rank filters are the Reduced Rank Square-Root (RRSQRT) algorithm [88] and the 
Singular Evolutive Extendecl Kalman (SEEK) filter [68]. An alternative approach 
is to employ an ensemble of model states to represent the error statistics which a.re 
t,reated in the EKF by the state estimate and its covariance matrix. An example is 
the Ensemble Kaiman filter (EnKF) [17, 81 which applies a Monte Carlo method to 
forecast the error statistics. For an improved treatment of nonlinearities, Pham et 
al. [67] introduced the Singular Evolutive Interpolated (SEIK) filter as variant of 
the SEEK filter. It combines the low-rank approximation with an ensemble repre- 
sentation of the covariance matrix. This idea has also been followed in the concept 
of Error Subspace Statistical Estimation (ESSE) [49]. 

The major part of the computation time in data assimilation with filter algo- 
rithms is spent for the prediction of error statistics using the linearized or the non- 
linea,r model. Thus. the efficiency of a. filter algorithm will be determined by its 
ability to yield sufficiently good estimates with as few model evaluations as possi- 
ble. In general, using a larger rank for the approximation of the state covariance 
matrix or a larger ensemble for its ~epresent~tion will provide a more reliable state 
estimate. In practice: the rank or ensemble size will be, however, limited by the 
available computing resources. 



Chapter 2 

Filter Algorit hms 

2.1 Introduction 

This chapter introduces the mathematical founda.tions of filter algorithms based On 
the Kalman filter. In addition, the equations of several approxirnating algorithms 
are n~otivated and rela,ted to the extended Kalman filter. The focus lies on the 
Ensemble Kalman Filter [17], the Singular Evolutive Extended Kaiman (SEEK) 
filter [G81 and the Singular Evolutive Interpolated Kalman (SEIK) filter [6711. The 
EnKF and SEEK filters are representative for the two approaches of low-rank and 
ensemble filters. The SEIK filter is considered because it unites aspects of both 
approaches. The relation of these filters to other approximating filter algorithms 
will be discussed. The SEEK. EnKF, and SEIK algorithms a.pproximate the full 
error space of the EKF by an error subspace. In addition. all algorithms apply the 
analysis equations of the Kalman filter. For this reason, it will be referred to the 
algorithms as Error Subspace Kalman Filters (ESKF). 

The filter algorithms are presented and discussed based On the probabilistic view- 
point siinilar to Cohn [11] but with a. focus on nonlinear large-scale systems. For 
ease of comparison. the notations follow. as far as possible, the unified notation 
proposed by Ide et al. [37]. Section 2.2 introduces to the estimation theory. The 
Kaiman filter and the extended Kalman filter are motivated arid discussed in sec- 
tion 2.3. Subsequently, in section 2.4 the error subspace Kalma,n filter algorithms 
SEEK, EnKF. a,nd SEIK are introduced and discussed. The discussion of the ex- 
tended Kalman filter and the ESKF filters is performed assuming a linear relation 
between model fields arid observations. The situation of nonlinearly related model 
fields and observations is discussed in section 2.5. 

2.2 Statist ical Est imat ion 

We consider a physical system which is represented by its state x(t)  G S where S 
is a Hilbert space. The state is described by a discrete numerical model governing 
the propagation of the discretized state X' G Sn: denoted the true state. Since the 
discrete model only approxima,tes the true physics of the system, X* is a random 
vector whose time propagation is given by the stochastic-dynamic time discretized 

'The names of the latter two algorithms have a French origin with "evolutive" coming from the 
French word "6volutif" meaning evolving. 
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Here is a, possibly nonlinear, operator describing the state propagation be- 
tween the two coiisecutive time steps i - 1 and i. The vector 7 is the niodel error, 
which is assumed to be a stocliastic perturbation with Zero mean arid covariance 
matrix Q,. 

At discrete times {tk}, each Ak time steps, observations are avaihble as a vec- 
tor y: of dimension rnk The true stat,e X ;  at time t); is assumed to be related to 
the observation vector by the measurement model 

Here H); is the forward measurement opera,tor. It describes diagnostic variables, 
i.e., tlie observations which would be ineasured given the state X:.. The vector E;,- 

is tlie observation error consisting of the measurement error due to imperfect mea- 
surements and the representation error caused. e.g., by the discretization of the 
dynamics. ek is a random vector. It is assumed to be of Zero mean and covariance 
matrix Rk and uncorrelated with tlie model error n,.. 

The state sequence { X ' } .  prescribed by equation ( 2 . 1 ) .  is a stochastic process 
which is completely described by a probability density function ^ ( X ' ) .  The state 
sequence is a Markov process under the assumptions that  the model error r ]  is 
Gaussian and white in time { X : } .  In this case, the time evolution of ^ X : )  is described 
by the Fokker-Planck or forward Kolmogorov equation (see Jazwinski [38]), in time 
discretized form 

where t,he Greek indices denote the components. In practice, the high dimensionality 
of realistic geophysical models prohibits the explicit solution of the Fokker-Pla.nck- 
Kolmogorov equation. Nonetheless: it is possible to derive equations for statistical 
moments of the prob8bility density like the mean and the covariance matrix, See, 
for example Jazwinski [38]. 

In general, the filtering problem is solved by t,he conditional probability density 
function p ( x i [ Y ; " )  of the true state given the observations Y: = {Y:, . . . ,Y :}  up to 
time t);. In practice, it is not feasible to compute this density explicitly for large-scale 
models. Thus, one has to rely on the calculation of some statistics of the density. 
In the context of filtering usually the conditional mean is computed, which is a,lso 
the minimum variance estimate, See Jazwinski [38]. 

In the following we will concentrate on sequential filter algorithms. That is, the 
algorithms consist of two phases: In the f o r e c a s t  p h a s e  the  conditional probability 
density p ( ~ k - ~ ~ l Y z - ~ ) ,  or statistical moments of it,  is evolved up to  the time tk 
when observations are available, yielding p ( ~ ^ l Y : _ ~ ~ ) .  Then, in the a n a l y s z s  p h a s e ,  
the conditional density p ( x i 1 Y : )  is computed from the  forecasted density and the 
observation vector Subsequently the cycle of forecasts and analyses is repeated. 

To initialize the filter sequence an  initia,l density p ( x 6 l Y : )  is required. In practice 
this density is unknown and a density estimate p ( x o )  is used for the initialization. 
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2.3 The Extended Kalman Filter 

For linear dynamic and measurement models. the Kalman filter (KF) [41,42] is the 
minimum variance estima.tor if the initial probability density ^(X*) and the model 
en-or and observation error processes are Gausshn. To clarify the assumptions about 
the statistics of the model error, the observation error and the probability density 
of the model state, we will motivate the KF based on statistical estimation. With 
this we will also show the approximations which are required for the derivation of 
the Extended Kalman Filter. A detailed derivation of the KF in the context of 
statistical estimation is presented by Cohn [ll] 'nd several approaches toward the 
KF are discussed in Jazwinski [38]. 

First, let us consider linear dynamic and measurement operators. Thus, equa- 
tions (2.1) and (2.2) can be mitten in matrix-vector form as 

Here the linear operator propagates the state vector from time step k - Ak 
to time step k. We assume that the stochastic processes 77,. and E<: are temporal white 
Gaussian processes with Zero mean 'nd respective covariance matrices Qk and R k .  
Additionally, the probability density function ^(X') is assumed to be Gaussian with 
covariance matrix P k ,  and all three processes are mutually uncorrelated. Denoting 
the expectation operator by < >, the assumptions are summarized as 

where N ( a ,  B)  denotes the normal distribution wit,h mean a and covariance ma- 
trix B and hk1 is the Kronecker delta with dki = l for k = l and i5k; = 0 for k # l .  
Uncler assumptions (2 .6)  - (2.8) the corresponding probability densities are fully 
described by their two lowest statistical moments: the mean a,nd the covariance 
matrix. Applying this property, the KF formulates the filter problem in terms of 
the conditional ineans a,nd covariance matrices of the forecasted a,nd analyzed state 
probability densities. 

To derive the forecast equations for the KF only a pa,rt of assumptions (2.6) 
to (2.9) is required. Suppose the conditional density ~ ( X ~ _ ~ ~ I Y ~ - ~ ~ )  at  time tkpAk 
is given in terms of the conditional mean 

denoted analyszs state, and the analyszs covariance matrzx 

In the forecast phase, the KF evolves the density forward until time t k .  That is, the 
mean and covariance matrix of the probability density p ( ~ i I Y g - ~ )  are computed. 
The forecast state is the conditional mean X{ :=< X : . I Y ~ - ~ ~  >. With the dynamic 
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model equation (2 .4)  and the assumption that the model error has Zero mean this 
leads to 

X{. = Mk,t . -~f , -xE_& . (2 .12)  

The expression for the corresponding forecast covariance matr i x  follows from equa- 
tions ( 2 . 4 ) ,  (2 .12) ,  and the assumption (2 .9 )  that X ;  and T]^ are uncorrelated, a s  

Equa,tions (2.12) and (2.13) represent the forecast phase of the KF. Besides the as- 
sumption of uncorrelated processes X* and 77,. and unbiased model error no further 
statistical assumptions are required for the derivation of these equations, in partic- 
ular the densities are not required to be Gaussian. 

Suppose a vector of observations yg E Rn"- to be available a t  time t k .  Then 
the analysis phase of the KF computes the mean and covariance matrix of the 
conditional density p(xS IYg)  given the density p ( ~ i l Y i - ~ )  and the observation 
vector y?. Under the assumption that  the error process ek is white in time, the 
solution is given by Bayes' theorem as 

Since this relat,ion only implies the whiteness of e;. it is also valid for nonlinear dy- 
namic arid measurement operators. Assumptions (2.6) to (2 .9 )  are however required 
to derive the ana.l~Tsis equations as the mean and covariance matrix of the analysis 
density p(xk1Yk) .  A lengthly calculation leads to the analysis state X$ a,nd analysis 
covariance matrix P?, as 

where K k  is denoted the Kaiman  gazn. Equation (2.17) is only valid for a Kk given 

by 
K~ = P ~ H ~ P { . H ~  + R ~ ) - I  (2.18) 

or, alternatively. if Rk is invertible. 

Equations (2 .15)  to (2.18) complete the KF theory. 

The Extended Kalman filter (EKF) is a first-order extension of the KF to non- 
linear models as given by equations (2 .1)  and (2 .2) .  Again it is based on the first 
two statistical moments of the probability density and on the probabilistic assump- 
tions (2 .6)-(2 .9) .  The EKF equations are obtained by linearizing the dynamic and 
measurement operators around the most recent state estimate. We will consider here 
only the case of linear measurement operators. The use of nonlinear measurement 
operators is discussed in section 2.5. 
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The EKF forecast equations can be derived by applying a Taylor expansion to 
equation (2.1) a t  the last estimate, the analysis state X:-,. That is 

where z:_, == x:_i - X^ and Mi,,_i is the linearization of the operator MW 
around the estimate x:-~. Neglecting in equation (2.20) terms of higher than linear 
order in za the conditionai mean and the corresponding covariance matrix of the 
density ~ ( x k l Y $ - ~ )  are computed. This yields the EKF analog of equations (2.12) 
and (2.13) for the forecast of the state arid the forecast error covariance matrix: 

Here ~ n c o r r e l ~ t e d  statistics of the model errors and the state were assumed as in 
the KF. Equation (2.21) is iterated from time tfe-~fc until time tk  to obtain xj[. 

Since here only linear measurement operators H are considered, the analysis 
equations for the EKF are identical to those of the linear Kaiman filter. Thus the 
analysis of the EKF is given by equations (2.15) to  (2.19). 

To 'pply the KF or EKF the filter sequence has t o  be initialized. That is; an 
initial state estimate X; and a corresponding covariance matrix P$ has to be sup- 
plied which represent the initial probability density ^(X'). 

R e m a r k  6: The forecast of the EKF is due to  lineariza,tion The state forecast is 
only valid up to linear order in z while the covariance forecast is valid up to second 
order (z2 oc P a ) .  The cova,riance matrix is forecasted by the linearized model. For 
nonlinear dynamics this neglect of higher order terms can lead to an unrealistic 
representation of the covariance matrix [39] and subsequently to instabilities of the 
filter algorithm 1151. 
R e m a r k  7: To avoid the requirement for an adjoint model operator M(l\_^ the 
covariance forecast equation is usually applied as 

R e m a r k  8: The covariance matrix P is symmetric positive semi-definite. In a nu- 
merical implementation of the KF this property is not guara,nteed to be conserved, 
if equation (2.17) is used to update the covariance since the operations on P are not 
symmetric. In cont,rast to this equation (2.16) preserves the symmetry. 
R e m a r k  9: For linear models the KF yields the optimal minimum variante estimate 
if the covariance matrices Q and R as well as the initial state estimate (X;, P?,) are 
correctly prescribed. Then the estimate is also the maximum likelihood estimate, 
see Jazwinski 1381. For nonlinear systems, the EKF can only yield an approximation 
of the optimal estimate. For la,rge-scale systems, like in ~ c e a n o g r ~ p h y  where the 
state dimension can be of order 10' - 107, there are generally only estimates of the 
cova,riance matrices available. Also X?, is in general only an estimate of the initial 
system state. Due to  this, the practical filter estimate is sub-optimal. 
R e m a r k  10: For large scale systems the largest computational cost resides in the 
forecast of the state covariance matrix by equation (2.13). This requires 2n applica- 
tions of the (linearized) model operator. For large scale systems the corresponding 
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conlputational cost is not feasible. In addition, the KF and EKF require the st,orage 
of the covariance matrix containing n2 elements which is also not feasible for realistic 
models and current size of computer menlory. 

2.4 Error subspace Kalman Filters 

The large c~mput~ t iona l  cost of the KF and EKF algorithms implies that a direct 
a,pplication of these algorithms to realistic models with large state dimension is not 
feasible. This problem has led to the development of a. number of approximating 
algorithms, sometimes called 'suboptimal schemes' after Todling and Cohn [80]. 
While being clearly suboptimal for linear systems, this is not necessarily true for 
nonlinear systems. Treating the forecast of the statistics in different manners, e.g. 
by nonlinear ensemble forecasts. some algorithms are better suited for application 
to nonlinear systems than the EKF. 

This work focuses on three algorithms, the EnKF [17, 81, the SEEK Filter [68]. 
and the SEIK Filter [67]. As far as possible the filters are presented here in the 
unified notation [37] following the way they have originally been introduced by 
the respective authors. The relation of the filters to the EKF as well as possible 
variations and particular features of them are discussed. 

All three algorithms use a low-rank representation of the state covariance ma- 
trix P either by an explicit low-rank approximation of the matrix or by a random 
ensemble. Thus, the filter analyses operate only in a low-dimensional subspace. 
denoted as the error subspace. The error subspace approxin~ates the error space 
considered in the EKF. It is characterized by the eigenvectors and eigenvalues of the 
approximated state covaria,nce matrix. As all methods use t,he analysis equations 
of the EKF ada.pted to the particular method, we refer to the algorithms as Error 
Subspace Kaiman Filters (ESKF). This corresponds to the concept of error subspace 
statistical estimation [49]. 

2.4.1 SEEK - The Singular Evolutive Extended Kalman Fil- 
ter 

The SEEK filter [68] is a so called reduced-rank filter. It is based 011 the EKF using 
an approximation of the covariance matrix PS by a singular matrix of low rank and 
its treatment in decomposed form. 

From the statistical viewpoint, the rank reduction is niotivated by the fact that 
the probability densit,y function ^(X') is not isotropic in state space. If the density 
function is Gaussian it can be described by a. p r ~ b ~ b i l i t y  ellipsoid. whose Center is 
given by the mean X: and the shape is described by PS. Figure 2.1 sketches the prob- 
ability ellipsoid with its ma,in axes in two dimensions. The principal axes of the ellip- 
soid are found by an eigenvalue decomposition of Pi: {Pv^ = A^v('), i = 1 , . . . , n } ;  
where v ( ~ )  is the i'th eigenvector and A^ the corresponding eigenvalue. With this, 
the principal vectors are {G^ = (A( ' ) )~^V(~)} .  Approximating P; by the r (r < n) 
largest eigenmodes corresponds to the neglect of the least significant principal axes 
of the p r ~ b ~ b i l i t y  ellipsoid. Also it provides the best rank-r approximation of Pi> 
see Golub and van Loan [26]. The retained principal vectors {G('), i = 1,. . . , r} 
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Figure 2.1: Probability ellipsoid representing the probability density function p(xf). 

are the basis vectors of a tangent space at the state space point X;. This is the 
en-or subspace Â£ which approximates the true error space characterized by the full 
covariance matrix. The metric of 2 is given by G = diag ( ( A ^ ) l , .  . . , (AM) ' ) .  
In SEEK the error subspace is evolved until the next analysis time of the filter by 
forecasting the vectors {V('), i = 1,. . . , r} with the linearized model. In the analysis 
phase the filter operates only in the error subspace, t,hat is, in the most significant 
directions of uncertainty. 

The SEEK filter is given by the following eqmtions: 
Initialization: 
The initial probability density p(x6) is provided by the initial state estimate xg and 
a rank-r a.pproximation (T << n) of the comriance matrix P; given in decomposed 
form: 

X; =<X;>; P ; : = V ~ U ~ V ~ ~ P ;  (2.24) 

Here, Matrix V. WXr contains in its columns the corresponding eigenvectors 
(modes) of P;. The diagonal n~atrix U. ? W^ holds the r largest eigenvalues. 
Forecast : 
The SEEK forecast equa,tions are derived from the EKF by treating the covariance 
matrix in decomposed form as provided by the initialization. 

Analysis: 
The analysis equations are a re-formulation of the EKF analysis equations for a 
covariance matrix given in decomposed form. To maintain the rank r of P?j the 
model error covariance matrix Qk is projected onto the error subspace by 

With this the SEEK 3nalysis equations are for an invertible matrix Rk 
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The analysis covariance matrix is implicitly given by P?, := Vt.UkV^. 
Re-diagonalization: 
To avoid that the modes {V/,)} become large and increasingly aligned a re-ortho- 
normalization of these vectors is required. This ca,n be performed by computing the 
eigenvalue decomposition of thc matrix B;, 6 Rrxr defined by 

where A k  is computed by a Cholesky decomposition of the matrix Uk:  U k  = A k A z .  
The eigenvalues of Bk are the Same as the non-zero eigenvalues of P? = V ~ U ; , V ~ .  
Let C k  contain in its coluinns the eigenvectors of B k  and the diagonal matrix D\- the 
corresponding eigenvalues. Then the matrix V holding re-orthonormalized modes 
and the corresponding eigenvalue matrix U are given by 

Remark 11: The sta,te covariance matrix is a p p r ~ x i m ~ t e d  by a singular matrix P 
of low rank. Throughout the algorithm the approximated matrix is treated in the 
decomposed form P = VUVT.  The full covariance matrix is never computed ex- 
plicitly a,nd has never to be stored. 
Remark 12: Due to its treatment in decomposed form. all operations on P are 
performed symmetrically. Hence, P remains symmetric throughout the algorithm. 
Remark 13: It is not required that the decomposition of P is computed frorn a 
truncated eigenvalue decomposition of the prescribed matrix Pi. However, mathe- 
matically this yields the best approximation of Pi. 
Remark 14: The forecast of the covariance matrix is computed by only forecasting 
the r modes of P. With typically r < 100 this brings this forecast toward acceptable 
computation times. 
Remark 15: The SEEK filter is a re-formulation of the EKF focusing on the an- 
alyzed state estimate and covaria,nce matrix. Hence its filtering performance will 
be sub-optimal. Further. SEEK inherits the stability problem of the EKF by con- 
sidering only the two lowest statistical moments of the probability density. If r is 
too small, this problem is even amplified. as Pa systematically underestimates the 
varia,nce prescribed by the full covariance matrix Pa. This is due to  the neglect of 
eigenvalues of the positive semi-definite matrix Pa. 
Remark 16: The increment for the analysis update of the state estimate in equa- 
tion (2.29) is computed as a weighted average of the mode vectors in. V\- which belong 
to the error subspace. This becomes visible when the definition of the Kaiman gain 
(equation (2.30)) is inserted into equation (2.29): 

The term in bra,ckets represents a vector of weights for combining the modes V .  
Remark 17: In practice, it can be difficult to specify the linearized dynamic model 
operator Mi,;_i. As an alternative, one ca,n approximate the linearization by a 
gradient approximation. Then, the forecast of column a of V:,, denoted by V", 

is given by 
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For a gradient approximation the coefficient e needs to be a small positive num- 
bei- (e < 1). Some authors [91, 311 report the use of e w 1. This can bring the 
algorithm beyond a. purely tangent-linear forecast but it is no more defined as a 
gradient a.pproximation and requires an ensemble interpretation. 

. 

Remark 18: Due the neglect of higher order terms in the Taylor expansion (2.20) 
the forecast of the stak estimate will be systematically biased. To account for the 
first neglected term in the Taylor expansion second order forecast schemes have 
been discussed [87, 731. The examination of the forecast bias can also be utilized to 
quantify the nonlinearity of the forecast [89]. 
Remark 19: Equation (2.28) for the matrix Uk can be modified by multiplying 
with a so called forgetting factor p, (0 < p < 1) [68]: 

The forgetting factor can be used as a tuning pammeter of the analysis phase to 
down-weight the sta,te forecast rela,tive to the observa,tions. This can increase the 
filter stability as the systematic underestimation of the variance is reduced. 
Rernark 20: In equation (2.26) the modes V of P are evolved with initially unit 
norm in the state space. However, it is also possible to use modes scaled by the 
Square root of the corresponding eigenvalue, i.e. the basis vectors of the error sub- 
space, Then, matrix U will be the identity matrix. Using scales modes the re- 
diagonalization should be performed after each analysis stage, with equations (2.32) 
replaced by V;,. = V k C k  and Uk = I r x r .  This scaled algorithm is equivalent to  the 
RRSQRT algorithm introduced by Verlaan and Heemink [88]. 

2.4.2 EnKF - The Ensemble Kalman Filter 

The EnKF [17, 81 applies a Monte Carlo method to sample a,nd forecast the prob- 
ability density function. The initial density ^(X') is sampled by a finite random 
ensemble of state realizations. The density is forecasted by evolving each ensemble 
member with the full stochastic model. For the a,nalysis each ensemble sta,te is up- 
dated using an observation vector from an ensemble of observations, which has to 
be generated according to the observation error covarimce matrix. 

From the viewpoint of st,atistics the EnKF solves the Fokker-Planck-Kolmogorov 
equation (2.3) for the evolution of the probability density p(xt) by a Monte Carlo 
method. In contrast to the SEEK algorithm, where the rank reduction directly 
uses t,he assumption that the density is Gaussian and thus can be described by a 
probability ellipsoid, the EnKF sa,mples the density by a random ensemble of N 
model states { X $ ) ,  a = 1 , .  . . , N}. The probability density is given in terms of the 
ensemble n~ember density in state space dhr: 

for N + oo 

This sampling of ^(X*) converges rather slow (proportional to . /V'/ ' ) ,  but it is valid 
for any kind of probability density, not just Gaussian densities. Forecasting each 
ensemble state with the stochastic-dynamic model (2.1) evolves the sampled density 
with the nonlinear model until the next analysis time. In the analysis phase the 
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EKF analysis, which implies that the densities are Gaussian, is applied to each of 
the ensemble states. For the analysis the covariance matrix P is approximated by 
the ensemble covariance matrix P. Since the rank of P is at most AT - 1 ,  the EnKF 
also operates in an error subspace which is determined by the random sampling. Un- 
like the SEEK filter the directions are not provided by the principal vectors of the 
prescribed covariance matrix but determined by the random sampling. To ensure 
that the ensemble analysis represents the combination of two probability densities, 
the observation error covariance matrix R has to be represented by a random en- 
semble of ob~erv~t ions  [8]. Each ensemble state is then updated with a vector from 
this observation ensemble. This implicitly updates the state covariance matrix. 

The EnKF algorithm is prescribed by the following equations: 
Initialization: 
The initial probability density p(x9 is sampled by a random ensemble of N state 
realizations. The statistics of this ensemble approximate the initial state estimate 
and the corresponding covariance matrix, thus 

wit h 
- 1 
X ;  = - 

N 
X ^  - ^ < X ;  > for N 4 M ,  

0=1 

- 1 Ar T 
P; := - (X$Â¡ - G) (X*) - g) + P; for N + M .  (2.39) 

Al - 1 
0=1 

Forecast : 
Each ensemble member is evolved up to time tk with the nonlinear stochastic- 
dynamic model (2.1)  as 

Analysis: 
For the analysis a random ensemble of observation vectors { y " ,  Ã = 1 , .  . . , N }  
is genemted which represents an approxima,te observation error c o ~ a r i ~ n c e  ma- 
trix (R;; E R k ) .  Each of the ensernble members is updated analogously to the EKF 
analysis by 

The analysis sta,te &nd corresponding covariance matrix are then defined by the 
ensemble mean and covariance matrix as 

. 1v 

1 IV T f"i := - E (XÂ¥^(Â - X̂ ) (Xi?) - X;.) 
N - 1  

a=l 
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which complete the analysis equations of the EnKF. 
An efficient implementation of this analysis is formulated in terms of "represen- 

ters" [19]. This formulation as well permits to handle the situation when H ^ P ~ H ^ ~  
is singular, which will occur if mk > N. The state analysis equation (2.41) is written 

The columns of the matrix P{H$ are called representers and constitute influence 
vectors for each of the measurements. Amplitudes for the influence vectors are given 
by the vectors { b p }  which are obtained as the solution of 

The explicit computation of P{ by equation (2.43), is not required in the algo- 
rithm. It suffices to compute (see, for example Houtekamer and Mitchell [34]) 

For later use we also introduce the matrix notation of the EnKF. The initia,l state 
ensernble matrix holds in its columns the ensemble states as XE = {x$~), . . . X$'")}. 

o ( N )  Introducing the ensemble rnatrix of the observation vectors Y: = . . , yk } 
we can rewrite equation (2.47) for the influence a,mplitude as 

where Bk is the matrix of influence amplitudes. The ensemble update (eq. 2.46) is 
now given as 

X- + P ~ H ~ B ~  . (2.51) 

In acldition> the computation of the representers P~H;  and the covariance matrix 
H^P[H; is written in matrix notation as 

- 

Here the matrix ~ b o n t a i n s  in all columns the vector X{. 

The EnKF comprises some particular features due to  the use of a Monte Carlo 
method in all phases of the filter: 
Remark 21: The EnKF treats the covariance matrix implicitly in a Square root 
form, as is evident from equations (2.43) and (2.45). With this the covariance matrix 
remains symmetric in the EnKF. As in the SEEK algorithm it is neither required 
to store t,he full covariance matrix nor to compute it explicitly. 
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R e m a r k  22: The forecast phase evolves all N ensemble states with the nonlinear 
model. This also allows for non-Gaussian densities. Algorithmically the ensemble 
evolution has the benefit that a linearized model operator is not required. 
R e m a r k  23: The analysis phase is derived from the EKF. Thus, it only accounts 
for the t,wo lowest statistical moments of the probability density. Using the mean of 
the forecast ensemble as state forecast estimate leads for sufficiently large ensembles 
to a more accurate estimate than in the EKF. From the Taylor expansion, equa- 
tion (2.20), it is obvious that this takes into account higher order terms than the 
EKF does. In contrast to the EKF and SEEK filters P is only updated implicitly 
by the analysis of the ensemble states. 
R e m a r k  24: The representer analysis method applied in the EnKF operates on 
the observation space. Hence, the error subspace is not explicitly considered. An 
algorithm which operates On the error subspace is given by the concept of Error 
Subspace Statistical Estimation (ESSE) 1491. 
R e m a r k  25: The analysis increments for the ensemble states are computed as 

weighted means of the vectors X- - X- which belong to the error subspace. Thus 
the analysis equation (2.51) for the ensemble update can be written as 

Evensen [18] noted tha,t the analysis can also be interpreted as a weakly nonlinea 
combination of the ensemble states. The first interpretation, however, shows that 
the update increments are computed in the error subspace. 
R e m a r k  26: Using a Monte-Carlo sampling of the initial probability density also 
non-Gaussian densities can be represented. As the sampling convergences slowly 
with 0 ( N 1 I 2 ) ,  rather large ensembles (N 2 100) x-e required [17; 191 to avoid too 
big sampling errors. 
R e m a r k  27: To enhance the quality of the filter estimate for small ensemble sizes 
a variant of the EnKF has been proposed which uses pair of ensembles [34]. From 
the mathematical viewpoint it is, however, advisable to use as large as possible en- 
sembles to ensure that the statistics can be estimated correctly. In addition, for a 
given ensemble size the state estimate of the EnKF using a single ensemble is better 
than the state estimate of the double-ensemble EnKF with the Same total number 
of ensemble states [84, 351. 
R e m a r k  28: Since the estimated correlations of the EnKF will be noisy for small 
ensembles it has been proposed [36] to filter the covariances by a. Schur product of 
correlations functions of local support with the ensemble covariance matrix. This 
technique filters out noisy long-range correlations. Further, correlations are inter- 
mediate dista.nces will be wea.kened. Hence. the influence of observations are in- 
termediate distances is reduced. See 1301. The localization will, however, introduce 
imbalances into the ensemble states as has been studied by Mitchell et al. [56]. 
R e m a r k  29: The generation of an observation ensemble is required to ensure consis- 
tent statistics of the updated state ensemble [8].  With the observation ensemble the 
covariance matrix Rk is represented as R;; in equation (2.16) which would be miss- 
ing otherwise. This, however, introduces additional sampling error to the ensemble 
which is largest when the ensemble is small compared with the rank of Rk, e.g. if R k  
is diagonal. Furthermore, it is likely tha,t the state and observation ensembles have 
spurious correlations. This introduces an additional error term in equation (2.16). 
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Remark  30: In equations (2.42) and (2.47) it is possible to use, instead of the 
prescribed matrix R k .  the ensemble error covariance matrix R;. of the observation 
ensemble {P, A; = 1,. . . , N}. As proposed by Evensen [H], this allows for an 
analysis scheme which is numerically very efficient. However, due to the sampling 
problems of Rfc this can lead to a further degradation of thc filter quality. 
Remark  31: To avoid the requirement of a,n ensemble of observations, several algo- 
rithms have been proposed which perform the analysis only On the ensemble mean 
and transform the ensemble after this upda,te [l, 5. 941. These filter algorithms can 
be interpreted in a unified way as ensemble Square root filters [79]. 

2.4.3 SEIK - The Singular Evolutive Interpolated Kaiman 
Filter 

The SEIK filter [67] has been derived as a variant of the SEEK algorithm. It  uses 
interpola,tion instead of linearization for the forecast phase. Alternatively it can be 
interpreted as an ensemble Kalma,n filter using a preconditioned ensemble. As in 
the SEEK algorithm the SEIK filter uses a low-rank appr~xim~tion of the cova,ri- 
ance matrix. From this an ensemble of minimun~ size is generated whose ensemble 
statistics exactly reproduce the approxima,ted covaria.nce matrix. The ensemble is 
forecasted with the nonlinear model like in the EnKF algorithm. The analysis is 
performed in analogy to that of t,he SEEK filter with a. single observation vector 
using the ensemble mean and cova,riance matrix. Subsequent to the 'nalysis, the 
stat,e ensemble is resamplcd to represent thc analysis state estimate and covariance 
matrix. The SEIK algorithm should not be confused with other interpolated vari- 
a n t ~  of the SEEK filter, e.g. [90], which typically correspond to the SEEK filter with 
gadient approximation. 

Statistically the initialization of the SEIK filter is analogous to that of the SEEK: 
The probability density p(x6) is again represented by the principal axes of P$ and 
approxima,ted by the r largest eigenmodes. In the SEIK algorithm the eigenmodes 
a,ree however, not directly evolved but a. ra.ndom ensemble of r + 1 state realizations 
is generated. This ensemble exactly represents the mean and covariance matrix of 
the approximated probability density. The density is forecasted by evolving each of 
the ensemble members with the nonlinear model. The evolved error subspace is de- 
termined by computing the forecast state estimate and covariance matrix from the 
ensemble. The analysis is performed analogous to the SEEK filter. This Kalman- 
type analysis assumes aga,in Gaussian densities. 

The SEIK filter is given by the following equations: 
Initialization: 
The initial proba,bility density p(x6) is provided by the initial state estimate X: and 
a rank-r approximation of PS given in decomposed form as 

From this information a,n ensemble of r + 1 state realizations is generated as the 
state matrix 

x@++l) } Xi = . . . , (2.56) 



2.4 Error subspace Kaiman Filters 2 5 

To ensure that equations (2.57) and (2.58) hold, the ensemble is generated in a 
procedure called minimum second-order exact sampling [6512. For this, let Co con- 
tain in its diagonal the Square roots of the eigenvalues of P:, such that U. = CFCo. 
Then PE is written as 

P; = v ~ c ~ $ ~ c ~ v ~ ~  , (2.59)  

where no is a ( r  + 1)  X r random matrix whose columns are orthonormal and or- 
thogonal to the vector ( 1 , .  . . , l j T  which can be obtained by Householder reflections, 
see, e.g., Hoteit et al. [33]. The state realizations of the ensemble are then given by 

where (07)^ denotes the a-th column of 0;. 
PS cm also be described in terms of the ensemble states by 

T is a ( r  + 1 )  X r m8trix with Zero column sums. A possible choice for T is 

Here 0 represents the matrix whose elements are equd to Zero. The elements of the 
matrix 1 a,re equal to one. Matrix T fulfills the purpose of implicitly subtracting 
the ensemble mean when computing P:. Equation (2.61) can be written in a form 
analogous to the covariance matrix in (2.55)  as 

with 

Forecast : 
Each ensemble member is evolved up to time tk  with the nonlinear dynamic model 
equation 

= A ~ , - I [ X . I ] .  a ( a )  (2.66) 

Analysis: 
The analysis equations are analogous to the SEEK filteq but here the forecast state 

^ote that the definitions of the sampled covariance matrices are different in EnKF and SEIK. 
The EnKF uses a norn~alization factor (N - 1)-I while SEIK uses (T + 1)"' = Np'. However, 
in both algorithms the ensemble is generated to be consistent with the respective definition of the 
covariance matrix. 
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- 

estimat,e is given by the ensemble mean X[ To maintain the rank r of matrix Qk 

is again projected onto the error subspace according to equation (2.27) with VA- re- 
placecl by Lk defined by equation (2.64). Uk is updated as in the SEEK algorithm 
(equation (2.28)): but with Uk-& being replaced by the constant matrix G (equa- 
tion 2.65). Thus, the analysis equa.tions a,re 

The analysis covariance matrix is implicitly given by P; := LfcUfcLl. 
Resampling: 
To proceed with the filter sequence the ensemble has to be resampled in consistency 
with relations (2.57) and (2.58) at  time tk. The procedure is analogous to  the 
initial ensemble generation but here a Cholesky decomposition is applied to obtain 

7 

U;' = CkCt.  Then Pf can be written in analogy to (2.59) as 

where (̂  has the Same properties as in the initialization. Accordingly the ensemble 
members are given by 

The SEIK algorithm shares features of both the SEEK and the EnKF filters: 
Remark 32: Using second order exact sampling of the low-rank approximated co- 
variante matrix leads to smaller sampling errors of the ensemble covariance matrix 
compared with the Monte Carlo sampling in the EnKF. 
Remark 33: The ensemble members are evolved with the nonlinear model. Thus, 
as algorithmic benefit, the linearized model operator is not required. In addition, 
the nonlinea,r ensemble evolution yields a more realistic forecast of the covariance 
matrix compared with the SEEK filter. Furthermore, the forecast permits to  treat 
model errors as stochastic forcing like in the EnKF. 
Remark 34: The forecast state estimate is computed as the mean of the ensemble 
forecast. Analogous to the EnKF this leads to a forecast accounting for higher order 
terins in the Taylor expansion equation (2.20). 
Remark 35: Like in the SEEK filter, the analysis phase of the SEIK operates 
only in an error subspace given by the most significant directions of uncerhinty. 
With this the SEIK filter is analogous to the concept of Error Subspace Statistical 
Estimation (ESSE) [49] The difference of the SEIK to Square root EnKF algo- 
rithms [1, 5, 94, 791 lies in the fact that these algorithms compute the analysis 
update in the observation space rather than the error subspace. 
Remark 36: The forecast phase uses an ensemble which exactly represents the 
low-rank a p p r ~ x i m ~ t e d  state covariance matrix. It has the minimal size r + 1. A 
similar scheme, called unscented transformation, has been discussed by Julier et 
al. [40, 391. This scheme evolves an ensemble of 2r + 1 states. The ensemble is 
initialized by the state estima,te X;, the r states {X; + T̂ , o: = 1,. . . , r } ,  and the r 
states {X; - V̂} where the {V̂} a,re the basis vectors of the error subspace. 
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2.5 Nonlinear Measurement Operators 

We formulated the Kalman filter and the error subspace Kalman filters with linear 
ineasureinent operators H k .  It is, in general possible to apply nonlinear measurement 
operators HA with these filters. As we will explain below, the application of a 
nonlinear measurement operator cannot be expected to provide an optimal filter 
estimate. 

2.5.1 Nonlinear Measurement Operators in the Extended 
Kalman Filter 

To derive the EKF analysis equations with a nonlinear measurement operator a 
Taylor expansion is applied to the observation model (2.2) a t  the forecast state X'. 
Writing z{ := x1, - X{ it is 

Here H;; is the l inea r i~~ t ion  of the measurement operator H;; around the forecast 
estimate X {  Neglecting in the expansion t,erms of higher than linear order in 4, 
the analysis equations with nonlinear H are obtainecl analogous to equa,tion (2.15) 
to (2.18) as 

X ;  = x{+K;;(yE - ~kUi}) (2.73) 

PE = ( I - K & ) P {  (2.74) 

The Kalman gain K;; is again given by equation (2.18). 
The problem in the application of nonlinear measurement opemtors lies in the 

fact that  the derivation of the analysis equations of the K F  implicitly assumes that  
H;;x& is Ga,ussian distributed. If the distribution of X: is Gaussian this will be 
fulfilled for a linear operator H;;. However, the nonlinear transformation H ; ; x i ]  will 
not yield a Gaussian distribution, even if X* is Gaussia,n. Due to this, the analysis 
probability density p ( x 2 Y ; )  will not be Gaussian and hence not be completely 
described by its mean and covariance matrix. Hence. the filter estimate will be sub- 
optimal for all filters which are based on the analysis equations of the Kalman filter. 
The state estimate will not be the minimum variance estimate. In some situations, 
this can yield stability problems, as was shown, e.g., by van Leeuwen [85]. A possible, 
more consistent, way to cope with the nonlinear H is t o  q p l y  an iterative analysis 
scheme instead of the EKF analysis equations (2.73) &nd (2.74): See e.g. [38, 111. 

2.5.2 Direct Application of Nonlinear Measurement Oper- 
ators 

Despite the fact that  nonlinear measurement opera,toor will yield a. sub-optimal filter 
estimate, there is no reason which would forbid their application a t  all. In the error 
subspace filter algorithms which use a,n ensemble formulation, namely the SEIK and 
the EnKF algorithm, the nonlinear measurement operators can be directly applied. 
We discuss this first in the context of the EnKF algorithm as has been shown e.g. 
by Houtekamer and Mitchell [36]. Since all fields and operators refer to the time t;; 
the time index is omit,ted in the following. 
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The application of the nonlinear operator H  is, in general, always valid when 
applied to a real model state X. Due to the nonlinearity the application of H to 
a state differente as ~ [ ( ~ ) x f  - x/] will yield a different result than the operation 
~ [ ( ~ ) x f ]  - ~ [ z ] .  Hence. equations (2.52) and (2.53) have to be reformulated with 
nonlinear operators H  as 

where H [ X f ]  denotes the operation of H on all columns of X f .  The notations on the 
left hand side of the equations have to be considered as symbolic, since no simple 
matrix-matrix operations are performed. Next to these equations, equation (2.50) 
for the influence amplitudes reads 

Using the SEIK filter, the nonlinear measurement operator can also be applied. 
For this the term HL in equations (2.67) and (2.69) has to be replaced by ( H [ X f ] ) T .  
In addition equation (2.68) has to be written as 

With these replacements the ensemble formulations used in the EnKF and SEIK 
algorithms do no more require the linearized operator H. Despite this, these for- 
mulations comprise the problein that the analysis will not yield an optimal result of 
minimal variance since the analysis probability density will not be Gaussian. 

2.5.3 State Augmentation to avoid Nonlinear Measurement 
Operators 

To avoid the use of a nonlinear measurement operator, it has been proposed, See 
e.g. [l, 18, 41, to augment the state vector by the diagnostic variables. In this case, 
the mcasurement operator becomes trivially linear reducing the a,ugmented state to 
the diagnostic variables. 

For the state augmentation consider the state vector X E Rn and the observations 
yO = H [ x  + e E Rn. Now the augmented model state vector X E IRn1"" is defined 

The &ugmented state vectors are hold by the ensemble matrix X = { ^ k ,  . . . ,('̂  k } .  
Now the measurement model is linear. It is given 

with the new linear measurement operator H = (O,nxn l m x m ) .  
We can rewrite the analysis equations (2.50) and (2.51) of the EnKF filter as 
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where B is computed from 

In equation (2.81) we consider only the upda,te of the first n elements in the state 
vectors. The augmented part is not changed by the update. 

The representer matrix p f H T  and the matrix H p f H T  are given by 

Using equations (2.81) to (2.84) the analysis update can be performed applying only 
the linear measurement operator H. 

On the other ha,nd, when the operation of H in equa,tions (2.82) to (2.84) is 
performed a,nd the definition (2.79) of the augmented state is used it is 

and 

Eqmtions (2.85) and (2.87) are identical to equations (2.75) ancl (2.77) formu- 
lated for the direct application of the nonlinear operator H discussed in section 2.5.2. 
Thus, the method of state augmentation is in fact equivalent to the direct application 
of the nonlinear measurement operator. 

The logical fault in considering the method of state augmentation as the solution 
to cope with nonlinear rneasurement operators is that, despite the linear measure- 
ment operator, the distribution of the dia.gnostic varia,bles H\x] will not be Gaussian. 
This is hidden in the formula,tion and likely to be overlooked. As the problems of 
state augmentation and direct application of H are the same, the latter method 
should be used in numerical applications. It does not produce computational over- 
head due to larger memory requirements for the state allocation. 

2.6 Summary 

Three different filter algorithms based on the Kalman filter have been motivated 
and discussed in the context of statistical estimation. These have been the EnKF, 
SEEK, arid SEIK algorithms. These filter algorithms use a. low-rank representation 
of the state covariance matrix arid perform an analysis derived from the Extended 
Kalman filter (EKF). Due to this, we refer to these algorithms as Error Subspace 
Kaiman Filters (ESKF). The ESKF algorithms have been related to the EKF. In 
addition, possible variations of the algorithms have been cliscussed. 
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The SEEK filter is a re-formulation of the EKF for a low-rank approxirna,ted 
st,ate covariance matrix given decoinposed form. This formulation reduces the com- 
putational costs to evaluate the forecast. In addition, the memory requirements are 
reduced by storing the covariance matrix in decomposed form. The EnKF filter ap- 
plies a Monte Ca,rlo inethod to sample and forecast the probability density function 
of the state estimate. In addition, the analysis computes the combination of two 
probability densities. These are the densities of the state estimate and of the obser- 
vations. The analysis is performed by applying the analysis equations of the EKF 
to each ensemble state. The SEIK filter is an interpolated va,riant of the SEEK fil- 
ter. Alternatively. it can be interpreted as an ensemble filter using a preconditioned 
ensemble. The SEIK algorithm uses an ensemble forecast as the EnKF filter. The 
analysis is computed analogous to the SEEK algorithm. The SEEK, EnKF, and 
SEIK algorithms will be compared more det'iled in the next chapter. 

Besides the ESKF algorithms, the problem of nonlinear measurement operators 
has been discussed. In this case, the filter estimate will be sub-optimal since the 
probability density of the analyzed state estimate will generally not be Gaussian. 
The ensemble based algorithms EnKF and SEIK show the advantage that they 
permit to a.pply the nonlinear operator directly. In contrast to this, the SEEK filter 
as well as the EKF require also the application of a linearized operator. It was also 
shown that including the diagnostic variables into the state vector, referred to as 
state augmentation, does only virtually solve the problem of nonlinear measurement 
operators. This method is equivalent to the direct application of the nonlinear 
operator. 



Chapter 3 

Comparison and Implementat ion 
of Filter Algorithms 

3.1 Introduction 

For the application of filter algorithms to geophysical modeling problems we are 
concerned with the sea,rch for filter algorithms for large-scale nonlinear systems. 
The three ESKF algorithms introduced in the previous chapter are compared under 
this aspect in section 3.2. Since all three filters owe t,he Extended Kaiman Filter their 
similarity, the comparison focuses on the differences of the filters and consequences 
for their application to nonlinear systems. Further, relations to the error subspace 
are discussed. The EnKF a.nd SEEK algorithms have also been compared by Brusdal 
et al. [7]. This work aimecl at formulating the equations of the SEEK filter as similar 
as possible to the equations of the EnKF algorithm. Thus. the focus was rather on 
the similarity of the algorithms. Some of the results of the work by Brusdal et al. 
disagree with our comparison since the authors used also formulation of the SEEK 
filter which differs from the formula~tioii presented in section 2.4.1. 

Besides the comparison of the algorithms, possible efficient implementations of 
the filters are presented in section 3.3. This includes a. framework for filtering arid the 
implementations of the analysis a,nd resa,inpling algorithms themselves. Finally, the 
~omputa t ion~l  complexity of the three filter algorithms is compared in section 3.4. 

3.2 Comparison of SEEK, EnKF, and SEIK 

All three algorithms have in common that they treat the covariance matrix P implic- 
it,ly in some decomposed form. This avoids the requirement to compute P explicitly 
or to allocate storage for the whole covari8nce matrix. In &ddition, as all Opera- 
tions on P are symmetric, the cova,riance matrices remain symmetric throughout 
the computations. 

3.2.1 Representation of Initial Error Subspaces 

The initialization of the algorithms implies a. different representation of their error 
subspaces representing the probability density p(x?,). The initial density p(xk) is 
usually assumed to be Ga~issian or at  least approximately Gaussian since the analysis 
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phase of the filters also assumes a. Gaussian density. Hence, p(xk) is fully described 
by the state estimate X?, ancl the state covariance matrix PS. The Monte Carlo 
sampling usecl in the EnKF filter represents p(xh) by a. random ensemble of model 
state realizations. This approach permits, in general, to  sample arbitrary probability 
densities. The sampling converges ra,ther slow since the relative weights of the 
eigenvalues of Pi, and hence the relative importances of the directions in the  error 
subspace, are not taken int,o account. The statistics of the ensemble represent the 
error subspace. The SEEK and SEIK algorithms represent the error subspace at 
the state spa,ce point of the estima,te X?, by the r major principal axes of the error 
ellipsoid described by the covariance matrix P i .  This implies that the probability 
density is Gaussian or a t  least well described by P?,. The SEEK filter treats the 
covariance matrix directly in it's decomposed form given by eigenvectors and a 
matrix of eigenvalues. The SEIK filter uses a statistical ensemble of minimum 
size, generated by minimum second-order exact sampling, whose ensemble statistics 
exactly represent the approximated P?,. For SEEK and SEIK the convergence of 
the approximation with increasing r depends on the eigenvalue spectrum of Pi. 
Typically, the sampling error in SEEK and SEIK will be much smaller then in the 
EnKF. 

To exemplify the different sampling methods, figure 3.1 shows the sampling which 
represents the matrix 

3.0 1.0 0.0 
P = ( L0 3.0 0.0 ) . (3.1) 

0.0 0.0 0.01 

Pt has the eigenvalues AI = 4, Ag = 2, and As = 0.01. Thus, the smallest eigenvalue 
can be neglected to perform a low-rank approximation. The full matrix Pt ca,n 
be represented by a probability ellipsoid in three dimensions while the low-rank 
approximation is represented by an ellipse. The sampling proposed for SEEK (upper 
left panel of figure 3.1) directly uses the eigenvectors of Pt. In contrast, the RRSQRT 
algorithm [88], See also the remarks in section 2.4.1, uses modes which are scaled 
by the Square root of the corresponding eigenvalue. Pure Monte Carlo sampling as 
used in the EnKF generates in this example an ensemble of much higher sampling 
errors. This is visible in the upper right pa,nel for an ensemble size of AT = 100. 
The second order exact sampling applied to initialize the SEIK filter is shown in the 
bottom panel. Here, three stochastic ensemble states represent exactly the low-ra,nk 
approximated matrix Pt. 

The row-rank approximation used for second-order exact sampling assumes, that 
the ma,jor part of the model dynamics is represented by a limited number of modes 
or empirical orthogonal functions (EOFs). For realistic geophysical systems this 
requirement should be fulfilled, as has been shown, for example by Patil et al. [61] 
in the context of atmospheric dynamics. 

Despite their different representations of t,he error subspace all three filters can be 
initialized from the Same probability density or covariance matrix. For a consistent 
comparison of the filtering performa,nce of different algorithms, it is even necessary 
to use the same initial conditions. Furthermore, the forecast and analysis equations 
of the EnKF and SEIK filters are in fact independent from the method the state 
ensembles are generated. Thus: the initialization methods of Monte Carlo sampling 
and second-order exact sampling can be interchanged between EnKF and SEIK. 
Also the SEEK filter requires only the matrices V; a,nd U;, but it is independent 
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SEEK 

S E E K  rnodes 
4 scaled rnodes 
- True prob. ellipsoid 

Minimum 2nd order exact sampling (SEIK) 

Monte Carlo Initialization (EnKF) 
4 

SEIK ensemble states 
- True prob. ellipsoid 

3 

1 sarnpled ellipse 

. EnKF ensernble states 
- True prob. ellipsoid 

- - -  - .  sarnpled ellipsoid 

Figure 3.1: Sampling of a covariance matrix of rank 3 with SEEK (upper left), EnKF 
(upper right), and SEIK (bottom panel). 

from the method used to initklize these matrices. In general, the method to generate 
an initial state ensemble should hence be considered separately from the particular 
filter algorithm. It is still an Open question which type of ensemble initialization 
will provide the best filter results in terms of the estimation error arid the error in 
the estimated varia,nce of the state estimate for a given ensemble size. The study of 
different in i t ia l i~~t ion approaches is a topic of current research in meteorology, See 
e.g. f28, 29, 921. 

3.2.2 Prediction of Error Subspaces 

The forecast phase of the filter algorithms computes a prediction of the state esti- 
mate X! and the error subspace at  the next observation time t k .  The SEEK filter 
evolves the state estimate xgPAi. with the nonlinear model to predict X{. To evolve 
the basis of the error subspace, the niodes of PEpA,. are evolved with the linearized 
model or a gradient approximation of it. In contrast to this, the EnKF and SEIK 
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filters rely on nonlinear ensemble forecasting. Apart from the treatment of model 
errors, both algorithms evolve an ensemble of model states with the nonlinear dy- 
namic model. The state estima,te itself is not explicitly evolved as is done in the 
SEEK filter. The statistics of the forecasted ensemble represent the state estimate 
'nd forecast covariance matrix. 

The explicit. forecast of the state estimate by the SEEK filter only approximates 
the mean of the forecasted probability density. The ensemble forecast used in EnKF 
and SEIK accounts for higher order terms in the Taylor expansion, equation (2.20). 
Thus. these algorithrns are expected to provide more realistic predictions of the 
error subspace compa,red with the SEEK filter. Concerning the forecast performed 
in SEEK, it can be dangerous to directly evolve the modes of PE_Ak, since this 
does not represent nonlinear interactions between different modes. Further, the 
increasingly finer scales of higher modes can lead to forecasts which do not provide 
meaningful directions of the error subspace. 

3.2.3 Treatment of Model Errors 

The SEEK and SEIK filters consider model errors by adding the model error covari- 
ance matrix Q to the forecasted state covaria,nce matrix. The same is done in the 
EKF, except that tlie SEEK and SEIK algorithms neglect the parts of Q which are 
orthogonal to the error subspace. Alternatively, a simplified treatment is possible 
by a.pplying the forgetting factor. This increases the variance in '11 directions of the 
error subspa,ce by the same factor. 

The EnKF applies a stochastic forcing during the ensemble forecast to account 
for model errors. Also it is possible to use a forgetting factor with the EnKF (See, 
for exarnple. Hamill and Whitaker [30], where it is denoted as 'covariance inflation'). 
Since the SEIK filter also nses an ensemble forecast, it is possible to apply stochastic 
forcing in this algorithm, too. 

In the context of a nonlinear system, the addition of Q at observation times is 
only an a.pproximation. Over finite time the additive stochastic forcing in equa- 
tion (2.1) will result in non-additive effects. Thus, applying stochastic forcing to 
the ensemble evolntion will generally yield a more realistic representation of model 
errors than the addition of a matrix Q. However, this requires the model errors to 
be known or, at  least, to be well estinmted. When the model errors are only poorly 
known, the forgetting factor provides a. simple a,nd numerically very efficient way to 
account for them. In addition, the forgetting factor can be applied to stabilize the 
filtering process by redncing the underestimation of the variances. 

3.2.4 The Analysis Phase 

The analysis phase of dl three algorithms is based on the EKF analysis. Hence, 
only the first two stat,istical moments of the predicted probability density, the mean 
and covariance matrix, are taken into a.ccount. Thus, the analysis phase will pro- 
vide only reasonable and approximately variance minimizing results if the predicted 
state probability density and the probability density of the observations are at  least 
approximately Gaussian. For linear models the forecasted density is Gaussian if the 
initial density is Gaussian. For nonlinear systems the forecast density will contain 
a non-Gaussian part, but usually the state density will be dose to Gaussian if a 
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sufficient number of observations with Gaussian errors is taken into account as has 
been discussed by Brusdal et al. [7], 

The increment for the analysis update is computed as a weighted average over 
vectors which belong to the error subspace 2. For SEEK these are the vectors in V 
and for SEIK the vectors in the matrix L. In the case of EnKF the vectors are given - 
by the differente X{ - X{ of the ensemble states to the ensemble nlean. While 
SEEK a,nd SEIK compute the weights for the analysis update in the error subspace, 
the EnKF computes the weights in the observation space. If a large amount of 
observational data is to be assimilated, i.e. if m > NI EnKF opera,tes on ma,trices 
of larger dimension than SEEK and SEIK. 

The analysis equations of SEEK are a re-formulation of the EKF update equa- 
tions for a mode-decomposed covariance matrix P? = VUVT. The forecast state 
estimate, given by the explicit evolution of X"̂, is updated using a Kaiman gain 
computed from P? which itself is obtained by updating the matrix U^A~ ? RrxT. 
The analysis algorithms of EnKF and SEIK use the ensemble mean as forecast state 
estimate X{ and a covariance matrix computed froin the ensemble statistics. 
The SEIK filter updates the single state X{ and the eigenvalue matrix UkpAk. The 
EnKF filter updates each ensemble member using for each update an observation 
vector from an ensemble of observations which needs to be generated. The analysis 
cova,riance matrix PE is obtained implicitly by this ensemble analysis. 

The requirement for an observation ensemble points to a possible drawback of 
the EnKF as, for finite ensembles. the observation ensemble will introduce additional 
sampling errors in the analyzed sta,te ensemble. This is particularly pronounced if 
a large set, i.e. m > N, of independent observations is assimilated. In this case. 
the observation error covariance matrix Rk is diagonal having a rank of m > N. 
Thus, Rk cannot be well represented by an ensemble of size N. 

For linear dynamic and measurement operators the predicted error subspace in 
the SEEK and SEIK algorithms will be identical if the Same rank r is used and model 
errors are treated in the same way. Since also the analysis phases a,re equivalent 
both filters will yield identical results for linear systems. The filtering results of the 
EnKF will differ from that of the SEEK arid SEIK filters even for linear dynamics 
and N = r + 1. This is due to the introduction of sampling noise by the Monte 
Carlo ensembles. 

3.2.5 Resampling 

Since the EnKF updates in the analysis phase the whole ensemble of model states 
the algorithm can proceed directly to the next ensemble forecast without the need 
of a resampling algorithm. In contrast to this, a new state enseinble representing P$ 
and X? has to be genemted when the SEIK filter is used. This can be done by a, 
t ran~form~tion of the forecast ensemble. Applying the SEEK filter, the forecasted 
modes of the covariance matrix can be used directly in the next forecast phase. In 
general, these are no more the basis vectors of the error subspace, since they are 
not orthonormal. A re-orthonormalization of the modes is recom~nend~ble and can 
be performed occasionally to stabilize the mode forecast. The choice whether an 
algorithm with or without re-initialization is used has no particular implications for 
the perforinance of the filter algorithms. 
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3.3 Implementation 

For the implementation of the filter algorithms we aim at a modular structure which 
seprates the routines of the model and filter parts of the program. In addition. 
the treatment of observations, e.g. the initialization of the observation vector or the 
measurement operator, should be dealt with separately from the model and the filter 
pa,rts. Data should be exchanged between tlie three parts using interface routines. 

Typically the filter has to be implemented with an existing model which is not 
designed for data assimilation purposes. Thus, the filter part should be attached 
to the model with minimal changes to the model source code and a clear inter- 
face structure. Here, we present an implementation of a. serial filter environment 
which assumes that the time stepper part of the model is available as a subroutine. 
In chapter 8 we will present a framework for parallel data assimilation based on 
Kaiman filter algorithms. It includes an application program interface, allows for 
efficient use of parallel computers, and does not require the model time stepper to 
be implemented as a subroutine. An interface structure between model and filter 
has also been discussed by Verlaan [87] in the context of the RRSQRT algorithm. 

3.3.1 Main Structure of the Filter Algorithm 

Besides the i~iiti~lization, the filter algorithms consist of a forecast phase and an 
analysis pliase. In addition, a resampling phase is performed by the SEEK and 
SEIK algorithms respectively for the modes or ensemble sta,tes. 

To separate the filter part from tlie model we use a filter ma,in routine which 
controls the ensemble forecast and subsequently calls subroutines performing the 
analysis and resampling pliases of the algorithms. This filter main routine is called 
from the main program providing the fields for the filter initialization as subroutine 
arguments. These are either tlie initial state ensemble X. (for EnKF and SEIK) or 
the initial state estiina,te XQ and matrices U. and V. (for SEEK). The initialization 
is performed in advance by some user written routine. The main routine for the 
SEIK filter is shown as algorithm 3.1 exemplifying the structure. 

The calls to the subroutine User-Analysis in algorithm 3.1 provide the possibility 
to examine the assimilation Progress during the execution. Here the User can analyze 
either the forecast or the a,nalysis state ensemble. To distinguish both cases, the 
subroutine is called with the negative of the time step index steps in tlie forecast 
case. The routine permits. e.g., to conipute ensemble means or variantes estima,ted 
by the filter. In addition. the ensemble or analysis quantities can be written to  files. 
For physical consistency it can be necessary to post-process the analysis states, for 
example to ensure mass conservation of a model ocean. This post-processing can be 
also performed in User-Analysis when called after the filter analysis phase. 

In the forecast phase an ensemble of N model state vectors X = {^X,. . . X} 
is evolved for nsteps time steps from the model time ta to time tb = ta + nsteps At 
where At is the time step size. This requires to perform N model evolutions begin- 
ning from the Same model time t a .  The ensemble forecast is controlled by the filter, 
since the model does not need to consider filter details. The parameters nsteps 
arid ta are dependent on the data assimilation problem rather than on the model 
or the filter algorithm. Thus, they have to be provided by the user. For flexibility 
and to achieve a clea,r structure we implement the initialization of nsteps and ta by 
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lubroutine SEIK_Ma.in(n,Ar,X) 
int n {state dimension, input} 
int N {ensemble size, input} 
real X(n,  N)  {state ensemble array, input} 
real x(n) {state est,imate} 
real Uinv(AT - 1, N - 1) {inverse of eigenvalue matrix} 
int i {ensemble loop counter} 
int step {time step counter} 
int m {dimension of observation vector} 
real ta {physical time} 

cdl User_Analysis_seik(O,n,N.X) {call to user ana.lysis routine} 
loop 

call Next-Observation(step, nsteps, tn) 
{get number of time steps, User supplied} 

if nsteps = 0 then 
exit loop 

end if 
for i=l  to N do 

call Interface-Evolver (n,X(iV) ,nsteps, ta ) 
{forecast state vector, User supplied} 

end for 
step + step + nsteps 
call UserAnalysis(-step,n,N,X) {call to user supplied analysis routine} 
call SEIK_Analysis(step,n,A~,x,Uinv,X) {perform filter analysis phase} 
call SEIK_Resample(n,N,x,Uinv,X) {perform ensemble resampling} 
call UserAnalysis(stepp.h<X) {call to user supplied analysis routine} 

end loop 

Algorithm 3.1: Structure of t,he filter main subroutine for the SEIK algorithm. The 
arrays X and Uinv are required for the resan~pling computed in SEIK-Resample. They 
are initialized in the analysis routine SEIK-Analyszs. 

a call to the User supplied subroutine Next-Observatzon. It has as input the current 
time step step. Outputs are nsteps and tn.  

Having obtained the values of nsteps and ta ,  the forecast is performed in a loop 
over all ensemble vectors. Each of the vectors is handed over to the subroutine 
Interface-Euoluer together with the stepping information. This interface routine 
initializes the state fields of the model from the state vector and calls the time 
stepper routine of the niodel. Finally the fields are mit ten back into the state 
vector and the routine returns. Since Interface.Euoluer is model dependent it has 
to be supplied by the user. The forecast phase requires that the N model evolutions 
are independent. Thus. any reused variables of the model have to be re-initialized. 

Subsequent to the forecast phase, the analysis will be computed. In algorithm 3.1 
this is performed in the subroutine SEIK-Analysis. We discuss the implementation 
of the analysis phases of the three filters in the following section. Finally, the 
ensemble will be resampled in the SEIK algorithm. The new ensemble is computed 



in the subroutine SEIK-Resample. The implementation of the resarnpling phases of 
SEIK and SEEK is described in section 3.3.3. 

The structure of the main routine of the EnKF algorithm is a,nalogous to tha t  of 
the SEIK filter and thus not shown. The only functional difference is that the EnKF 
algorithm does not call a resampling routine. Further, the arrays Uinv and X are 
not required. For the SEEK algorithm the forecast part is different from t h e  two 
other algorithms. In SEEK the state vector X and the mode matrix V are evolved. 
The structure of the forecast loop using a gradient approximation for the evolution 
of the  modes stored in V is shown in algorithm 3.2. 

3.3.2 The Analysis Phase 

For the discussion of the implementation of the analysis phase we omit the time index 
from the equations. The analysis algorithms of the filter algorithms are shown in 
pseudo code as algorithms 3.3 to 3.4. Implemented are the analysis equations (2.28) 
to (2.30) of SEEK and (2.67) to (2.69) of SEIK. The EnKF analysis algorithm is 
implemented using the representer formulation according to equations (2.46) and 
(2.47). Further the ensemble representation of matrix H P ~ H ~  in equation (2.49) is 
used. 

The analysis equations contain references to quantities which are dependent On 
the observations. The necessary observation-related operations in the source code 
for the filter analysis phase are: 

Query the dimension m of the observation vector (subroutine Get-Dirn-Obs). 
The dimension m is required for dynamic alloca,tion of arrays which are related 
to the observation space. 

Subrou t ine  SEEK-Main(n,r,x,Uinv,V) 
int r {ra,nk, input} 
real x(n) {state estimate, input} 
real U invf r ,  r )  {inverse of eigenvalue matrix, input} 
real V(n ,  r )  {mode matrix, input} 
real e {coefficient for gradient approximation} 

for i= l  to  r d o  
V(: ,  r )  + X + â‚¬V( r )  {generate ensemble from modes} 

e n d  for 
for i=l  to  r d o  

call Interface-Evolver(n;V(: ;r)  .nsteps, tn)  {forecast ensemble vector} 
e n d  for 
call Interface_Evolver(n,x,nsteps, t n )  {forecast central state vector} 
for i=l  to  r d o  

V(: ,  r )  <Ã e l ( x  - V(: ;  r )  {generate forecast modes from ensemble} 
e n d  for 

Algorithm 3.2: Structure of forecast part of the filter main subroutine for the SEEK 
algorithm 
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Project a model state vector onto the observation space by applying the mea- 
surement operator H (subroutine Measurement-Operator) . 

Initialize the observation vector yO (subroutine Measurement for SEEK and 
SEIK). For EnKF an ensemble of observation vectors YO = {^yO, . . . ,(") yO} 
has to be generated according to the observation error covariance matrix R. 
This is done in the subroutine EnKF-Obs-Ensemble. 

For SEEK and SEIK: Compute the product of the inverse of the observation 
error covariance matrix R with the matrix of modes projected on the obser- 
vation space (HV for SEEK and HX for SEIK). This is performed in the 
subroutine RinvA. 

For EnKF: Add R to the state covariance matrix projected onto the observa,- 
tion space (subroutine RplusA) . 

These ~ p e r ~ t i o n s  are implemented using subroutines which a,re provided by the 
User. This ensures modularity and keeps the analysis routines independent from the 
particular implementation of the measurement operator H, the initialization of the 
observation vector yO. and the implementation of the observation error covariance 
matrix R. 

This structure also permits. e.g., for the implementation of the product with R 1  
or the addition of R in operational form, without explicit allocation of the matrix R 
or its inverse. As well the measurement operator can be implemented as an oper- 
ation rather than a matrix multiplication. This implementation permits also the 
application nonlinear measurement operators which cannot be represented as a ma- 
trix. A further documentation of the observation-related subroutines is provided in 
appendix B. 

In algorithm 3.3, the structure of the SEEK analysis routine with all calls to 
observation related subroutines is shown. The analysis routine of SEEK is the 
simplest of all three algorithms considered here. 

The analysis routine of SEIK. shown as algorithm 3.4, is very similar to that 
of SEEK. It contains some additional operations like the initialization of the ma- 
trix G in line 9 and the computation of thc enscmble mean in linc 11. Also the 
matrix T ,  defined by equation (2.62); has to be applied twice. For efficiency, the 
matrix L = XT is not explicitly computed according to equation (2.64). Instead, T 
is applied in two different ways. First, the matrix HL is computed in lines 4 to 7 
of algorithm 3.4. For this, the state ensemble is first projected onto the observation 
space yielding HX. Subsequently, matrix T is applied as (HX)T. To complete the 
computation of the analysis state, the equation 

xa = xf + XTa (3.2) 

has to be evaluated with a given by 
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Here it is nlore efficient to act with T on the vector a E R^^ instead o n  the 
ensemble matrix X E RnX". Since the structure of T is known, the product of some 
matrix or vector with T does not need to be computed as full matrix-matrix prod- 
uct. The operation ( H X ) T  involves the computation of the ensemble mean vector 
of HX. This is then subtracted from the first r columns of H X .  The last column 
of this matrix is sei, to Zero. Thus, the right-hand-side multiplication with T can be 
performed in place. It does only require the temporary allocation of a vector holding 
the ensemble mean. Further, only 2mN + m floating point operations are required 
for the a,pplication of T on H X .  The full n~atrix-matrix product would require mN'1 
floating point operations. The operation b = Ta involves the computation of the 
mean over the elements of a. To obtain b E R^ the mean value is subtracted from 
each element of a. The last entry in b is initialized by the negative value of the 
computed mean. The computation of b requires 2N floating point operations. 

Subrout ine  SEEK_Analysis(step,n,r ,x,Uinv ,V)  
int step {time step counter.input} 
int n {state dimension, input} 
int r {rank of covariance matrix, input} 
real x(n)  {state forecast, input/output} 
real Uinv(r,  r )  {inverse eigenvalue matrix, input/output} 
real V(n ,  r )  {mode matrix, input/output} 
real T l ,  T 2 ,  t 3 ,  t 4 ,  d, y {local fields to be allocated} 
int m {dimension of observation vector} 
int i {ensemble loop Counter} 

1: call Get_Dim_Obs(step, m)  {get observation dimension, user supplied} 
2: Allocate fields: T l ( m ,  r ) ,  T2(m,  r) ,  t 3 ( r ) ,  t 4 ( r ) ,  d(m) ,  y (m)  

3: for i=l , r  d o  
4: call Measurement_Operator(step; n ,  m ,  V(: ,  ?), T l ( : ,  2)) {user supplied} 
5: e n d  for 
6: call RinvA(step, m ,  r, Tl ,  T 2 )  {user supplied} 
7: U inv  -̂ Uinv  + ~ 1 ~ ~ 2  {with BLAS routine DGEMM} 

8: call Measurement-Operator(step, n ,  m, X, d )  {user supplied} 
9: call Measurement(step, m ,  y) {user supplied} 

10: d e y - d  

1 :  t3 + ~ 2 ~ d  {with BLAS routine DGEMV} 
2: solve Uinv t 4  = t3 for t 4  {using LAPACK routine DGESV} 
3 :  X +- X + V t 4  {update state estimate with BLAS routine DGEMV} 
4 :  De-allocate local analysis fields 

I 

ilgorithm 3.3: Structure of the filter analysis routine for the SEEK algorithm with- 
tut handling of the model error covariance matrix. The subroutines called in the code 
re the observation-dependent operations described in section 3.3.2 and documented in 
.ppendix B. The matrices Tl.  T2 and the vectors t3, t4, and d are temporary arrays. 
)ther matrices and arrays appear which the Same notation in equations (2.28) to (2.30). 
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3ubroutine SEIK_Ai~alysis(step,ii,N~x,Uinv,X) 
int step {time step counter,input} 
int n {state diinension, input} 
int N {ensemble size, input} 
real x(n)  {state estimate, output} 
real Uinv(r, r )  {inverse eigenvalue matrix; output} 
real X(n,  N )  {ensemble matrix, input/output} 
real G, d ,  y {local fields to  be allocated} 
real Tl ,  T 2 ,  T 3 ,  t 4 ,  t 5 ,  t 6  {local fields to be allocated} 
int m {dimension of observation vector} 
int i {ensemble loop counter} 
int r {rank of covariance matrix, r = N - l} 

1: call Get_Dim_Obs(step, m) {get observation dimension, user supplied} 
2: Allocate fields: T l ( m ,  N), TZ(rn: T), T3(m,  r) ,  y(m),  t 4 ( r ) ,  t 5 ( r ) ,  t 6 ( N ) ,  
3: G ( r ,  r ) ,  Uinv(r ,  T), d(m)  

4: for i = l , N  do 
5: call Measurement-Operator(step, n ,  m ,  X(:, z), T l ( : ,  2)) {user supplied} 
6: e n d  for 
7: T 2  +- T l  T {implemented with T as operator} 
8: call RinvA(step, m ,  r ,  TZ,  T 3 )  {user supplied} 
9: G + N 1 ( T T  T ) '  {implemented as direct initialization} 
0: Uinv -̂ G + ~ 2 ~ ~ 3  {with BLAS routine DGEMM} 

M I: X + N 1  E ,  X(:,  z) {get state estimate as ensemble mean state} 
2: call Measurement-Operator(step, n, m, X, d )  {user supplied} 
3: call Measurement(step. m ,  y )  {user supplied} 
4- d + y - d  

5: t 4  +- ~ 3 ' d  {with BLAS routine DGEMV} 
6: solve Uinv  t 5  = t 4  for t 5  {using LAPACK routine DGESV} 
7: t 6  + T t 5  {implemented with T as operator} 
8: X + X + X t6 {update state estimate with BLAS routine DGEMV} 
9: De-allocate local analysis fields 

Algorithm 3.4: Structure of the filter analysis routine for the SEIK algorithm. The 
subroutines called in the code are the observation-dependent operations described in sec- 
tion 3.3.2 and documented in appendix B. The arrays G and T2 are introduced for 
clarity. They do not need to be allocated since their contents are stored respectively 
in Uinv and Tl.  The array t5 is stored analogously in t4. 
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Subroutine EnKF_Analysis(step,n,N,X) 
int step {time step counter,input} 
int n {state climension, input} 
int N {ensemble size, input} 
real X ( n ,  N )  {ensemble matrix, input/output} 
real D, B, X, T l ,  t2, T 3 ,  t4, T 5 ,  T 6  {local fields to  be allocated} 
int m {dimension of observation vector} 
int i {ensemble loop counter} 

1: call Get_Dim_Obs(step, m)  {get observation dimension, user supplied} 
2:  Allocate fields: T l ( m :  N ) ,  t 2 (m) ,  T3(m,  m),  t4(m), T5(n ,  N ) ,  T6(N,  N), 
3: B(m,, N) ,D(m, ,  N) ,x (n )  

for i = l , N  do 
call Measurement_Operator(step, n,  m,  X(: ,  i ) ,  T l ( : ,  2 ) )  {user supplied} 

end for 
t2 +- N 1  Cl T l ( : ;  i )  {get mean of ensemble projected on obs. space} 
for i=l1iV do 

T l ( : ,  2) + T l ( : ,  2 )  - t2 
end for 
T3 + (AT - 1 ) - I  T l  ~1~ {with BLAS routine DGEMM} 

2 :  call Enkf_Obs.Ensemble(step,m,AT,D) {initialize ensemble of observations} 
3: for i=l.lV do 
4: call Measurement.Operator(step, n,  m ,  X(:, z), t4) {user supplied} 
5 :  D(:, 2 )  + D (:, 2) - t4  {initialize ensemble of residuals} 
6: end for 
7: call RplusA(step,m,T3) {add ma.trix R to T3, user supplied} 
8: solve T3 B = D for B {using LAPACK routine DGESV} 

9: x +Ã AT1 xLl X(:, i )  {get state estimate as ensemble mean state} 
!0: for i=lJV do 
!I: T5(: ,  i )  +- X(:, i) - X 

2 :  end for 
3 :  T 6  + ~1~ B {with BLAS routine DGEMM} 
4 :  X + X + ( N  - 1)- I  T 5  T 6  {with BLAS routine DGEMM} 
5 :  De-allocate local analysis fields 

ilgorithm 3.5: Structure of the filter analysis routine for the EnKF algorithm using 
the represented update variant for a non-singular matrix T3. Shown is the variant which 
yields optimal performance if the dimension m of t.he observation vector is larger than half 
the ensemble size N. The subroutines called in the code are the observation-dependent 
operations described in section 3.3.2 arid documented in appendix B. The arrays B 3nd t 4  
are only introduced for clarity. They do not need to be allocated since their contents can 
be stored respectively in D arid 12. 
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The analysis routine of EnKF is shown as algorithm 3.5. Using the representer 
formulation it is most efficient to perforra the ensemble update in matrix form. Tha t  
is, the residuals {d^} are stored in the columns of a matrix D, then all influence 
amplitudes {b(^} are computed a t  once as the matrix B. Subsequently, all state 
vectors in the ensemble ma.trix X are updated at once. This proccdure requires 
more computer memory, but it can be more efficiently optimized by compilers than 
a serial version executing a loop in which for each single residual vector a. vector of 
influence 'mplitudes a,nd finally a single updated ensemble state a,re computed. The 
second application of the measurement operator in line 14 is only shown to stress 
the similarity of the algorithms. but it is not required since the loop initializing the 
representer matrix in line 14 to 17 can be executed directly after the initialization 
of T l  in lines 4 to 6. 

Algorithm 3.5 shows the implementation of the analysis for la,rge data sets 
when m is not significantly smaller than the ensemble size N .  In this case, the 
matrix P f H T  E Rn"", given by equation (2.48), is not explicitly computed. I t  is 
more efficient to compute the update of the ensemble states in eqmtion (2.46) in 
the form 

XÂ = xf  + (x f  - Xf)c (3.4) 

with 

where X ? Rn̂ ' denotes the matrix holding the ensemble mean state 2 in all 
columns. This update requires (m + n ) N 2  operations, without the computation of 
the term in brackets in equation (3.5). 

The alternative algorithm for sma.11 m is shown in algorithm 3.6. Here the ma- 
trix P ~ H ~  is explicitly computed. T~IUS, n d  floating point operations a,re per- 
formed for equivalent computations to equa,tions (3.4) and (3.5). If n >> m, this 
alternative variant performs less floating point operations than the variant shown 
above for 2m < N. 

3.3.3 The Resampling Phase 

The resampling phases of SEEK and SEIK are independent from model or observa,- 
tions. The implementation of the resampling algorithms is shown as algorithm 3.7 
for the SEEK and 3.8 for the SEIK algorithm. 

For SEEK the algorithm to  re-orthonormalize the modes of the covaria,nce ma- 
trix is implemented by first computing the product VTV. This is rather costly 
operation requiring n,r2 operations. The other products to complete the compu- 
tation of B are only 0 ( r 3 ) .  The resampling of the ensemble in SEIK (equa- 
tion 2.71) involves again the matrix L. As in the analysis algorithm, we do not 
compute this matrix explicitly. Instead, matrix T is applied from the left to  the ma- 
trix E This operation is analogous to the operation Ta which 
was discussed for the analysis algorithm of SEIK. Since the application of T from 
the left acts on columns, the operation in the remmpling corresponds to  the appli- 
cation to N vectors. Thus, the application of T to  a matrix is the generalization of 
the application to  a. vector. 
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Subrou t ine  EnKF_Analysis(step,n,N,X) 

1: call Get_Dim_Obs(step, m) {get observation dimension, user supplied} 
2: Allocate fields: T l ( m ,  Al), t2(m) ,  T3(m1 m),  t4(m),  T5(n,  N), T6(n ,  m) ,  
3: B(m,,N},D(m,N),x(n) 

23: T 6  + T 5  TlT {with BLAS routine DGEMM} 
24: X + X + ( N  - 1) - I  T 6  B {with BLAS routine DGEMM} 

Algorithm 3.6: Variant OS the filter analysis routine for the EnKF algorithm using the 
represented update variant for a non-singular matrix T3. This variant will yield better 
performance if there are significantly less observations then ensemble members. If n S> m, 
this limit is at 2m < N. 

Subrout ine  SEEK-Reortho(n,r,Uinv,V) 
int n {state dimension, input} 
int r {rank of covariance matrix, input} 
real Uinv(r,  r )  {inverse eigenvalue matrix, iuput/output} 
real V(n,  r )  {mode matrix, input/output} 
real T l ,  T 2 ,  T3, T 4 ,  A ,  B, C ,  D, L, U {local fields to be allocated} 

I: Allocate fields: Tl(r, r ) ,  T2( r ,  r ) ,  T3(r ,  r) ,  T4(r ,  r ) ,  
2: A(r,r),B(r,r),C(r,r),D(r,r),L(n,,r),U(r,r) 

3: U + u inv- l  {inversion using LAPACK routine DGESV} 
4: Cholesky decomposition: U = AAT {using LAPACK routine DPOTRF} 
5: T l  + V T  V {with BLAS routine DGEMM} 
6: T 2  + Tl  A {with BLAS routine DGEMM} 
7: B + AT T 2  {with BLAS routine DGEMM} 

8: SVD: B = C D C T  {using LAPACK routine DSYEV} 
9: T 3  + C D-1/2 

10: T 4  + A T 3  {with BLAS routine DGEMM} 
11: L + V  
12: V + L T 4  {with BLAS routine DGEMM} 
13: Uinv -̂ D-1 
14: De-allocate local analysis fields I 

Algorithm 3.7: Structure of the re-orthonormalization routine for the SEEK algorithm. 
The matrix D holding the singular values of B is introduced here for clarity. In the 
program it is allocated as a vector holding the eigenvalues of B. Matrices A,  T l ,  C, T3, 
and T4 are not allocated in the program. Their information is stored in other arrays. 
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Subroutine SEIK_Resample(n,N,x,Uinv,X) 
int n {state dimension, input} 
int N {ensemble size, input} 
real x(n)  {sta,te a,nalysis vector, input} 
real Uinv(r,  r )  {inverse eigenvalue matrix, input} 
real X(n,  Ar) {ensemble ma,trix input/output } 
real T l ,  T 2 ,  T 3 ,  OT,  C  {local fields to be allocated} 
int r {rank of covariance matrix, r = N - 1) 

Alloca,te local analysis fields: T l ( r ,  N ) ,  T 2 ( N ,  N), T3(n ,  AT), ^(T, N) ,  C ( r ,  r;  

Cholesky decomposition: Uinv = C CT {using LAPACK routine DPOTRF} 
initialize OT {implemented as a subroutine} 
solve C T T l  = OT for T l  {using LAPACK routine DTRTRS} 
T2 t- T T l  {implemented with T as operator} 
for i=l.N do 

T3(: ,  z) +- X(:, i) 
X(:,  2)  t- X 

end for 
X t- X + NI'' T3 T 2  {with BLAS routine DGEMM} 
De-allocate local a,nalysis fields 

Algorithm 3.8: Structure of the re-orthonormalization routine for the SEEK algorithm. 
The matrices C arid T l  are introduced here for clarity. In the program they are not 
allocated as their information is stored respectively in Uinv and OT. 

Subroutine SEEK-Reortho_Block(n,r,Uinv,V) 

int maxblksize {Maximum size for blocking} 
int blklower, blkupper {Counters for blocking} 

1: Allocate fields: . . . , Ldblkmax, r) 

11: for i = 1, n ,  maxblksize do 
12: blkupper + min(blk1ower + maxblksize - 1; n) 
13: Lb(1 : blkupper - blklower + 1, :) t- V(blk1ower : blkupper, :) 
14: V(b1klower : blkupper, :) + Lb(1 : blkupper - blklower + 1, :) T 4  
15: end for 

Algorithm 3.9: Block formulation for the part of the re-orthonormalization routine of 
SEEK which initializes the new covariance modes. The block formulation replaces lines 11 
and 12 of algorithm 3.7. The lower index b denotes that only a block of size maxblkszze X r 
of the matnx L is allocated. 
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3.3.4 Optimizations for Efficiency 

The analysis and resampling phases contain several matrix-matrix and matrix-vector 
products. The sequences chosen for the computation of the products minimizes the 
size of the arrays to be allocated. For efficiency we implement the products using 
the highly optimized BLAS libra,ry routines. Other operations, like the Cholesky 
factorization in the resampling phase of SEIK, the eigenvalue decompositions, or 
the Inversion of U 1  in the analysis phases of SEEK and SEIK 're implemented 
using LAPACK library routines. The use of library functions is documented in the 
annotations in the algorithms 3.3 to 3.8. 

All three analysis algorithms and both resampling algorithms allow for a block 
formulation of the final ma,trix-matrix product updating the ensemble or mode ma- 
trix. In some situations this can reduce the memory requirements of the algorithms 
and may lead to a better performance of the algorithms (if the BLAS routine itself 
does not use a blocking internally). In the context of the EnKF a block formula- 
tion has been discussed by Evensen [18]. To exemplify the block formulation we 
consider the resampling algorithm of SEEK. The variant without blocking is shown 
as algorithm 3.7 while the variant with blocking is displayed as algorithm 3.9. For 
the block algorithm a loop is constructed running from 1 to n with a step size of 
the chosen blocking size maxbiksize. Within the loop, rnatrix L is 'llocated as a. 
matrix Lb with only maxbiksize rows. The loop counter determines which rows 
of V are updated in a single cycle. In each loop cycle only the corresponding rows 
of L are initialized in Lb and used to update the selected rows of V. With the 
block formulation the required memory allocation for L can be significantly reduced 
from n X r to maxbiksize X r ,  where m,axblksize w 100,. . . ,500. In addition, the 
performance of the algorithm may be higher with the block formulation, since the 
smaller matrices may better fit into the caches of the processor. This would reduce 
costly tra,nsfers between the caches and the main memory of the computer. 

3.4 Computational Complexity of the Algorithms 

In most realistic filtering applications the major amount of computing time is spent 
for the model evolution. This time is proportional to  the size of the ensemble to 
be evolved. It is equal for all three algorithms if r + 1 = Ar where r is the rank 
of the approximated covariance matrix in SEEK and SEIK and N is the ensemble 
size in EnKF. For efficient data assimilation it is thus of highest interest to  find 
the algorithm which yields the best filtering performance, in terms of estimation 
error reduction. with the smallest ensemble size. The forecast phase consists of N 
independent model evaluations. This is also true for the SEEK filter if a gradient ap- 
proximation of the linearized model is used. Distributing the model evaluations over 
multiple processors would permit to  compute several model forecasts concurrently. 
Thus. the independence of the model forecasts can be utilized by parallelization. 
We will examine this possibility in detail in part 2 of this work. 

The computation time spent in the analysis and remmpling phases can also 
be non-negligible. especially if observations are frequently available. The three 
filter algorithms can show significant differences in these phases. Below we as- 
sume n >> m > N .  This situation occurs if we have a la,rge scale model. Also m can 
be significantly larger than N ,  e.g., if data from satellite altimetry is used. Under 
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this assumptions operations on arrays involving the dimension n are most expensive 
followed by operations on arrays involving the dimension m. 

Table 3.1 shows the scaling of the computational complexity for the three filter 
algorithms. Since we are only interested in the scaling, we neglect in tlie table the 
difference between r and N. We use N if somc operation is proportional to the 
ensemble size of the rank of the covariance matrix. 

Without the explicit treatment of the model error covariance matrix Q the SEEK 
filter is the most efficient algorithm. All operations which depend on the state 
dimension n scale linear with n. These operations occur in the update of the stat,e 
estimate in line 13 of algorithm 3.3. The matrix of weights for tlie state update is 
computed in the error space. Thus. the complexity of several operations depends 
on N .  Most costly is the solver step in line 12 which scales with U(N3). The 
product R I H V ,  which is required in the update of U 1  in equation (2.28), is the 
only operation which can be proportional to O(m2N). The full cost will only occur 
if different measurements are correlated. If the measurements are independent, the 
observation error covariance matrix R is diagonal. In this case. the products will 
scale with 0 ( m N ) .  Since the product is implemented as a subroutine, it can always 
be implemented in the optimal way depending on the structure of R 1 .  

The re-orthonormalization of the SEEK filter requires extensive operations on 
the matrix V which holds the modes of the covariance matrix. The complexity of 
the computation of the product VTV (line 5 of algorithm 3.7) and the initialization 
of the new orthonormal modes in line 12 scales proportional to 0(nN2). Since it 
is only occasionally required to compute the re-orthonormalization, this operation 
will not affect the overall numerical efficiency of the SEEK filter. 

The numerical complexity of the analysis phase of the SEIK filter is very similar 
to that of the SEEK algorithm. The computation of the ensemble mean state in 
line 11 of algorithm 3.4 will produce some overhead in comparison to the SEEK 
algorithm. Its complexity sca.les with 0 ( n N  + n). Other additional operations in 
comparison to the SEEK filter are applica,tions of the ma.trix T. As has been dis- 
cussed above, these operations require 2mN + m + 2AT floating point operations. 
Finally, the initia,lization of the matrix G is required. This will require N2 opera- 
tions, since it can be performed directly. 

The resampling phase of SEIK is significantly faster than that of SEEK, since no 
diagonalization of PÂ is performed. Hence, operations on matrices involving the state 
dimension n only occur in the ensemble update in lines 6 to 10 of algorithm 3.8. 
The complexity of these operations sca,le with 0 ( n N 2  + nN).  For rather large 
ensembles also the Cholesky decomposition in line 2 and the solver step in line 4 can 
be significant. The complexities of both operations scale with 0 ( N 3 ) .  The cost of 
the initialization of the matrix 0 can be neglected. For each resampling, the Same 
matrix 0 can be used in eqmtion (2.71). Thus, f2 can be stored. 

The c o m p ~ t a t i o n ~ l  complexity of the SEEK and SEIK algorithms will increase 
strongly if the model error comriance matrix Q is ta,ken into account. This is due 
to the a,mount of floating point operations required for the projection of Q onto 
the error space (cf. equation (2.27)). This projection requires n2N + 2nN2 + 3N3 
operations if Q has full rank. Due to the part scaling with O(n2N), it is unfeasible to 
apply this projection. The amount of operations is significantly smaller if Q has a low 



3.4 Computational Complexity of the Algorithms 48 

Table 3.1: Overview of the scaling of the computational complexity of the filter algo- 
rithms. The scaling numbers only show the dependence of the three dimensions but no 
constant factors. The first column shows the number of the corresponding equation. The 
second column displays the corresponding rows of the algorithm which is named above 
each list. The scaling numbers neglect the difference between the ensemble size N and the 
rank r .  Thus, the complexity is given in terms of N also for the SEEK filters. 

SEEK analysis, algorithm 3.3 
equation 

2.28 
2.2912.30 
2.2912.30 

2.27 

SEEK re-orthonormalization, algorithm 3.7 

SEIK analysis, algorithm 3.4 

EnKF analysis, algorithm 3.5 

compute B 
compute V and U-I 

2.31 
2.32 

SEIK resampling, algorithm 3.8 

observation ensemble Y 
representer amplitudes B 
update ensemble X 

comment 
update U 1  
initialize residual d 
update state estimate X 

compute Oft 

lines 
3-4 

8-10 
11-13 

compute U-I 
initialize residual d 
update state estimate X 

compute ~k 

2.67 
2.68/2.69 
2,6812.69 

2.27 

ra,nk of k <C n and is stored in Square root form Q = AAT with A IRnxk. In this 
case; the projection requires n N ^ + n k N + N 2 k + 2 N 3  floating point operations. Thus, 
the complexity of the projection is comparable to  the complexity of the resampling 
phases of SEEK and SEIK if the low-rank formulation for Q is used. However, also 
the low-rank formulation of the projection requires a very high amount of floating 
point operations. If the model errors are only poorly known it would probably be 
to expensive in terms of computation time to  use this projection. Alternatively the 
forgetting factor could be used. The application of the forgetting factor requires 7V2 
floating point operations. In SEIK it is also possible to apply model errors as a 
stochastic forcing during the forecast phase. If this forcing is applied at  every time 
step to  each element of all ensemble states, the complexity of this technique scales 
with 0 ( n N  ns teps)  for each time step. 

O(operations) 
m 2 N + m N 2 + m + N . h  
m + h 
n N  + n + m N  + N 3  + N 2  
n 2 N  + n N 2  + N 3  

3-7 
8-13 

compute (c^0)7' 
update ensemble X 

2.71 1 1-5 
2.71 6- 10 

izN2 + AT3 
n N 2  + n N  + N 3  + N 2  

4-10 
11-14 
15-18 

N3 + N 2  + NT 
n N 2  + nfIr  

m 2 N  + m.N2 + m N  + N 2  + N . h 
m N  + h 
n N  + n + m N  + N 3  + N 2  + N 
n 2 N  + n N 2  + N 3  
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The EnKF algorithnl appears appealing as it does not require an explicit resan- 
pling of the ensemble. The ensemble states are updated during the analysis phase of 
the filter. The complexity of the ensemble update in line 24 of algorithm 3.5 scdes 
with U(nN2 + nN) . Hence, this operation is equivalent to the ensemble updat,e in 
SEIK or the initialization of new modes in SEEK. In fact, the comput,ation of new 
modes or ensemble states a,mounts for all three filters to the calculation of weighted 
averages of the prior ensembles or modes. Since the EnKF uses the representer for- 
nlulation which operates in the observation space, all other operations in the analysis 
algorithm are dependent on m. The complexity of the solver step for the representer 
amplitudes in line 18 of 'lgorithm 3.5 scales with O(m3 + m2 N).  Thus, this opera- 
tion will be very costly if large ob~ervation~l data sets are assimilated. Costly will 
be also the cornputation of the matrix H P ~ H ~ .  The cornplexity of this operation 
is proportional to U(m2AT). Another costly ~ p e r ~ t i o n  can be the generation of an 
ensemble of observations. This operation has to be supplied as a subroutine by 
the user of the filter. We use a,n implementa,tion which applies a transformation of 
independent random numbers. It is described in detail in section 4.2. The trans- 
formation requires the eigenvalue decomposition of the covariance matrix R which 
scales with U(m3).  The complexity of the subsequent initialization of the ensemble 
vectors is proportional to U(m2N). Hence, the generation of the observation ensem- 
ble is of comparable complexity to the solver step for the representer &mplitudes. 
Overall, the EnKF analysis requires more floating point operations than the SEEK 
and SEIK filters. This is caused by the representer formula.tion used in the EnKF al- 
gorithm. Due to this. the EnKF algorithm operates On the observation space rather 
than the error subspace which is directly taken into account by the SEEK and SEIK 
filters. 

To optimize the performance of the EnKF a,nd its ability to handle very large 
observational data sets, Houtekamer and Mitchell [36] discussed the use of an it- 
erated analysis update. In this case, the observations are subdivided into batches 
of independent observations. Each iteration uses one batch of observations to up- 
date the ensemble states. Hence, the effective dimension of the observation vector 
is reduced. Since the EnKF contains several ~perat~ions which scde with U(m3) or 
U(m2), this technique diminishes the complexity of the algorithm. In addition, the 
memory requirements are reduced. The iterative analysis update can also be applied 
with the SEEK a,nd SEIK filters. In contrast to the EnKF algorithm, most opera- 
tions in the analysis algorithms of SEEK and SEIK are proportional to q m ) .  Only 
the complexity of the matrix-matrix procluct implemented in the subroutine RznvA 
will scale with 0(m2) if R 1  is not diagonall. Hence, no particular perforinance 
gain can be expected for SEEK and SEIK when using batches of observations. The 
memory requirements are, however, reduced also for these filters. 

Recently, Evensen [18] proposed an efficient analysis scheme for the EnKF which 
is based on a factorization of the term in parentheses in the Kaiman gain equa- 
tion (2.42). This relies on an ensemble representation of the observation error co- 
variance matrix R and requires that the state a,nd observation ensembles are inde- 
pendent. As has been discussed in the remarks on the EnKF, this scheme can lead 
to a further degradation of the filter quality. With this newer analysis scheme the 
complexity of operations which scale with m3 or m2 is reduced to be proportional 
to m. An exception from this is the genention of the observation ensemble which re- 
mains unchanged. Thus, apart from the generation of the observation ensemble, the 
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coniplexity of the newly proposed EnKF analysis scheme will be similar to the com- 
plexities of SEEK and SEIK. However, the genera,tion of the observation ensemble 
will remain costly. 

3.5 Summary 

The three error subspace Kalma,n filter algorithms introduced in chapter 2 have 
been compared. The comparison focused on the capabilities of the filter algorithms 
for data assimilation with lxge-scale nonlinear models. It became evident that  the 
EnKF arid SEIK filters are comparable as ensemble methods. They use, however, 
different initialization schemes for the ensembles. In addition, the analysis phase 
of the EnKF algorithm has a higher comput,ational complexity if the dimension of 
the observation vector is la,rger than the ensemble size. This is due to the fact that 
the EnKF algorithm operates 011 the observation space rather than on the error 
subspace spanned by the ensemble states. The EnKF analysis also introduces noise 
into the state ensemble caused by the requirenient of an ensemble of observation 
vectors. For finite ensembles, the observation ensemble will not exactly represent 
the observation error covariance matrix. The SEEK filter is initialized similarly 
to the SEIK algorithm. Also the analysis phases of both filters are rather simila,r. 
However, the SEEK filter applies a linearized forecast of the covariance modes which 
is distinct from the ensemble forecast used in the SEIK algorithm. Due to this, the 
error subspace predicted by the SEEK filter can be strongly distinct from that 
predicted by the SEIK filter, 

It has been discussed. that the initialization of the filter algorithms should be 
considered separately from the analysis and resampling phases. In pa,rticular, the 
SEIK and the EnKF algorithm 're independent from the method which is used 
to generate the state ensemble. Thus. also the EnKF algorithm can be initialized 
with a sampling sclieme which yields a better representation of the state covariance 
matrix than pure Monte Carlo sampling. 

The discussion of the implementation of the ESKF algorithms showed that the 
filter algorithms are relatively easy to implement since mostly algebraic operations 
are performed. The EnKF has the plainest structure but also the SEIK filter, using 
the most advanced ma,thematica formulation of the filters studied here, can be 
implemented with a few hundred lines of source code. For the implementation, the 
structure of a serial filtering framework was introduced. The framework is based on 
a clear separation of the model, the filter, and the observational part of the data 
assirnilation problem. Alain routines of the filter algorithms were implemented to 
control the phases of the filters. The forecast phase is perfornied by a loop over all 
ensemble sta,tes or modes. Subsequently the analysis and resampling routines of the 
filter algorithms are called. This st,ructure will be extended to a filtering framework 
for parallel data assimilation with ESKF algorithms in chapter 8. 



Chapter 4 

Filtering Performance 

4.1 Introduction 

The previous chapters showed that the EnKF and SEIK filters both use nonlinear 
ensemble forecasting to predict error statistics. Due to the necessity of an ensemble 
of obsermtions vectors in its analysis phase, the EnKF is likely to yield less realistic 
state and covariance estimates compared with the SEIK filter. This is due to noise 
inserted into the ensemble states by the observation ensemble. The SEEK algorithm 
re-formulates and approximates the Extended Kaiman filter. This first order exten- 
sion of the classical (linear) Kaiman filter is expected to show limited abilities to 
handle n~nl ine~ri ty .  

Experimental studies of data assimilation with different filter algorithms showed 
that quite different ensemble sizes are required to obtain comparable results. Heemink 
et al. [31] reported that the RRSQRT filter yielded comparable estimation errors to 
the EnKF for about half the number of model evaluations in a study using a 2D ad- 
vection diffusion equation. A comparison between SEEK and EnKF with an ocean 
general circulation model [7] used 8 model state evaluations for the SEEK filter and 
an ensemble size of 150 for the EnKF. With these numbers both filters obtained 
qualitatively comparable estimation errors. This result is. however, difficult to in- 
terpret since both filters where a.pplied to slightly different model configurations and 
used different initial conditions for the filters. 

In this chapter identical twin experiments are performed to assess the behavior of 
the SEEK , EnKF and SEIK algorithms when applied to a nonlinear oceanographic 
test model of moderate size. The experiments utilize shallow water equations with 
nonlinear evolution a,nd synthetic ~bserv~t ions  of the sea surface height. Identi- 
cal conditions for the algorithms are used. This permits a direct and consistent 
comparison of the filtering performances for various ensemble sizes. The experi- 
ments are evaluated by studying the filtering p e r f ~ r m ~ n c e  in terms of the root mean 
Square (rms) estimation error for a. variety of ensemble sizes. In addition, it is studied 
how the distinct representations of the covariance matrix and the different analysis 
schemes of the filter algorithms yield different filtering performances. This is done 
by a sta,tistical examination of the quality of the sa,mpled state cova,riance ma,trices, 
and hence the error subspaces represented by the filter algorithms. 

In section 4.2 the configu~~tion of the data assimilation experiments is described. 
Section 4.3 presents and discusses the results of the data assimilation experiments 
in terms of the estimation errors. Subsequently: the statistical examination of the 
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quality of the sampled state covariance matrices is presented in section 4.4. Here 
additional quantities for the examination a,re defined a,nd subsequently discussed. 

4.2 Experimental Configurations 

To assess the filtering abilities of the different filter algorithms identical twin exper- 
iments are performed with a toy model using the nonlinear shallow water equations, 
see e.g. [62],' 

where G(?. t )  = (U(?, t ) ,  v(r', t ))  is the velocity field and h(< t )  is the field of the  sea 
surface elevation (F = (x, y) is the 2-dimensional location vector). Ho(r, t )  is t he  sea 

+ + 

depth and g is the gravitational acceleration. Further, f = 2f2sin 0 k ,  where Tt is 
the angular velocity of the Earth. 0 is the la,titude and k is the vertical unit vector. 

The shallow water equations are discretized in potential enstrophy conserving 
form according to Sadoumy [71] with the extension to include the Coriolis term. 
The model domain is chosen as a box measuring 950 km per side with a flat bottom 
a t  1000 meters depth. Periodic boundary conditions a,re applied in zonal and merid- 
ional directions. The Coriolis parameter 2Ttsin 0 is constant over the domain with 
a value of 1 0 4  s l .  This corresponds to a beta-plane approximation at  a latitude 
of 0 = 45ON. The experiments were performed with 30 X 30 grid points and time 
step of 100s using a leap frog scheme. 

The sta,t,e vector X, used in the filter algorithms, consists of the surface eleva- 
tion h and the horizontal velocity components U and V a t  the grid points. The 
state dimension amounts t.o n = 2700. This number is sufficiently lage to obta,in 
meaningful filter results also for the low-rank algorithms, but it is still small enough 
to allow for a direct study of the filter-represented cova.riance matrices. 

For the twin experiments the 'true' sta,te trajectory of the system is generated by 
initializing with the state shown in the left panel of figure 4.1. I t  is in geostrophic 
balance and has a. shape that  ensures nonlinear evolution with the shallow water 
equations. Synthetic observations of the surface elevation a t  each grid point are 
generated by adding normally distributed random numbers of variance 1 0 4  m2 to 
the true surface elevation. Using only the surface elevation as observations, the 
dimension of the observation vector is m = 900. The genera,ted observations a,re 
quite accurate in comparison to the amplitude of the true surface elevation. This is 
useful, since the dependence of filtering performance On ensemble size Cm be better 
accessed for large ensembles with accurate observations. In the twin experiments it 
is assumed tha,t the model is exact. thus no model error is sin~ulated. 

Two types of experiments are performed. For the first one, referred to as exper- 
iment 'A', the in i t i a l i~~ t ion  of the model state estimate xg and the corresponding 
covariance matrix P: is performed for all three filter algorithms by applying the 
EOF procedure described by Pham et al. [68] which uses sequence of model states. 

'We use t,he notat,ion Ã for a spatially continuous vector field. The discretization of a field h. 
which is represented as a vector, is denoted by h. 
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Initial state Mean over 8000 time steos 

Figure 4.1: Surface elevation and velocity field of the true initial state (left) and mean 
state over 8000 time steps using each 10th step (right). 

The initid state estimate X: is chosen as the mean state of the true model simulation 
over 8000 time steps using each 10th time step. It is shown in the right panel of 
figure 4.1. The covariance matrix P ~ s  computed as the variation of the true model 
trajectory about this mean. This matrix does not reflect the estimated error of the 
initial state but the estimated mean temporal variability of the model state. The 
procedure, however, yields a consistent and simple way to obtain variance estimates 
together with estimates of the covariances. 

This mean a,nd covaria,nce matrix serve as a baseline. However, it soon turned 
out that &ll algorithms can improve this "state of large ignorance" . A much more 
enlightening setting would be to  use a model state and covariance matrix that are 
already quite accurate and difficult to improve. To this end, the initialization of 
the second type of experiments. referred to as experiment 'B', is conducted with 
the estimated state and covariance matrix after the second analysis update from 
an assiniilation experiment of type A with the EnKF using a very large ensemble 
of N = 5000 members. This is a very accura,te state estimate whose rms deviation 
from the true state is t,wo orders of magnitude smaller than the initial estimate of 
type A. The structure of this state is thus very similar that of the true initial state 
displayed in the left panel of figure 4.1. In addition, the cova,riance matrix of type B 
is an estimated error cova,riance matrix of the state estimate. It has a strongly 
different structure compared with the covariance matrix of type A. This is obvious 
from the eigenvalue spectrum, displayed in figure 4.2. For type A the covariance 
matrix is ill-conditioned and the ten largest eigenrnodes a,lsead explain 99% of the 
variance. In contrast to this. 371 eigenmodes are required to explain 90% of the 
variance for type B. 

Decomposed low-rank approximations P: = V o U o V ~  of the covariance ma- 
trix P?, are required to initialize the SEEK and SEIK filters. These are computed 
by incomplete eigenvalue decompositions of P: retaining only the r largest eigen- 
modes. The N ensemble states required for the EnKF algorit.hm have been gener- 
ated from the state estimate X: and the cova,riance matrix P?, by a transformation 
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Figure 4.2: Eigenvalues for t,he covariance matrices for experiments of type A and B up 
to eigenvalue index 500. 

of indepenclent randoin numbers. For this, tlie eigenvalue decomposition of P" 
is computed, yielding P: = VUVT. The eigenvectors are scaled by the squaxe 
root of the corresponding eigenvalue as L = VU1I2. For each ensemble state 
{x;'~), a = 1; . . . , N} each scaled eigenvector L^ is multiplied by a random num- 
ber bp from a normal distribution of zero mean and unit variance and added to the 
state estimate X:: 

Since the prescribed covariance matrix has a maximum rank of 799, only q = 799 
eigenmodes are used in equation (4.3). 

The assimilation experiments are performed over an interval of 8000 time steps 
for type A and 7600 time steps for type B with an amlysis phase each 200 time steps. 
For a. particular ensernble size N the rank in SEEK and SEIK is set to r = N - 1. 
In this case the number of model evaluations is equal for all three filter algorithms 
and the filtering performances can be direct,ly related to computing time. Below the 
expression "ensemble size" is used to denote the number of different model states to 
be evolved. It will be equal to N for the EnKF and r + 1 for the SEEK and SEIK 
algorithms. 

4.3 Comparison of Filtering Performances 

To evaluate the filtering performance of the three algorithms the estimation error EI, 
given by the rms deviation of the assimilated state from the true state, is considered 
separately for the three state fields h, U, and V. For the EnKF figure 4.3 shows 
estimation errors for experiments of type A with the three ensemble sizes r =30, 
100. and 500. In addition. for an experiment conducting an evolution of the 
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Figure 4.3: Estimation errors EI for experiments of type A. Shown is the time develop- 
ment of EI of the assimilated state for the EnKF for three ensemble sizes (N=30, 100, 
500) and for a model simuhtion without assimilat,ion. 

initial state estimat,e without assimilation is displayed. This free evolution shows 
only small va.riations in E1 over assimilation time. 

The temporal development of Ei in the experiments with assimilation is charac- 
terized by a large reduction at  the first analysis phase. This is due to an initially 
large error in the state estimate in connection with quite accurate ob~erv~t ions .  
Subsequent a,nalyses have significa,ntly smaller influence. The EnKF algorithm per- 
forms better with increasing ensemble size where EI is strongly diminished. For 
small ensembles, like N = 30, EI increases with assimilation time, showing that  the 
filter is unstable. As is visible in figure 4.3 tlie sta,te estimate of the assimilation 
after 8000 time steps with 40 analysis cycles is even worse than without assimilation. 
For larger ensembles the assimilated state remains dose to the true state. 
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Since only observations of the height field h are assimilated, the velocities are 
merely updated via cross covariances between the height field and the velocities. 
The representa.tion of these covariances is generally worse tha,n that of the height 
field variantes and covariances as will be discussed in the following section. Due 
to this, the estimat,ion errors Ei normalized by the estimation errors of the  free 
evolution are larger for the velocity components U, V than for the height field. 

For the SEEK and SEIK filters, the general behavior of the estimation error in 
dependence on assimilation time and ensemble size is analogous to that of the EnKF. 
In order to compare the performance of all three filter algorithms in a compact way 
we define the normalized time integrated state estimation error by 

where Eyss(f, t k )  denotes the value of Ei at time tk for the state field f {h, U, V} 
from a.n assimilation experiment. ~ j r e ~ ( f , t k )  denotes the corresponding value for 
the free evolution. The summation over the analysis times excludes the initial state 
estimate since it would dominate the value of Ey due to the large error decrease at 
the first analysis phase. Dependent on the type of experiment the summa.tion starts 
at  k,mn = 1 for type A and = 3 for type B. E2 provides a rms measure of 
the decrease in estimation error due to data. assimilation which respects a possible 
different scaling of the state fields. 

Figure 4.4 shows E2 for the three filter algorithms in dependence on ensemble 
size N for experiments of type A. For the EnKF and the SEIK algorithrns mean 
results and standard deviations over 20 experiments with different random numbers 
used in the initialization phase are shown. There are significant v8riations of the 
filtering performance depending on the used Set of random numbers since the com- 
puter generated random numbers in fact do not represent the prescribed statistics 
exactly and do determine in which directions of the state space the ensemble vectors 
point. For small N the latter will likely lead to different qmlities of the forecast 
ensemble. The SEEK algorithm is deterministic in its initialization, hence only the 
result of a single simulation per ensemble size is shown. As the observations are also 
generated using Computer generated random numbers, they will also determine the 
filtering performance. This is of 110 concern here, since the observation error is quite 
small in the experiments and all three algorithms use the Same observations. 

Overall E2 converges in the Same manner for the EnKF and SEIK filters. A 
different convergence for SEIK which should be expected because of the second or- 
der exact sampling is not visible. This is caused by the eigenvalue spectrum of the 
covariance matrix P$ which shows that the number of significant eigenvalues is ex- 
t,remely small. For EnKF and SEIK, the convergence in the interval 100 < N < 500 
can be approximated by Ei ex N x  with X w 1.2 for the EnKF and X 1.0 for the 
SEIK algorithm. Depending On the ensemble size, the mean values of Ey for the 
EnKF are between 1.5 and 1.85 times larger than those for the SEIK filter. This 
also shows that,, to achieve the same filtering performance, the ensemble for the 
EnKF needs to be between about 1.5 and 1.8 times larger than for the SEIK. These 
numbers are of Course specific for the configuration of these experiments. However, 
variations of the assimilation interval and strong increase of the rms errors in the 
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Figure  4.4: Normalized time integrated estimation errors Ei for the three filter algo- 
rithms in dependence on the ensemble size N (N = T + 1 for SEEK and SEIK) for 
experiments of type A. For EnKF and SEIK mean values and standard devktions over 20 
experiments for each ensemble size are show. Each experiment used different random 
numbers for the ensemble initia1ization. 

- EnKF 
- * SEEK 

+ SEIK 

Figure 4.5: Normalized timc integrated estimation errors Ei analogous to figure 4.4 for 
experiments of type B. For EnKF mean values and standard deviations over 20 experiments 
&re shown analogous to figure 4.4. The lines of SEEK and SEIK lie on top of each other. 
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observat-ions by a factor of 100 preserved the relative performances of the three al- 
gorithms. The behavior for the SEEK deviates significantly from that of the  EnKF 
and SEIK. For N < 70 the SEEK filter shows the best filtering performance of the 
three algorithms. But, with further increasing ensemble size, E2 stagnates a t  a 
ra,ther la,rge value. The reason for this behavior is further examined in section 4.4. 

For experiments of type B with the EnKF, the estimation error EI over time 
is displayed in figure 4.6. Here the initial state approximates the true state quite 
well but without assimilation the rms deviation increases by about two orders of 
magiiit,ude until the final time step. Thus. the conditions for this experiment are 
quite different from those of type A in which the initial state estimate was strongly 
deviating from the true state and the free evolution remained over simulation time a t  
an alniost constant rms deviation from the true state. In the experiments of type B 
the assimilation of height field observations keeps the estimates of all s tate fields 
much doser to the true state comparecl with the simulation without assimilation. 
As for type A. the estimation error of the velocity components is higher that  for the 
sea level. 

The error measure Ey is displayed in figure 4.5 in dependence on ensemble size 
for the experiments of type B. Here mean results and standard deviations over 20 
experiments with different randoni numbers in the in i t i a l i~~ t ion  are only shown for 
the EnKF. The dependence of the SEIK filter on the ra,ndom numbers used in the 
initialization is negligible for this type of experiment (data not shown). The perfor- 
mance of SEEK and SEIK is almost indistinguishable, with a relative difference of 
the values of Ey below 6 - 1 0 3 .  The values of E2 are smaller for type B than for 
type A which is due to the normalization by E?" when computing E2. Since E^ 
increases st,rongly over time the normalization returns smaller values than in ex- 
periments of type A in which EF" remained almost constant. As for type A the 
value of E2 converges similarly for the EnKF and SEIK filters. But for smdl  ensem- 
bles (N 5 75) SEIK converges faster tha,n EnKF. Again the dependence of E2 on N 
can be a p p r ~ x i m ~ t e d  in the interval 100 < N < 500 to  be Ey <x N x  with X Ã 0.42 
for the EnKF and X = 0.44 for the SEIK algorithm. Thus, the convergence with 
ensemble size is much smaller for type B than for type A. To obtain the sa,me filter 
performance, the ensemble in the EnKF would need to  be between about 1.6 and 2.2 
tirnes larger than for SEIK. This result corresponds to that  reported by Heemink 
et al. 1311. There the RRSQRT filter, which is similar to  the SEEK algorithm as 
was discussed in section 2.4.1, yielded comparable e ~ t i m ~ t i o n  errors to the  EnKF 
for about half the number of model evaluations. 

According to the discussion on the in i t i a l i~~ t ion  of EnKF and SEIK in section 3.2, 
it is possible to interchange the methods of Monte Carlo sa,mpling and second order 
exact sa.mpling between these two filters. Figure 4.7 shows a comparison of SEIK 
and EnKF with interchanged initializations for experiments of type B with N = 50. 
The experiments of both types yield a. 5 to 10% better filtering performance for the 
EnKF algorithm when the filter is initialized by second order exact sa.mpling instead 
of pure Monte Carlo sampling. The performance of the  SEIK filter degrades by &bout 
the Same amount if the Monte Carlo initialization is applied. After interchanging 
the initialization the SEIK filter still performs better than EnKF. This is caused by 
the introduction of noise into the ensemble by the observation ensemble required in 
the analysis scheine of the EnKF algorithm as will be discussed below. 
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Figure 4.6: Estimation errors EI for experiments of type B. Shown is the time develop- 
ment of EI of the assimilated state for the EnKF for three ensemble sizes (N=30, 100, 
500) and for a model simulation without assimilation. 
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4.4 Statistical Examination of Filtering Perfor- 
mance 

To gain insight into the reasons for the different filtering performances of the three al- 
gorithms, an examination of the sampling quality of the represented state covariance 
matrices is performed in the sequel. At first, some additional analysis quantities are 
defined. Based On these quantities it is then discussed how the different variants of 
forecasting and different choices of ensembles can lead to  estimates of the covariance 
matrix, and hence the error subspace, of strongly different quality. 

4.4.1 Definition of Analysis Quantities 

To define analysis quantities measuring the sampling quality, let us reconsider the 
filter algorithms. The SEEK filter evolves the state estimate with the nonlinear 
dynamic model and the eigenmodes of the low-rank a p ~ r o x i m ~ t e d  state covariance 
matrix with the linearized dynamic model or a gradient 'pproximation of it. The 
EnKF a,nd SEIK filters both evolve an ensemble of model states with the non- 
linear dynamic model. The capability of the forecast phase to provide a realistic 
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Figure 4.7: Comparison of the estirnation errors Ei for SEIK and EnKF for experi- 
ments of type B with their typical initialization and with interchanged initializations for 
an ensemble size of N = 50. The dotted line shows Ei for a model evolution without 
assimilation. The behavior of E1 for the zonal velocity component V is simi1a.r to that of U 
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representation of the error subspace is reflected by the sampling quality of the state 
covaria.nce m&ix P. 

To discuss the analysis phase we consider the covariance matrix to consist of 

Here the sub-matrices {Py = P^,} are n/3 X n/3 matrices with Phh, Puu, and PÃ£ 
containing respectively the covariances of the height field and the two velocity com- 
ponents. The off-diagonal sub-n~atrices {Pij, i # J'} contain the cross covariances 
between different state fielcls. The measurement operator projects a state vector 
onto its height field part, thus 

where I is the identity matrix and 0 the matrix containing only Zeros. In the 
experiments, all observations were assumed to be ~ n c o r r e l ~ t e d  wit.h variantes of 
constant value vaQh. Thus the observation error cova,riance matrix is: 

With this specifications. the analysis equation for the state in SEEK and SEIK 
(respectively equation (2.29) or (2.68)) simplifies to 

with observation-state residual, sometimes also called innovation, d = yO - hf 
where hf is the estimated forecast height field. For the EnKF the &nalysis equa- 
tion (2.41) for the ensemble states is also valid for the ensemble mean, see [17]. In 
the case considered here it simplifies to 

According to equations (4.8) and (4.9) only the covariances Pfi in the height field 
and the cross covariances Pu/, and PÃ£ between height field a,nd the velocity com- 
ponents are considered in the analysis upda,te of the state estimate. The other 
sub-ma.trices are as well updated during the ana,lysis update of the cova,riance ma- 
trix a,nd all parts of P determine the quality of the forecast. 

To compare the three filter algorithms despite their different analysis equations 
we define update matrices B. For the SEEK and SEIK filt.ers we define the ele- 
ments 1 <: a 5 n,, 1 5 Ã < m} by 

For the EnKF the definition is analogously 
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Table 4.1: Examination of the sampling quality at first analysis phase for experiments 
of type A with N = 30. Shown are relative estimation errors E3 and the correlation p - ~  
and regression ÃŸ coefficients between the ideal and sampled update sub-matrices for the 
height field h and the zonal velocity U. In addition, the correlation puar arid regression ÃŸÃ£ 

coefficients of the variance part for the height Seid are shown. 

1  field 1  E3 I ]  PB \  Â§ 1 1  Puar \  ÃŸua 

EnKF 1 1 0.168 1 0.305 1 0.091 1 0.961 1 0.071 

EnKF 

SEIK 

The update matrices B correspond to the matrix-vector products in equations (4.8) 
and (4.9) without performing the summation. For the SEEK and SEIK filters this 
amounts to a scaling of the covariances by the elements of the residual vector. Thus, 
the update matrices take into account not only the different sampling qualities of 
the state cova,riance rnatrix but also different residuals d. Accordingly, an estimate 
of the analysis quality for the single state fields will be provided by the sampling 
quality of the sub-matrices Bhh, Buh,  and Buh.  

To quantify the sampling quality we compare the computed update matrices with 
an update matrix obtained from a,n EnKF assimilation experiment with ensemble 
size 7V = 5000, referred to as the "ideal" upda,te matrix BdeQ'. For the comparison 
we compute correlation coefficients p~ between the sampled and ideal update sub- 
matrices and regression coefficients ÃŸ from the ideal to the sampled update sub- 
matrices. We focus on the very first analysis phase in which for experiments of 
type A the largest reduction of the estimation errors occurs. 

4.4.2 The Influence of Ensemble Size in Type A 

In table 4.1 experiments of type A are examined for assimilation with an ensemble 
size N = 30. Displayed a,re the correlation and regression coefficients pa, ÃŸ for 
the height field h and the zonal velocity component U. The coefficients for the 
meridional velocity component V are similar to those for U and thus not shown. In 
addition the relative estirnation error 

after the  first a,nalysis is shown for the fields f E ( h ,  U ) .  For comparison, the 
values of Eg for the ideal experiment are much smaller with E 3 ( h )  = 0.005 and 
E 3 ( u )  = 0.04. Thus, the filtering performance will increase strongly with growing 
ensemble size and the improvement will be larger for the height field than for the 
velocity components. 

The order of the values of E3 for the three filters is the Same as that  of the time 
integrated E2 vhes for N = 30 displayed in figure 4.4. The SEEK has the smallest 
value of E3, followed by SEIK and then EnKF. The ratio of the time integrated E2 
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Table 4.2: Examination of the sampling quality a.t. the first analysis for experiments of 
type A with N = 200. Shown 3re tlie Same quan.ttit,ies as in. table 4.1. 

EnKF 
SEEK 
SEIK 
EnKF 
SEEK 
SEIK 

field 

for the EnKF tho that of the SEIK is 1.59. It. is larger than the corresponding ratio 
of Es values after the first analysis update which is 1.24. This is caused by the 
use of an obserntion ensemble in the analysis of the EnKF which destabilizes the 
assimilation process. This will be examined in more deta,il below. 

The con-elation 'nd regression coefficients PB, reflect the different filtering 
performances of the first analysis update. Overall it is visible that there is a sig- 
nificant correlation bet,ween the sampled and the ideal sub-matrices. The small 
regression coefficients show in addition that the amplitudes a,re strongly underes- 
timated. Using in the experiments observations with larger errors decreases the 
amount of underestimation (data not shown). The underestimation is even more 
pronounced when one considers only the correlation and regression coefficients for 
the va,riance part, i.e. the diagonal, of the height field update sub-matrix. These 
coefficients are also shown in table 4.1, denoted as pÃ£n a,nd For AT == 30 the 
correlation coefficients pvar are already very near to unity. The regression coeffi- 
cients ÃŸUa show, however, a very strong underestimation of the variance. In the 
experiments, the structure of the update sub-matrix Bhh corresponding to a single 
grid point, as well as the covariance sub-matrix P;,;,, consists of noise of rather low 
amplitude and a significantly larger peak with a radius of about two grid points 
around the location of the specified grid point. Thus the variance will dominate the 
analysis while most of the noise will average out when computing the product Pkhd. 
For the EnKF the smaller values of pB and PB for h point to the fact that here the 
analysis is less accurate than for SEEK and SEIK. This is confirmed by the value 
of Es which is larger for the EnKF than for the two other filters. For the difference 
between SEEK and SEIK this is less obvious. 

For the velocity components the sampling quality of B is generally worse than for 
the height field. This is due to the fact that only h is observed and U, V are updated 
via the covariance sub-ma,trices Pu;, and Pu,;. These have a. structure with multiple 
extrema and are more difficult to sample than the variante-domimted Phh (data 
not shown). For all three filters the values of p~ and ÃŸ are nearest to unity in the 
case of the SEEK algorithm. This is consistent with the filter's small value of E:. 
In experiments of type A the SEEK filter is able to sample the sub-matrices Pd, 
and Pu;, for sma.11 ensembles significantly better than the SEIK and EnKF filters. 

For AT = 200 the sampling quality of the upda,te matrices is exa,mined in ta- 
ble 4.2. Compared with AT = 30 the estimation errors Ey after the first analysis 
a,re much smaller. This decrease is minor for the velocity components than for 
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the height field due to the worse sampling of cross correlations between h and the 
velocity coniponents U,  V.  The increased regression coefficients ÃŸ show that  the 
underestimation of the correlations has diminished. In addition: according t o  the 
increased correlation coefficients PB and pÃ£ar covariances as well as variantes are 
sampled much more realistic. The similarity of the coefficients for SEIK and EnKF 
has increased compared with N = 30, but the SEIK still shows the better sa,mpling 
qua,lity. 

The estimation error measures Ei. and E3 for N = 200 are larger for the SEEK 
filter than for the SEIK and EnKF filters. This is consistent with the values of pB 
and ÃŸ which are snialler for the SEEK than for the two other filters. This inferior 
sampling quality of SEEK is caused by the direct forecast of the eigenmodes of the 
state covariance matrix P. The modes with larger index represent gravity waves. 
These are impossible to control by the data assimilation in our experimental setup. 
Hence, these modes do not provide any useful information to the error subspace 
'nd the filtering performance stagnatcs. For the estimated velocity components 
the experiments show tha,t this can even lead to a small decrease in the filtering 
perform'nce for increasing N. 

4.4.3 Sampling Differences between EnKF and SEIK 

The different sampling quality of the EnKF and SEIK filters is due to the distinct 
variants to generate t,he ensembles in both algorithms. Interchanging the initial- 
iza,tion methods between the algorithms results, at  the first a,nalysis phase, in an 
exchange of the values of E3, PB, arid ÃŸB Using the same ensemble and neglecting 
model errors, both filters are equivalent during the first analysis phase with respect 
to the update of the state estimate since the predicted error subspaces are iden- 
tical. Such an equivalence does not exist for the update of P due to the implicit 
update of this matrix in the EnKF algorithm. While the update of P for the Ex- 
tended Kaiman filter is described by equation (2.16) the update of P for the EnKF 
algorithm is given implicitly by 

Here R is the observation error covaria,nce matrix as sampled by t,he ensemble of 
observation vectors. P^, P' a,re the covariance matrices of the forecast and analysis 
state ensembles. The last term 0 ( <  Sxf (dyO)* >) denotes the spurious covariances 
between the state and observation ensembles. In SEEK and SEIK this last term 
is Zero and R is replaced by the prescribed matrix R and P denotes the rank-r 
approximated state covariance matrix. For SEEK and SEIK equation (4.13) reduces 
to the correct KF update equation for a covariance matrix P. For the EnKF the 
sampled matrix R and the correlations between the state and observation ensembles 
insert noise into the analysis ensemble which represents the state covariance matrix. 
Whitaker and Hamill [94] discussed this effect in a simple one-dimensional system. 
In order to quantify the introduction of noise the two definitions (4.10) and (4.11) 
of B can be examined. Without sampling errors, both definitions are equally valid. 
Thus for the SEEK and SEIK filters the update matrices computed from either 
equation are identical. For the EnKF the resulting update matrices are different. 

In table 4.3 the coefficients p~ and ÃŸ for update matrices computed with equa- 
tions (4.10) or (4.11) are compared for the EnKF algorithm with N = 30 for 
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Table 4.3: Comparison of the sampling quality of the update sub-matrices for the EnKF 
with N = 30 for experiments of type A. Shown are correlation PB and regression ÃŸ 

coefficients for sampled update sub-matrices computed from the forecast covariance matrix 
(Bf, equation (4.11)) and from the analysis covariance matrix (BQ, equation (4.10)). In 
addition, the correlation and regression coefficients (pUm ,Buar) for the variante part of 
the height field update sub-inatrix are shown. 

experiments of type A. The values of p~ computed from the forecast covariances 
according t.o equation (4.11) are about 1.5 times larger compared with those com- 
puted with equation (4.10) from the analysis covariances. Despite this, the regression 
coefficients remain almost unchanged. Also the coefficients pvar and show an 
analogous but much smaller ratio. The introduction of noise to the ensemble states 
at  each analysis phase leads to more unstable forecasts in the EnKF in comparison 
to the SEIK. Over the Course of the assimilation process the estimation error Ei 
deviates increasingly for the two filters. This leads to the values of Ei shown in 
figure 4.4 in which the difference in filtering performance between EnKF and SEIK 
is larger than just for the first analysis. 

4.4.4 Experiments with the Idealized Setup (Type B) 

B computed by 

B(~.BÂ¥ = Atal/3)dt8) 

The sampling quality of the  update matrices for experiments of type B for ensembles 
of size N = 30 and N = 200 are respectively shown in tables 4.4 and 4.5. For 
the SEEK and SEIK filters the values of Eg, ps ,  and ÃŸ for are identical for h 
a,nd almost identical for U &nd V for both ensemble sizes. Thus, the SEEK filter 
shows no problem caused by the mode forecasts in this type of experiment. This 
can be related to the different structure of the covariance matrix which leads to 
mode forecasts which provide realistic directions of the error subspace even for high 
eigenvalue indices. For h the EnKF shows a slightly larger estinlation error Es than 
SEIK. This corresponds to  the smaller values of (SB which show that  the update 
matrices a,re less realistic sampled for the EnKF compared with the SEIK. The 
EnKF. however. underestimates the  amplitude of the covariances t,o a lesser degree 
than SEIK does. The variance part of the upda,te matrices is represented better 
by the EnKF than by SEIK as is visible from bot11 the values of pvar and ,ÃŸt,ar 

The smaller regression coefficients in the case of the SEIK filter result from the 
low-rank approximation of the matrix P which systematically underes t i~n~tes  the 
overall variance. Due to the structure of P in experiments of type B, as discussed 
in section 4.2; the disregarded variance is non-negligible here even for N = 200. 

PB 
0.305 

field 
h 

The velocity components are much worse filtered here than in the experiments of 
type A. For N = 30 the values of Ey even increase showing that  the sampled covari- 
ances are not realistic. For N = 200 a small decrease of the estimation error is visible 
which is stronger for the SEIK compared with the EnKF. Since the ideal values of E3 

ÃŸ&a 
0.091 1 0.961 

A,w 
0.071 
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Table 4.4: Examination of the first analysis for experiments of type B with N = 30. 
Shown are the Same quantities as in table 4.1. 

EnKF 
SEEK 
SEIK 
EnKF 
SEEK 
SEIK 

field 

Table 4.5: Examimtion of the first analysis for experiments of type B with N = 200. 

are 0.2 for h and 0.75 for U there will be no strong decrease in Ey any more for larger 
ensembles. Over the whole assimilation period the performance of all three filters 
is however better than at  the first analysis phase. While the non-assimilated state 
diverges from the true state, the data assimilation keeps the estimation error almost 
constant. This leads to the small values of the time integrated estimation error Ei 
displayed in figure 4.5. 

Shown are the same quantities as in table 4.1. 

4.5 Summary 

EnKF 
SEEK 
SEIK 
EnKF 
SEEK 
SEIK 

The behavior of the SEEK, EnKF, and SEIK filters has been assessed utilizing iden- 
tical twin experiments. The experiments applied shallow water equation model 
with nonlinear evolution and assimilated synthetic observations of the sea surface el- 
evation. Two types of experiments have been performed with distinct initializations 
of the state estimate and state covaria,nce matrix. For identical initial conditions, 
the filter algorithms showed quite different abilities to reduce the estimation error. 
In addition, the filtering performances depended differently on the ensemble size. 

Under some circumstances, the SEEK filter shows a distinct behavior from the 
two other algorithms caused by the direct evolution of modes of the state covariance 
matrix. This depends on the structure of this matrix. For the experiments of type 
A, in which the covariance matrix is dominated by a small number of large-scale 
modes, the performance of SEEK is different from that of EnKF and SEIK. For 
experiments of type B, in which the covariance matrix is variance dominated, SEEK 
and SEIK perform almost identical. The superior performance of SEEK for smallest 
ensemble sizes in experiments of type A appears to be by Chance but shows that a 

field 

h 

U 

0.273 
0.269 
0.269 
0.981 
0.872 
0.875 

E u B  
0.802 
0.847 
0.847 
0.519 
0.766 
0.766 
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mode-oriented filter algorithm can under some circumstances yield a superior filter 
performance than the ensemble based filters. SEEK is well suited to filter rather 
coarse structures in which nonlinearity is not pronounced. 

The EnKF and SEIK algorithms show similar convergence with increasing en- 
semble size. The SEIK filter exhibits superior performance compared with thc EnKF 
algorithm due to the initialization by minimum second order exact sampling of the  
low-rank approximated state covariance matrix. This sampling leads to a superior 
ensemble representation of this matrix, in particular. for small ensembles. In addi- 
tion, the SEIK filter does not suffer from noise introduced into the state ensemble 
by an observation ensemble as required by the EnKF. 

Statistical analyses of the quality of the sampled state covariance niatrices showed 
how these matrices differ for the examined algorithms. The structure of the variances 
is in all filters quite well represented, but their a,mplitudes are underestimated. 
Dependent On the structure of the covariance matrix. the low-rank initialimtion 
used in SEEK and SEIK tends to unclerestimate the variances even more tha,n the 
Monte-Carlo initialization used in EnKF. The sampling of the full covariance sub- 
matrices for the single state fields is inferior for all three filters in comparison to the 
variances. The representation of the covariances for the height field is significantly 
better than that of the cross correlations between the height field and the velocity 
components. This is due to the variance dominated structure of the height field 
covariances. The sampling quality of the covariances and cross correlations can be 
improved, at least for the SEIK and EnKF, by increasing the ensemble size. 



Chapter 5 

Summary 

This Part of this two-part work compared three filter algorithms based On the 
Kalman filter, namely the Ensemble Kalman Filter (EnKF), the Singular Evo- 
lutive Extended Kalman (SEEK) filter and the Singular Evolutive Interpolated 
Kalman (SEIK) filter. In the mathematical comparison, the unified interpretation 
of the filter algorithms as Error Subspace Kalman Filters (ESKF) was introduced. 
This interpretation is motivated by the fact that the three algorithms apply a low- 
rank approximation of the state cova,riance matrix used in the Extended Kaiman fil- 
ter (EKF). Hence, they approximate the error space of the EKF by a low-dimensional 
error subspace. In addition, the three filter algorithms apply the analysis equations 
of the EKF adapted to the respective algorithm. Thus, the analysis assumes Gaus- 
sian statistics of both the state estima,te and the ob~erv~tions.  

The SEEK and SEIK filters are typically initialized from state estimate and 
a sta.te covariance matrix which can be provided in some decomposed form, e.g. 
as a sequence of model states. The state covariance matrix is approximated by a 
matrix of low rank. This low-rank matrix is then exactly represented either by the 
eigenmodes of the matrix in the case of SEEK or by a random ensemble of minimal 
size in SEIK. The EnKF algorithm can also be initialized from a state estimate and 
a corresponding covariance matrix. This information is typically used to generate a 
random ensemble by Monte Cmlo sampling. The statistics of the generated ensemble 
a p ~ r o x i m ~ t e  the state est,imate and the state covariance matrix. 

In the forecast phase, the EnKF and SEIK filters are equivalent. Both perform a 
nonlinear ensemble forecast. In contrast to this, the SEEK filter forecasts explicitly 
t,he modes of the covaria,nce matrix by the linearized model or a gradient approx- 
imation of it. The state estimate is explicitly evolved using the nonlinear model. 
It has been shown that the ensemble forecast performed in the EnKF and SEIK 
algorithms is better suited for nonlinear models than the forecast scheme used in 
the SEEK filter. 

It has been shown that the analysis increment of all three filter algorithms is 
given by a. weighted average of vectors which belong to the error subspace. The 
analysis phase of the EnKF algorithm is less efficient than that of the SEEK and 
SEIK filters if the amount of observations is larger than the ensemble size. This is 
due to the fact, that the EnKF algorithm uses the representer analysis variant which 
operates on the observation space. In contrast to the EnKF algorithm, the SEEK 
arid SEIK filters operate on the error subspace. Another apparent problem of the 
EnKF algorithm is that the analysis phase introduces noise to the state ensemble 



ca,used by a nuinerically generated ensemble of observa,tioi~ vectors which is required 
by the analysis scheme. 

While the EnKF algorithm computes its new ensemble during the analysis phase, 
the SEEK and SEIK filters contain a resampling phase. Its has been shown tha,t 
this will not render the latter two algorithms to be less efficient with respect to the 
required computation time than the EnKF. 

Overall, the mathematical comparison showed that the SEEK filter is a. re-formu- 
lation of the EKF for a low-rank st.ate covariance matrix stored in decomposed form. 
It has the nuinerically most efficient &nalysis scheme of the three filter algorithms but 
shows only limited abilities to handle nonlinearity. The EnKF algorithm is a Monte 
Carlo method which is not designed to profit from the fact that the probability 
density of the model state will be 't least approximately Ga,ussian. Thus, it is not 
explicitly considered that the density can be represented by a linear error space which 
can be approxima,ted by its major directions. SEIK filter takes this into account 
and approximates the covariance matrix, which cha,racterizes the error space, by a 
low-rank matrix. Hence, the SEIK filter has the Same ability to treat nonlinearity 
as the EnKF algorithm but a more efficient analysis scheme. The EnKF algorithm 
can be expected to exhibit an enhanced filtering performance when it is initialized 
from a low-ra,nk covariance matrix analogous to the SEIK filter. The problem of 
noise introduction by the observation ensemble will, however, reinain. 

The theoretical findings have been confirmed by numerical experiments using 
shallow water equation model with nonlinear evolution. In identical twin exper- 
iments, synthetic observations of the sea surface elevation have been assimilated. 
The experiments have been interpreted in terms of the estima,tion errors and by a 
statistical analysis of the sampling quality of the state covariance matrices. The ex- 
periments showed that the SEIK algorithm is an ensemble algorithm con~parable to 
the EnKF with the benefit of a very efficient scheme for analysis and resampling. In 
addition, the SEIK filter does not suffer from noise introduced into the state ensem- 
ble by an observation ensemble as required by the EnKF. As the EnKF and SEIK 
filters, the SEEK algorithm is able to provide good sta,te estimates. The SEEK filter 
is, however, sensitive to the mode vectors it needs to evolve. Due to this, the SEEK 
filter cm exhibit a distinct filtering behavior from the EnKF and SEIK filters. In 
the experiments this depended on the structure of the state covariance matrix. In 
general, it will also depend 011 the physical system which is simulated. The SEEK 
filter will be. however. well suited to filter rather coarse structures in which nonlin- 
earity is not pronounced. The experiments also showed that initialimtion methods 
using higher orcler sampling schemes like the second order exact sampling are ap- 
pealing due to the better representation of the state covariance matrix, in particular 
for small ensembles. 

The experiments performed here are of Course highly idea.lized. For example, an 
inclusion of model error would be desirable. But, for the EnKF and SEIK filters, 
it can be expected that this will not lead to significant changes in the relative 
filter performance, since both algorithms can treat the model error in the Same 
way. Results obtained with more realistic experiments will be discussed in chapter 9 
where the filter algorithms are applied to the three-dimensional finit,e element ocean 
model FEOM. 
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Chapter 6 

Overview and Motivation 

The development of error subspace filter algorithms rendered large-scale data assi- 
milation with Kalman-type filters possible. However, filters like the EnKF, SEEK, 
and SEIK algorithms still exhibit high computational complexity. The evolution 
of the approximated covariance matrix still requires a. vast amount of computation 
time, in pa,rticular for large-scale models. Also the memory requirements are large 
since, besides the fields required for the numerical model itself. the ensemble or 
mode matrix has to be allocated. In addition, several matrices need to be allocated 
temporarily for the analysis and resampling phases of the filter algorithms. 

The computational and memory requirements can be alleviated by the use of 
parallel Computers. Using parallelization methods like the Message Passing In- 
terface (MPI) [27], the ensemble or mode matrix can be distributed over several 
processes. Thus, the memory requirements of each single process can be reduced. 
Additionally, the inherent parallelism of the error subspace Kaiman filters (ESKF) 
can be exploited. The evolution of different ensemble states is independent. as was 
mentioned in chapter 3. Thus. the forecast phase can be parallelized by distribut- 
ing the state ensemble over multiple model tasks executed concurrently by different 
processes. The ensemble states are then evolved concurrently by the model tasks, 
See e.g. [17, 741. Most of the execution time of a filtering application is usually spent 
in the forecast phase. while the parts for the model init,ialization and the execution 
of the analysis and resampling phases require a significantly sinaller amount of time. 
Thus, according to Amdahl's law, the use of independent model tasks will provide 
a high parallel efficiency. Hence, the time required to compute a particular data 
assimila,tion problem will strongly decrease when an increasing number of processes 
is used for the computations. 

This is an advantage over the popular adjoint method which is inherently serial 
due to the alternating forward and backwa,rd evolutions with the numerical model 
and its adjoint, as was discussed in section 1.2. Hence, the adjoint method allows 
only for a decomposition of the model domain to distribute the evolutions over 
multiple processes. The value of the cost function and the gradient would then be 
gathered by a single process to update the control variables according to the cho- 
Sen ~ p t i m i z ~ t i o n  algorithm. Trkmolet and Le Dimet [82, 811 proposed to distribute 
also the phase in which the control variables are updated. In this case, the cost 
functional J is evaluated by each process on its local sub-domain. Further, the 
gradient of J is computed for the 1oca.l cost functional. To ensure continuity of the 
model fields between neighboring sub-domains, the cost functional is augmented by 



an additional term penalizing differentes of the model fields at the boundaries of 
neighboring sub-domains. Thus, this difference of the boundary values is also t o  be 
minimizecl by the optimization algorithm. The speedup of the distributed adjoint 
n~ethod will not be ideal. This is due to the exchange of data between neighboring 
sub-domains during the evolutions as well as for the computation of the cost func- 
tion. In addition. it is not assured that the minimization converges with the Same 
number of iterations On each sub-domain. 

The parallelization of filter algorithms has been discussed most extensively in 
the context of the EnKF algorithm [44, 45, 46, 361. Here, different approaches have 
been examined. The forecast phase ca,n either be parallelized by exploiting i ts  in- 
herent parallelism, or by a domain-decomposition of the model grid. The analysis 
phase can also be parallelized by either holding sub-ensembles of full model states 
on each process or by operating on full ensembles of sub-states corresponding to a 
sub-domain. In the context of low-rank filter, the parallelization of the RRSQRT 
algorithm has been examined [70, 74, 731. Here, the Same parallelization strategies 
of domain-decomposition and distributed ensembles as for the EnKF algorithm have 
been discussed. 

For the implementation of filter algorithms with existing numerical models, a 
clear logical separation between the filter and model parts of a data assimilation 
application is valuable. In addition, a well defined interface structure for the trans- 
fer of data between the filter and model parts is required. To support a. separation 
between these two parts of a. filtering application, the interface systems SESAM [75] 
and PALM [60] have been developed. SESAM is implemented using UNIX shell 
scripts which control the execution of separated program executables like the nu- 
merical model and the program computing the analysis a,nd resampling phases of 
the filter. Da,ta transfers between the programs are performed using disk files. 
The structure of SESAM has been developed with the aim of avoiding changes to 
the source code of the numerical model when using it for data assimila.tion. Since 
SESAM is based on shell scripts. it does not support multiple inodel tasks. The 
numerical efficiency of a dat,a assimila,tion application implemented with SESAM 
will not be optimal since the disk operations used for data transfers are extremely 
slow compared with memory operations. 

The coupler system PALM uses program subroutines which are instrumented 
with meta information for the PALM system. The data assimilation program is 
assemblecl using the prepared subroutines and a. library of driver and algebraic rou- 
tines supplied by PALM. For a filter algorithm, the resulting program supports the 
concurrent evaluation of multiple model tasks. In addition, a better numerica.1 effi- 
ciency can be expected compared with SESAM, since data transfers are performed 
by subroutine calls. Thus, no disk operations will be required. For the implemen- 
tation of a. data assimihtion application. PALM requires, however, to assemble the 
algorithm from separate subroutines. Since the numerical model is used as a sub- 
routine, it must not be implemented with a main program. Thus, the model has 
to  be adapted to fulfill this requirement. In addition, the control of the filtering 
program will emanate from the driver routine of PALM. The numerical model is 
reduced to a module in the PALM system. This might lead to acceptance problems, 



since the major part, of the source code for the data assimilation program is given 
by the nunierical model. 

In the following chapters. the application of the EnKF, SEEK and SEIK algo- 
rithms on parallel computers is studied. For the parallelization of the filter algo- 
rithms a two-step strategy is used: 

First, the parallelization of the analysis 'nd resampling phases is considered in 
chapter 7. These phases are independent from the model. Hence, the data tra,nsfer 
between the filter and model parts of the program is of no concern here. Both par- 
allelization variants of clistributed sub-ensembles and of domain-decomposed states 
are examined for all three filter algorithms. In addition, a localization of the analysis 
phase is discussed. This localization neglects observations beyond a chosen distance 
from a grid point of the model domain. It is shown that the localization is only 
relevant for the EnKF algorithm. 

Subsequently, in chapter 8. the parallelization of the forecast phase is discussed. 
This phase is parallelized within a. framework for parallel filtering which is developed 
in this chapter. The framework provides two levels of parallelism. The model and 
filter routines can be parallelized independently. Further, multiple model tasks can 
be executed concurrently. The number of processes for each model task and for the 
filter routines, as well as the number of parallel model tasks, are specified by the User 
of the data assimila,tion program. The framework defines an application program 
interface to assure well defined calling structure of t,he filters. This permits to 
combine filter algorithms with existing model source codes which are not designed 
for data assimilation purposes. The structure of the framework amounts to att,aching 
the filter algorithm to the model by adding subroutine calls to the model source code. 
The data assimilation program will be controlled by user-written routines. Thus, the 
required parameters can be initialized within the model source code. The framework 
perrnits to switch between filter algorithms in the Same data assimilation pr0gra.m 
by the specification of a. single parameter. In addition, the observation-related parts 
of the filter algorithms are implemented in routines separated from the core routines 
of the filter. This allows for a flexible ha,ndling of different obser~~t ional  data sets. 

To assess the parallel efficiency of the filt,ering framework in chapter 9, it has 
been implemented with the finite element ocean model FEOM which has been re- 
cently developed at the Alfred Wegener Institute [12]. First, the data a~simil~t ion 
experiments of chapter 4 are extended to a. more complex 3-din~ensional test-case by 
performing twin experiments with an idealized model config~r~t ion of FEOM. To 
examine the filtering performance of the SEEK, SEIK. and EnKF algorithms, syn- 
thetic observations of the sea surface height are assimilated. Subsequently to these 
data assimilation experiments, the pa,rallel efficiency of the filtering framework is 
examined. Then, the parallel efficiency of the analysis and resampling phases of the 
parallel filter algorithms is studied. The results will show, that the filtering frame- 
work developed in cha.pter 8 exhibits an excellent parallel efficiency. Furthermore, 
the framework and the filter algorithms are well suited for a,pplication to realistic 
large-scde data assimilation problems. 



Chapter 7 

Parallelizat ion of t he Filter 
Algorit hms 

7.1 Introduction 

To cope with their high computational complexity, the error subspace Kalman filter 
algorithms share the benefit that they comprise some level of natural parallelism 
which can be exploited on pa,rallel computers. The independence of the forecasts 
of the ensemble members has often been stressed for the EnKF [17], but it is also 
inherent in the SEIK filter. For the SEEK filter, the forecasts of the modes are inde- 
pendent if the gradient approximation is used. They are not independent if SEEK is 
used with the linearized model to evolve the modes. In this case, the nonlinear fore- 
cast of the state estimate is required at each time step to evaluate the linearizat,ion. 
If the numerical model is linear, either the modes or the columns of the state co- 
variance matrix can be evolved independently in parallel even with the full Kalman 
filter. This has been utilized by Lyster et al. [52] to perform data assimilation with 
a linear 2-dimensional transport model for atmospheric chemical constituents using 
the (full-rank) linear Kalma,n filter. The authors compared parallelizations which 
either decompose the covariance matrix into columns or apply a decomposition in 
which only several rows of the covariance matrix are stored on a process. The latter 
method a,mounts to a decomposition of the model domain. While the forecast phase 
showed a rather good speedup in this study, the parallel efficiency of the analysis 
phase is only smd. These results can be expected since the analysis phase involves 
global operations on the model domain. Hence, a parallelized analysis algorithm 
will contain a. high amount of communication. 

Applying the EnKF, Keppenne [44] exploited the inherent parallelism of the 
ensemble forecast in data assimilation with a 2-layer shallow water model. In the 
forecast, Keppenne distributed the ensemble members over the processes. (We will 
refer below to this type of distribution as "mode-decomposition".) For the anal- 
ysis phase of the filter this work decomposed the model domain into sub-domains 
(referred to as "domain-decomposition") to allow for an analysis on a. regional ba- 
sis. This approach was further refined by Keppenne a,nd Rienecker [45, 461 where 
the filter was applied to an ocean genereal circulation model (OGCM) in a model 
configuration for the Pacific basin. Here, the model and the filter were parallelized 
by domain decomposition. In addition, a. localized analysis is performed assimilating 
only observations within a certain distance from a grid point. A localized analysis 
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has also been described by Ott et al. 1581. In this work the analysis was formulated 
using overlapping domains. Furthermore, only observations local to a domain are 
considered. 

In the context of the RRSQRT filter. two parallelization approaches have been 
discussed. Roest anCl Vollebregt [70] split their data a~simil~t ion code into parts 
which are independently parallelized using different types of parallelism. Applying 
a mode decomposition in the forecast phase. they also utilize the inherent parallelism 
of this phase. Other operations on the covariance ma,t.rix, like a re-diagonalization 
analogous to the re-orthonormalization of the modes performed in the SEEK filter, 
are evaluated using di~t~ributed rows of t,he inatrix. Segers and Heemink [74] compare 
mode and domain decomposition variants of the RRSQRT filter applied to an air 
pollution model. In this example both methods yield rather comparable values for 
the speedup. Segers and Heemink favor the domain decomposition method, based 
On their experience that the parallelization of the analysis part of the RRSQRT 
algorithm is easier for a domain decomposition than for a mode decomposition. 
They stress t,hat this method requires a parallel, domain decomposed model. 

In this chapter, we will examine the possibilities for the parallelization of the 
SEEK, EnKF, and SEIK algorithms. The variant of using the mode decomposition 
of the ensemble matrix in these filters is discussed in section 7.2. Subsequently 
in section 7.3 we examine the option to decompose the state vectors by a domain 
decomposition. Finally. we introduce in section 7.4 a formulation for a localized 
analysis which permits to assimilate observations within a certain distance from a 
grid point of the model domain. We focus On the analysis and resampling phases of 
these algorithms. The forecast phase is examined in connection with the develop- 
ment of a framework for parallel filtering in chapter 8. For parallelization, we use 
the Message Passing Interface (MPI) [27]. Some fundamental concepts of parallel 
computing are discussed in a,ppendix A which also contains an introduction to MPI. 

7.2 Parallelizat ion over t he Modes 

For now, we consider a parallelization using mode-decomposition~ i.e. the ensemble 
matrix X, or the mode matrix V, is distributed such that the process with rank p 
owns kp < N columns of the matrix. Thus, the local column indices ip = 1,.  . . , kp 
correspond t.o the global indices i = jp: . . . , jp + kp where jy = 1 &nd jp = 1 + kp  
for p > 0. This decomposition is displayed in figure 7.1 for s + 1 processes. Each 
column of X represents a full state vector. Since each process has direct access only 
t,o its k p  local state vectors, operations On X are distributed, too. For efficiency, as 
many computations m possible are performed in parallel during the analysis and 
resampling phase. Thus, also some operations on derived matrices, which appear in 
the filter algorithms, will be distributed. Some of these matrices are also stored dis- 
tributed over the processes. If data from other processes is required, data exchanges 
are performed by calls to comm~nic~t ion  functions of the MPI library. 



7.2 Parallelization over the Modes 78 

1 . . .  N 1 k o  

Process 0 

I, i,^i 

Process 1 
1, N 

Process s 

Figure 7.1: Distribution of the global ensemble matrix X into local sub-matrices Xp 
with mode-decomposition. 

7.2.1 Distributed Operations 

Using distributed matrices, we encounter in the filter algorithms several operations 
which have to be performed in parallel. Ma,ny of them are ma,trix-matrix products. 
If matrices were completely allocated by a single process a matrix-matrix product 
could be directly computed as AB = C. For distributed matrices there are, in 
general. three different ways of evaluating a matrix-matrix product depending on 
the type of distribution. These parallel matrix-matrix products are explained in 
table 7.1. 

Other distributed operations which occur in the filter analysis and resampling 
phases are: 

The application of the measurement operator to the ensemble or mode matrix. 
E.g.. in SEEK this is H V ,  see equation (2.28). Only kp  columns of the ma- 
trix V ,  each representing state vector, are allocated on a, process. Thus, the 
n~easurement operator is applied in a loop calling for each local column a sub- 
routine performing the application of H to this column. If the full matrix H V  
is required by a single process a 'gather' operation has to be performed. 

The solution of linear equations of type AB = C .  An example of this can be 
found in the representer formulation of the EnKF when solving equation (2.47). 
Here only kp columns of the matrix C are allocated on a process. Thus, the 
solution B will consist of kp local columns. If the full matrix B is needed by 
a single process. a 'gather' operation is required. 

The initialization of the observation vector y which has to be known by each 
processes. This is performed by a subroutine call. If y is read from a. file, 
it is most efficient to execute the file operation only by a single process. To 
distribute the vector, a 'broadcast' operation is performed afterwa,rds. 
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Type 1: Matrix A is fully allocated on 
each process. It is multiplied with ma- 
trix B from which only kp columns are 
available locally. Performing the inulti- 
plication, we obtain k p  columns of the 
product-ma,trix C. These columns corre- 
spond to  the Same column indices as those 
available of matrix B. To obhin the full 
matrix C on a process a. 'gather' operation 
has to  be performed. 

Type 2: Only kp  rows of matrix A are 
available locally. This occurs, e.g., for 
the transpose of a column-wise distributed 
matrix. Matrix B is fully alloca,ted on 
each process. The local part of the prod- 
uct matrix C consists of kp  rows whose 
row indices correspond to those indices of 
the rows of A which are availa,ble locally. 
To obta,in the full matrix C on the local 
process, a. 'gather' ~ p e r ~ t i o n  is required as 
in type 1. 

Type 3: Only kp columns of matrix A 
and & rows of inatrix B are allocated lo- 
cally. The resulting product matrix C has 
the full dimension but its elements repre- 
sent only a partial sum of the full matrix- 
matrix product. Thus, to obtain the full 
product AB on the local process, a 're- 
duce' operation has to be performed to 
sum up all partial Sums distributed over 
the processes. 

Table 7.1: The different types of matrix-matrix products for distributed inatrices. The 
right coluinn sketches the differently distributed inatrices. 
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7.2.2 SEEK 

We develop the analysis algorithm of SEEK for a mode-decomposed matrix V such 
that each process will hold the updated eigenvalue matrix U 1  and the state esti- 
mate X. This will reduce the total amount of communication, since U '  is required 
by each process for the resampling phase and X is used by each process to compute 
the gradient approximation. 

The parallel version of the SEEK analysis algorithm is shown as algorithm 7.1. 
It can be directly compared to the serial analysis algorithm 3.3. The routine is 
ca.lled by all processes each holding its local part Vp E IRnX"p of t,he mode matrix. 
In the pseudo code of the parallel algorithm the subscript p denotes an array which 
is private to a process. That is, the array can have a different size and hold different 
values on each process. Va,riables without this subscript are global, i.e. they have 
on all processes the same size and hold the same values. The application of the 
measureinent operator on the modc matrix (lines 4-6 in algorithm 7.1) is performed 
only for t,he r,, locally allocated columns of V. Also the subsequent product R I T 1  
is only computed for the local columns. The the residual d is initklized in lines 11 
to 13 equally by all processes. This operation does. in general, require negligible 
computation time compared with the other operations of the analysis. Hence, ini- 
tializing d by ea,ch process will not be problematic for the parallel efficiency. A 
broadcast' operation is hidden in the initialization of the observation vector, as was 
explained in the preceding section. The matrix-vector product in line 14 yields the 
local part of a distributed vector. Although the full vector t3 has to be initialized by 
a concluding 'allgather' operation, this variant to obtain t3 is faster than performing 
an 'allgather' on the much larger ma,trix TZ. The following solver step (line 16) has 
to be performed by each process. We will see that this operation can limit the over- 
all par'llel efficiency of the SEEK analysis algorithm in mode decomposition. The 
final update of the state estimate is performed with the local matrix Vp. We divide 
this operation into two parts. First we compute the analysis increment Ax using a 
matrix-matrix product of type 2 followed by an 'allreduce' opera,tion for the analysis 
increment. Finally. the increment is added to the forecast state estimate X in order 
to obtain the a,nalysis state estimate On each process. Due to the non-parallelized 
solver step and the required global communications, we can not expect that the 
mode-parallel SEEK analysis algorithm scales well. 

In the resampling phase of SEEK, the mode vectors distributed over the processes 
are re-orthonormalized. The serial algorithm is shown as algorithm 3.7. The parallel 
algorithm. shown as algorithm 7.2, distributes the inversion of the matrix Uinv. 
Also the computations of the matrices Tl  and T2 are ~ar~ l le l i zed .  However, global 
communication is required in the algorithm to obta,in the matrix B. The most 
expensive communication operation will be the allgather operation of the n X r 
matrix V. In contrast to this, the re-initialization of the local columns of the mode 
matrix V in line 14 is performed in a distributed matrix-matrix product of type 1 
which is Iocally a full matrix-matrix product. Hence it is evaluated independently 
by all processes. The resampling algorithm also contains some operations which 
are performed equally by all processes: The Cholesky decomposition of U, the 
computation of B: and the singula,r value decomposition (SVD) of B. We will see 
later that these operations, together with the required communications, will limit the 
overall parallel efficiency of the algorithm. An obvious drawback of the presented 
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Subrou t ine  SEEK-Analysis-Mode(step,n,r,x,Uinv,Vp) 
int step {time step counter,input} 
int n {state dimension, input} 
int r {rank of covariance matrix, input} 
real x(n,) {state forecast, inputloutput} 
real Uinv(r,  r )  {inverse eigenvalue matrix, input/output} 
real Vp(n,  rp) {local mode matrix, inputloutput} 
real Tl ,  t3, t4 ,  d, y ,  A x  {fields to be allocated} 
real Tlp, T 2 p ,  tSp,  Uinvp, A x p  {fields to  be allocated} 
int rp {number of local columns of Vp} 
int m {climension of observation vector} 
int 2 {ensemble loop counter} 

1: call Get-Dim-Obs(step, m)  {by each process} 
2: Alloca,te fields: T l ( m ,  r ) ,  t 3 ( r ) ,  t 4 ( r ) ,  d(m,), y(m) ,  Ax(n) :  
3: T l p ( m ,  rp),  T2p(m,  rp),  t3p(?Ã£) Uinvp(r,  rp),  Axp(n)  

4: for  i=l ,rp d o  
5: call Measurement-Operator(step, n ;  m ,  Vp(: ,  z), T l p ( : .  2)) {local columns} 
6: e n d  for 
7: aJlgather T l  from T lp  {global MP1 ~ p e r ~ t i o n }  
8: call RinvA(step, m, r, T l p ,  T 2 p )  {operate only on local columns} 
9: Uinvp + Uinvp + ~ 1 ~ ~ 2 ~  {matrix-matrix product type l} 

10: allgather Uinv from Uinvp {global MPI operation} 

11: call Measurement_Operator(step, n ,  nx; X, d )  {by each process} 
12: call Measurement (step, m ,  y ) {by each process} 
13: d ^- y - d {by each process} 

14: t3p +- ~ 2 ~ ~ d  {matrix-ma,trix product of type 2} 
15: allgather t 3  from t3p  {global MPI operation} 
16: solve Uinv t 4  = t3 for t 4  {by each Process} 
17: Axp + V p  t 4  {loca.l stat,e increment, matrix-vector product of type 3} 
18: allreduce summation of A x  from A x p  {global MPI operation} 
19: X -̂ X + A x  {by each process} 
10: De-allocate local analysis fields 

The subscript p denotes variables which are private to a process. These can be either the 
locally allocated parts of distributed fields or full-size fields which hold different values on 
different processes. 
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Subroutine SEEI<_Reortho_Mode(n,r,Uinv,Vp) 
int n {state dimension, input} 
int r {rank of covariance mat,rix, input} 
real Uinv(r, r )  {inverse eigenvalue matrix, input/output} 
real Vp(n, T,,) {local mode matrix, input/output} 
int r,, {number of local columns of Vp} 
real A, B, C ,  D, U, V, T2 {fields to be allocated} 
real Up, Ip, Tlp,  T2p, T3p, T4p {fields to  be allocated} 

Ip + I(:,$ : jp + r,, - 1) {local columns of identity matrix} 
Solve Uinv Up = Ip for Up {get local columns of U} 
allgather U from Up {global MPI operation} 
Cholesky decomposition: U = AAT {by each process} 
allgather V from Vp {global MPI operation} 
Tlp  + V7 Vp {matrix-matrix product of type 1} 
T2p <Ã AT Tlp  {matrix-niatrix product of type l} 
allgather T2 from T2p {global MPI operation} 
B -̂ T2 A {by ea,ch process} 

SVD: B = C D CT {by each process} 
T3p + C D(:, jp : J',, + r,, - 1)-112 {Initialize T3p using local columns of D} 
T4p + A T3p {matrix-matrix product of type I} 
Vp +- V T4p {matrix-matrix product of type l} 
Uinv +Ã D 1  {by each process} 
De-allocate local analysis fields 

I 
Algorithm 7.2: Structure of the parallel version of the re-orthonorn~alization routiue for 
the SEEK algorithm. Matrix D holding the singular values of T3 is introduced here for 
clarity. In the program, it is allocated as vector holding the eigenvalues of T3. The large 
number of matrices of sizes r X r or r X r,, is introduced in the pseudo code for clarity. In 
the pr0gra.m itself, only two mat,rices of size r X r,, and three of size r X r are allocated. 
The index j,, denotes the index of the first column of Vp in the global matrix V. 

algorit,hn~ is that  the full matrix V has to be allocated on each process. It is, 
however, possible to formulate the algorithm with a block structure allocating only 
several rows of V a t  a time. This will involve a lot of communication operations of 
smaller amounts of data. The total amount of communicated data  will be twice a,s 
lage since the full information on V is required for the operations in line 7 and in 
line 14. 

7.2.3 EnKF 

The parallel analysis algorithm for the EnKF with a mode-decomposed ensemble 
matrix X is shown as algorithm 7.3. The serial algorithm has been given as algo- 
rithm 3.5. 
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The routine is called by all processes each holding its local part Xp E EnxNp of 
the ensemble niatrix. In the parallel algorit,hm, the computation of t,he mean of the 
ensemble projected onto observation space in line 7 corresponds to a ma,trix-matri 
product of type 3 in which the second matrix has only one column whose entries 
are equal to N 1 .  An allreduce summation is necessary to obtain the enseinble 
mean on all processes. This is analogous for the computation of the ensemble mean 
state in line 22. The full matrix T l  is initialized by each process using an allgather 
operation in line 12. Subsequently, the computation of T3 is performed equally by 
all processes. Alternatively. several columns of T3 could be computed first via a 
matrix-inatrix product of type 1. Then the full matrix T3 would be initialized by all 
processes by an allgather ~ p e r ~ t i o n .  Whether this parallelized variant is faster than 
computing T3 directly by each process will depend on the ratio of co~nputat~ion to 
communication performance. 

In the EnKF, an ensemble of residuals has to be computed from an ensemble of 
observations. The observations a,re gcneratcd in the subroutine Enkf-Obs-Ensemble 
which will involve a broadcast operation if the observation vector is read from a 
file. The computation of the local residual ensemble Dp itself (lines 15 to 19) is 
performed independently by each process. 

Tlie solver step for the influence amplitudes B in line 20 is distributed over the 
processes. Thus, local amplitudes Bp are computed using the LAPACK routine 
DGESV. Tlie parallel efficiency of this operation is, liowever, liinited since the LU- 
decomposition of T3 ? Rn'x"' is performed by each process. The final update of 
the local state ensemble Xp in line 28 is performed independently by each process. 
The preparations for the update, which are performed from lines 22 to 27. include 
the initializations of the ensemble mean X and the matrix T5 by communication 
operations. To avoid the allocations of the inatrices T5p and T5 as well as those of 
the vectors xp arid X, we use a block formulation for lines 22 to 28. 

In the mode-decomposed EnKF analysis algorithm, the computation of T3 is 
not parallelized. In addition. the solver step for the representer amplitudes can not 
be expected to show a good parallel efficiency. Next to these operations. severa.1 
global communication operations have to be performed. These properties of the 
mode-decomposed algorithm will limit the parallel efficiency. 

In the mode-decomposed EnKF algorithm, the global matrix T3 E Pm is 
computed by ea,ch process since it is required for the solver step in line 20. This 
requirement presents a particular issue for the n~ode-decomposed EnKF filter. Next 
to the requirement to allocate this matrix. the operations involving T3 will be 
costly. To reduce the operational complexity. it is possible to sequentially assim- 
ilate batehes of independent observations. This technique has been discussed in 
section 3.4. Indeed, it will reduce the effective dimension of the observation vector. 
Accordingly, the memory requirements are reduced. Furt,hermore, the number of op- 
erations is decreased, since the complexity of the matrix-matrix product in line 13 
scales with 0(m2)  and that of the solver step in line 20 is U(nz3 + m2N). 

7.2.4 SEIK 

The analysis algorithm of the SEIK filter is very similar to that of the SEEK 
filter. Hence, also the parallelization is almost identical in both cases. Discussing 
the parallelization of SEIK, we focus on the unique parts of it. The parallel SEIK 
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3ubroutine EnI<F_Analysis_Mode(step,n,Np,Xp) 
int step {time step counterjnput} 
int n {state dimension, input} 
int N {ensemble size, input} 
real Xp(n,  Np) {local ensemble matrix, input/output} 
real T l ,  t2 ,  T 3 ,  T 5 ,  X {fields to be allocated} 
real Tlp, t2p, t4p,  T5p ,  T6p,  D p ,  Bp ,  xp {fields to  be allocated} 
int Np {local ensemble size} 
int m {dimension of observation vector} 
int i {ensemble loop counter} 

call Get-Dim_Obs(step, m) {by each process} 
Allocate fields: T l ( m ,  N ) ,  t2(m), T3(m,  m),  T5(n ,  N) ,x (n) ,  T l p ( m ,  N p ) ,  

t2p(m), t4J rn ) ,  T5p(n1 Np), TGp(N, Np), Bp(m, Np), Dp(m,  Np), xp(n) 

for i=l,Np d o  
call Measurement_Operator(step, n, m, Xp(:,  i), T l p ( : ,  i))  {local columns} 

e n d  for 
t2p <- N-l ~v~~ T l p ( : ,  i )  {local mea,n of projected ensemble} 
allreduce summation of t 2  from t2p {global MPI operation} 
for i=l,Np d o  

T l p ( : , i )  + T l p ( : , i )  - t 2  {local columns} 
e n d  for 
allgather Tl  from Tlp {global MPI operation} 
T 3  + (N - I)-' T l  ~1~ {by each process} 
call RplusA(step,m,T3) {by cach process} 

call Enkf-Obs-Ensemble(step,m,Np.Dp) {get local ensemble of observations} 
for i=l,Np d o  

call Measurement_Operator(step, n ,  m,  Xp(:, i ) ,  tdp) {local columns} 
Dp(:, i )  +- Dp(:, z) - t4p  {local ensemble of residuals} 

e n d  for 

solve T 3  Bp  = D p  for Bp {get local representer amplitudes} 
T 6 p  ̂ - ~ l '  B p  {matrix-matrix product of type I} 
xp + N 1  ̂J, Xp(:,  i )  {local ensemble mean state} 
allreduce summation of X from xp {global MPI operation} 
for i=l,Np d o  

T5p(:, i )  + Xp(:, i) - X {local columns} 
e n d  for 
allgather T 5  from T 5 p  {global MPI operation} 
X p  + Xp + ( N  - 1)-I T 5  T 6 p  {matrix-matrix product of type l} 
De-allocate local analysis fields 

Algorithm 7.3: Structure of the parallel filter analysis routine for the EnKF algorithm 
using the representer update variant for a non-singular matrix T5. Matrix Bp is not 
allocated individually but stored in. Dp. Analogously, t4 is stored in t2.  The allocation 
of the full array T5 can be avoided by a block formulatioii for line 28. 
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Subroutine SEIK-Analysis-Mode(step,?z,N,x,Uinv,Xp) 
int step {time step counter.input} 
int n {state dimension, input} 
int N {ensemble size, input} 
real x(n,) {local state estimate, output} 
real Uinv(r, r )  {inverse eigenvalue matrix, output} 
real Xp(n, Np) {local ensemble matrix, input/output} 
real T2 ,  t 4 ,  t 5 ,  t6 ,  y. d ,  A x ,  {fields to be allocated} 
rea,l Tlp,  T2p,  T3p,  t4p,  Gp,  Uinvp, xp,  A x p  {fields to  be allocated} 
int r {rank of covaria,nce matrix, r = N - I} 
int rp {number of local columns of covariance matrix} 
int Np {local ensemble size} 
int m {dimension of observation vector} 
int i {ensemble loop counter} 

call Get-Dim-Obs(step, m) {by each process} 
Allocate fields: T2(m,  r ) ,  t4 ( r ) ,  t5 ( r ) ,  t 6 ( N ) ,  y(m), d (m) ,  Ax(n) ,  T l p ( m ,  Np 

T ~ P ( ? ~ P ) ,  T3p(m,rp) ,  t4p(rn),  Gp(r ,  rp), Uinvp(r, rp), xp(n),  Axp(n) 

for i=l,Np d o  
call Measurement-Operator(step, n,  m ,  Xp(:, I ) ,  Tlp( : ,  2) )  {user supplied} 

e n d  for 
T 2 p  + Tlp T {implemented with T as operator} 
allgather T 2  from T2p  {global MPI operation} 
call RinvA(step, m,  r ,  T2p ,  T3p)  {operate only on local columns} 
G p  + ( N 1 ( T T  T ) ' ) ?  {implemented as direct initialization} 
Uinvp -̂ G p  + ~ 2 ~ ~ 3 ~  {matrix-matrix product of type l} 
allgather Uinv from Uinvp {global MPI operation} 

xP + N 1  zzl Xp(:,  i) {get local ensemble mean state} 
allreduce summation of X from xp {global MPI operation} 
call Measurement_Operator(step, n ,  m, X, d )  {user supplied} 
call Measurement(step, m,  y)  {user supplied} 
d t - Y - d  

t4p  t- ~ 3 ~ ~ d  {ma,trix-matrix product of type 2} 
allgather t 4  from t4p {global MPI operation} 
solve Uinv t 5  = t 4  for t 5  {by each process} 
t 6  + T t 5  {implemented with T as operator} 
A x p  +- X p  t6( jp  : & + Np - 1) {local increment, mat.-vec. product type 3} 
allreduce summation of A x  from A x p  {global MPI opera,tion} 
X + X + A x  {by each process} 
De-allocate local analysis fields 

llgorithm 7.4: Structure of the parallel filter analysis routine for the SEIK algorithm 
'he arrays T2p and t5 are introduced for clarity. Their contents are stored respectivelh 
i Tlp and t4. The index jp denotes the index of the first column of Xp in X. 
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Subroutine SEIK-Resample-Mode(n,N,x,Uinv?Xp) 
int n {state dimension, input} 
int N {ensemble size, input} 
real x(n) {state analysis vcctor, input} 
real Uinv(r. r )  {inverse eigenvalue matrix. input} 
real Xp(n. Np) {ensemble matrix, input/output} 
real T l ,  T2p,  C ,  npT, X {fields to be allocated} 
int r {rank of covariance matrix, r = N - I} 
int Np {local ensemble size} 

Allocate fields: T l ( r ,  N ) ,  TZP(N, Np), C(r: T),  q T ( r ,  Np), X(n: N) 

Cholesky decomposition: Uinv = C CT {by each process} 
initialize C l p  {local columns} 
solve C T T l p  = OpT for Tlp {local columns} 
T2p + T Tlp {implemented with T as operator} 
allgather X from Xp {global MPI operation} 
for i=l,NP do 

Xp(:,2) <- X 

end for 
Xp + Xp + X TZp {matrix-matrix product of type 1 with DGEMM} 
De-allocate local analysis fields 

Algorithm 7.5: Structure of the parallel resampling routine for the SEIK algorithm. 
The matrix T l p  is not allocated in the program. Its contents are stored in Sf. To avoid 
the allocation of X, lines 6 to 10 can be implemented in block formulation. 

ana,lysis algorithm is shown as algorithm 7.4 while the serial a,nalysis has been shown 
as algorithm 3.4. 

An additional ~ p e r ~ t i o n  in the analysis algorithm of SEIK compared with SEEK 
is the matrix-matrix product in line 7. Here the ensemble matrix projected onto 
the observation space ( T l  in the pseudo code) is multiplied with matrix T defined 
by equation (2.62). As has been discussed in section 3.3, this operation is most 
efficiently implemented taking into account the particular choice of T .  Accordingly, 
this m~lt~iplication involves the subtraction of the global ensemble mean of T l  from 
each column of this matrix. This mean is computed as the mea.ns in the EnKF, 
i.e. by calculating local means followed by a,n allreduce summation. The computed 
ensemble mean is subtracted from each of the local ensemble states. In line 21, the 
product T t5 is computed. Following the discussion in section 3.3, the mean value of 
the elements of t5 is computed and subsequently subtracted from each column. The 
final column is inithlized by the negative of the mean value. The product T t5  does 
not require communication, since t5  is allocated on each process. Other additional 
operations in the analysis phase of SEIK a,re the computation of the ensemble mean 
in line 13, which is computed as in the EnKF, and the initialization of matrix G in 
line 10. This operation is parallelized by initializing only rp local columns. These are 
required for the subsequent computation of Uinv which is a matrix-matrix product 
of type 1 followed by an allgather operation. Since the solver step in line 21 is not 
parallelized and several global communication operations are performed, we cannot 
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expect that the mode-parallel SEIK analysis algorithm scales perfectly. 
A particular parallelization issue of the SEIK filter is that matrix T2 consists of 

only r columns, while T l  contains N = r+ 1 columns. Hence, for the load-balancing 
of the analysis algorithm the application of T is problematic. Since the forecast 
phase usually requires the most computa,tion time, we chose a configuration in which 
each process holds the same number ATp = k of ensemble states (1.e. the Same number 
of columns in the local inatrices Xp ancl T l p ) .  Computing the product T l p  T 
reduces the number of overall columns by one. Accordingly. one of the processes 
(usually that one with the highest rank) holds only k - 1 local columns of T l p  T, 
while all other processes hold k local columns. Due to this: one of the processes 
executes less operations tha,n the other processes a,nd will complete work earlier. 
However, this is inevitable if the ensemble has to be distributed evenly in order to 
obtain the best speed up in the forecast phase. For the parallel algorithm, this has 
no special implications, as long as the number of columns in matrix T2p is not 
reduced to Zero on one of the processes. 

In the resampling algorithm of SEIK, a new ensemble of states is computed 
on the basis of the forecasted state ensemble X. The parallel algorithm is shown 
as algorithm 7.5. It can be compared with the seri'l algorithm 3.8. The Cholesky 
decomposition in line 2 is performed equally by all processes. The solver step for the 
local columns of T l  in line 4 and the product T T l p  (line 5) are parallelized. The 
latter operation is implemented W in the analysis algorithm. The initialization of 
the new ensemble matrix in line 10 is executed in parallel, too. Since this operation 
requires the information on all ensemble members in X E Rn^. this matrix is 
initialized by all processes by an allgather operation (line 6). This operation will 
be very costly due to the large dimension of X. To avoid the requirement to store 
the full matrix X, we use a block formulation for tlie resampling. Therefore a loop 
is built around lines 5 to 10. In each cycle of this loop. only a couple of rows 
of the global matrix X are allocated and gathered at a time. In line 10 only the 
corresponding rows of Xp are updated. 

7.2.5 Comparison of Communication and Memory Require- 
ments 

For comparison of the c~inmunic~tion requirements of the three filter algorithms, 
table 7.2 summarizes the sizes of the arrays involved in MPI ope~~t ions .  

The amount of communicated data in the mode-parallel analysis algorithm of 
SEIK is larger than for SEEK. This is caused by the product T l p  T in line 7 of al- 
gorithm 7.4 arid the computation of the ensemble mean in line 14. In the resampling 
algorithm of SEEK, the global mode ina.trix V E Rn^ has to be initialized by all 
processes using an allgather operation. Analogously the ensemble matrix X E Rn^ 
has to be initialized in resampling algorithm of SEIK. In the resampling algorithm 
of SEEK, also the much smaller matrices U a,nd T2 are gathered. 

The communication requirements of the EnKF algorithm are similar to those of 
the SEEK and SEIK algorithms. In the EnKF, the ensemble update is computed 
within the analysis, while SEEK a,nd SEIK have additional remmpling routines. 
Due to this, the EnKF includes the allgather operation on the matrix T5 E R7'^ 
which is the analogue to the allgather operations of V or X performed respectively 
in the resampling phases of SEEK and SEIK. 
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Table 7.2: Sizes of arrays involved in global MPI operations in the analysis and re- 
sampling phases of the SEEK and SEEK algorithms and in the analysis phase of the 
EnKF algorithm. Next to the matrix size, the name of the matrix is given as well as the 
information whether the MPI operation is an allgather (g) or allreduce (r) operation. 

EnKF 

nN (T5, g) 
m ( t2 ,  r) 

sampling 
re- I 

7- ( t 3 , g )  
n ( A x ,  r) 

r2 (U ,  g) 
nr ( V ,  g) 
r2 (T2, g) 

Concerning memory requirements, the mode-decomposition only permits to  dis- 
tribute some fields which hold ensemble quantities. Other arrays, which hold ensem- 
bles of observation-related vectors like T l  in SEEK and EnKF, are not decomposed. 
Thus, the scalability of the memory requirements is limited. Next to these non- 
distributed arrays additional private arrays have to be allocated. Some of these, 
like T 2 p  E Rmxrp in algorithm 7.1, involve the observa,tion dimension. These arrays 
increase the overall memory requirements. Other arrays which involve the  state 
dimension n. are less problematic. Using block formulations, it is not necessary to 
allocate these arrays in their full size. A particular memory issue is the allocation 
of the full mode matrix V E Rn'' in the resampling algorithm of SEEK. As has 
been discussed in section 7.2.2. the allocation of this very large a,rray can only be 
avoided by a block formulation. This will, however, require to gather the full in- 
formation on V twice. In the case of the EnKF algorithm, the allocation of the 
matrix T3 E is required. If very large data sets have to be assimilated, this 
memory requirement can be problematic. In this case, the sequential assimilation of 
independent observation batches with smaller dimension m will reduce the memory 
requirements. 

7.3 Filtering with Domain Decomposition 

In the case of domain-decomposition, the ensemble matrix X ,  or the mode matrix V ,  
is distributed such t.hat the process with ra,nk p holds kp < n rows of the  matrix. 
The distribution of the ensemble matrix is sketched in figure 7.2. The local row 
indices zp = 1, . . . , kp of the matrix owned by process p correspond to the global row 
indices i = jÃ£ . . . , jp + kp where jo = 1 and jp = 1 + kp for p > 0. Since each 
column of X represents a full state vector, each process now holds a. part of each 
ensemble state. This configuration arises naturally, when the domain of a model 
is decomposed into several sub-domains each being located on a different process. 
Domain decomposition is a frequently used strategy in parallel computing [22]. If 
da ta  assimilation is performed using a domain-decomposed model, it appears to be 
obvious to use a parallelization of the  filter which follows the parallelization of the 
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Figure 7.2: Distribution of the global enseinble matrix X into local sub-matrices Xp for 
domain-decomposition. 

model it is applied to. This avoids possible reordering requirements of the state 
vectors and model fields in the cornmuni~~tion between filter and model. 

As the model state is decomposed into sub-domains. also the observations should 
be domain-decomposed. This allows for better parallel efficiency of the filter 
analysis algorithms. If the ob~erv~t ions  are distributed rather evenly in space. the 
decomposition of the ~bserv~t ions  should follow that of the model state. However, 
the decomposition of the ~bserv~t ion  vector does not need to follow that of the model 
state. This provides the freedom to choose a decomposition which yields a,n even 
distribution of the observation vector over the processes. This can be important for 
the load-balancing of the filter analysis algorithm if the observations are irregula,rly 
distributed in space. 

7.3.1 Distributed Operations 

Using domain decomposed ensemble matrices, the filter algorithms will again require 
distributed matrix-matrix products. As for mode-decomposition. these are of the 
types described in table 7.1. 

Other distributed operations occurring in the filter analysis and remmpling al- 
gorithms are: 

0 The initialization of the diinension of the observa.tion vector which is per- 
formed in subroutine ~ e t - ~ i m . ~ b s .  If the observat,ion space is decomposed 
into sub-domains, the call to Get-Dirn-Obs has to provide the size of the local 
sub-domain of the observation space. 

The application of the measurement operator H to a state vector or the ensem- 
ble or mode matrix. In contrast to the mode-decomposition discussed above, 
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each process holds informa,tion on all ensemble members contained in the  en- 
semble or mode matrix, but only the about the local sub-domain. Due t o  this, 
the application of the observation operator may require communications of 
data, e.g. if interpolations are performed which require state information from 
adjacent sub-domains. Comm~nic~t ion operations will be also necessary if the 
domain-decompositions of the observations and the model state are different. 

The initializa,tion of the observation vector y. The call to the subroutine Mea- 
surement has to initialize the part of the observation vector which lies in the 
local sub-domain of the distributed observation space. If the observation vec- 
tor is read from a file, the file operation should be performed only by a single 
process. Thus, the initialization of y will involve communication operations 
to distribute the observation sub-vectors to other processes. 

The product of the inverse of the observation error covariance matrix R with 
the ensemble matrix projected onto ob~erv~t ion  space. This operation is per- 
formed in SEEK and SEIK by the subroutine RznvA. If R is not diagonal, the 
values of all elements of the state vectors in observation space are required by 
each process to compute the matrix-matrix product. Thus. global communi- 
cation of data is necessary, 

7.3.2 SEEK 

The analysis algorithm of SEEK for a domain-decomposed state and mode- 
matrix is shown as algorithm 7.6. As has been explained above, the application 
of the measurement operator in lines 5 and 11, as well as the subroutine RznvA, 
can involve communication operations. In contrast to the mode-decomposed SEEK 
filter, no global communication operations on the ensemble matrix itself are required 
in the case of domain-decomposition. Only two allreduce summations on typically 
rather small arrays are necessary. These are allreduce sun~mations to initialize the 
increment matrix AUinv E RTxT and to initialize the vector t 3  E V. Matrix Uinv 
is updated equally by all processes by adding the increment matrix AUinv. Also 
the solver step in line 16 is performed by all processes, as in the case of mode- 
decomposition. Since this operation involves the inversion of Uinv it can be rather 
costly. Over all, the domain-decomposed SEEK analysis algorithm involves less 
communications of data than the mode-decomposed SEEK analysis. Also less oper- 
ations are executed equally by each process. Thus. we can expect that the domain- 
decomposed SEEK analysis will show a better parallel efficiency than the mode- 
decomposed analysis. The parallel efficiency will of Course not be optimal due to 
the global communication operations and the operations which are not p&rallelized. 

The SEEK resampling routine for a paralleli~~tion using domain decomposition is 
shown as algorithm 7.7. Here only the operations on matrices which involve the high 
dimension n are parallelized. These are the matrix-matrix product vpTvp in line 5 
and the initialization of the new mode matrix Vp in lines 12 arid 13. An allreduce 
summation is required to fully initialize the global matrix Tl.  This operation is 
the only global MPI communication which is necessary in the domain-decomposed 
SEEK resampling algorithm. The parts of the resampling algorithm which act On 
matrices of size r X r are executed equally by all processes. This can, however, limit 
the overall parallel efficiency of the resampling algorithm when, for higher numbers 
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Subrout ine  SEEK_Analysis_Domain(step,np,r,~p,Uinv,Vp) 
int step {time step counter,input} 
int np {state dimension on local domain, input} 
int r {rank of covariance ma,trix, input} 
real xp(nP) {local state forecast, input/output} 
real Uinv(r,  r )  {inverse eigenvalue matrix, input/output} 
real Vp(np, r )  {local mode matrix, input/output} 
real t 3 ,  t 4 ,  A U i n v ,  dp, yp,  T l p ,  T2p ,  t3p ,  AUinvp  {fields to be allocated; 
int mp {dimension of local observation vector} 
int i {ensemble loop counter} 

1: call Get_Dim_Obs(step, m,,) {get dimension for local domain} 
2: Allocate fields: t 3 ( r ) ,  t 4 ( r ) ,  AUinv(r ,  r ) ,  dp(mp), yp(mp),  
3: T l p ( m p , r ) ,  T2p(mp,  r ) ,  t3p(r ) ,  AUinvp(r ,  r )  

4: for i=l , r  d o  
5: call Measurement_Operator(step, np, mp, Vp(: ,  i ) ,  T l p ( : ,  2)) {local dom 
6: e n d  for 
7: call RinvA(step, mp, r, Tlp, T2p)  {opera,te only on local domain} 
8: AUinvp  + ~ 1 ~ ~ 2 ~  {matrix-matrix product type 3} 
9: allreduce summation of A U i n v  from AUinvp  {global MPI operation} 

0 :  U inv  + Uinv  + A U i n v  {by each process} 

1- call Measurement_Operator(step, np, mp, xp, dp)  {project local state} 
2: call Measurement(step, mp, yp) {get local observation vector} 
3: d p  + yp  - d p  {residual for local domain} 

4 :  t 3 p  +- ~ 2 ~ ~ d ~  {matrix-m&ix product of type 3} 
5: allreduce summation of t3 from t3p {global MPI operation} 
6: solve Uinv  t 4  = t 3  for t 4  {by each process} 
7: xp  + xp  + V p  t 4  {matrix-vector product of type 2} 
8: De-alloca,te local a,nalysis fields 

Algorithm 7.6: Structure of the parallel SEEK analysis routine for domain decomposed 
states. The mode matrix V and the state vector X are distributed such that each process 
holds a sub-domain of dimension Tip. Also the observation space is decomposed. Thus, 
the observation vector y is distributed with each process holding a sub-domain of dimen- 
sion mp. 
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Subroutine SEEK_ReorthoDomain(np,r,Uinv,Vp) 
int np {state dimension on local doinain, input} 
int r {rank of covariance matrix, input} 
real Uinv(r, r )  {inverse eigenvalue matrix, input/output} 
real Vp(np, r)  {local mode matrix, input/output} 
real Tl ,  T2, T3, T4, A, B, C, D, Lp, U, Tlp {fields t,o be allocated} 

3: Solve Uinv U = I for {by each process} 
4: Cholesky decomposition: U = AAT {by each process} 
5: Tlp + vPTvp {matrix-matrix product of type 3} 
6 :  allreduce suminat,ion of T l  from Tlp {global MPI operation} 
7: T2 + T l  A {by ea,ch process} 
8: B + Arr T2 {by each process} 

9: SVD: T l  = C D C7 {by each process} 
10: T3 <- C {by each process} 
11: T4 + A T3 {by each process} 
12: Lp (- Vp 
13: Vp ̂ - Lp T4 {matrix-matrix product of type 2) 
14: Uinv + D '  {by each process} 
L5: De-allocate local analysis fields 

Algorithm 7.7: Structure of the parallel version of the re-~rthonorm~lization routine for 
the SEEK algorithm for domain decomposed states. The matrix D holding the singular 
values of B is introduced here for clarity. In the program, it is allocated as a vector holding 
the eigenvalues of B. Only three matrices of size r X r need to be allocated in the program. 
The other matrices of this size are only introduced in the pseudo code for clarity. 

of processes, the execution time for the parallel parts reaches that  of the non-parallel 
parts. To minimize the memory requirements of the algorithm, a block structure 
for the n~atrix-matrix product in line 13 can be implemented. In this case, only a 
small number of rows of Matrix Lp is dlocated and only the corresponding rows of 
Vp are updated a t  a. time. 

7.3.3 EnKF 

The parallel EnKF analysis algorithin for a domain-decomposed ensemble matrix X 
is shown as algorithm 7.8. In comparison to the mode-decomposed algorithm, less 
communication operations are required in the case of domain-decomposition. In 
particular, there is no need to gather the information on the full ensemble matrix. 
The operations on the ensemble matrix are completely parallelized. 

The information on the full matrix T l  R7'̂  ̂is required for the computation of 
the matrices T3 and T6. Thus, T l  is initialized on each process using an allgather 
operation in line 12. Also matrix D E which holds the ensemble of residuals, 
is fully initialized by an allgather operation (line 20). Using the gathered matrices, 
the computations of T3 and T6, the call t o  the subroutine RplusA, and the solver 
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step to obtain B are performed equally by each process. These non-parallelized 
operations, together with the allga,ther operations on T l  and B can be expected to 
limit the overall parallel efficiency of the domain-decoinposed EnKF analysis algo- 
rithm. Compared with the mode-decomposed variant given as algorithm 7.3, the 
amount of communicated data is smaller in the domain-decomposed variant. The  
computa.tions of B and T6 ,  which are conducted by each process in tlie case of 
domain-decomposition are parallelized in the mode-decomposed algorithm. Thus, 
it is not obvious which of the decomposition variant will yield the better parallel 
efficiency. Since this depends On the ratio of computation to comrnuni~~tion perfor- 
mance, it will depend on thc computer a,rchitecture on which the algorithms will be 
executed. 

The domain decomposition of the observation space is controlled by the User by, 
e.g., providing the implementations of the measurement operator. For consistency, 
the two allgather operations in the domain-decoinposed EnKF analysis algorithm 
are implemented as subroutines to allow the User to modify them. The ordering 
of matrix rows used for the allgather operation does not need to follow that of the  
actual domain-decomposition. This fact can simplify the implementation, e.g. in 
the case of an irregularly decomposed grid in which the sub-states on the processes 
do not correspond to single blocks in the global state vector. Despite this, the 
allgather operations in lines 12 and 20 can gather the sub-vectors as single blocks. 
In this case. consistency is assured by gathering the matrices Tl  a,nd D with the 
same ordering (This is actually assured by performing it by the same subroutine). 
In addition the subroutine RplusA has to be consistent with the gathering order. 
Ensuring this, the final ensemble update in line 27 will be consistent since the line 
ordering in matrices T4p  arid B is equal. 

7.3.4 SEIK 

As in the case of mode-decomposed ensemble ancl mode ma,trices, the a,nalysis al- 
gorithm of the SEIK filter for domain-decomposition is very similar to that of the 
SEEK filter. The parallel SEIK analysis algorithm for domain-decomposition is 
shown as algorithm 7.9. Again we discuss the differences to the SEEK algorithm. 

For domain-decomposition, a process knows the full state ensemble for its local 
domain. Thus. the computation of ensemble means does not require any MPI op- 
erations. Accordingly, the product of matrix T lp  with ma,trix T in line 7 involves 
no communications of data. The Same is true for the computation of the ensemble 
mean in line 13 and the 8pplication of T to t 5  in line 20. Due to this, the amount 
of communicated data is equal for the a,nalysis algorithms of SEEK and SEIK in the 
case of domain-decomposition. The algorithm contains several operations which are 
executed without parallelization. These are the initializations of G and Uinv, the 
solver step for t5 ,  and the computation of t6 .  Most costly will be the solver step 
for 15 in line 19, since it involves the inversion of Uinv E VxT. These operations; to- 
gether with the required communication operations, will limit the parallel efficiency 
of the domain-decomposed analysis. The parallel efficiency will be, however, better 
than in the case of mode-decomposition, since there the a.mount of communicated 
data is much higher than for doma,in-decomposition. 

For doma,in-decomposed sta,tes, the resampling algorithm of SEIK, shown as 
algorithm 7.10, has the benefit that no communica.tion operations are required at 
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Subroutine EnKFAnalysis-Domain(step,np,N,Xp) 
int step {time step counter,input} 
int np {state dimension on local domain, input} 
int N {ensemble size, input} 
real Xp(np, N )  {local ensemble mat$rix, input/output} 
real Tl ,  T 3 ,  T 6 ,  D ,  B {fields to be allocated} 
real Tlp,  t2p,  t 4 p ,  T5p ,  D p ,  xp {fields to be allocated} 
int mp {dimension of local observation vector} 
int m {dimension of global observation vector} 
int i {ensemble loop Counter} 

call Get-Dim_Obs(step, mp) {get observation dimension, user supplied} 
allreduce summation of m from mp {global MPI operation} 
Allocate fields: T l ( m ,  N ) ,  T3(mr, m) ,  T6(N,N) ,  D(m,  N ) ,  B(m,  N ) ,  

Tlp(m11, N),t2p(mp),t4p(mp),T5p(np, N ) ,  Dp(m,p, N) ,xp(nJ  

for i= l ,N  do 
call Measurement-Operator(step, n,,, mp Xp(:, i ) ,  T l p ( : ,  i ) )  {local domain} 

e n d  for 
tZp +- N '  y-̂ , T l p ( : ,  i )  {mean of projected ensemble for local domain} 
for i = l , N  d o  

T l p ( : ,  z) <- T l p ( : ,  i) - tZp {local domain} 
e n d  for 
allgather T l  from Tlp {global MPI operation} 
T 3  ̂ - ( N  - l)- '  T l  ~1~ {full matrix-matrix product on each process} 
call RplusA(step,m,T3) {by each process} 

call Enkf~Obs.Ensemble(step,n~,~,N,Dp) {local ensemble of observations} 
for i= l ,N  do 

call Measurement-Operator(step, np, mp, Xp(:, i ) ,  t4p)  {local domain} 
Dp(: ,  i }  + Dp(: ,  i )  - t 4 p  {ensemble of residuals for local domain} 

e n d  for 
allgather D from D p  {global MPI operation} 

solve T3 B = D for B {Get representer amplitudes on each process} 
T 6  + ~1~ B {full matrix-matrix product on each process} 
xp  +- N 1  ̂Ei Xp(: ,  i )  {ensemble mean state for local domain} 
for i = l , N  d o  

T 5 p  (:, i )  +- Xp(:, z) - xp {local domain} 
e n d  for 
X p  ̂ - X p  + ( N  - 1)-I T 5 p  T 6  {matrix-matrix product of type 2 }  
De-allocate locd analysis fields 

l I 

Algorithm 7.8: Structure of the parallel filter analysis routine for the EnKF algorithm 
for doinain decomposed states. It uses the representer update variant for a non-singular 
matrix T5. Matrix Tlp is not allocated but stored in Dp. Analogously the contents of 
the arrays B and t4 is stored respectively in D and t2. Line 27 can be implemented with 
a block formulation. Then only some rows of T5p need to be allocated. 
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Subroutine SEIK_AnalysisJ30main(step,np, N,xp ,Uinv,Xp) 
int step {time step counterjnput} 
int np {state dimension 011 local domain, input} 
int N {ensemble size, input} 
real xp(np) {local state estimate, output} 
real Uinv(r, r )  {inverse eigenvalue matrix, output} 
real Xp(np, N)  {local ensemble matrix, inputloutput} 
real t4 ,  t 5 ,  t 6 ,  G ,  AUinv,  Y,,, dp,  {fields to be allocated} 
real T l p ,  T2p,  T3p ,  t4p ,  AUinvp {fields to  be allocated} 
int mp {dimension of local observation vector j 
int i {ensemble loop Counter} 
int r {rank of covariance matrix, r = N - 11 

call GetDim-Obs(step, mp) {get observation dimension, User supplied} 
Allocate fields: t4(r) ,  t5(r) ,  t6(N), G(r ,  r ) ,  AUinv(r,  r ) ,  yp(mp), dp(mp), 

T lp(mp,  Ar), Tzp(%, r ) ,  T3p(mp, r ) ,  t4p(r) ,  AUinvp(r,  r )  

for i=l:AT d o  
call Measurement-Operator(step, np, mp, Xp(:,  i ) ,  T l p ( : ,  2)) {local domain} 

e n d  for 
T 2 p  + Tlp  T {implemcnted with T as operator} 
call RinvA(step, m ,  r ,  T2p,  T3p) {operate only on local domain j 
G +- ( N 1 ( T T  T ) ' )  {by each process; implemented a,s direct initialization} 
AUinvp + ~ 2 ~ ~ ~ 3 ~  {matrix-matrix product of type 3} 
allreduce summation of AUinv from AUinvp {global MPI operation} 
Uinv -̂ G + AUinv  {by each process} 

xp + N 1  ̂Ei Xp(:,  i )  {get ensemble mean state for local domain} 
call Measurement-Operator(step, np, mp, xp,  dp)  {user supplied} 
call Measurement(step, mp, yp)  {user supplied} 

d P  ^- Yp - dp 

t4p  + ~ 3 ~ ~ d ~  {matrix-matrix product of type 3 j  
allreduce summation of t 4  from t4p  {global MPI operation} 
solve Uinv t 5  = t 4  for t 5  {by each process} 
t 6  + T t 5  {implemented with T as operator} 
x p  ̂ - xp + X p  t 6  {matrix-vector product of type 2) 
De-allocate local analysis fields 

_) 

ilgorithm 7.9: Structure of the parallel filter analysis routine for the SEIK algorithm 
ar domain decomposed states. The arrays T2p and G are not allocated but stored 
espectively in T l p  and Uinv. Analogously, the contents of t5 are stored in t4. 
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3ubroutine SEIK~Resample~Domain(np,N,xp,Uinv,Xp) 
int np {state dimension on local domain, input} 
int N {ensemble size, input} 
real xp(np) {state analysis vector: input} 
real Uinv(r, r )  {inversc eigcnvaluc inatrix, input} 
real Xp(np, N) {ensemble matrix, input/output} 
real T l ,  T 2 ,  OT, C ,  T3p {fields to be allocated} 
int r {sank of cova,riance matrix, r = N - I} 

1: Allocate fields: T l ( r ,  N ) ,  T2(N,  N), OT(r, N ) ,  C(r ,  r ) ,  T3p(np, N) 

Cholesky decomposition: Uinv = C CT {by each process} 
initialize OT {by each process} 
solve C T T l  = OT for T l  {by each process} 
T 2  + T T l  {im~lernent~ed with T as operator} 
for i=l,N do 

T3,,(:, z) +- Xp(:: z) 
Xp(:, 2) + xp 

end for 
X p  + X p  + T3p T 2  {matrix-matsix product of type 2) 
Deallocate local analysis fields 

Algorithm 7.10: Structure of the parallel resampling routine for the SEIK algorithm for 
domain decomposed states. The matrix T l  is never allocated in the program. Its contents 
are stored in ClT.  Lines 6 to 10 can be implemented with a block formulation. Then only 
some rows of T3p allocated. 

all. The operations On the sma.11 r X r and r X ( r  + 1) matrices are performed equally 
bj7 all processes. They can be expected to require negligible time compared with the 
computation of the new ensemble states. The opesations on the ensemble matrix 
a,re fully parallelized. Hence, the domain-deconlposed resampling algorithm of SEIK 
can be expected to show a nea.rly ideal speedup. To reduce the required memory, 
we implement the ensemble transformation in line 11 using a block formulation. It 
is analogous to the block structure described for the SEEK resampling algorithm. 

7.3.5 Comparison of Communication and Memory Require- 
ments 

Table 7.3 summarizes the size of the communicated arsays in the domain-decomposed 
filtes algorithms. The numbers assume that no communication is performed in the 
imp1ementa.tion of the ~neasurement operator and in the subroutine RznuA. 

Since we have usually n >> m > N, r fos realistic large scale models, it is obvious 
from table 7.3, that with domain decomposition significantly less data has to be 
communicated between processes. The smallest amount is in the SEIK algorithm. 
Its &nalysis algorithm communicates only two arsays of sizes r X r and r .  The 
semrnpling algorithm of SEIK is even executed without any communication of data. 
The largest amount will be in the EnKF algorithm, since here arrays involving the 
dimension m are communicated. 



7.4 Localized Filter Analyses 9 7  

Table 7.3: Sizes of arrays involved in global MPI operations in the analysis &nd resalnpling 
phases of the SEEK 'nd SEEK algorithlns and in the al~alysis phase of the EnKF algorithm 
for domai11-decomposed states. Next to the matrix size: t,he name of the matrix is given 
as well as the i~lforlnation whether the MPI operation is an allgat,her (g) or a.llreduce (r) 
operation. 

m N  ( T l ;  g) r2 (AUinv,  r) r2 (AUinv, r) 
m N  (D, g) r (t3,  r) 7. (t4,  r) 

r2 ( T l ,  r) 

Comparing the mode-decomposed algorithms (7.1 to 7.5) with the algorithms 
using doma.in decomposition (7.6 to 7.10), the smaller memory requirements of the 
domain-decomposed filter algorithms become visible. Using domain-decomposition, 
a.11 a.rrays involving the state dimension n are distributed for a11 t,hree filt.ers. In 
SEEK a,nd SEIK a.1~0 all a.rrays involving the climension m a,re distribut.ed. In 
coiitrast to this, there are only sinall memory overheads. They are ca.used by arrays 
involving the ensemble size AT which have to be added in comparison to the serial 
algorithms discussed in section 3.3. Since the ensemble size is typically much smaller 
than the dimensions n arid m, the domain-decomposed SEEK and SEIK algorithms 
are sca1a.ble in terms of memory requirements. In the EnKF: the situation is more 
problematic. The arrays T1 E Rmx"r, D E RTnXAr , a.nd T3 E are fully 
allocated on each process. Also one array of size mp X AT (Dp) has to be aclded 
in comparison to the serial algorithm. If large observational dat8 sets have to be 
assimilated, matrix T3 will domiiiate the memory requirements. 

7.4 Localized Filter Analyses 

The parallelization schemes presented above a.re solely based oii a reformulation 
of the serid algorithms to distribute fields and work oves the available processes. 
Thus, no approximations a.re involved. Slightly different results in the analysis 
might occur due to numerica.1 reasons caused by a different order in parallelized 
summations compared with a sum computecl by a siiigle process. The analyses 
algorithms of the filters are spatially global, since long range covariances might exist. 
In addition, the ana.lysis a,nd resampling phases are global over the st.ate or mocle 
ensembles, since weighted averages of the ensemble members are computed. Due 
to this: several globa,l MPI operations are performed iil the a.na1ysis and resainpling 
phases of the filter algoritl~ms. These global communication operations will always 
limit the pa.ralle1 efficiency of the filter algorithms. 

When we consider the filter algorithms developed for domain decomposed states, 
the amount of communicated data is smaller tha,n their mode-decomposed counter- 
parts. The amount of da,ta communicated in the SEEK and SEIK filters is much 
lower than in the EnKF. The ana.lysis a.nd resampling a.lgorithms of SEEK and 
SEIK are formulated such tha.t all operations on the state space arid the observation 
space are decomposed. These algorithms are global only in the error space of di- 
inension r. Hence, with domain-decomposed states, comrnuni~~tion operations are 
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required only for fields in the error space. Since all operations in the state space 
'nd the observation space are parallelized without communication of data: a further 
localization of the SEEK a.nd SEIK algorithms does not appear to be necessary. 

The situation is different for the EnKF with doma,in-decomposition. The EnKF 
computes the weights for the ensemble update in the observation space of dimen- 
sion m. In particular, the computa.tion of T3 in line 13 of algorithm 7.8 and the 
solver step for the representer amplitudes B in line 25 are costly. These operations 
are especially problematic since they are not pa,rallelized and therefore executed 
by each process. Thus, they reduce the parallel efficiency of the algorithm. The 
efficiency is further diminished by the allgather operations in lines 12 and 20. 

To reduce the dimension of the observation vector in the analysis algorithm, it is 
possible to formulate a localized analysis a.lgorithm. This is based On the assumption 
that observations have negligible influence for the analysis update of a certain grid 
point if they have a large distance to this grid point. In this case: only observations 
within a certain distance from the grid point need to be taken into account for the 
analysis of the state of this location. The local analysis is an approximation to  the 
global analysis, but it is motivated by the fact tha,t long range covariances in the 
matrix P, which is represented by the ensemble, are very noisy and their information 
contents will be negligible. This topic has been discussed, e.g.: by Houtehmer &nd 
h/Iitchell [34]. To perform the local i~~t ion,  Houtekamer and Mitchell 1361 filtered 
the covariance matrix P by a Schur product, i.e. an element-wise product: with a 
matrix representing correlations of local support. This technique has also been used 
by Keppenne and Rienecker [45] who apply the localization for data assimilation in 
an parallelized 0cea.n general circulation model. 

The effect of the introduced smoothing and down-weighting of observations at 
intermediate distances and neglecting of remote observations has been examined by 
Hamill et al. [30]. Their results showed that for small ensembles the cut-off radius for 
the observa.tions should be rather small to obtain a. minimal estimation error. Typ- 
ically an optimal radius which minimizes the estimation error can be determined. 
On the other hand Mitchell and Houtekamer [56] showed that the localization causes 
imbalance in the analysis state of a primitive equation model. This imbalance in- 
creases with decreasing cut-off radius. Evensen [18] also argued against a filtering of 
the covariances: since this will introduce spurious a.nd nondynamical modes in the 
analysis. Evensen: On the other hand a.rgues in favor of a local analysis since this 
increases the degrees of freedom in the update of the ensemble states. 1.e. each local 
domain will be updated using a different combination of the ensemble states. This 
will eventually lead to state estimate with smaller estimation errors than a global 
analysis upda,te. 

We will derive equa.tions for the local analysis which do not use a Schur product 
to filter and localize the covariances. Our formulation just neglects observations 
beyond the cut-off radius. For the filtering by a Schur product this would corre- 
spond to a step function of the correlations. In this respect, our formulation follows 
that suggested by Evensen [18]. Figure 7.3 visualizes the domain decomposition 
for a localized analysis in a structured recta.ngu1a.r grid. We intent to update the 
sub-domain S. When we assume direction dependent cut-off radii ( T I ,  r2 ) ,  the in- 
fluence region of observations for the upper right edge of S is given by the ellipse C. 
The region D shaded in light grey is the observation influence region for the whole 
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Figure 7.3: Domain decomposition for a localized a.na1jrsis in a structured recta~igular 
grid (Following the representation by Keppenne and Rienecker [45]). Region S is the 
sub-domain in which the state is updated. The ellipse C marks the influence region of 
observations for the grid point at the uppes sight edge of region S. C is defined by the 
cut-off r d i i  r l  and 7-2. The region D shaded in light grey ma,rks tlle influence region of 
the obsesvations for the whole region S. 

sub-domain S .  In finite difference models with structured grids, for simplicity the 
rectangula,r segion 8 could be Chosen as influence segion. This loca.lization differs 
from that suggested by Ott  et al. [58]. While Ott  et al. use coinciding domains 
for the sub-domain S in which the state is upda.ted a.nd the observa.tion domain D 
we assume that D contains all observations within a certa.in distance from the grid 
points in S .  

To obtain a mathematica.1 formulation for the l~ca l i z~ t ion ,  we consider the basic 
analysis equations 2.41 and 2.42 of the EnKF algorithin. Omitting the time index k >  
the global a,nalysis equations for each ensemble state {xCa)> a = l l  . . . N} are: 

Now let Sa be a linear operator which reduces a global state vector X of di- 
mension n to its local part xa of dimension na < n in the sub-domain Sm. The 
subscript denotes the set of parameters which specify the  sub-domain. For sim- 
plicity, we assume here that  the sub-domain is specified by the spatial position 1 of 
its center as well as its extent ra in the spa.tia1 directions. Then we can write the 
analysis of the local sta,te as 

Let Dh be 1inea.r operator which reduces a global observation vector y of di- 
mension m to its local part yh in the sub-domain D&. The subscript 6 denotes the set 
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of parameters which specify the sub-domain in the global observation domain. We 
assume that 'D6 is centered at  the Same spatial location 1 as the state sub-domain S,, 
but the extent of 'D6 will be different from that of Sm. Non7 we can write the analysis 
for the 1oca.l state using only observations from domain 'D6 as 

with 

The application of the operator D6 amounts to the neglect of obser~~t ions  which 
are beyond the sub-domain 'D6. 

Now we define the measurement opemtor H6 := D 6 H  which projects a (global) 
state vector onto the local observation doma.in 'D6. In additioq we define the obser- 
va,tion error covaria.nce matrix in 'D6 as R 6  := D6RDF. With these definitions the 
local a,nalysis equations for the EnKF are 

with 

For the local analysis these equations replace equa.tions (2.41) arid (2.42) of the 
global analysis. The local representer formulation follows as the local alternative to 
equations (2.46) and (2.47) as 

and 
( H @ ~  + ~ & ) b ? )  = - . (7.9) 

Based On equations (7.6) and (7.7, we can also reformulate) the ensemble com- 
puta.tion of the matrices @fHT and H@fHT (equations (2.48) and (2.49)) for the 
local analysis. These are: 

These equations can be implemented using the Same optimization strategy as 
for the other parallelized EnKF a,nalysis algorithms. The Algorithm 7.11 shows the 
algorithm in pseudo code. Apart from the distinction of private and global variables, 
it is identical to the structure of the serial program shown in algorithm 3.5. In par- 
ticular, no communications are performed in the analysis routine itself. However, 
the called subroutines are different from their serial va.riants. Get-Dzm-Obs now 
provides the dimension of the local observation vector yz and EnKF-Obs-Ensemble 
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Subrou t ine  EnKF_Analysis_Local(step,np.N,Xp) 
int step {time step countcr,input} 
int n,, {statc dimcnsion on local domain, input} 
int N {ensemble sizc, input} 
real Xp(np, N )  {local ensemble matrix, input/output} 
real Tlp, t2p,  T3p ,  t4p ,  T5p ,  T6p ,  Dp, xp {fields to be allocated} 
int m,, {dimension of observation vector in the local domain} 
int i {ensemble loop counter} 

1: call Get-Dim-Obs(step, mp) {dimcnsion for local observation domain T>(,\ 
2: Allocate fields: Tlp(?n,,, N ) ,  t2p(mp),  T3p(7nÃ£ m,,), t4*(mp), 
3: T5p(n,,,N),T6JN,N),Bp(~np1~),Dp(mp,N),~p(n,,) 

4: f o r i = l , N d o  
5: call Measurement_Operator(step, np, mp, Xp(:, i ) ,  T lp ( : ,  2 ) )  {in domain 

Ds } 
6: e n d  for 

N 7 :  t2p +- N-l T l p ( : ,  i) {in domain D,} 
8: for  i= l ,N  d o  
9: T l p ( : ,  i) + T l p ( : ,  i) - t 2 p  {in observation domain 'D{} 

10: e n d  for 
11: T3p +- ( N  - Tlp  Tl: {full matrix-matrix product in D d  
12: call R p l u s A ( ~ t e p , m ~ , T 3 ~ )  {in domain Ds} 

13: call Enkf~Obs~Ensemble(step,mplN,Dp) {ensemble of observations in T>s\ 
14: f o r i = l , N d o  
15: call Measurement_Operator(step, np, mp, Xp(:, i), t4p)  {in domain D,} 
16: D*(:, i) + D p  (:, i) - t4* {ensemble of residuals for domain 
17: e n d  for 

solve T3p B p  = Dp for Bp {in domain Dgl 
xp + N 1  Xp(:, i )  {ensemble mean state for local domain Sa 
for  i=l :N d o  

T5p(: ,  i) ̂ - Xp(:, i )  - xp {in domain Sn} 
e n d  for 
T 6 p  <- Tl: B p  {in domain D,} 
X p  +- X p  + (N - l)-I T 5 p  T 6 p  {full matrix-matrix product in Sn} 
De-alloca,te local analysis fields 

18: 

19: 
io: 

i l :  

22: 

i3: 

i4: 

!5: 

I 

J 

' 

- 
Algorithm 7.11: Structure of the local filter analysis routine for the EnKF a.lgorithm 
using domain decomposed states. This routine applies the representer update variant for 
a non-singular matrix T5p.  Matrix Tlp is not allocated but stored in Dp. Analogously, 
the contents of Bp and t4p is stored respectively in Dp and t2p. To avoid the allocation 
of the full array T5p,  line 24 can be implemented in block formulation. 
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initializes the local observation ensemble Y!. Also, RplusA adds the local observa- 
tion error covariance matrix Rb. Analogously, the routine Measurement-Operator 
provides a state vector projected on the local observation space on the basis of the 
global state vector. This routine has as input only a state vector for the local do- 
main. Thus the routine Measurement-Operator will involve communications of data 
from other state sub-domains if the domains So and T>s do not coincide. As long as 
the local observation domain is smaller than the global observation domain, these 
communication operations will not involve all processes. The implementation of 
the localized analysis algorithm is independent of the model grid. Thus, it can be 
also applied for unstructured grids like those which can appear with finite element 
models. 

The local formulation has the benefit that no arrays involving the full observation 
dimension m need to be allocated. The Matrices Tlp  and Dp are now of size m,, X N 
and matrix T3p has only dimension m-p X mp. The amount of computations is as 
well reduccd in comparison to the domain-decomposed global analysis algorithm 7.8. 
The matrix-matrix products to compute T3p (line 11) arid T6p (line 23) involve 
now the dimension mp instead m. Also, the solver step to obtain the representer 
amplitudes Bp (line 18) is computed in the domain Ds. 

As long as the domains &, and Ds do not coincide, the local analysis formulation 
still requires communication of data. These communication operations are, however, 
not global and involve less amount of data than the global domain-decomposed 
formulation of the algorithm. In addition, the localization permits to distribute all 
computations On observation-related matrices including, e.g., the solver step for the 
representer amplitudes. Thus, the local algorithm can be expected to show a much 
better scalability and parallel efficiency than the global algorithm. 

7.5 Summary 

In this chapter, we examined strategies to pa,rallelize the analysis and resampling 
phases of the SEEK, EnKF, arid SEIK filter algorithms. There are two different 
parallelization strategies: 

Mode-decomposition - The filter can be pa,rallelized over the modes of the 
ensemble ma,trix X or the mode matrix V. In this case, the matrix is decom- 
posed such that each process holds several columns of X or V. Since each 
column of the matrix represents a full model state vector, the filter operates 
On sub-ensembles of model states. This parallelization strategy of the filter 
is independent from a possible parallelization of the numerical model used to 
compute the forecast. Since each ensemble state can be evolved independently 
from the other states, this parallelization exploits the inherent parallelism of 
the ensemble forecast. 

2.  Domazn-decomposition - The filter can be parallelized by a decomposition 
of the model domain. In this case each process holds several rows of the 
matrices X or V. Thus, each process operates on a full ensemble of model 
sub-states for the domain owned by this process. With this parallelization 
strategy, the filter typically applies the same domain-decomposition as the 
numerical model. Different decompositions for model and filter are possible, 
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but will yield an overhead when the state information is transferred between 
filter and model. This is due to the reordering of the state information. 

We also discussed the implementation of a localized filter analysis for the situ- 
ation of domain-decomposed states. This localization neglects observations beyond 
some distance from a model sub-doniain. Thus, it reduces the effective dimension 
of the observation vector. It became evident that a localization is only useful for 
the EnKF. The SEEK and SEIK filters operate globally only on the error subspace 
which is spa,nned by the ensemble states. Since the error subspace is typically of 
much lower dimension than the local model domain, the global operations will not 
significantly limit the parallel efficiency of the algorithms. For the EnKF, the local- 
ization reduces the amount of communicated data. In addition, the computations 
are distribut,ed more evenly among the processes than in the global formulation of 
the analysis. Thus, the localization will provide a better scalability of the EnKF 
algorithm compared with a global analysis. We obtained a particularly simple for- 
mulation for the implementation of the EnKF analysis routine. The analysis routine 
is formulated like the serial algorithm discussed in section 3.3 while the localization 
is entirely handled in the observation-dependent routines which are provided by the 
User of the algorithm. 

For the global algorithms, tables 7.2 and 7.3 showed that significantly less data 
is communi~~ted  if the variant with domain-decomposed states is used. The least 
&mount of communication is necessary for the SEIK filter. In addition. the mem- 
ory requirements are smaller for the va,riant with domain-decomposition than with 
decomposition over the modes of the ensemble matrix. Using domain-decomposed 
states. all matrices involving the state dimension n or the dimension m of the ob- 
servation vector are decomposed in the SEEK and SEIK algorithms. This provides 
scalability of the memory requirements. In the EnKF, all matrices involving the state 
dimension n are decomposed, too. It is, however, still required to allocate matrices 
involving the observation dimension m. Thus, the EnKF requires more memory 
than the SEEK and SEIK algorithms. In addition, the memory requirements do 
not scale with the number of processes. Scalability of the memory requirements is 
assured if the localized analysis algorithm is used. In this case, all matrices involving 
the observation dimension are decomposed and refer only to the local observation 
domain. 

Since the state or ensemble updates of the filter analysis and resampling phases 
correspond to the computation of weighted averages of the ensemble members, it is 
rauch more efficient to store whole ensembles of sub-states on each process than to 
store sub-ensemble of whole states. Thus, from the algorithmic point of view, the 
domain-decomposed filter algorithms are superior to the mode-decomposed filters. 
Most efficient is the domain-decomposed SEIK filter. It decomposes all matrices 
involving the larger dimensions n and m. Communication operations are only nec- 
essary on matrices involving the dimension r of the error subspace. The localized 
EnKF algorithm will also be efficient. However, this algorithm approximates the 
a,nalysis by neglecting observations beyond a certain distance. 

The different parallel efficiencies of the algorithms, however, will be less impor- 
tant in data assimilation applications if the forecast phase dominates the compu- 
tation time. In this case, it is important that the ensemble forecast exhibits good 
parallel efficiency. This issue is discussed in the next chapter in conjunction with 
the development of a parallel filtering framework. 



Chapter 8 

A Framework for Parallel Filtering 

8.1 Introduction 

As we have discussed above, the forecast phase of the EnKF and SEIK filters con- 
sists of an evolution of N independent model states. In addition, the evolutions of 
the modes in the SEEK filter are independent, if a gradient approximation for the 
linemized model is used. To utilize this natural parallelism of the forecast phase 
a,nd the parallelization possibilities of the andysis and resampling phases discussed 
in chapter 7, we develop a. framework for parallel data assimilation based on filter 
algorithms. The framework defines an application program interface (API) which 
permits to combine a filter algorithm with a numerical model. The filter algorithm 
is attached to the model with minimal changes of the model source code itself. 
The API permits to switch easily between different filter algorithms. Parts of the 
data assimilation program which are specific to the model or refer to observations 
are hold in separate subroutines. These have to be provided by the user of the fra,me- 
work such that they can be called in the filter routines via the API. Accordingly, 
no cha,nges to the filter routines themselves are required when a data assimila,tion 
system is implemented utilizing the filter framework. Thus, it is possible to compile 
the filter routines separately from the data assimilation program arid to distribute 
them as program library. 

Existing interface structures are the programs SESAM [75] a,nd PALM [60]. 
SESAM is based on UNIX shell scripts which control the execution of separated pro- 
gram executables. This structure requires that all data tmnsfers between different 
programs in the data assimilation system are performed using disk files. SESAM 
has the benefit that no changes to the model source code are required, since the 
structure of the data assimilation system is defined externally to the model. The 
problem of data exchanges between the model and the filter program, i.e. the anal- 
ysis and resampling phases, is shifted to the problem of a consistent format of the 
data files. Eventually the disk read/write routines have to be cha,nged in the model 
or file transformation programs are required. The system does not allow for parallel 
model tasks, as it is based on shell scripts. Furthermore, the overall performance in 
terms of computation time will not be optimal, since disk operations a.re extremely 
slow in comparison to memory operations. 

The concept of the PALM system is quite different. This coupler is based on an 
abstract flow chart representation of data assimilation systems [48]. PALM provides 
a graphical user interface (GUI) in which the da,ta assimilation system is assembled 
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from separated subroutines following the flow chart representation. In addition, 
PALM provides a library of algebraic routines. These are prepared for the PALM 
system and can be used directly in the GUI. Subsequently, an executable prograrn 
is compiled within the PALM framework according to a structure file written by 
the GUI. The structure of PALM is highly flexible. It requires, however, that sub- 
routines are prepared to be used with PALM. For this, the routines are extended 
by a definition header. In addition, subroutine calls for data tjransfers are added. 
In PALM, the construction of the whole program including the data assimilation 
algorithm is shifted to the GUI. 

The data assimilation fmmework which we present in this chapter is less abstract 
and flexible than PALM. On the other hand, the chosen structure gives more control 
to the User who attaches the filters to  the model source code. The calls to the  
filter interface routines are added directly to the source code of the model. The  
filter algorithms are fully implemented and optimized using library routines for 
algebraic operations. We use the BLAS and LAPACK libra,ries which are provided 
by the computer vendor, since these are typically highly optimized for the used 
computer system. There is no need to modify the filter algorithms or to assemble 
single routines to obtain working data a~s imi l~ t ion  algorithm. In addition, t he  
execution of the progra,m is controlled from within the model source code, which 
is extended to perform data assimilation. The control is not shifted to a,n exterior 
environment as in PALM. In discussions with oceanographers, these future users 
apparently prefer a structure in which the physical model remains the essential part 
of the data assimila,tion program and the filter is attached to  the model. A structure 
which passes the model to a coupler interface which controls the program execution 
appeared to be acceptcd less. Such a structure was also used for the iinplementation 
which we presented in section 3.3. There the control was given to  the filter routines 
after initializing the model. The time stepper of the model itself was called as a 
subroutine. 

There are two different process configurations for the framework. The filter rou- 
tines can be either executed by (some of) the model processes or disjoint process 
sets for the filter and model routines can be used. Thus, after introducing the gen- 
eral structure of the framework in section 8.2, we discuss separately the  framework 
structures for two different process configurations in sections 8.3 and 8.4. In both 
cases. we introduce the API. Further, we discuss possible configura~tions of the re- 
quired MPI communicators and expla.in the execution structures of the framework. 
Subsequently, we consider in section 8.5 the issue to define the transition between 
the state vector notation of the filter routines and the physical fields of the model. 

8.2 General Considerations 

For the development of the framework, we base On the following considerations: 

The numerical model is independent from the routines of the filter algorithms. 
The model source code should be changed as little as possible when combining 
the filters with the  model. 

0 The filter source code is independent from the model. I t  solely operates On 
model state vectors, not on the physical fields of the model. 
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Physical Model 
initialization 
time stepper 

post-processing 

Figure 8.1: Logical parts of the data assimilation problern. 

The observations are independent both from the numerical model and from 
the filter. The filter routines require information On the observations (obser- 
vation vector, measurement operator, observation error covariance matrix) in 
the a,nalysis phase. The model does not need information about the observa- 
tions. To implement the measurement operator, however, information On the 
structure of the state vector is necessary. The physical meaning of the entries 
(velocities, temperatures, etc.) and their spatial location in the model mesh 
has to be known. Since the routines which initiahze the state ensembles also 
require this information, it can be shared between the ensemble initialization 
routines and the implementation of the measurement operator using Fortsm 
inodules. The framework can be logically partitioned into three parts as is 
sketched in figure 8.1. The transfer of information between the model and 
the filter as well as between the filter and the observations is performed via 
the API. 

Observations 
observation vector 

measurement operator 
observations errors 

state vector 

time 

The framework has to allow for the execution of multiple concurrent model 
evolutions, each of these can be pa,rallelized itself and thus be executed by 
multiple processes. Both, the parallelization of the model itself and the number 
of parallel model tasks have to be specified by the user. 

Like the model, the filter routines can be executed in parallel, too. We have 
discussed the parallelization of the filter routines in chapter 7. 

Filter 
initialization 

analysis phase 
resampling phase 

0 The filter routines can either by executed by (some of) the processes used for 
the model evolutions or by a. set of processes which is disjoint from the set of 
model processes. 

observation vector 
4 

> 
state vector 

To combine a filter a.lgorithm with a numerical model in order to obta,in a data 
assimilation progra,m, we consider the 'typical' structure of a model which computes 
the time evolution of several physical fields. These can be, for example, the temper- 
ature and salinity fields in modeled ocean. The 'typical' structure is depicted in 
figure 8.2a. In the initialization phase of the program, the mesh for the computations 
is genera,ted. Also the physical fields are initialized. Subsequently, the evolution is 
performed. Here nsteps time steps of the model fields are computed. These take into 
account boundary conditions as well as external forcing fields, like e.g. wind fields 
over the ocean. At certain time-step intervals, some fields are typically written into 
disk files and diagnostic qmntities are computed. Having completed the evolution 
some post-processing operations can be performed. 

The structure of the data assimilation program with attached filter is shown in 
figure 8.2b. To initialize the filter framework, a routine Filter-Inzt is added to the 
initialization part of the program. Here the arrays required for the filter, like the 
ensemble matrix X, the mode matrix V or matrix U of the SEEK filter are allocated. 
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include BC 

generate mesh 

Do i=1 ,nsteps 

Time stepper 
include BC 

Figure 8.2: Flow diagiams a) Sketch of the typical structure of a model performing time 
evolution of some physical fields. b) Structure of the data assimilation configuration of 
the rnodel witli attached filter Added subroutine ca11s and control structures are shaded 
in gray. 
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Subsequently, the state estimate X; and the state ensemble or mode matrices are 
initialized. The major logical change when combining a filter algorithm with the 
model source code is that a sequence of independent evolutions has to be computed. 
This can be achieved by enclosing the time stepping loop by an unconditioned outer 
loop which is controlled by the filter algorithm. For each evolution the model obtains 
a model state from the filter algorithm together with the number of time steps to 
be performed. To enable the consistent application of time dependent forcing in 
the model the filter also provides the model time at t,he beginning of the evolution 
phase. The user has to assure that the evolutions are really indepenclent. Thus, 
any re-used fields must be newly initialized. In the framework, the model state. 
the model time ( t ) ,  and the number of time steps (nsteps)  are provided by calling 
subroutine Get-Stute before the time stepping loop is entered. A value of nsteps = 0 
uniquely determines that no stepping has to be performed. Thus, this setting is used 
as an exit-condition within the unconditioned outer loop. After the time stepping 
loop a subroutine Put-Stute is inserted into the model source code. In this routine 
the evolved model fields are stored back as a. column of the ensemble state matrix 
of the filter. If the ensemble forecast has not yet finished, no further operations are 
performed in the routine Put-Stute. When all model states of the current forecast 
phase are evolved, Put-Stute executes the analysis and resampling phases of the 
Chosen filter algorithm. 

For the parallelized version of the data assimilation program, further change 
to the model source code concerning the configuration of MPI communicators is 
required. For MPI-parallelized models there is typically a single model task which 
operates in the global MPI communicator MPI-COMM- WORLD. To allow for mul- 
tiple model tasks which are executed concurrently, the global communicator has 
to be replaced by a communicator of disjoint process sets in which each of the 
model tasks operates. Thus, a communicator COMM-MODEL consisting of Nnx 
disjoint process sets has to be generated. In the model source code, the reference to 
MPI-COMM- WORLD has to be replaced by COMM-MODEL. Next to the commu- 
nicator for the model a communicator COMM-FILTER has to be created defining 
the processes which execute the filter routines. To couple the filter processes with 
the model tasks another communicator COMM-COUPLE is required. Using this 
communicator, data is transfered between the filter and model parts of the data 
assimilation framework. 

The configuration of the MPI communicators is dependent On the choice whether 
the filter routines are executed by some of the model processes or on a set of processes 
which is disjoint from the set of model processes. In addition, the API for calling 
the subroutines Filter-Init, Get-Stute, and Put-Stute depends on this choice of the 
process configuration. For this reason, we discuss the two different configurations 
separately in the following sections. 

The implementation of the filter routines has been discussed in chapter 7. The 
names of user supplied subroutines are handled in the framework as subroutine 
arguments in the filter routines and have thus to be specified in the API. This 
allows the user to choose the subroutine names flexibly. 
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Subroutine Filter~Init(type-ass,subtype~ass,param-znt,dimJpint,param.real, 
dzm,-prea1,COMM-MODEL,COMM-FILTER, COA4M-COUPLE, 
modeltask,n-modeltasks, f zlterpeJnit,Enseinble,verbose,status) 

int type-ass {Type a filter algorithm, input} 
int subtype-ass {Sub-type of filter, input} 
int paranz-int(dim_pint) {Array of integer parameters, input} 
int dim_pint {Size of param-int, input} 
real param-real(dzm-preal) {Array of floating point pammeters, input} 
int dzm-preal {Size of param-real, input} 
int C O M M - M O D E L  {Model communicator, input} 
int C O M M - F I L T E R  {Filter communicator, input} 
int C O M M - C O U P L E  {Coupling communicator, input} 
int modeltask {Model task the process belongs to, input} 
int n-modeltasks {Number of parallel model tasks, input} 
int f zlterpe {Whether the process belongs to the filter processes, input} 
external Init-Ensemble {Subroutine for ensemble initidization, input} 
int verbose {Whether to print screen information, input} 
int status {Output status flag of filter, output} 

I 

Algorithm 8.1: Interface to the subroutine Filter-Init in the case of joint process sets 
for model and filter 

8.3 Framework for Joint Process Sets for Model 
and Filter 

First we consider the situation that the filter routines are executed by some of 
the processes which are used for the model evolutions. In this case, the internal 
variables of the filter algorithms are mainly stored using Fortran modules. With 
this, e.g., the ensemble matrix X or the Counter for the ensemble member to  be 
evolved can be shared between the different subroutines of the filter. The names 
of user supplied subroutines cannot be handled via modules. For this reason, the 
subroutine names have to be used as arguments in the call t o  each routine using the 
particular subroutines. 

8.3.1 The Application Program Interface 

The three subroutines FdterJnit, Get-Stute. and Pnt-State provide a. defined in- 
terface to the filter algorithms. In addition, the user-supplied routines like the 
observation-related subroutines and the user analysis routine are called using a de- 
fined interface. We discuss here the interface t,o the three routines of the framework 
which are called from the model. The interfaces of the User supplied routines which 
are called by t,he filter are described in appendix B. The interfaces of these routines 
are equal for both process configurations. The implementation of the operations per- 
formed in these routines depend, however, on the choice whether a parallelization 
on basis of inode-decomposition or doma,in-decon~position is used. 

The interface of the routine Filter-Inzt is shown as algorithm 8.1. This routine is 
called in the model source Code by all processes. For the initialization several vari- 
ables are passed to the filter. With the integer argument type-ass the user chooses 
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Subroutine Get_State(nsteps,tzme,Next-Observation,Distribute-State, 
UserAnalysis,status) 

int n,steps {Number of time steps to be performed, output} 
real time {Model time at begin of evolution, output} 
external Next-Observation 

{Subroutine to get number of time steps and current time, input} 
external Distribute-Sta.te 

{Subroutine to distribute state in COMM-MODEL, input} 
external UserAnalysis {Subroutine for user analysis, input} 
int status {Output status flag of filter, output} 

I I 
Algorithm 8.2: Interface to the subroutine Get-Stute in the case of joint process sets for 
model and filter. 

the filter algorithm to be used. For flexibility, su,btype-ass defines a sub-type OS 
the filter. This might be, e.g., a variant of SEEK in which the modes in matrix V 
are not evolved [33]. The array param-int is a vector of variable size dim-pznt. 
I t  holds integer parameters for the filters. In the current implementation of the 
filters dim-pint = 3 is set if the SEEK or SEIK filters are used. For EnKF, it 
is dim-pznt = 4. The first entry of param-int holds the dimension n of the state 
vector. The second entry specifies the ensemble size N for EnKF or the rank r of the 
approximated state covaria,nce matrix for SEEK and SEIK. The third entry specifies 
whether a parallelization with domain-decomposition or a decomposition over the 
modes of the ensemble matrix is used. For the EnKF the fourth entry is used to 
specify the rank of the inverse on the left ha.nd side of equation (2.47) if a pseudo 
inverse has to be computed. A value of Zero specifies that the solution OS equa,- 
tion (2.47) is computed using the LAPACK routine DGESV. The array param-real 
of size dim-preal defines a vector of floating point parameters which are be required 
for some OS the filters. For SEIK and EnKF param-real has a size OS 1 and contains 
only the value of the forgetting factor p. For SEEK it is dzm-preal = 2. While 
the first entry of param-real specifies the forgetting factor p, the second entry sets 
the value of e Sor the gradient approximation of the forecast. The flexible sizes of 
param.int and param-real allow for future extensions OS the functionality. Next 
to these variables, the three communicators are handed over to the filter initializa- 
tion routine. Further; the index modeltask of the model task of the process calling 
Filter-Inzt and the total number n-modeltasks of parallel model tasks is passed to 
the filter initialization routine. The argument f zlterpe specifies whether a process 
belongs to the filter processes. The name of the subroutine performing the ensemble 
generation is the next argument. The interface is completed by an argument which 
defines whether the filter routines will print out screen information and a final ar- 
gument which serves as a status flag. It will have a non-zero value if a problem 
occurred during the initialization. 

The subroutine GetState is called in the model source code before the time 
stepping loop is entered. Get-State initializes the state fields of the model and pro- 
vides the information On the current model time and the number of time steps to be 
computed, The interface to this routine is shown as algorithm 8.2. All parameters 
which are required by the filters have already been specified in the filter initialization. 
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Accordingly, the interface of Get-Stute contains only names of subroutines and out- 
put variables which are initialized for the model t.ime stepper. The variables nsteps 
and time, as well as the status flag status are outputs of the routine. In addi- 
tion, the names of three subroutines are specified. The routines Next-Observation 
a,nd User-An,alyszs have already been described in section 3.3.1. The routine Dzs- 
trzbute-State transfers a state vector to model fields arid distributes these within the 
model task defined by COMM-MODEL. In the variant with mode-decornposition, 
the fmrnework itself only initializes a state vector on a single process in each model 
task. The model-dependent opera,tions are then performed by the routine Dzs- 
trzbute-State which is described in section 8.5. 

Having computed the evolution of a model state, this forecast is stored back 
in the ensemble or mode matrix of the filter algorithm. This is performed in the 
routine Put-Stute. If Put-Stute is called after the filter forecast phase has been 
completed, the analysis and remmpling phases are executed by this routine. In its 
interface, the names of several subroutines which are called by the filter analysis a,nd 
remmpling algorithms have to be specified. The observation-related routines Mea- 
surernent-Operator, Measurement, RznvA, RplusA, and Get-Dirn-Obs have already 
been discussed in section 3.3.2. The routine Measurernent-Ensemble is required in 
the EnKF. It provides the observation ensemble according to the observation error 
covariance makrix R. Collect-State performs the operation inverse to  that of the 
routine Dzstrzbute-Stute. That is, the ensemble fields in a model task are gathered 
in state vector. For mode-decomposed ensemble matrices, the state vector is gath- 
ered by a single process of this task. Next to the names of subroutines, the interface 
of Put-Stute contains again the status flag status as an output variable. 

The routine Put-Stute is generic for all three filter algorithms. Due to this, the 
interface requires the specification of all possible subroutine names, even if they are 
not required for all filters. For example, SEEK and SEIK only require the routine 
RinvA but not RplusA. The latter routine is required by the EnKF analysis while 
the former one is not used by this filter. To generate an executable program all 

Subroutine Put.State(Collect_State,Get.Dim~Obs,Measurement.Operator, 
Measureinent~Measurement-Ensemble~User_Analysis,RinvA,RplusA,status) 

external Collect .Stake 
{Subroutine to collect state vector in COMM-MODEL, input} 

external Get-Dirn-Obs 

1 {Subroutine to provide dimension of observation vector, input} 
1 external Measurernent-0vera.toi 

1 {Subroutine with implementation of measurement operator, input} 

I external Measurement {Subroutine t.o initialize observation vector, input} 
external Measurement .Ensemble 

{Subroutine to initialize ensemble of observation vectors, input} 
external UserAna.lysis {Subroutine for User analysis, input} 
external RinvA {Subroutine for product of R 1  with some matrix, input} 
externd RplusA {Subroutine to add R to some ma,trix, input} 

1 int status {output status flag of filter, output} 

Algorithm 8.3: Interface to the subroutine Put-State in the case of joint process sets for 
model and filter. 
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+ logical process number (= rank in MPI-COMM- WORLD)  

[O 1 2 3 4 5 6 71 MPI-COMM-WORLD 
[O 1] [O 1] [0 1] [0 1] COMM-MODEL 

[O 11 [o l] COMM-CO UPLE 
[o 11 COMM-FILTER 

Figure 8.3: Example coinmunicator configuration for the case that the filter is executed 
by some of the model processes and the filter routines use a parallelization of the modes. 

three routines must be present (possibly as an empty routine, if it is not called 
by the chosen filter), since they are required for the linker step. To facilitate the 
implementation if only one filter type is used, we have implemented specific routines 
like Put-Stute-SEEK for the SEEK filter. The interface of the specific put-routines 
contains only the names of the subroutines relevant for the chosen filter. 

It would be possible to avoid the names of subroutines in the calling interfaces 
to Filter-In% Get-Stute, and Put-Stute. This would simplify the API considerable. 
On the other hand this would disable the possibility to use arbitrary names for the 
subroutines. We prefer this flexibility, since the User is not urged to use specific 
names for his subroutines. 

8.3.2 Process Configurations for the Filtering Framework 

Before we explain the functionality of the filter interface routines and the com- 
munication of data between the filter and the model part of the data assimilation 
program, we discuss the configuration of the MPI communicators. These define the 
process topology for the da,ta assimilation framework. In general, the data assimila- 
tion framework requires that the User initializes the communicators and provides the 
na.mes of these communicators to the routine Filter-Inzt. To facilitate the initializa- 
tion of the communicators, the framework includes templates for these operations. 
These templates can be used in most situations without changes, but can be adapted 
when necessa,ry. The communicator configurations use simple 1-dimensional process 
topologies. Dependent On the model, it might be useful to a.pply other topologies 
inside the process sets of COMM-MODEL, e.g., to obtain optimal performance for 
2-dimensional doinain decompositions. 

A possible process configuration for mode-decomposition is shown in figure 8.3. 
In this figure each row corresponds to the communicator which is given on the right 
hand side. The processes are ordered from left to right according to their logical 
process number which is given by the rank of the processes in the communicator 
MPI-COMM- WORLD. Thus, the entries in a single column refer to the Same pro- 
cess. The number entries denote the rank of the process in the communicator. 
If no rank is given for a process in the context of some communicator, this process 
does not &tend in communications within this communicator. The brackets enclose 
processes which build together a process set on the communicator. 

In the example the program is executed by a. total of 8 processes. These are dis- 
tributed into four parallel model tasks each executed by two processes in the context 
of COMALMODEL. The filter routines are executed by two processes. These are the 
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- logical process nuinber (= rank in MPI-COMM- WORLD)  

[O 1 2 3 4 5 6 71 MPI.COMM.WORLD 
[O l] [O 1] [0 l] [O l] COhlM-MODEL 

101 [o] [Ol [01 COMM-CO UPLE 

[0 l 2 31 COMM-FILTER 

Figure 8.4: Example communicator configuration analogous to that in figure 8.3. Here 
the filter is executed by all processes which have rank 0 in COMM-MODEL. 

processes of rank 0 and 4 in the context of MPI-COMM- WORLD. In the context 
of COMM-MODEL the filter processes have rank 0. Each filter process is coupled 
to two model tasks. Thus, there are two disjoint process sets in COMM-COUPLE 
each consisting of two processes. With this configuration, the filter initialization 
will divide the ensemble or the mode matrix into two matrices which a,re stored On 
the two filter processes. Each matrix holds a sub-ensemble of model states. For 
the utilization of all four model tasks, each filter process will a,gain distribute its 
sub-ensemble to the two model tasks which are coupled to it by COMM-COUPLE. 

A simpler configuration which will be sufficient for most applications is shown in 
figure 8.4. Again there are four parallel model tasks ea,ch containing two processes. 
The filter is executed in this configuration by each process which has rank 0 in the 
context. of COMM-MODEL. With this configuration, the cominunication scheme is 
simplified since no communication via COMMCOUPLE is required. Each process 
set in COMM-COUPLE contains only a single process and the filter processes can 
directly provide data to the model tasks. Using this configuration, the state or mode 
ensemble is distributed into sub-ensen~bles in the routine Filter-Init. In contrast to 
the configuration in figure 8.3, no further distribution of the ensemble is necessary. 

If a domain-decomposition is used for the parallelization of the model and the 
filter parts of the program, the configuration of the processes is distinct from the 
case of mode-decomposition. considered is the situation that the filter uses the 
sa,me domain-decomposition of the states as the model. Figure 8.5 shows a possible 
process configuration. Here the program is executed by six processes in total. These 
are distributed into two model tasks each consisting of three processes. The filter 
routines are executed by all processes of one of the model tasks. Hence, the sub- 
state from this model task can be directly transfered between the local ensemble 
matrix and the model fields. The second model task is connected to the filter via 
COMM-COUPLE. With domain-decomposition, the initialization of the sub-states 
is performed in the initialization phase of the filter. The filter operates on the whole 
ensemble of local sub-states. To use multiple model tasks the ensemble is distributed 
into sub-ensembles. These are sent to the model tasks via COMM-COUPLE. 

A simplified configuration is possible which uses only a single domain-decomposed 
model task. This would lead to a trivial coupling communicator which consists of 
process sets containing a single process each. Thus. no communication in COMM-.- 
COUPLE would be necessary and the overall MPI communication would be mini- 
mized. This configuration would, however, require a rnodel with very efficient par- 
allelization. On the other hand. overall scalability would be limited, since only a 
single model evolution is computed at  a time. 
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logical process number (= rank in MPI-COMM-WORLD) 

[O 11 

10 1 } COMM-COUPLE 
[0 11 

[O 1 21 COMM-FILTER 

Figure 8.5: Example communicator configuration for the case of domain-decomposed 
states. The filter is executed by some of the model processes. 

8.3.3 The F'unctionality of the Framework Routines 

To gain further insight in the functionality of the data assimilation framework, we 
discuss here the operations which are performed in its main routines. The filter algo- 
rithms are hidden behind the three subroutines FzlterÂ¥Jnzt Get-Stute, and Put_State. 
Due to this, the filter main routine, which was discussed in section 3.3.1, is split into 
two parts. These parts reside in Get-Stute and Put-Stute. Some additional opera- 
tions are contained in these routines which are required for the parallel execution of 
the data assimilation framework. 

The interface to the routine Filter-Inzt has been shown in algorithm 8.1. Al- 
gorithm 8.4 sketches the operations which are performed in this rout,ine when the 
SEIK filter is used with a inode-decomposed ensemble matrix. The routine is called 
by all processes. Here several para,meters are initialized, like the chosen filter algo- 
rithm or the ensemble size. These parameters are sh&red between the filter routines 
using Fortran modules. All subsequent operations in Filter-Inzt are only performed 
by the filter processes. First, the sizes of sub-ensembles are computed. Subsequently, 
the arrays required for the filter a.re allocated. These are the state vector X and the 
local ensemble matrices Xp. In addition, the full ensemble matrix X is allocated on 
the filter process with rank 0. After the allocation of the fields, the user-supplied 
subroutine Inzt-Ensemble is called. For the SEIK filter, this routine initializes the en- 
semble matrix. If a parallelization with mode-decomposition is used, Inzt-Ensemble 
is only called by the process with rank 0. Here the full ensemble matrix is initialized. 
Subsequently, it is necessary to distribute sub-ensembles to all filter processes. This 
is performed by MPI communication operations. 

In the case of domain-decomposed stakes, the routine Inzt-Ensemble is called 
by all filter processes. The routine has to provide the full state ensemble for the 
local domain of each process. Since the state ensembles are readily initialized by all 
filter processes no further distribution of the ensembles is performed in FilterJnzt. 
A similar technique could be used for a mode-decomposed ensemble matrix. That 
is, Inzt-Ensemble is called by each filter process with the local sub-ensemble as ar- 
gument. Then Inzt-Ensemble initializes only this local sub-ensemble. Since the 
sub-ensembles are readily initialized on the filter processes, no distribution of sub- 
ensembles would be required in FzlterJnzt. Using this variant would avoid the 
storage of the full ensemble matrix on a single process. On the other hand the 
user would be obliged to implement Inzt-Ensemble such that all sub-ensembles are 
initialized correctly. From this point of view, the first variant, which initializes the 
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int rnype-f ilter {Rank of process in COMM-FILTER} 
int npes- f dter {Number of processes in COMM-FILTER} 

1: initialize parameters 
2: if f ilterpe == 1 then 
3: initklize local ensemble sizes Np 
4: allocate fields: Xp(n,  ATp), x(n) 
5: if ,mype-fzlter == 0 then 
6: allocate ensemble matrix X(n, N)  
7 :  call Init-Ensemble(X) {Initialize full ensemble matrix} 
8 :  for i = 1, npes- f ilter do 
9: send sub-ensemble X(& : jp+rp- 1) to filter process i {With MPI-Send} 
0 :  end for 
1: deallocate field X 
2 :  eise if mype-filter > 0 then 
3 :  receive sub-ensemble Xp {With MPI operation MPLRecv} 
4 :  end if 
5 :  end if 

full ensemble matrix on a single process, is simpler to use. If memory limitations 
render the allocation of the full ensemble matrix on a. single process impossible, the 
initialization should directly operate On the sub-ensembles. To allow for this flexi- 
bility, Filter-Init contains both variants. 

l 

The subroutine Get-Stute is called prior to each model state evolution. Its struc- 
ture is sketched in algorithm 8.5 for the SEIK and EnKF filters. If the routine is 
called for the very first time, it calls the user analysis routine User-Analysis. This 
permits to analyze the initial ensemble consistently with the calls to User-Analysis 
which are performed during the assimilation. Also the ensemble counter member is 
set to one at  the very first call to Get-Stute. For the remainder of the routine, this 
signals that a new forecast phase has to be performed. 

If Get-Stute is called in the beginning of a forecast phase (i.e., with member = 1). 
the routine Next-Observation is called by the process of rank 0 in COMM-FILTER. 
Next~Obseruation initializes the number of time steps nsteps for the next forecast 
phase and the current model time time. Subsequently, the value of nsteps is dis- 
tributed to all processes. If nsteps > 0, also the va,riable time is distributed to all 
processes by a broadcast operation. If the number of filter processes is smaller than 
the number of model tasks, as was the case in figure 8.3, the sub-ensemble of each 
filter process is further distributed such that each model task holds several ensemble 
members. This concludes the initialization of a forecast phase. 

When Get-State is called during a. forecast phase, it calls the user-supplied rou- 
tine Distrzbute.State. Here the model fields are initialized from the state vector which 
is provided to Distribute-State as a subroutine argument. Since the state vector is 

J 
Algorithm 8.4: Sketch of the operations which are executed in the routine FilterJnit for 
the case of mode-decomposition. The interface to this routine is shown as algorithm 8.1 
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Subroutine Get-Stak(. . .) 

int f irst t ime {Flag whether routine is called the very first time} 
int, member {ensemble counter; shared using Fortran module} 

1: if f i rs t t ime == 1 then 
2: call User-Analysis(. . .) 
3: f irst t ime -̂ 0 
4: member +- 1 
5: end if 
G: if member == 1 then 
7: if mype-fzlter == 0 then 
8: call Next-Observation(step,nsteps,tzme) {User supplied routine} 
9: end if 

10: broadcast nsteps to all processes {With operation MPI-Bcast} 
11: i fnsteps>Othen 
12: broadcast time to all processes {With operation MPI-Bcast} 
13: dist,ribute sub-ensembles {With operations MPI-Send and MPLRecv} 
14: end if 
15: end if 
16: if nsteps > 0 then 
17: call Distribute_State(n, Xp(:, member)) {User supplied routine} 
18: end if 

Algorithm 8.5: Sketch of the operations which are executed in the routine Get-Stute. - 
The interface to this routine is shown as algorithm 8.2 

only initialized on a single process of a model task, it might also be necessary to 
distribute the state information to the other processes of the model task. 

Dzstribute-Stute is not called directly by the model routines. Accordingly, the 
model fields or information 011 the model grid cannot be supplied as subroutine 
arguments. Thus. Distribute-State requires that  the model fields are available via 
Fortran modules or 'common' blocks. We will discuss this issue in section 8.5. 

The routine Put-Stute is called after a model state has been evolved by the 
model time stepper. Algorithm 8.6 sketches the operations which are performed 
in this routine for the SEIK filter. During the forecast, the user-supplied routine 
CoLLect-State is called with the current ensemble stat,e vector as a,rgument. Also the 
ensemble counter member is increinented. Collect-State initializes the forecasted 
state vector from the evolved model fields. This is the  inverse operation to that 
perforn~ed by Distrzbute-Stute. We will discuss CoLLect_State in section 8.5. 

If the forecast of all ensemble members is not yet finished, the pr0gra.m exits 
Put-State and loops back to Get-Stute in order to evolve the next ensemble mem- 
ber. If the ensemble forecast is completed, the filter processes proceed in routine 
Put-Stute to perform the analysis and resampling phases of the filter algorithm. If 
there a.re less filter processes than model tasks. all ensemble members are gathered 
by the filter processes. Consecutively, the filter update phases are performed by 
calling SEIKAnalysis and SEIK-ResampLe and the User supplied analysis routine 



8.4 Framework for Model and Filter on Disjoint Process Sets 117 

Subroutine Put_State(. . .) 

int m m b e r  {ensemble counter; sharecl using Fortran module} 
int A$ {local ensemble size; sharecl using Fortran module} 

I: call Collect-State(n,, Xp(:. member)) 
2: nzenzber ^- member + 1 
3: if mem,ber = Np + 1 then 
4: gather sub-ensen~bles {Wit,h operat,ions MPI-Send a.nd MPI-Recv} 
5: if f ilterpe == 1 then 
6: call User-Analysis(. . .) {User supplied routine} 
7: call SEIK-Analysis(. . .) {Perform filter analysis} 
8:  call SEIK-Resample(. . .) {Perform resampling} 
9: call User-Analysis(. . .) {User supplied routine} 

10: end if 
11: member -̂ 1 
12: end if J 
Algorithm 8.6: Sketch of the operations which are executed in the routine Put-Stute. 
The interface to this routine is shown as algorithm 8.3 

User-Analysis. After the update, the ensemble counter member is reset to olle and 
the filter proccsses exit Put-Stute. Only the filt,er processes perform the update. The 
remaining processes reset the ensemble counter and proceed directly to the routine 
Get-Stute. Here. they wait to receive the variable nsteps which is send from the filter 
process wit,h rank 0 in COMM-FILTER t o  all processes by a broadcast operation 
(line 10 of algorithm 8.5). 

8.4 Framework for Model and Filter on Disjoint 
Process Sets 

The variant of executing the model and the filter parts of the data assimilation 
program on disjoint process sets permits a very clear separation between these to 
parts of the program. All processes will call the filter i n i t i a l i~~ t ion  routine. Then, the 
filter processes proceed directly to  the filter main routine. The model processes will 
exit the initklization routine and proceed to  the model time stepper loop. During 
the d&ta assimilation phase, the model and filter pats of the program are connected 
only by MPI communication. 

8.4.1 The Application Program Interface 

The application program interface in the case of disjoint process sets for model 
and filter consists aga.in of the three routines Filter-Init, Get-Stute, and Put-State. In 
addition, the observation-related subroutines and the routines Distribute-Stute and 
Collect-Stute are required. These routines can be identical to those routines which 
are used in the framework discussed in section 8.3.1. Finally, the user analysis 
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Subroutine FilterJmt(type~ass,subtype~ass,paramJint,dim-pint, param-real, 
dzm.preal,COIvIA/I.MODEL, COMM-FILTER, COMALCOUPLE, 
f dterpe,Init_Ensemble,Get_Dim-Obs,Next.Observation, 
Measurement_Operator,Measurement ,Measurement _Ensemble,User_Analysis, 
RinvA,RplusA,verbose,status) 

int type-ass {Type a filter algorithm, input} 
int subtype-ass {Sub-type of filter, input} 
int param.int(di~n-pint) {Array of integer parameters, input} 
int dimJpint {Size of param-int, input} 
real paramJreal(dzmJpreal) {Array of floating point parameters, input} 
int dzm-preal {Size of param-real, input} 
int COMAJ-MODEL {Model communicator, input} 
int COMALFILTER {Filter communicator, input} 
int COMM-COUPLE {Coupling communicator, input} 
int modeltask {Model task the process belongs to, input} 
int n-modeltasks {Number of parallel model tasks, input} 
int fzlterpe {Whether the process is a. filter process, input} 
external Init-Ensemble {Subroutine for ensemble initialization, input} 
external Get-Dim-Obs 

{Subroutine to provide dimension of observation vector, input} 
external Next-Observation 

{Subroutine to get number of time steps and current time, input} 
external Measurement _Operator 

{Subroutine with implementation of measurement operator, input} 
external Measurement {Subroutine to initialize observation vector, input} 
external Measurement -Ensemble 

{Subroutine to initialize ensemble of observation vectors, input} 
external UserAnalysis {Subroutine for user a.nalysis, input} 
external RinvA {Subroutine for product of R 1  with some matrix, input} 
external RplusA {Subroutine to add R to some matrix, input} 
int verbose {Whether to print screen information, input} 
int status {Output status flag of filter, output} 

4lgorithm 8.7: Interface to the subroutine Filter-Init in the case of disjoint process sets 
or model and filter. 
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routine User-Analysis is required. The interface for this routine is identical to that  
of the joint-process case. 

The interface of Filter-Init is shown as algorithm 8.7. It is called by all pro- 
cesses, to allow also for the initialization of parameters for the routines Get-Stute 
and Put-State which will only be executed by the model processes. The required 
parameters in the interface of Filter-Inzt are the same as in the case of joint process 
sets for model and filter. These parameters have been documented in section 8.3.1. 
Also the name of the subroutine performing the ensemble initialimtion has to  be 
provided. In the call to FzlterJnzt the API for disjoint process sets requires, in 
addition, the specification of the observation-related subroutines and the User anal- 
ysis routine. This is necesmry since the filter processes directly call the main filter 
routine in Filter-In& 

FzlterJnzt is generic for all three filter algorithms. As for the routine routine 
Put-Stute in the case of joint processes in section 8.3.1, '11 subroutine names have to 
be specified in the interface, even if they are not required for all filters algorithms. 
To facilitate the implementation, the framework also provides specific initialization 
routines for the filters. These routines require only the specification of the subrou- 
tines which are used for the particular filter. 

Algorithms 8.8 and 8.9 show respectively the routines Get-Stute and Put-Stute. 
As these routines a,re called from the model routine, they are only executed by the 
model processes. The routines receive and send the state vectors. Furthermore, 
Get-Stute receives the time stepping information. In addition, both routines con- 
trol the transition between the state vector and the model fields. Direct outputs of 
Get-Stute are again the number of time steps (nsteps) and the model time at begin 
of the evolution (t ime).  Next to these variables and the status flag status, only the 
subroutine Dzstribute~Stute has to be specified. The functionality of Dzstribute-Stute 
is the same as in the case of joint processes for model and filter. The interface of 
Put-Stute is c~ns ider~bly  simpler here than in the configuration with joint processes. 
Only the subroutine Collect-Stute has to be specified since the update routines of 
the filter are not directly called by Put~Stute. The status flag is given as the second 
argument of the interface. 

8.4.2 Process Configurations for the Filtering F'ramework 

A possible process configuration for mode-decomposed ensemble matrices is shown 
in figure 8.6. The program is executed by six processes. There are two model 
tasks which are executed by two processes each. The remaining two processes are 
used to execute the filter. Each filter process is coupled to one model task by the 
communicator COMM-CO UPLE. Here, the communication in COMM-CO UPLE is 
always necessary, since it couples the disjoint process sets of filter and model. During 
the forecast phase each filter process sends the states of its sub-ensemble to the model 
task connected to it and receives forecasted state vectors. The model evaluations 
are performed only by the model processes while the filter processes wait for data. 
The filter analysis and resampling are computed only by the two filter processes. 
Meanwhile, the model processes idle. 

Figure 8.7 shows a possible configuration for domain-decomposed states. As be- 
fore, six processes are used in total. Two processes are again used for the filter. The 
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Subroutine GetJState(nsteps,time,Distribute-State,status) 
int nsteps {Number of time steps to be performed, output} 
real time {Physical time at begin of evolution, output} 
external Distribute-State 

{Subroutine to distribute state in COMM-MODEL, input} 
int status {Output status flag of filter; output} 
int n {Model state dimension} 
real x(n) {State vector} 
int mype-model {Process rank in COMM-MODEL} 

if mype-model == 0 then 
receive nsteps in COMM-COUPLE {With opera,tion MPI-Recv} 

end if 
broadcast nsteps in COMM-MODEL {With operation MPI-Bcast} 
if nsteps > 0 then 

if m,ype-mode == 0 then 
receive time in COMM-COUPLE {With operation MPLRecv} 
receive X in COMM-COUPLE {With operation MPIRecv} 

end if 
broadcast time in COMM-MODEL {With operation MPI-Bcast} 
call Distribute-State(n,x) 

end if 

ets for model and filter. 

Subroutine Put-State(Col1ect-State,status) 
external Collect-State 

{Subroutine to collect state vector in COMM-MODEL, input} 
int status {output status fla,g of filter, output} 
int n {Model state dimension} 
real x(n) {State vector} 
int mype-model {Process rank in COMM-MODEL} 

1: call CoIlect_State(n,x) 
2: if mype-model == 0 then 
3: send X in COMM-COUPLE {With operation MPI-Send} 
4: end if 

Algorithm 8.9: Pseudo code of the subroutine Put-State in the case of disjoint process 
sets for model and filter. 
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I + logical process number (= ra,nk in MPI-COMM- WORLD) I 
[O 1 2 3 4 51 MPI-COMM-WORLD 

[O 1] [O 1] COMM-MODEL 

10 11 COMM-FILTER J 
Figure 8.6: Example comtnunicator configuration for the case that model and filter are 
executed by disjoint process sets and the filter routines use a paralleli~~tion over the modes 
of the ensemble ma.trix. 

logical process number (= rank in MPLCOMM. WORLD) 

[0 1 2 3 4 5) MPLCOMM-WORLD 
[0 1] [0 l] COMM-MODEL 

[o 11 COMM-FILTER 

Figure 8.7: Example communicator configuration for the case of domain-decomposed 
states arid execution of model and filter parts by disjoint process sets. The example is 
analogous to that in figure 8.6. In contrast to the mode-decomposed case, each filter 
process is coupled to respectively one process of both model tasks. 

forecasts a,re evaluated On two model tasks, each consisting of two processes. The 
communicator COMM-COUPLE now couples each filter process with respectively 
one process of both model tasks. Thus, during the forecast phase, filter process 
sends local state vectors to both model tasks. When all processes of a model task 
have received a sub-state, they start with the model evaluations. 

8.4.3 Execution Structure of the Framework 

The data assimilation for disjoint process sets for model and filter exhibits a clear 
separation between the model and filter parts. Both a,re executed concurrently on 
their respective processes. A flow diagram for the framework which exemplifies the 
SEIK filter is shown in figure 8.8. The thick green lines symbolize communication. 

On execution of the program, the MPI communica,toor are initialized by all pro- 
cesses in global operations. Since in this phase of the program all processes are avail- 
able. the User has to  take care that  the subsequent model initialization is performed 
only by the model processes. The allocation and initialization of model fields is not 
required by the filter processes. After the model initialization, the filter initialization 
routine Filter-Inzt is called by all processes. In this routine, the model processes 
store the information On the communicators COMM-MODEL and COMM-COUPLE 
while the filter processes store the information on COMM-COUPLE and COMM-- 
FILTER. Subsequently, the model processes exit the filter initialization routine. The 
filter processes proceed in FilterJnzt by allocating the arrays which are required for 
the chosen filter. Then the state vector X a.nd the ensemble matrix X or the mode 
matrix V are initialized and sub-ensembles are distributed to all filter processes. 
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Finally the filter processes call the filter main routine whose components are shown 
on the right hand side of figure 8.8. 

Having left the routine Filter-Init, the model processes proceed to the forecast 
loop shown on the left hand side of figure 8.8. In Get-Stute (see algorithm 8.8), the 
processes wait to receive the value of nsteps which is sent by the filter. If nsteps = 0, 
no forecast has to be performed. Thus, no further operations are necessary in 
Get-Stute and the forecast loop is exited. If nsteps > 0, the processes also receive 
the variable t ime and the sta.te vector X to be evolved. Subsequently, the routine 
Distribute-Stute is called which initializes the model fields on the basis of the  state 
vector X. Then the evolution of the state is performed by the model time stepper. 
After the evolution, the routine Put-Stute is called. This routine is shown as  algo- 
rithm 8.9. Here Collect-Stute is called to initialize the forecasted state vector from 
the model fields on the model process with rank 0. Subsequently, this process sends 
the state vector X to the filter. This completes the forecast loop and the processes 
return to the begin of the unconditioned loop. 

The structure of the filter main routine on the right hand side of figure 8.8 
is essentially the Same as that of the serial algorithm which we have discussed as 
algorithm 3.1. An addition to this algorithm is the subroutine Finulize-Model. 1t is 
required in the parallel program to send nsteps with a value of Zero to the model 
tasks. As discussed above, this signalizes to the model tasks to exit the forecast 
loop. 

The subroutine Forecust controls the loop over all ensemble members to be 
evolved. It is shown as algorithm 8.10. In the ~onfigur~t ion with disjoint pro- 
cesses for filter and model, an algorithm is used which sends a only single ensemble 
state vector to the available model tasks. The filter part of the algorithm uses 
non-blocking MPI operations. These only post the communication operation arid 
immediately return from the function even if the communication operation is not yet 
completed. In contrast to this, the routines Get-Stute and Put-Stute apply block- 
ing MPI operations to ensure that the data has been received or send completely. 
Sending and receiving single state vectors permits a flexible handling of the forecast 
phase. If forecasted state vector is received back from some model task, a new 
ensemble state vector can be send immediately to this task if there are any ensemble 
states left. For sufficiently large ensembles, this ensures a good load balancing since 
faster model tasks can evolve more ensemble states than slower model tasks. This 
algorithm is more flexible than the configuration used for joint process sets for filter 
a,nd model. There the sizes of sub-ensembles are Set during the initialization phase 
of the framework. In addition, the memory requirements are smaller here. In the 
case of mode-decomposition, a single state vector is allocated on the model processes 
with rank 0 in COMM-MODEL. No filter-related memory allocations are required 
on the remaining model processes. For domain-decomposition a single sub-state is 
allocated on each model process. For the configuration using joint process sets for 
filter arid model, it is required to allocate sub-ensembles of state vectors. 
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Initialize Communicators 
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generate mesh 
init of fields 

include BC 
include forcing 

i nsteps, time, state 

1 Get-State E ' '  User-Analysis 

nsteps=O 
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User-Analysis 

User-Analysis - 1  

Figure 8.8: Flow diagram for the framework when filter and model are executed by 
disjoint process sets. Exemplified is the program flow for the SEIK filter. Shaded in gray 
are the routines of the filter framework. The thick black lines denote commu~~ication. The 
parts of the program which are horizontally centered are executed by all processes. After 
the initialization, the program splits into the model part displayed On the left liand side 
and the filter part on the right hand side. Both parts are connected by communication 
operations. 
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Subroutine Forecast(step,nsteps,time) 
int step {Current time step, input} 
int nsteps {Numbcr of time steps to be computed, output} 
real time {Current model time, output} 
int n {Model state dimension} 
int Np {Size of local state ensemble} 
real Xp(n,  Np)  {Local state ensemble} 
int npes {Number of processes in COMM-COUPLE} 
int status(npes - 1) {Status a,rray; idle: 0, working: l} 
int send-ens {Counter for ensemble member to become evolved} 
int get-ens {Number of received state vectors} 

status(1 : npes - 1) + 0 {Set status to idle for all tasks} 
send-ens +- 1 {Send first ensemble member} 
get-ens + 0 {No state received yet} 

loop 
for task = 1,npes - 1 do 

if status(task) == 1 then 
Test whether receiving from task has been completed 

{With operation MPI-Test} 
if receiving of task completed then 

get-ens + get-ens + 1 {Increase counter of received states} 
status(task) + 0 {Set task to idle} 

end if 
end if 
if statusttask) == 0 then 

send nsteps to  task {With operation MPLISend} 
send t ime to task {With operation MPI-ISend} 
send Xp(:, send-ens) to task {With operation MPUSend} 
post receiving of Xp(:, send-ens) from task {Operation MPLIRecv} 
send-ens + send-ens + 1 {Increase index of member to  send} 
status(task) + 1 {Set task to working} 

end if 
end for 
if get-ens == Np then 

Exit loop 
end if 

end loop 
1 

~lgorithm 8.10: Structure of the routine of the filter framework which controls the 
ensenlble forecast in the case of SEIK and EnKF. (For SEEK, the state estimate itself is 
also evolved. Hence, the forecast routine for SEEK contains an extension for evolving the 
state estimate.) The used MPI operations are non-blocking. Thus, the algorithm directly 
proceeds after posting a MPIJSend or MPURecv operation. 
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state vector rnodel fields 

Figure 8.9: Transition between the abstract state vector (left hand side) and the model 
fields (right hand side). Shown is an example of three model fields of equal sizes. This 
example originates from the experiments with the shallow water model discussed in chap- 
ter 4. u and V are the two horizontal velocity components while h is the surface elevation. 

8.5 Transition between the State Vector and Model 
Fields 

The filter algorithms operate solely on the abstract state vectors. All operations 
which require information on the physical nature of an element of the state vector 
are performed in user-supplied routines. The arrangement of elements in the state 
vector is defined in the initialization routine Init-Ensemble. Here the user choses how 
to order the information On different physical quantities and from different physical 
locations. The observation-dependent routines have to consider this ordering to 
allow for a consistent implementation, e.g., of the measurement operator or the 
initialization of the observation vector. The arrangement of the elements in the state 
vector is also important in the routines Distribute-Stute and CoLLect-State. These 
routines are executed by all model processes. In contrast to this, the other user- 
supplied routines, are executed only by the filter processes. Figure 8.9 exemplifies 
the transition between the abstract state vector and model fields for the experiment 
using the shallow water equations which has been considered in chapter 4. The 
model consists of three fields, namely, the two velocity components U, V and the sea 
surface elevation h. Each of these fields is 2-dimensional. For the filter, the model 
fields are stored successively in the 1-dimensional state vector. 

The routine Distrzbute-Stute is shown as a,lgorithm 8.11. It is called from the 
routine Get-Stute. The purpose of Dzstrzbute-Stute is to initialize the model fields 
from the state vector such that the state information is sufficiently initialized for 
the model time stepper. 

If Distrzbute-Stute is called in the case of a. mode-decomposed ensemble matrix, a 
full state vector X of dimension n is initialized by a single process of the model task. 
l f  the model task consists of a. single process, the model fields can be directly ini- 
tialized, e.g., by copying the data into the model fields. If the model task consists of 
multiple processes, the required operations depend on the type of the parallelization. 
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Subroutine Distribute-State(n:x) 
int n {State dimension, input} 
int x(n) {State vector to be distributed, input} 

1 . . . Initialize and distribute model fields . . . 1 
Algorithm 8.11: Interface of the subroutine Distribute-State ~vhich performs the transi- 
tion from the state vector of the filter and the model fields. 

For example, the finite element model which will be used in the experiments in chap- 
ter 9 requires that, the model fields are fully initialized on all processes. Thus, the 
model fields are first init.ia1ized in Dzstrzbute-Stute on the process which holds the 
state vector. Subsequently, the model fields are distributed to the other processes 
in the model taslc by MPI operations. 

If Dzstribute-Stute is called in the case of domain-decomposed states, each model 
process holds that pa.rt xp of the state vector which corresponds to its local domain. 
Hence, Dzstrzbute-Stute will perform only t.he initialization of the model fields in the 
local domain. As long as the domain-decomposition of model and filter coincide, no 
communication operations a.re necessary. 

The routine Collect-Stute is shown as algorithm 8.12. It performs the inverse 
operations to those of Dzstrzbute-Stute. If doma,in-decomposition is used, the lo- 
cal state vector is initialized on each model process. For mode-decomposition, the 
state vector, which is allocated on one of the model processes, is initialized using 
the evolved model fields. If the state information is distributed over the model 
processes, it is necessary to @her them with communication operations on the pro- 
cess holding the state vector. With the finite element model used in chapter 9, the 
evolved model fields a.re fully initia,lized on all processes of the model task. Hence, 
no communica.tion operations a.re required. 

Subroutine Collect-State(n,x) 
int n {State dimension, input} 
int x(n) {State vector to be distributed, input} 

1 . . . Initialize state vector from model fields . . . 1 
I I 

Algorithm 8.12: Interface to the subroutine CollectLState which i~~iti~lizes a state vector 
from the model fields. 

A particular issue of the routines Dzstrzbute-Stute and Collect-Stute is tha.t they 
are not directly called by the model routines. This structure of the interface permits 
to hide these filter-related operations from the model. I t  has, however, the drawback 
tha.t model-specific va,riables and arrays cannot be used as subroutine a,rguments. 
In pa.rticular, the arrays holding model fields and variables with specifications of 
the model grid cannot be provided as subroutine arguments. Hence, it is necessary 
to use Fortran modules or common blocks to provide the routines Distrzbute-Stute 
a.nd ColLect~Stute with model fields and specifications of the model grid. For models 
fulfilling these implementation issues, the framework can be used with the clear 
separation between model and filter. If, however, a model does not support this type 
of storage, an alternative implementation of the routines Get-Stute and Put-Stute is 
necessary. 
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Subroutine Get~State~Alt(n,steps~tzme~n,x,status) 
int nsteps {Number of time steps to be performed> output} 
real {Physical time at begin of evolut i~n~ output} 
int n {Model sta.te dimension,input} 
real x(n) {State vector~output.} 
int status {Output staius flag of filter, output} 

I I 

Algorithm 8.13: Alternative interface of the subroutine Get-State in the case of disjoint 
process sets for ~nodel and filter. The initialization of model fields is not performed in 
the subroutine, but the state vector X is an argument of the interface. This permits to 
initialize tlle model fields directly in the model routines. 

Algorithm 8'13 shows the alternative va.ria.nt of Get-Stute for the configuration 
using disjoint process sets for model and filter. The algorithm is compa,rable with 
the original implementation shown as algorithm 8.8. The routine Dzstrzbute-Stute is 
not called in the alternative impleinentation. In addition, the interface is changed 
to include the state dimension n and an arsay x(n) for the state vector. This 
a.rsay has to be allocated in the model source code. In Get-Stute-Alt, the state 
vector X is initialized on a single process if mode-decomposition is used. Fos domain- 
decomposition, a sub-state for the local domain is initialized On all processes. Since 
the sta,te vectors 're known in the model context in this alternative implementation> 
it is possible to initialize the model fields without using Fortran modules OS common 
blocks. 

8.6 Summary and Conclusions 

A framework for parallel data assimilatioi~ based On 1Calina.n filter methods was in- 
troduced. The framework is basecl on a. clear separation between the model: the 
filter, and the observational parts. This allows for a structure which requires only 
minimal changes in an existing model source code when a data assimilation System 
is implemented using the filter framework. With the frame~vork> an application pro- 
gram interface was introduced which defines the calling structure of the frame~vork 
routines which a,re called by the model. Also the interfaces to uses-supplied rou- 
tines are defined. These are, e.g., routines which are related to the observa.tions or 
routines to transfer the skate vectors used in the filter algorithms to model fields 
and vice versa,. The interface pennits to switch easily between different filter algo- 
rithms. In addition: changes to the model a,nd filter source codes can be conducted 
independently. 

The framework was introduced for two different process configurations. The fil- 
ter ca.n either execute by some of the model processes (which is denoted below as 
joint process sets) or the filter and model parts are executed by disjoint process 
sets. Both variants permit to handle domain-decomposed state vectors as well as a 
parallelization ~irhich decomposes of the ensemble or mode n~atrices over the modes. 
To compa.re the two different process configura.tions of the fran~ewosk: advantages 
and drawbacks of the two configurations are summarized in table 8.1. 

A major drawback of the configuration using joint process sets is that at  least 
a pa.rt of the ensemble OS model matrix has to be allocated on one process of each 
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Table 8.1: Advantages (+) m d  drawbacks (-) of the fra.meworks for the two different 
process configurations. 

one process set for filter a.nd model 
- allocation of sub-ensemble On one 

process of each moclel task 
- allocation of filter fields on those 

model processes which are also filter 
processes 

+ no additional processes required for 
the filter pa,rt 

+ reduced amount of communication 
if the n ~ ~ m b e r  of model tasks equals 
the number of filter processes 

+ model grid information allocated 
also on filter processes 

- load balancing of t,he forecast by- a 
priori specifica,tion of sub-ensemble 
sizes 

- inflexible possibilities of process con- 
figurations to achieve good load bal- 
ance 

disjoint process sets 
+ allocation of a single st,ate vector on 

one process of each model task 
+ allocation of filter fields on processes 

separate from the model processes 

- processcs additional to the model 
processes are necess'ry for the filter 
part 

- high amount of communication, 
since each model state vector has to 
be comn~unica.ted between filter and 
model processes 

- model grid information not allocated 
on filter processes 

+ flexible load balancing due to com- 
munication of single model state vec- 
tors 

+ flexible choice of process configura- 
tions; model and filter can even be 
executed On different computers 

model task. This can considerably increase the memory requirements of these pro- 
cesses, which also hold fields needed by the model. In addition, fields which are 
required for the analysis and sesampling phases of the filters are allocated On those 
processes which are also filter processes. These memory requirements can be critical 
if the computer used for the data. assimilation computations poses strong memory 
limitations. The issue of memory requirements is minor for the case of disjoint pro- 
cess sets. Here only a single state vector is allocated on single process of each 
model task. The fields which are required for the filter operations a.re allocated On 
the filter processes which are separated from the model processes. 

An advantage of the configuration using joint process sets is that the execution 
of the filter does not require additional processes. All processes of the program are 
used for model evaluations. In contrast to this, additional processes for the filter 
part of the program: besides the processes performing the model evaluations, are 
required for the config~~ration using disjoint process sets, During the forecast phase, 
these processes only send control information for the forecast, and communicate 
state vectors. For la,rge-scale ocean models, the forecast of a state vector takes 
~ignific~ntly longer than the communication between the filter a.nd model processes. 
Due to this, the filter processes will idle niost of the time. 

Besides the requirement of additional processes for the filter, the configuration 
with disjoint process sets comm~~nicates nlore data tha.n the variant using joint 
process sets. This is due to the fact that all ensemble state vectors, which have to 
be evolved, need to be send from the filter processes to the model processes and vice 
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versa. For a. parallelization using mode-decomposed matrices, the least amount of 
communica,tion is required in the case of joint process sets if the number of filter 
processes equals the number of model tasks. In this situation, a sub-ensemble is 
allocated On each filter process. The comm~~nication reduces to that amount which 
is necessary to distribute the state information to all processes in a model task. For 
domain-decomposed states, the amount of communications between filter and model 
can be reduced to Zero if the configura,tion of joint process sets and a single model 
task is used. 

A further potential advantage of the configuration using joint process sets lies 
in the fact that the information On the model grid is also allocated On the filter 
processes. This ca,n be beneficial: e.g., for the implementation of the measurement 
operator if it requires informa.tion On the spatial positions of observations and the  
elements of the state vector. In the case of disjoint process sets, this information 
has to be initialized separ'tely from the model. 

In addition to reduced memory requirements, the configuration using disjoint 
process sets is significa,ntly more flexible in the configuration of the MPI communi- 
cators. Since only single model states are communicated between filter a,nd model 
tasks, possible deviations in the speed of different model tasks are easily balanced 
by evolving nlore states with the faster model tasks than with the slower ones. This 
flexibility cannot be achieved with joint process sets. Due to the strong separation 
of filter and model, the configuration using disjoint process sets even permits to  
execute the filter pa.rt of the program On a different computer than the model tasks. 
Also it is possible to execute model tasks On different computers or to compute 
forecasts concurrently using different models. 

Concluding, this comparison showed, that neither the configuration with joint 
process sets nor the config~r~t ion using disjoint process sets for the filter and model 
parts of the program is clearly prefenble. The variant with joint process sets should 
be preferred if the computer memory perrnits to store sub-ensembles as well as 
the fields required for the filter analysis and resa.mp1ing algorithms On the Same 
processes as the model fields. Joint process sets permit to use all availa,ble processes 
for the model evaluations and reduces the amount of communicated data. If it is 
not possible to store the filter fields On the sa.me processes as the model fields, the 
variant using disjoint process sets for filter and model is preferred. This variant 
should also be chosen if the Llse of multiple computers is desired to solve the data 
assimilation problem. 



Chapter 9 

F'iltering Performance and Parallel 
Efficiency 

9.1 Introduction 

The parallel filtering framework developed in the preceding chapter 8 has been im- 
plemented with the Finite Element Ocean Model (FEOM) [12]. The implementation 
also includes the pa.ralle1ized filter algorithms developed in chapter 7. FEOM is par- 
allelized using MPI. h!Iainly the solver step, required for the implicit time stepping 
schen~e of FEOM, is performed in parallel. The model state fields have to be fully 
alIocated a.nd initialized by all nlodel processes. 

The data assimilation system, which is obtained by combining FEOA11 and the fil- 
tering framework, is used to study the parallel efficiency of the framework and of the 
filter algorithms. In addition, the filtering performance of the three error subspace 
Kalman filters is ana.lyzed on the basis of twin experiments. These experiments 
extend the t,win experiments performed in cha.pter 4 to a 3-dimensional test-case. 
The data assimilation experiments are perfornied with an idealized configuration of 
FEOM using a recta.ngu1ar grid. Assimilated are synthetic observa,tions of the sea 
surface height. 

The major properties of the finite element model FEOM are described in sec- 
tion 9.2. Subsequently, in section 9.3, the configura.tion of the twin experiments is 
describecl in detail. The filtering performa.nce of tlle three error subspa.ce Kalman 
filters SEEK, EnKF and SEIK is examined in section 9.4. Here the abilities of the 
filter a.lgorithms accurately estimate the 3-dimensional model fields is studied. The 
parallel efficiency of the framework and the filter algorithms is finally assessed in 
section 9.5. 

9.2 The Finite Element Ocean Model FEOM 

The finite ele~nent ocean model FEOM has been developed recently at the Alfred 
Wegener Institute [12]. It is a three-dimensional model designed to study the ther- 
mohaline circulation of the ocean on basin to global scales for periods from years to 
decades. The data assimilation framework introduced in chapter 8 permits to use 
this model as a 'black box' to perform the required model forecasts. In particular, 
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the filter routines are independent from the discretization method - finite elements. 
finite differences, or others - used to compute the forecasts. 

A detailed description of FEOM has been given by Danilov et al. 1121. Here 
only the major properties of this model are summarized. FEOM is based on the 
primitive equations, see e.g. [72]. which describe the thermo-hydrodynamics of the 
ocean. Namely, the primitive equations govern the velocity field (C, W) = (U, v, W ) ,  

the Sea surface height C, and the baroclinic pressure anomaly P. Further, the sea 
w&er density po + P, where po is the mean density, the temperature field T ,  and 
the salinity field S are described in the spherical coordinate system (X, 6 ,  z )  by the 
equations 

Here, f is the Coriolis parameter and k is the vertical unit vector. Ai, Au are the 
lateral and vertical momentum diffusion coefficients. g is the gravitational accelera- 
tion. nf and are the lateral and vertical diffusion coefficients for the temperature. 
The corresponding coefficients for the salinity are and 68. The bottom of the 
ocean is at -Ho(\, 0). @(T, S,p) denotes the equation of state. It is used to compute 
the density p from the temperature, salinity, and pressure fields. 

The primitive equations are discretized on an unstructured grid with variable 
resolution. This 3-dimensional grid is built by tetrahedral elements. It is generated 
from a 2-dimensional triangular grid at the ocean surface which defines vertical 
prisms. Elementary prisms a,re obtained by subdividing the vertim1 prisms by level 
surfaces. The elementary prisms are split into t e t~~hedrons .  The model fields are 
approximated using linear basis functions on these elements. A backward Euler 
method is used for the time stepping. The system of linear equations, which results 
from the finite element discretization, is solved by algorithms which are implemented 
in FEOM using the Family of Simplified Solver Interfaces (FoSSI) by Frickenhaus 
et al. [23]. FoSSI provides common interfaces to various solver libraries for sparse 
systems of linear equations like PETSc 1641 or the solver PILUT by Karypis arid 
Kumar [43]. 

Danilov et al. [I21 tested the model performance in a configuration for the North 
Atlantic. Due to the size of 86701 nodes of the 3-dimensional grid, it is not feasible 
to use this configuration for the data assimilation arid speedup experiments per- 
formed here. For this reason, the experiments employ an idealized configuration of 
FEOM. The configuration uses linear density stmtification and a linear equation of 
state @(T, S ,p ) .  Further, convection is neglected and the rigid-lid approximation is 
used. The model domain is given by a rectangular box geometry with a structured 
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grid. It is shown in figure 9.1. The box is centered at  44.5O north and occupies an 
area of 9 by 9 degrees. It has depth of 4000m. The discretization comprises 11 
vertical levels and a horizontal grid of 31 by 31 points. This amounts to 10571 nodes 
of the 3-dimensional grid and 961 surface nodes. The time evolution is performed 
with a time step of 3 hours. The salinity field is chosen to be constant over the model 
domain. The state vector for the filters consists of the zonal and meridional velocity 
components U, V, the temperature T, and the sea surface height C. Apart from the 
2-dimensional sea surface height, all of these are 3-dimensional fields. Hence, the 
state dimension amounts to n = 32674. 

9.3 Experimental Configurations 

To extend the examination of filtering performance presented in chapter 4 and to 
study the parallel efficiency of the filter algorithms, identical twin experimcnts are 
performed with the idealized configuration of FEOM. Synthetic observations only 
of the sea surface height are assimilated. The physical process which is simulated 
in the assimilation experiments is the propagation of interacting baroclinic Rossby 
waves. The waves are initialized with two hor i~ont~ l ly  localized columnar tempera- 
ture anomalies of the sa,me amplitude but opposite sign. This initialization is shown 
in figure 9.2. Propagating westward, the anomalies become deformed. They tilt 
toward each other via the induced velocity field. That is, a negative temperature 
anomaly produces a counterclockwise rotation in the upper levels arid a clockwise 
rotation in the lower levels. The rotation of a positive temperature anomaly is vice 
versa. These opposing rotations introduce non-Iinearity which is necessary to test 
the filtering performance of the error subspace Kaiman filters. 

The data assimilation experiments are conducted over a period of 40 days. The 
interval between subsequent analyses is set to 2.5 days. For the twin experiments 
the "true" state trajectory is generated by integrating the initialization displayed in 
figure 9.2 over a period of 45 days. To generate synthetic observa,tions of the sea 
surface height, Gaussian noise with constant variance of 0.01 m2 is added a t  exh 
time step to the sea surface height field of the true state sequence. The arnplitude of 
the temperature anomalies, and thus of the sea surface height, decreases over time. 
This is caused by diffusion. Hence, the relative noise amplitude of the observations 
increases during the a~simil~t ion period. Initially the standard deviation of the noise 
in the observations is at  about 20 percent of the amplitude of the true surface height. 
After 45 days, the errors in the observations increased to about the Same level of the 
surface height itself. The generated observations a,re used with an offset of 5 days in 
model time. Assimilating only observation of the sea surface height, the dimension 
of the observation vector amounts to m = 961. Figure 9.3 compares the observed 
sea surface height field with the true one at  the initial time of the experiments. The 
observation errors are clearly visible, but dso  the observed information is apparent. 

To initialize the filter in the twin experiments, the covariance matrix of 2268 
state vectors is computed. These vectors are generated by 28 model forecasts us- 
ing different initial loc&tions of the temperature anomalies. Further, an additional 
variante of the sea surface height fields of 0.lm is assumed. The obtained covari- 
ance matrix. which describes the temporal variations and correlations of the model 
fields, is used as the initial error estimate in the filter experiments. The initial state 
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Figure 9.1: FEOM model grid used for the data assimil~~tion experiments. I t  consists 
of 10571 nodes. Vertical levels are at  the surface and in the following depths: 7.5, 20, 
50, 100, 500, 1000, 2000, 3000, 3800, and 4000 meters. The coloring shows the linear 
temperature stratification. 

40 0 

*e 9.2: Cut into the model grid showing the temperati nalies. 
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Figure 9.3: Comparison of the true (left) and the observed (right) sea surface height 
field C at the initial analysis update. 

estimate for the twin experiments is chosen as the mean state of the 28 model runs. 
The generation of the state ensembles for SEIK 'nd EnKF and the initialization of 
the mode matrix for SEEK is performed as described for the experiments with the 
shallow-water-equation model in chapter 4. To exa,mine the abilities of the filter 
algorithms to cstimate the true state from the chosen initial state, an evolution of 
the initial state estimate is performed without assimilating observations. This state 
sequence is denoted the "free" state trajectory. 

To simulate model errors in the application of the EnKF and SEIK filters, a wind 
forcing field of two gyres is applied whose shape and amplitude are controlled by 
two parameters. To obta.in a stochastic forcing, these parameters are initialized by 
random numbers. Each ensemble member was forced by a different wind field which 
was constant over the forecast period. To retain comparability, the SEEK filter was 
used without a forgetting factor, since this could be applied to all three filters, or 
explicit treatment of a model error covariance matrix. Thus, the twin experiments 
using SEEK are performed without consideration of model errors. 

Most of the computation time is spent in evolving the model states. Since the 
computation time is usua,lly a limiting factor in data assimilation problems, results 
for assimilation experiments are compared in which all filters perform the same 
number of model evaluations. This configuration provides comparable execution 
times for assessing the pa,rallel efficiency of the three filter algorithms. To obtain 
configurations with equal numbers of model evaluations, the rank r used in SEEK 
and SEIK is set to r = N - 1 where N is the ensemble size of the EnKF. 

The experiments have been performed on a Sun Pire 6800 Server with 24 pro- 
cessors, each having a frequency of 1050 MHz. The experiments in section 9.4 used 
the solver PILUT while the experiments in section 9.5 used PETSc. This differ- 
ent choice was motivated by the fact that the use of PILUT resulted in inferior 
speedup values than PETSc. In contrast to this, the assimilation experiments with 
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the PILUT solver provided a better filtering performance than those using PETSc. 
Since this work is not aimed at the optimization of the model, the solver was chosen 
depending on the best results either in terms of filtering performance or in terms of 
speedup. 

9.4 Filtering Performance 

Before the parallel efficiency of the filter algorithms is studied in section 9.5, the 
filtering perform'nce of the SEEK, SEIK, and EnKF algorithms is assessed for their 
application to the configuration of FEOM described in the preceding sections. These 
experiments extend the 2-dimensional experiments of cha.pter 4 to a 3-dimensional 
test-case. 

9.4.1 Reduction of Estimation Errors 

For an ensemble size of N = 60, figure 9.4 shows the rms deviation E1 of the 
assimilated state from the true state normalized by the rms deviation of the free 
state from the true state. The deviation is computed over all grid nodes with 
equal weights for all nodes. Thus, no volume-normalization is performed which 
would consider the different distances between neighboring levels of the model. The 
relative estimation error is disphyed separately for the four state fields. For 7V = 60, 
the EnKF and SEIK filters yield comparable results. For smaller ensembles, the 
difference of Ei for the two filters is larger, with the EnKF performing worse than 
the SEIK filter (not shown). This can be expected because of the inferior sa,mpling 
quality of the Monte Ca,rlo sampling applied to initialize the EnKF algorithm. Since 
the difference of the mmpling quality decreases for larger ensembles, the results of 
EnKF and SEIK become &lmost identical for larger ensembles. The SEEK filter 
shows a behavior distinct from the two other algorithms. This behavior is caused 
by the forecast scheme of the SEEK filter which applies a gradient approximation 
of the linearized forecast of the covariance modes. For all model fields the relative 
estimation errors tend to increase toward the end of the assimilation period. This 
is due to the growing relative error level in the observations which is discussed in 
section 9.3. 

The largest error reduction is obtained for the sea surface height (,. As obser- 
vations of the sea surface height are assimilated, this field is expected to show the 
smallest normalized estimation error of the four model fields. To get an idea of what 
represents the achieved reduction of the relative estimation error to about 0.27 for the 
sea surface height, the left hand side of figure 9.6 shows in the uppermost panel the 
true sea surface height a.t the end of the assimilation period. In the middle panel, 
is shown as estimated by the EnKF filter with N = 60. The sea surface height which 
is obtained from the free evolution, i.e. when the initial state estimate is evolved 
without assimilation, is displayed in the lowermost panel. The sea surface height 
estimated by the EnKF algorithm reproduces accurately the shape of the true C,. 
The locations of the minimum and the maximum are well estima,ted. The ampli- 
tudes are underestimated by about 10%. In contrast to this, the sea surface height 
without assimilation deviates strongly from both the true and SEIK-estimated (,. 
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The velocity components u and V are updated via. the estimated cross correlations 
between the sea surface height and the velocity components. Despite this, the 
relative estimation errors of the meridional velocity component U are of comparable 
size to those of the sea surface height in the case of EnKF and SEIK. This relation 
shows, that the cross covariances are estimated quite well by the nonlinear ensemble 
forecast. In contrast to this, the linearized forecast performed in SEEK yields much 
worse estimates of the cross covariances. This can be deduced from the much larger 
estimation errors for U obtained with SEEK. 

The estimate of the zonal velocity component V is less precise than the estimate 
of u for all three filters. After the first analysis phase, the estimation error of 
both velocity components is of comparable size. While the estimation error for U 

decreases during the Course of the assimilation experiment, the estimation error for V 
remains at  a level of about 0.4 when using the EnKF or the SEIK filter. Thus, the 
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Figure 9.4: Time dependence of the relative estimate errors EI for experiments with 
N = 60. Shown is Ei separately for the sea surface height (top left), the temperature 
field T (top right), and the two components U, V (respectively on the left and right hand 
sides of t,he bottom row) of the velocity fields. 
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cross covariances are not estimated sufficiently precise to further decrease the error 
level for this velocity component. During some analysis updates, e.g. at day 25. 
the estimation error increases. In this case the estimated cross covariances have the  
wrong sign. 

The relative estimation error of the temperature field T shows a behavior dis- 
tinct from the other model fields. The error reduction at  the first analysis update 
is smaller for T tha,n for t,he other fields. For the EnKF arid SEIK filters, the rel- 
ative estimation error of the temperature field increases immediately after the first 
analysis update. Further, the estimation error remains almost unchanged during 
the analysis update. Thus, no useful estimates of the cross correlations are available 
after the first analysis update. The estima,tes of va.riances and correlations within 
some model field are typically much more precise tha,n estimated cross correlations. 
Thus. even a. limited number of temperature measurements would enhance the esti- 
mation quality of the temperature field for all three filters. 

9.4.2 Estimation of 3-dimensional Fields 

To examine the ability of the filter algorithms to estimate the 3-dimensional model 
fields by assimilating only surface measurements profiles of the relative estimation 
errors a t  the end of the assimilation period are shown in figure 9.5. The values 
displayed in the diagrams are the normalized rms estimation errors computed over 
single levels of the model. 

-40000 0 2  0 4  0 6  0 8  1 I 
normalized E, 

Figure 9.5: Profiles of the rms estimation errors of single layers normalized by the 
corresponding rrns deviation of the free state from the true state for N = 60. Shown are 
the two components U, V of the velocity fields and the values for the temperature field T 
at the end of the assimilation period. 



9.4 Filterine Performance 138 

The profiles for the two velocity components U and V, displayed On the left and 
middle panels, show a small relative estimation error from the surface to -1000m 
depth. Below -3000m the estimation error is a also small, but it increases toward 
the bottom. At the depth of -2000m the estimation error shows a maximum. For 
the experiments with SEIK and EnKF, this maximum is even larger than one. The 
estimation errors obta,ined with SEEK are of similar size to those achieved by the 
EnKF and SEIK filters. They are, however, larger at  all depths, except at -2000m. 
For all three filters, the relative estimation errors are smaller for the meridional 
velocity component u than for the zonal velocity V. 

The peak in the relative estimation error at the depth of -2000m is due to  the 
normalization by the estimation error of the evolution without assimilation. As has 
been described in section 9.3, the temperature anomalies generate a. counterclockwise 
rotation in the upper levels and a clockwise rotation in the lower levels. The turning 
point of these rotations is approximately at  the depth of -2000m. Due t o  this, 
the velocities are minimal at this depth in the true state, the free state and the 
assimilated states. This causes minimal rms deviations of the velocities of the  free 
evolution from the velocities of the true evolution. Without normalization, the 
estimation errors of the assimilated velocities are of comparable size to those of the 
non-assimilated velocities at -2000m depth. Due to the normalization, the estimation 
errors appear larger than their absolute value. 

The increase of the relative estimation error below -3000m is not due to the 
normalization, as the absolute estimation errors also increase below -2000m depth. 
Thus, the quality of covariances between the sea surface height and the velocity 
fields is worse in the deep ocean than for the upper levels. Overall, all three filters 
show good abilities to reduce the estimation error of the velocity field also in the 
lower levels of the model. The level -2000m appears to be a rather pathological 
~ i t u ~ t i o n  which the algorithms cannot handle well. 

The profile of the relative estimation errors of the temperature field, shown on 
the right hand side of figure 9.5, exhibits a different dependence on depth than 
the estimation errors of the velocity field. In the uppermost levels the estimation 
error of the temperature field is not reduced by the SEIK and EnKF algorithms. In 
contrast to this, the relative estimation error is decreased to a level of about 0.8 when 
the SEEK filter is applied. Between -100m and -2000m all three filters reduce t*he 
estimation error to similar level of about 0.85. Below -2000m the relative estimation 
error increases for all three filter algorithms to a level around unity. 

The large relative estimation errors in the uppermost 100 meters are misleading. 
This becomes apparent from the panels On the right hand side of figure 9.6. The 
uppermost panel shows the true temperature field at  a depth of -50m. The panel 
in the middle shows the temperature field as estimated by the EnKF with N = 60. 
For comparison, the free temperature field is displayed in the lowermost panel. The 
shape of the estimate from the EnKF reproduces the shape of the true temperature 
field rather well. The amplitude of the positive temperature spot is, however, over- 
estimated. The free temperature field is distinct by showing only a single positive 
temperature anomaly. 

In the level a t  -500m and below the temperatures are generally over-estimated 
by about O.lÂ°C This is displayed in figure 9.7 which shows the temperature fields 
analogous to the right hand side of figure 9.6 for the levels at  -1000m and -3800m. 
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Figure 9.6: Comparison of true. estimated, and free model fields (from top to bottom) a t  
the end of the assimilation period. The estimated field is shown for the EnKF with N = 60. 
The left hand side shows the sea surface height C. The temperature field T a t  a depth 
of -50m is shown 011 the right hand side. 
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Figure 9.7: Comparison of true, EnKF-estimated, and free temperature fields (from 
top to bottom) at the end of the assimilation period. The right hand side shows the 
temperature field at a depth of -1000m; the left hand side just above the bottom at a 
depth of -3800111. 
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While the shape of the estimated temperature field is still reasonable at -1000m, 
this is no more the case for the level at  -3800m. Here. the estimate resembles 
the sha.pe of the free temperature field which is obtained from the evolution of 
the state estimate without assimilating ob~erv~tions.  The as~imil~t ion has only a 
small influence on the temperature field at -3800m. Namely, the warm area with 
temperatures above 6.3OC is shifted further to the north-east. In addition, the 
temperature is decreased around (44ON, 7OE). 

Overall, the three filter algorithms show a very limited ability to estimate the 
temperature correctly when only measurements of the sea surface height are assim- 
ilated. The shape of the temperature field is reproduced by the estimates in the 
upper 1000 meters. However, there is a bias in the temperature estimates. Due to 
this, additional temperature measurements, also in the depth, would be useful to  
obtain better estimates of the temperature field. 

9.5 Parallel Efficiency of Filter Algorit hms 

Based on of the idealized configuration of FEOM, the pa,rallel efficiency a,nd the 
speedup of the parallel filtering framework is now examined. First, data assimilation 
experiments with a limited ensemble size are considered to assess the efficiency of the 
complete filtering framework. Subsequently, the parallel efficiency of the filter part 
is studied. For this experiments are conducted without time stepping. This reduces 
the computation time a,nd hence permits to perform more experiments. In addition, 
the neglect of time stepping permits to examine also the efficiency of the domain- 
decomposed filter algorithms, while FEOM is not based on domain decomposition. 

9.5.1 Efficiency of the Framework 

To study the parallel efficiency and the speedup of the data assimilation framework, 
data assimilation experiments are performed with the three ESKF algorithms using 
different numbers of parallel model tasks. Since FEOM does not apply domain- 
decomposition, a configuration with mode-decomposed filters is applied. To reduce 
the computation time of the experiments in comparison to those in the preceding 
section, the da.ta assimilation experiments are performed over a time period of 10 
days. The interval between subsequent analyses is set to 12 hours. To compute the 
speedup, the state ensemble has to be divided evenly over the available model tasks. 
For this reason, an ensemble size of N = 36 (r = 35) is chosen. This ensemble size 
has the following properties: 

The ensemble is sufficiently large to provide a realistic data assimilation ex- 
periment. On the other hand, the ensemble is small enough to perform a large 
number of experiments. 

To assess the speedup, a large variety of different numbers of model tasks 
is required. To ensure that each model task evolves the Same numbers of 
ensemble states, the chosen numbers of model tasks need to be divisors of 
the ensemble size. In addition, the number of possible parallel model tasks is 
limited due to a limited number of processors in the computer system used for 
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the experiments. Using N = 36, the experiments can be executed with 1, 2, 
3, 4, 6, 9, 12, 18, and 36 parallel model tasks. This enables efficient use of the 
available 24 processors of the Sun Fire 6800. 

Using the configuration described above. the execution time for a single-processor, 
i.e. serial, experiment is about 9 hours on the Sun Fire 6800. The execution time 
decreased to about 35 minutes when 18 parallel model tasks are used. Using a single 
processor, the execution time for the EnKF algorithm was about 18 seconds. The 
analysis and the resampling phases of SEEK lasted respectively about 0.2 and 2.2 
seconds. The analysis phase of SEIK took 0.4 seconds while the resampling phase 
lasted about 1 second. Thus, the analysis phase of SEIK is slower tha,n that of 
SEEK, but the resampling phase is faster. This is consistent with the computa- 
tional complexity of the algorithms which was discussed in section 3.4. 

Figure 9.8 shows speedup and parallel efficiency for filtering experiments using 
the configuration of the framework where the filter is executed by one process of 
each model task. The speedup is computed from the total execution time of one 
series of experiments. Thus, the time for the initialization of the model and the 
filter are included as well as the time for the user analysis routines. The User 
analysis routines compute the filter-estimated variantes and write the estimated 
state to a disk file. Each model task is executed by a single process. Hence, the 
total number of processes for an experiment equals the number of model tasks and 
the number of filter processes. This configuration has been chosen to allow for a. 
maximal number of parallel model tasks. This choice does not limit the significance 
of the results when the speedup in relation to the used number of model tasks is 
considered. Since here the number of processes in a model task does not change, the 
computation time for the forecast of a single state is independent of t,he number of 
parallel model tasks. Using a. filter process on each model task minimizes the amount 
of communication between model and filter (see section 8.3.1). In fact, since each 
model task is executed by a single process, no communication between model and 
filter is conducted. Thus, the parallel efficiency of the program is limited only by the 
serial parts of the model arid the filter algorithms, by the communication performed 
within the filters, and by possible different times to compute the forecast of different 
model states. 

The speedup in figure 9.8 is excellent for all three filter algorithms. The small 
differences between the filters are not ~t~t is t ical ly  significant. The sensitivity of the 
results was examined using 10-fold experiments with the Same number of model 
tasks. Due to mriations in the total execution time of the experiments. a standard 
deviation of a,bout 3% results for the speedup. Thus, the filter fmmework yields 
equal values of the speedup for the three ESKF algorithms. The parallel efficiency 
of the da,ta assimilation system decreases slightly when the number of parallel model 
tasks is increased. With 18 model tasks an efficiency of about 85% is obtained. 

For comparison, figure 9.9 shows speedup a,nd parallel efficiency for experiments 
using disjoint process sets for the model and filter parts of the program. In these ex- 
periments the filter is executed on a single process only. Thus, the parallel efficiency 
is limited by the serial operations of the filter, seria.1 parts of the model, and by 
the communication required to exchange the state vectors between filter and model. 
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Figure 9.8: Speedup (left band side) and parallel efficiency (right hand side) in depen- 
dence on the number of parallel model tasks for the framework with a. filter process 011 
each model task. 
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Figure 9.9: Speedup (left hand side) and parallel efficiency (right hand side) in depen- 
dence on the number of parallel model tasks for the framework with disjoint process sets 
for filter and model. The filter part is computed by a single process. 
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Further, different computation times for the forecasts can limit the efficiency when 
other processes have to wait for one of the model tasks to complete its work. 

Using disjoint process sets, the speedup is very similar to the speedup obtained by 
the configuration with a filter process on each model task. The small differences are 
again not statistically significant. The standard deviation of the speedup amounts 
again to about 3%. Due to these uncertainties no more detailed results can be drawn 
from the values of the speedup. In particular, it is not possible to determine which 
of the two process configurations, filter processes joint with the model processes or 
disjoint process sets for model and filter, is more efficient. 

The deviation from an optimal parallel efficiency OS the data assimilation system 
is caused by varying execution times of the state evolutions On different model tasks. 
Since the processes are synchronized at the end of a forecast phase, this desynchro- 
nization reduces the speedup of the forecast phase. The influence OS the analysis 
'nd resampling phases are negligible. For the EnKF, which is the most costly of the 
three filter algorithms, the execution time for the analysis and resampling phases 
amounts to less than 0.1% of the total execution time for the serial experiment. In 
addition, the influence of the seria,l model initialization and the execution of the 
user analysis routine are negligible. These phases last respectively about 6 and 10 
seconds in the serial experiment. 

9.5.2 Speedup of the Filter Part for Mode-decomposition 

Despite the fact that in the experiments conducted in the preceding section with 
the idedized configuration OS FEOh4 the computation times for the filters were 
negligible, it is instructive to examine the speedup OS the filter routines. I t  will be 
important when the coniputation time for the model is less dominant. This can 
occur, e g . ,  if observational data is frequently available causing the time interval 
between successive analysis phases to by very small. 

To assess the parallel efficiency of the filter routines, data assimilation experi- 
ments without time stepping are performed. For this the call to the time stepper 
routine of FEOM is out-commented in the source code of the program used for 
the experiments in section 9.5.1. Apart from the time stepping, the experiments 
are analogous to the filtering experiments discussed in the preceding section. To 
obtain sufficiently large execution times of the filter routines, the a,naalysis phase is 
performed 20 times. This corresponds to an interval of three hours between subse- 
quent analyses in the experimental configuration with time stepping. To study the 
dependence of the parallel efficiency on the ensemble size, experiments with N = 60 
and N = 240 are performed. 

Figure 9.10 compares the execution time and the speedup Sor two different ensem- 
ble sizes for the update phase of the filters for mode-decomposed filter algorithms. 
The left hand side corresponds to an ensemble size of N = 60; the right hand side 
was computed with N = 240. For the SEEK and SEIK filters the timing includes 
the time for the analysis and the resampling phases. The serial experiments have 
also been performed with the parallel filter routine. Thus, the used routines were 
not optimized for serial c ~ m p u t ~ t i o n s .  The MPI operations were called also in the 
serial experiments. The execution time for these operations is much shorter in this 
case, but still there is a small overhead due to these redundant operations. 
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Figure 9.10: Execution time a,nd speedup for the filter update phases in dependence 0x1 

the number of processes. In the experiments, the mode-decomposed filter was applied. 
Displayed are mean values and standard deviations over ten experiments for each combi- 
nation of filter algorithm and number of processes. The left hand side shows results for 
N = 60, the right hand side for N = 240. 

For N = 60, the SEEK and SEIK filters are much faster tha.n the EnKF al- 
gorithm. The fastest algorithm is the SEIK filter. This is due to the much faster 
resampling phase of SEIK compa,red with SEEK. In the serial experiments, the anal- 
ysis phase of SEEK takes about 0.6 seconds while the resampling lasts about 10.5 
seconds. The analysis phase of SEIK is longer than that  of SEEK taking 0.9 seconds. 
However, the  resampling phase of SEIK lasts only 4.3 seconds. In  these experiments, 
the resampling phase of the SEEK filter is executed after each analysis. As was dis- 
cussed in section 2.4.1, this is actually not necessary. Thus? performing the resam- 
pling in SEEK less frequently could significantly speed up this algorithm. The small 
speedup of EnKF is partly due to the generation of the observation ensemble. Since 
only a single obsermtion vector is read from a file, the observation ensemble has 
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to be generated by the transformation of independent random numbers which was 
discussed in section 4.2. The generation of the observation ensemble took about 26 
seconds for N = 60. The algorithm itself lasted about 17 seconds. But, even if the 
time required for the initializa,tion of the observation is neglected, the EnKF algo- 
rithm would rema,in the slowest algorithm. This is caused by the solver step for the 
representer amplitudes (line 20 in algorithm 7.3). The complexity of this operation 
scales with 0 (m3  + m2N) as was discussed in section 3.4. Other influences on the 
speedup of the EnKF algorithm will be discussed below. 

The relative differentes in the execution times are smaller for N = 240 than 
for ./V = 60. Using the larger ensemble size, the SEIK filter remains the fasted 
algorithm while the EnKF algorithm is still the slowest filter, even if the generation 
of the observation ensemble is neglected. The execution time for the EnKF triples 
while that for SEEK and SEIK increases tenfold. The small increase in the  exe- 
cution time for the EnKF is due to the fact that the time for the initialization of 
the observation ensemble only approximately doubles since here several operations 
do not dependent on the size of N. The time for the remaining pa,rt of the EnKF 
quadruples. The increase in the execution time of SEIK is dominated by the com- 
putation of the new ensemble matrix in line 10 of the resampling algorithm 7.5. For 
SEEK, the increase in time is also domina,ted by the resampling phase. Here most 
of the time is spent in the computation of Tlp in line 8 of algorithm 7.2 and the 
computation of the new modes in line 15. 

The speedup of the mode-parallel filter algorithms is rather disappointing. This 
becomes apparent from the bottom row of figure 9.10 which shows the speedup for 
the experiments with N = 60 and N = 240. The fluctuations in the speedup are 
mainly due to cache-effects of the computer used for the experiments. Therefore, 
the numerical efficiency of matrix-operations like matrix-matrix products depends 
on the dimensions of the involved ma,trices. For N = 60, the best speedup is obtained 
with the SEEK filter. Using 12 processes, a speedup of about 3.2 is obtained which 
corresponds to a parallel efficiency of 27%. The worst speedup is exhibited by the 
EnKF algorithm. It stagnates at a value of about 1.2 when 12 processes are used. 
This corresponds to a parallel efficiency of 10%. The speedup is slightly better for 
the large ensemble size of N = 240. Here the speedup for SEEK and SEIK reaches 
respectively 4.4 and 4.7. Thus an efficiency between 37% and 39% is obtained 
with 12 processes. The speedup of EnKF is twice as large as for N = 60 stagnating 
at  a value of about 2.4 with 12 processes. 

The low parallel efficiency of SEEK and SEIK is mainly due to the extended 
communication which is needed in the algorithms. For increasing ensemble size, 
the time for computations increases relative to the time for communications. Thus 
the parallel efficiency increases for larger ensembles. The distinct efficiency of SEEK 
and SEIK for N = 60 is due to the different number of operations performed in their 
resampling phases. The amount of communication in the resampling phases of both 
algorithms is practically equal for N = 60. Since SEIK performs less operations, the 
allgather operation for X in line 6 of algorithm 7.5 is more dominant for the execution 
time than the allgather operation performed for V in SEEK. Since the time to 
perform the allgather operation increases with an increasing number of processes, the 
efficiency decreases for a larger number of processes. Using more than 6 processes, 
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Figure 9.11: Execution times and speedup for the groups of operations in the EnKF 
analysis algorithm for N = 240. Shown are means and standard devktions analogous 
to figure 9.10. The line numbers given in the legend of the diagrams refer to those in 
algorithm 7.3. 
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the allgather operation in SEIK lasts even longer than the computation of the new 
ensemble states. Therefore, the execution time of SEIK increases if the number 
of processes exceeds a value of 8. Hence, the speedup of SEIK decreases for the 
experiments using more than 8 processes. 

For models with larger state dimension n,  the speedup of the SEEK a,nd SEIK 
filters will also be limited by the required init iali~~tion of the full ensemble or mode 
matrix by allgather operations. Also the differences between SEEK and SEIK will 
remain for increasing n,  since the amount of communication and the complexity of 
the most expensive floating point operations in the resampling algorithm scale both 
with O(n).  
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The minor speedup of the EnKF filter is due to several factors. To examine 
the reasons in detail, the execution time and the speedup of different groups of 
operations are displayed in figure 9.11 for the EnKF with N = 240. In the serial 
experiment, the generation of the observation ensemble a,nd the initialization of the 
residual matrix (lines 15 to 19 in algorithm 7.3) ta,ke together about the Same time 
as the ensemble update with its preparations (lines 21 to 28). The the ensemble 
update shows a better speedup than the initialization of the residuals. The speedup 
for the ensemble update does, however, stagmtes at  a value of about 3.5. This is 
due to the allgather operation performed to initialize the matrix T5 E RnxN. The 
genera.tion of the observation ensemble does also show a. limited speedup since this 
operation requires the eigenvalue decomposition of the observation error covariance 
matrix R E W x m .  The decomposition is independent of the local ensemble size 
and is not parallelized. The speedup of the other parts of the EnKF algorithm is 
worse than the ensemble update &nd the initialization of the residual matrix. The 
computation of matrix T3 E IRmxm in line 13 takes about 97% of the execution 
time of the operations in lines 4 to 14. Since this operation is not parallelized, the 
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speedup for this part of the algorithm will be approximately constant with a value 
of one. The complexity of the solver step for the representer amplitudes in line 20 
is O(m3  + m 2 N ) .  It is dominated by the LU-decomposition of the matrix T3 which 
is perforrned by the LAPACK routine DGESV. Thus, the achievable speedup of the 
solver step is very small. 

Overall, this discussion showed that the small speedup for the EnKF is caused 
by a. combination of high amounts of communication and operations which are per- 
formed serially or do not have a good scalability in terms of performance. The 
speedup of the ensemble update could be major if the communication was faster 
relative to the computa,tions. The solver step in line 20 and the computation of T3 
in line 13 will, however, remain a limiting factor for the parallel efficiency of the 
EnKF algorithm. The speedup will be major if the dimension of the observation 
vector relative to the state dimension is smaller. This can be achieved by using a 
EnKF analysis algorithm which sequentially assimilates batches of observations as 
has been discussed in section 3.4. In addition. a. better speedup ca,n be expected for 
larger models if the amount of observational data remains constant. 

9.5.3 Speedup of the Filter Part for Domain-decomposition 

The experiments of the preceding section have been repeated using the domain- 
decomposed filter algorithms developed in section 7.3. Figure 9.12 shows execution 
time arid speedup for the update phase of the filters. As in figure 9.10, results 
for N = 60 are displayed on the left hand side and results for N = 240 a,re shown 
on the right hand side. 

The execution times for domain-decomposed filters look rather similar to  those 
for the mode-decomposecl filters. For the serial experiments, the times are about the 
Same size. There are small differences due to the different number of communication 
operations which are even called if the filters are executed by a single process. A 
relevant difference to the experiments with mode-decomposed filters is t,he stronger 
decrease of the execution times with an increasing number of processes which is 
visible for SEEK and SEIK. 

This behavior is quantified by the speedup. For N = 60 the SEEK 'nd SEIK 
filters show an ideal, even slightly super-linear speedup. The super-linear speedup 
is caused by some operations which exhibit super-linear speedup. An example is 
the computation of the matrix Tlp in the SEEK resampling algorithm 7.7. This 
operation reaches a speedup of 14.8 with 12 processes. The super-linear speedup is 
caused by the effect that the local part of a decomposed matrix might fit better into 
the processor caches of the computer than the full ma,trrix Thus, the caches can be 
used more efficiently if the matrix is decomposed. In this case, the parallel efficiency 
of the operation will by larger than one. Whether a super-linear speedup occurs is 
dependent on the cache sizes of the computer system used for the experiments. 

For N = 240 the speedup of SEEK and SEIK is not ideal. It is, however, 
much better than for the mode-decomposed filters. The speedup for SEEK and 
SEIK reaches respectively 7.6 and 10.6 with 12 processes but is not yet stagnat- 
ing. The speedup corresponds respectively to a. parallel efficiency of 63% and 88%. 
The speedup of the two filters is smaller for the larger ensemble size since the fil- 
ter algorithms have been parallelized such that several operations acting on matri- 
ces of size ( N  - 1) X (N - 1) remained serial. For the smaller ensemble size, the 
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Figure 9.12: Execution time and speedup for the filter update phases for domain- 
decomposed filter algorithms. Displayed are mems and standard deviations analogous to 
figure 9.10. The left hand side shows results for N = 60, the right hand side for N = 240. 
The dotted line shows the ideal speedup. 

computation time of these operations was negligible. But, with increasing ensemble 
size, the execution time of these operations increases strongly, since the complexity 
of the matrix-matrix operations is proportional to ( N  - 1)3 or ( N  - 1)'. Hence, the 
execution time for the serial operations can become relevant for larger ensembles. 
Then, the speedup will be limited by the serial parts according to Amdahl's law. 

To exemplify the influence of the serial parts, the resampling phase of SEEK is 
considered. The execution time and the speedup for the resampling phase of SEEK 
with N  = 240 are shown in figure 9.13. The computation of the matrix Tlp in 
line 5 of algorithm 7.7 together with the allreduce summation to  initialize the global 
matrix T l  (line6) shows a slightly super-linear speedup. In addition, an almost ideal 
speedup is visible for the operations in lines 10 to  14. When the filter is executed by a 
single process. the operations in lines 5 and 6 together with the operations in lines 10 
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Figure 9.13: Execution time and speedup for the groups of operations in the SEEK 
resampling algorithm for N = 240 for domain-decomposition. Analogous to figure 9.10 
means and standard deviations are shown. The line numbers given in the legend of the 
diagrams refer to those in algorithm 7.7. The dotted line shows the ideal speedup. 

to  14 take about 95% of the totd execution time of the resampling algorithm. Thus, 
the time for the serial parts of the algorithm is a,bout 5% of the total time. Most of 
this remaining time is spend in the computation of the singu1a.r value decomposition 
of T 1  E @ N - l ) x ( N - l )  in line 9. Since this ~ p e r ~ t i o n  is not parallelized, its influence 
on the total execution time grows with the number of processes. Using 12 processes, 
the singular value decomposition takes about 25% of the computation time. Thus, 
the serial parts of the algorithm reduce the pa,rallel efficiency of the resampling 
algorithm. It resches only 65% with 12 processes which is consistent with Amdahl's 
law. The resampling phase dominates the execution time for the full update phase 
of SEEK. The analysis phase requires only about 6% of the total execution time for 
the update. Since the efficiency of the analysis algorithm is even minor than that 
of the resampling algorithm, an efficiency of 63% is obtained for the update phase 
of SEEK as was mentioned above. 

The SEIK algorithm exhibits for N = 240 a parallel efficiency superior to the 
SEEK algorithm. The resampling algorithm of SEIK shows an almost ideal speedup. 
Its pa,rallel efficiency reaches 95% with 12 processes. The efficiency is influenced by 
the serial operations in lines 2 to 5 of algorithm 7.10. The efficiency of the full 
update phase is reduced to 88% by the smdler efficiency of the analysis phase. 
With a single process, the analysis takes about 15.5% of the total time for the 
update phase. The efficiency of the analysis phase is limited by serial operations 
and some communication operations. The most costly serial operation of the a,nalysis 
phase is the solver step in line 19 of algorith~n 7.9. It requires about 6.5% of the 
cxecution time for the analysis. There are some other serial and also communication 
operations like the operation of the matrix T on some vector (line 20) or the allreduce 
summation of the matrix Uinv in line 11. Together, the serial and communication 
operations reduce the efficiency of the analysis phase to about 50% with 12 processes. 

For models of larger dimension n, the influence of the serial operations in the 
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Figure 9.14: Execution time and speedup for the groups of operations in the EnKF 
analysis algorithm for N Â¥ 240 for domain-decomposition. Displayed are means and 
standard deviations as in figure 9.10.The line numbers given in the legend of the diagrams 
refer to those in algorithm 7.8. The dotted line shows the ideal speedup. 

SEIK and SEEK algorithms will be minor. In addition, the amount of communica- 
tion is independent of the dimension n. Hence, the speedup of the update phases of 
SEEK an SEIK can be expected to be nearly ideal for lager state dimensions. 

The speedup of the domain-decomposed EnKF filter algorithm is very similar to 
that of the mode-decomposed algorithm. It stagnates a.t a vdue of 1.2 for N == 60 
and 2.2 for N = 240. 

The reasons for the small speedup are similar to those for the mode-decomposed 
EnKF. The problem is again exemplified for an ensemble size of N = 240. Figure 9.14 
shows the execution time and the speedup for operation groups of the don~ain-decom- 
posed EnKF analogous to figure 9.11. In the domain-decomposed EnKF, the ensem- 
ble update with its preparations (lines 22 to 27 in algorithm 7.8) shows a adequate 
speedup without stagnation. With 12 processes a speedup of 9.1, corresponding to 
an efficiency of 76%, is reached. The other parts of the algorithm exhibit, however, 
a much worse speedup. The generation of the observation ensemble together with 
the initialization of the residual matrix (lines 15-20) requires about 42% of the total 
execution time if one process is used. For these operations, the speedup stagnates 
at a value of approximately 2. The operations in lines 5 to 14 are dominated by 
the computation of T3 in line 13. This operation is executed serially and requires 
about 5% of the execution time in the serial case. The solver step for the representer 
amplitudes B in line 21 is not parallelized either. With a single process, it requires 
approximately 14% of the total execution time for the EnKF &nalysis. Overall, a 
maximal speedup of about 2.2 is obtained for the EnKF analysis algorithm due 
to the combination of the high amount of serial operations and the small speedup 
displayed by the generation of the observation. 

The speedup achieved for the domain-decomposed EnKF algorithm is even slightly 
below that for the mode-decomposed algorithm. This is due to the fact that the 
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generation of the observation ensemble exhibits a smaller speedup in the case of 
domain-decomposition. Additionally, the solver step for the representer amplitudes 
is serial for domain-decomposit,ion while it is parallelized for mode-decomposition. 
The routine Enkf-Obs-Ensemble is supplied by the User. Case dependent, i t  might 
be possible to implement this routine more efficiently. However, even if the time 
for generating the observation ensemble could be neglected, the total speedup of 
the EnKF algorithm is limited by the serial operations involving the matrix T3. 
As for the mode-decomposed EnKF algorithm, the speedup will be major if the 
dimension m of the observation vector relative to the state dimension n is smdler, 
since the relevance of the serial operations with diminish. This will be, e.g. fulfilled 
for models of larger state dimension if the amount of observational data remains 
constant. 

9.6 Summary 

In this chapter, the parallel filtering framework developed in chapter 8 was imple- 
mented and tested with an idealized configuration of the finite element ocean model 
FEOM. The filtering framework includes the parallel filter algorithms developed in 
chapter 7. 

Data assimilation experiments using synthetic observations of the sea surface 
height showed a good ability of the filter algorithms to estimate the velocity field. 
The information provided by surface observations is successfully transported to the 
lower levels of the model by the estimated covariances between the sea surface height 
and the velocity field. In contrast to the velocity field, the temperature field is not 
well estimated. While in the uppermost levels of the model the shape of the true 
temperature field was accurately estimated, this was not the case for the lower levels. 
In addition, the temperature was over-estimated in the model levels below a. depth 
of -500 meters. 

Experiments assessing the parallel efficiency of the filter framework have been 
performed with all three ESKF algorithms. The t,wo different process configurations 
of the framework have been tested. For this, the filter algorithms are either exe- 
cuted by processes which evaluate also the model forecasts or the filter and model 
parts of the parallel program are executed on disjoint process sets. Both configura- 
tions exhibited statistically equal speedups. In addition, the speedup for all three 
ESKF algorithm is identical within the accuracy of the measurements. The speedup 
reached a value of about 15 with 18 processes. This corresponds to a parallel ef- 
ficiency of approximately 83%. The deviation from an optimal parallel efficiency 
resulted from the fact that different model tasks required slightly different execu- 
tion times to evaluate the forecasts. This desynchronization yields an overhead in 
the total execution time which reduces the parallel efficiency. 

To assess the speedup of the parallelized filter algorithms, experiments have been 
performed without time stepping. The experiments included the mode-decomposed 
and the domain-decomposed filter algorithms. The experiments showed that the 
model-decomposed SEEK and SEIK filters exhibit a much smaller parallel efficiency 
than their domain-decomposed counterparts. This is due to a high amount of com- 
munication which limits the speedup of the mode-decomposed algorithms. In the 
experiments the speedup stagnates for the mode-decomposed filters for rather small 
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numbers of processes. The speedup of the domain-decomposed SEEK and SEIK 
filters did not stagnate for the tested process numbers. For the smaller ensemble 
size of N = 60, the speedup was even super-linear. For the larger ensemble size 
of N = 240, the efficiency of the SEEK and SEIK filters was limited due to serial 
operations on matrices involving the dimension r = N - 1 of the error subspace. 
The EnKF algorithm exhibited an almost equal parallel efficiency for both paral- 
lelization variants. The speedup stagnated at  values which are significantly smaller 
than the speedup obtained with the SEEK and SEIK filters. The limited speedup of 
the EnKF algorithm is due to serial operations On matrices involving the dimension 
of the observation vector. 

The results for the parallel efficiency obtained in this chapter are specific for the 
computer system used for the experiments and for the experimental configura,tions. 
However, some general conclusions can be drawn. The stagnation of the speedup 
in the EnKF algorithm will occur independently from the used computing platform 
if the observation dimension is sufficiently large compared with the ensemble size. 
The obtained value of the speedup will vary from computer to computer and will 
depend On the dimensions involved in the data assimilation problem. Similarly one 
can expect always a decreasing parallel efficiency for the domain-decomposed SEEK 
and SEIK filters when the ensemble size increases. This is due to serial operations 
On matrices involving the dimension of the error subspace. The speedup which can 
be obtained with the mode-decomposed SEEK arid SEIK filters is controlled by the 
ratio of floating point performance to communication performance depending On the 
computing platform and the dimension of the data assimilation problem. 

If the filter framework is used with models of larger state dimension n, a parallel 
efficiency of the data assimilation system simila,r to the current experimental results 
can be expected. In addition, the speedup of the domain-decomposed SEEK and 
SEIK filters can be expected to be excellent. The speedup of the mode-decomposed 
varknts of these filters will be limited by the high amount of comm~nic~t ion which is 
performed in the algorithms. The speedup of the EnKF algorithms will be limited for 
both parallelization varia,nts. However, if the state dimension n increases while the 
amount of ob~erv~tional data remains constant, the speedup of the EnKF algorithms 
will increase, too. 



Chapter 10 

Summary and Conclusion 

In the second part of this work the application of Error Subspace Kaiman Fil- 
ters (ESKF) on parallel computers was studied. The implementation of the parallel 
data assimilation system using the ESKF algorithms was conducted in two steps. 
First, the parallelization of the analysis and resampling phases was discussed. Sub- 
sequently, the parallelization of the forecast phase was considered. The latter was 
included in the development of a. framework for parallel filtering. To assess the par- 
allel efficiency of both the filter framework and the parallel filter algorithms, the 
framework was used to implement a data assimilation system based on the finite 
element ocean model FEOM. The obtained data assimilation system was tested in 
experiments with an idealized configuration of FEOM. 

With regard to the analysis a,nd resampling phases, the filter &orithms allow 
for two different parallelization strategies. On the one hand, the ensemble or mode 
matrix can be decomposed over the processes such that each process holds several 
columns, i.e. full ensemble states, of the matrix. This strategy is referred to as 
mode-decomposition. On the other hand, the model domain can be decomposed 
into sub-domains. Hence, each process holds only the part of a model state which 
corresponds to its local sub-domain. Using domain-decomposition, the ensemble or 
mode matrix is decomposed such that each process holds a full ensemble of local 
sub-states. 

The compa~riso of communication and memory requirements for both paral- 
lelization variants showed that the domain-decomposed filters &re preferable. The 
size of communicated matrices is smaller in the case of domain-decomposition. 
The difference is most significant for the SEEK and SEIK filters. With mode- 
decomposition, several matrices involving the sta,te dimension n or the dimen- 
sion m of the observation vector are communicated. In contrast, only commu- 
nications of matrices involving the typically much smaller dimension r of the er- 
ror subspace are necessa,ry when the domain-decomposition is applied. In addi- 
tion, the memory requirements for the domain-decomposed filters are smaller than 
for the n~ode-decomposed algorithms. The domain-decomposed variants allow for 
a better distribution of the large matrices. The memory overhead due to addi- 
tional matrices which are introduced for the parallelization is also smaller for the 
domain-decomposed filters. The benefit of the smaller communication requirements 
with domain-decomposition was confirmed by numerical experiments. In these, 
the speedup of the mode-decomposed SEEK and SEIK filters stagnates already for 



less than 12 processes. The obtained speedup values are below 5. In contrast, no 
stagnation of the speedup was observed in the experiments applying the domain- 
decomposed SEEK and SEIK filters. 

The EnKF algorithm is problematic concerning communication and memory 
requirements. With both parallelization strategies, it requires full allocation of ma- 
trices involving the dimension m of the observation vector on each process. For 
large observational data sets, this memory requirement can become critical. Addi- 
tionally, the EnKF &lgorithm involves ensemble matrices On the observation space, 
namely of dimension mN with N being the ensemble size, in communication opera- 
tions even for the domain-decomposed variant. While for mode-decomposition, the 
communication requirements of all three filters are of comparable size, the domain- 
decomposed EnKF algorithms communicate much more data than the domain- 
decomposed SEEK and SEIK filters. Besides the issue of communication and mem- 
ory requirements, some operations 011 matrices involving the dimension m of the 
observation space are performed serially in EnKF algorithm. In the numerical ex- 
periments, the EnKF algorithm exhibited a comparable speedup for both paral- 
lelization variants. The speedup stagnated a,t very small values between 1.2 and 2.4 
which was mainly ca,used by the serial parts of the algorithm. 

To obtain a more efficient EnKF algorithm a localized filter analysis was de- 
rived. The localization neglects observations beyond some distance from a model 
sub-domain motivated by the fact that the sampled long-range covariances are in 
general very noisy. Since, in addition, the true long-range covariances are typically 
very small, the information content of the sampled long-range covariance is negli- 
gible. The localization is, however, an approximation which can cause the model 
forecasts to become unstable. The localization reduces the effective observation di- 
mension of the analysis algorithm. Hence, the memory as well as the communication 
requirements of the analysis algorithms are reduced. Accordingly, the parallel effi- 
ciency of the algorithm will increase. 

A framework for parallel filtering was developed which includes the paralleliza- 
tion of the forecast phase of the filter algorithms. This framework is designed to 
permit the combination of an existing model with the parallel filter algorithms re- 
quiring only minimal changes in the model source code. The framework includes an 
application program interface. This interface defines the structure of the subroutine- 
calls which have to be added to the model source code. In addition, the interface 
to observation-rela,ted routines which are called from the filter routines is defined. 
The organization of the framework uses a clear separation between model and filter 
routines. In addition, operations related to observations are distributed into sep- 
arate routines. With this structure, the core routines of the filter algorithms are 
completely independent of both the model and the observations. For combining the 
framework with an existing numerical model, the major work will consist in the 
implementation of the observation-related routines. In addition, routines have to 
be implemented which perform the model-dependent transition between the state 
vector required for the filter part arid the state fields used in the model. 

The framework permits to execute multiple model tasks concurrently. Each of 
these tasks Cm be individually parallelized. The required communication of data 
between filter and model parts of the data assimilation program is performed by the 



framework. Two different process configurations a,re supported by the framework. 
Either the processes which execute the filter routines are also involved in the  com- 
putation of the model forecasts (denoted as joint process sets) or the filter Part of 
the program is executed on a set of processes which is disjoint from the processes 
used to compute the model forecasts. 

The theoretical examination of the different process configurations showed that 
none of them is clearly preferable. The configuration with joint process sets permits, 
on the one hand, to use all processes of the program to compute the model forecasts. 
In addition, the amount of communicat,ion will be smaller than with disjoint process 
sets. On the other hand, this configuration requires that a matrix holding a sub- 
ensemble of model states is allocated on one process of each model task. This can 
increase the memory requirements considerably. 

The configuration with disjoint process sets requires only the allocation of a 
single model state vector on one process of each model task. Further, the possible 
configurations of the model tasks are more flexible than those for joint process 
sets. While for joint process sets the sizes of the sub-ensembles which are evolved 
by the model tasks are to be determined in advance, this is not required for the 
case of disjoint process sets. Here, the fra,mework sends an ensemble state vector 
to  each idle model task. This technique can be useful if the model tasks have 
strongly different performances. The number of ensemble members evolved by each 
model task is dynamically controlled by its performance. The automatic adaption 
to different performances of the model tasks will, however, only work if ensemble 
size a,nd performance differences are sufficiently large. 

The numerical experiments with FEOM yielded equal speedup values for both 
process configurations. The speedup was not ideal due to varying execution times 
of the model forecast On different model tasks. The time required for the analysis 
and resampling phases of the filters was negligible in these experiments. 

Overall, the configuration of the framework with joint process sets should be pre- 
ferred if the memory requirement of the sub-ensembles on processes which execute 
also the model is not problematic with the used computer architecture. If memory 
limitations are too strong, the configuration of the framework with disjoint process 
sets should be used. This configura,tion should also be used if there are significant 
performance differences of the model tasks or if one considers to execute the data, 
assimilation program such that model forecasts are computed concurrently on mul- 
tiple computers. 

Considering the framework a,nd the parallel filters together, the pa,rallelization 
strategy for the filter routines is independent from the process config~r~t ion of the 
framework. Thus, the framework supports a ~~rallelization strategy on two levels. 
First, the numerical model and the analysis and resampling phases of the filters 
can be parallelized independently. Second, the framework permits to perform the 
forecast with multiple model tasks which are executed concurrently. In this case, 
one parallel filter task is coupled with several model tasks by the framework. 

The parallelization strategy using rnode-decomposition amounts to a paralleliza- 
tion of the filter which is independent from a possible parallelization of the model. 
In contrast, the strategy using domain-decomposition is most efficient for models 



which are themselves domain-decomposed. In this case. the decompositions used 
for the model and the filter should coincide to obtain optimal performance. Distinct 
decompositions of the domains for model and filter are supported by the framework. 
They will, however, result in an overhead due to the required reordering of the state 
information. 

Concluding, the study showed that the EnKF 'lgorithm exhibits several prob- 
lems. These are due to the communication and memory requirements of the filter. In 
addition, the parallelized EnKF algorithms conta,in several serial operations On ma- 
trices which involve the dimension of the observation vector. If the a large amount 
of observational data is assimilated, these operations will strongly limit the parallel 
efficiency of the algorithms. Thus the parallel efficiency of the EnKF algorithm is 
limited in addition to the inferior serial numerical efficiency in comparison to the 
SEEK and SEIK filters which has been discussed in part 1 of this work. 

The SEEK and SEIK filters show ' very good parallel efficiency for domain- 
decomposed states if the rank r of the approximated state covariance matrix is 
significantly smaller than the dimension of the observation vector and the state 
dimension. In this situation, the SEIK filter is the algorithm with the highest 
parallel efficiency. Using mode-decomposition, the parallel efficiency of both filter 
algorithms is limited by a la,rge amount of data which has to be communicated by 
global MPI operations. 

The differences between the parallel efficiencies of the analysis and resampling 
phase of the three ESKF algorithms are less important if the computation time 
for the forecast phase dominates the full execution time of the data assimilation 
application. In this case a very good parallel efficiency of the data a~s imi l~ t ion  
system is obtained since the evolution of different model states can be performed 
independently. The efficiency can be limited by varying execution times for different 
model tasks. Furthermore serial parts of the program like the model initialization 
or the output of fields to disk files can be limiting for efficiency. 

The parallel filtering experiments showed that the filter framework introduced 
in this work including the implemented parallel filter algorithms is well suited for 
realistic large-scale data assimilation applications. 



Appendix A 

Parallel Computing 

A.1 Introduction 

This appenclix provides an introduction to parallel computing. Section A.2 summa- 
rizes the fundamental concepts of parallel computing. Subsequently, in section A.3. 
qua,ntities for the performance analysis of parallel programs are introduced. In 
addition, an introduction to the Message Passing Interface (MPI) [27] is given in 
section A.4. The descriptions summarized here follow those by Foster [22] and 
Pacheco [59]. Some expressions have been taken from these books. 

A.2 Fundamental Concepts 

Parallel computing bases on several fundamental concepts and methods. We sum- 
marize here the fundamental terms which are used in the main part of this work. 

Process  
A process can be, intuitively, considered as an instance of a program that is execut- 
ing more or less autonomously on a physical processor. It is fundamental building 
block of parallel program which comprises multiple processes. 

Parallelism 
Parallelism is the possibility to distribute instructions of some operation over multi- 
ple processes to perform the parts of the operation concurrently by the processes. An 
example is the addition of two vectors a ,  b Rn. The additions of the components 

are mutually independent. Hence, they can be performed concurrently by different 
processes. 

Communicat ion 
Communication is the operation to exchange data between different processors. 
Communications will result in an overhead since the participating processor will 
not perform productive work during the communication operation. Communication 
can be performed either collective or point-to-point. Collective communication in- 
volves a. group of processes. It is, e.g., used for global summations or broadcast 
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opera,tions. Point-to-point communication operations exchange data between pairs 
of processes. 

Synchronization 
Synchronization of the execution of a parallel program is required if the following 
operations of the program base on the results of previous operations performed by 
parallel processes. Synchronization yields an overhead which is either due to the  
required communication or due tzo processes which idle until the synchronization is 
completed. 

Overhead 
The overhead describes the excess of execution time of a parallel program in com- 
parison to a sequential program. The overhead is due to communication, synchro- 
nization, and the start-up time of parallel processes. 

Granularity 
Granularity is the ratio of the time for productive work to the time spent for com- 
munication or the start-up of parallel processes. Coarse granularity is obtained if 
the distributed work consists of a. la,rge amount of instructions but only few com- 
munications. In this case, the time during which the processors work independently 
is much larger than the communication time. 

Load balancing 
To obtain an optimal parallel efficiency of a parallel program, the operational load 
has to be distributed equally over all processes, denoted as load bal'ncing. Depen- 
dent On the problem, the distribution of the operations can either be statically (for 
regular problems) , or dynamically (for irregular or adaptive problems) . 

P r o g r a m  paradigms 
A parallel program paradigm describes the general way in which a. program is par- 
allelized. Of the many existing paradigms we describe those two which a,re the most 
widely used: 
Sh,ared-memory programming utilizes the possibility to use a global address space for 
the memory of all processes of a. parallel program. This can be either achieved by a 
direct access to all memory locations by all processes or by a virtual global address 
space of dist,ributed memory. Shared-memory programs can be implemented using 
the Open-MP standard [57]. 
Message Passing is used to implement parallel programs on computer systems with 
distributed-memory. The processes of the parallel program share data by explicitly 
sending and receiving messages. These communication operations are explicitly im- 
plemented, e.g. by calling routines of the Message passing Interface (MPI) [27]. An 
introduction to MPI is provided in section A.4. 

A.3 Performance of Parallel Algorit hms 

The performance of parallel algorithms can be expressed by several measures which 
are summarized here. 
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Performance 
The performance of a program is defined as the number of operations performed 
per time unit. In numerical applications, the performance is usually expressed by 
floating point operations (flops) per second. 

Execution T i m e  
The time that elapses between the staxtup of the first processor executing a parallel 
program a,nd the time when the last processor completes execution defines the  exe- 
cution time T of the parallel program. 
The execution time will generally depend on the computer being used. I.e., the 
hardware (processors, memory, network, etc.) as well as the compiler used to  gen- 
erate the progra,m executable will influence the execution time. 

Speedup 
The speedup S(p, n) of a program which is executed on p processors with some 
problem size of n is defined by 

The speedup describes the factor by which the execution time of a parallel program 
is reduced with p processors, relative to the execution with a single processor. 

Parallel  Efficiency 
The parallel efficiency E(p, n) measures the process utilization in a. pa,rallel program 
relative to a serial program. It is defined by 

A parallel efficiency of 1 (or 100%) shows an ideal parallelization. Since the parallel 
program will not be free of overhead and will usually contain also serial phases, it 
is E(p,n)  < 1. 

Amdahl's Law 
Typically, not all operations in a program can be parallelized. Thus, there will be 
some fraction Q, (0 5 a < 1) of serial operations. The total execution time of a 
parallel program is then given by the sum of the execution times Tr, for the parallel 
and Tg for the serial fractions of the program: 

Serial parts of a parallel program will limit the speedup, since, according to equa- 
tion fA.4). 

Thus, the asymptotic speedup is 
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Scalability 
A parallel program is scalable if its execution time is inversely proportional to the 
number of processors used to execute the program. This behavior is denoted as 
scalability with fixed problem size. Scalability with scaled problem size describes 
the property of an algorithm to allow for an increase rate of the problem size which 
keeps the efficiency constant when increasing the number of processors. 

A.4 The Message Passing Interface (MPI) 

Using the message-passing library MPI the parallel program is written by augment- 
ing standa,rd Fortran or C/C++ source code with calls to library functions for 
sending and receiving messages. 

The MPI-1 standard [27] comprises 129 functions. We describe here fundamental 
concepts of MPI. In the Course of this, we describe the functions which are used for 
the parallelization of the filter algorithms a,nd for the implementation of the pralle1 
filter framework. 

Message Passing 
MPI is based On mess8ge passing. That is, communication is performed by the ex- 
plicit sending and receiving of messages which contain the data to be exchanged. 

Message 
A message consists of the data to be exchanged and an envelope enclosing the mes- 
sage. The envelope contains the information which is necessary to identify a message 
arid to send it to the right process. The identifying information are the rank of the 
receiving process, the rank of the sending process, a tag, and a communicator. The 
tag identifies a message if several messages of the same type are sent by the same 
process. 

Initialization of a MPI Program 
Before any other MPI functions can be called, the library must be initialized by 
calling the function MPI-Inzt. After a program has finished using the MPI library, 
each process must call MPI-Fznalize. This function ensures a clean termination of 
MPI, e.g. by freeing memory allocated by the MPI library. 

Communicator 
A comrn~nic~tor  defines a, set of processes which can send messages to each other. 
All communication operations in MPI are performed within a communicator. Ac- 
cordingly, a communica,tor must be specified in the calling interface of all MPI 
functions which are related to communication or the communicator itself. 
The communicator is useful to define subgroups of processes which participate in col- 
lective communication operations. After the initialization of a program which is par- 
allelized using MPI, the communicator MPI-COMM- WORLD exists which contains 
all processes of the program. Other communicators can be defined, e.g., by splitting 
the set of processes in an existing communicator with the function MPI-Comm-split. 

Rank of a Process 
The rank of a process in a communicator is provided by the function MPI-Comm-rank. 
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The total size of a communicator in terms of processes is provided by the function 
MPI- Cornm-size. 

Point-to-Point Communication 
The basic point-to-point communication operations of MPI are given by the func- 
tions MPI-Send and MPI-Recv. These operations are blocking, i.e., a process which 
calls e.g. MPI-Recv remains idle until the message it has to receive is available. 
The MPI library provides also non-blocking operations. These are, e.g., the func- 
tions MPI-ISend and MPI-IRecv, which are the non-blocking counterparts of the 
basic send arid receive operations. When a non-blocking function is called, the pro- 
cess posts the communication operation and returns immediately from the function 
without waiting for the completion of the communication operation. To query the 
completion of a non-blocking operation, the function MPI-Test is called. 

Broadcast 
A broadcast is a. collective operation in which a single process sends the Same data 
to every process of a communicator. The broadcast is conducted by calling the 
function MPI-Bcast. 

Reduction 
A reduction operation is a collective communication operation in which all processes 
of a communicator contribute data that is combined using a. binary operation. Typi- 
cal operations are addition or the determination of the maximum value of a va,riable. 
The combined result is provided to a. single process if the function MPI-Reduce is 
called. If the result of the reduction operation is required by all processes of a com- 
municator, the function MPI-Allreduce is called. 

Gat her 
To gather an array which is distributed over the processes of a communicator on 
a. single processor, the function MPI-Gather is called. The function MPI-Allgather 
provides the gathered array to all processes. 

Barrier 
To synchronize the processes, the function MPI-Barrzer can be called. This function 
causes each process to block until every process of the communicator has called it. 



Appendix B 

Documentation of Framework 
Rout ines 

In this appendix, those routines of the filter framework are documented which have 
not been shown in the main part of t,his work. The interfaces of these routines are 
identical for mode and domain-decomposition The description refers to the variant 
using mode-decomposition. 

Subroutine Next-Observation(step,nsteps,time) 
int step {Current time step, input} 
int nsteps {Number of time steps to be computed, output} 
real time {Current model time, output} 

1 . . . Initialize nsteps and time . . . 

Algorithm B.1: Initialize the number of time steps for the next forecast phase and the 
current model time. Called from the Get-Stute for joint process sets or the filter main 
routine for disjoint process sets. 

Subroutine Distribute_State(n,x) 
int n {State dimension, input} 
int x(n) {Stake vector to be distributed, input} 

1 . . . Initialize and distribute model fields . . . 1 
Algorithm B.2: Initialize the model fields for a model task from a state vector. Called 

Subroutine Collect-State(n,x) 
int n {State dimension, input} 
int x(n) {Sta,te vector to  be initialized, output} 

Initialize state vector from model fields . . . 1 
Algorithm B.3: Initialize the state vector from the model fields of a model task after a 
state has been forecasted. Called by PutS'tate. 



Get-Dirn-Obs(step, m) 
int step {current time step, input} 
int m {dimension of observation vector, output} 

. . . Initialize m . . . 

Algorithm B.4: Provide dimension of the observation vector. Called from the filter 
analysis routines 

Subroutine Measurement(step, m ,  y )  
int step {current time step, input} 
int m {dimension of observation vector, input} 
real y(m) {observation vector, output} 

1 . . . Initialize y . . . 1 
Algorithm B.5: Provide the observation vector. Called from the filter analysis routines. 

Subroutine Measurement_Ensemble(step, m ,  Np, Yp,  y )  
int step {current time step, input} 
int m {dimension of observation vector, input} 
int Np {local ensemble size, input} 
real Yp(m,  Np) {matrix holding local observation ensemble, output} 
real y (m)  {observation vector, output} 

1 . . . Initialize y and Yp . . 
L 

Algorithm B.6: Provide an ensemble of observations. Called from the EnKF analysis 
routine. 

~ubrou t ine  Measurement.Operator(step, n ,  m ,  X, y) 
int step {current time step, input} 
int n {state dimension, input} 
int m {dimension of observation vector, input} 
real x(n)  {state vector, input} 
real y (m)  {state vector projected on observation space, output} 

. . . operate with H on X t o  obtain y . . . 

Algorithm B.7: Implementation of the measurement operator. Called from the filter 
analysis routines. 



Subroutine RinvA(step,m,r,A,B) 
int step {Current time step, input} 
int m {Dimension of observation vector, input} 
int r {Rank of approx. covariance matrix, input} 
real A(m,  r )  {Matrix to be inultiplied by R, input} 
real B(m,  T )  {Computed product matrix, output} 

Algorithm B.8: Multiply the inverse of the observation error covariance matrix R with 
some matrix. Ca.lled form the analysis routines of SEEK and SEIK. Since the matrix A 
is still required in the algorithms, it must not be modified in the routine. 

Subroutine RplusA(step,m,A) 
int step {Current time step, input} 
int m {Dimension of observation vector, input} 
real A(m,  m) {Input matrix arid result of addition, inputloutput} 

Algorithm B.9: Add the observation error covariance matrix R to some matrix. Called 
by the analysis routine of the EnKF. Since the input matrix A is not further used in the 
algorithm, it is overwritten by the sum. 

Subroutine Init-Ensemble.SEEK(n, r, X, Uinv, V, status) 
int n {state dimension, input} 
int r {rank of approximated covariance matrix, input} 
real x(n) {state estimake, output} 
real Uinv(r, r )  {inverse eigenvalue matrix, output} 
real V ( n ,  r )  {mode matrix, output} 
int status {status flag, input/output} 

1 . . . Initialize X. Uinv. and V . . . 

Algorithm B.lO: Inithlize filter fields for SEEK. Called from filter initialization routines. 

Subroutine Init_Ensemble_SEIK(n, N, X, X ,  status) 
int n {state dimension, input} 
int N {ensemble size, input} 
real x(n)  {state estimate, output} 
real X(n ,  N) {ensemble matrix, output} 
int status {status flag, inputloutput} 

. . . Initialize X arid X . . . 

Algorithm B.ll: Initialize filter fields for SEIK. Called from filter initialization routines. 



Subrout ine  Init-Ensemble-EnKF(n, N, X, X, status) 
int n {state dimension, input} 
int N {ensemble size, input} 
real x(n)  {state estimate, output} 
real X(n,  N )  {ensemble matrix, output} 
int status {status flag, input/output} 

. . , Initialize X ancl X . . . 
Algorithm B.12: Initialize filter fields for EnKF. Called from filter initialization routines. 

Subrout ine  UserAnalysis-SEEK(step. n ,  r ,  rp, m, X, Uinv,  Vp)  
int step {current time step, input} 
int n {state dimension, input} 
int r {rank of approximated covariance matrix, input} 
int rp {local rank of approx. covariance matrix, input} 
int m {dimension of observation vector, input} 
real x(n) {state estimate, input} 
real Uinv(r, r )  {inverse eigenvalue matrix, input} 
real Vp(n, G) {mode matrix, input} 

1 . . . User treatment of filter fields 
l L 
Algorithm B.13: User analysis routine for SEEK. Called from filter main routines. The 
provided input fields should not be changed. 

Subrout ine  UserAnalysis-SEIK(step, n ,  N, Np, m, Xp, X) 
int step {current time step, input} 
int n {state dimension, input} 
int N {ensemble size, input} 
int Np {local ensemble size, input} 
int m {dimension of observation vector, input} 
real x(n) {state estimate, input} 
real Xp(n,  Np) {ensemble matrix, input} 

1 . . . User treatment of filter fields . . . 
1 

Algorithm B.14: User analysis routine for SEIK. Called from filter main routines. The 
provided input fields should not be changed. 



Subroutine User_Analysis-EnKF(step, n, N ,  Np, m, Xp, X) 

int step {current time step, input} 
int n {state dimension, input} 
int N {ensemble size. input} 
int Np {local ensemble size, input} 
int m {dimension of observation vector, input} 
real x(n) {state estimate, input} 
real Xp(n, Np)  {ensemble matrix, input} 

. User treatment of filter fields 
J 

Algorithm B.15: User analysis routine for EnKF. Called frotn filter main routines. The 
provided input fields should not be changed. 
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