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A model for planktic foraminiferal shell growth

Miguel Signes, Jelle Bijma, Christoph Hemleben, and Rolf Ott

Abstract.—In this paper we analyze the laws of growth that control planktic foraminiferal shell
morphology. We assume that isometry is the key toward the understanding of their ontogeny.
Hence, our null hypothesis is that these organisms construct isometric shells. To test this hypothesis,
geometric models of their shells have been generated with a personal computer. It is demonstrated
that early chambers in log-spirally coiled structures cannot follow a strict isometric arrangement.
In the real world, the centers of juvenile chambers deviate from the logarithmic growth curve.
Juvenile stages are generallv more planispiral and contain more chambers per whorl than adult
stages. These traits are shown to be essential in order to keep volumes of consecutive chambers in
geometric progression. We are convinced that the neanic stage marks the constructional bridge
from a juvenile set of growth parameters to an adult one. The adult stage can be strictlv isometric,
that is, the effective shape is constant and the increase in volume after a chamber addition is
proportional to the preexisting volume of the shell.

The shell volume is related to the biomass, the ratio of outer shell surface area to shell volume
is related to the respiration rate and the ratio of the total shell surface area to shell volume is related
to the total calcification effort. The influence of the parameters of the model on these relationships
isinvestigated. Only the initial radius and the rate of radius increase affect the relationships between
shell volume and surface area. The other shape parameters merely provide a fine tune-up of these

relationships. Size itself plavs a major role during foraminiferal development.
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Introduction

In paleontology, three quantitative ap-
proaches toward the analysis of the shape of
biological structures are commonly used. The
first approach includes methods like Fourier
shape analysis, Eigenshape analysis, and oth-
er statistical techniques to describe planar
projections of the outline in terms of a re-
duced set of variables (e.g., harmonics, eigen-
shapes, principal components). After selec-
tion and description of the wvariables,
correlations with environmental parameters
can be established. Among others, Healy-Wil-
liams and Williams (1981) and Lohmann
(1983) applied this method to describe plank-
tic foraminiferal test shape. This procedure
has a strong descriptive potential but often
contributes little to the explanation of shapes.
The second approach is based on the extrac-
tion of geometric features from constellations
of homologous landmarks (Bookstein et al.
1985; Bookstein 1986; Rohlf and Bookstein
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1990). This method requires no a priori as-
sumptions of the true morphogenic features
because the variation or differences in the
data set determine the morphological fea-
tures. The landmark approach has also been
used for morphometric studies on planktic
foraminifers (Macleod and Kitchell 1990; Ta-
bachnick and Bookstein 1990a,b). This ap-
proach pretends to have a stronger explana-
tory power than the first one.

The third approach is model-based and
makes use of the methods of functional, the-
oretical, and constructional morphology in
order to establish relationships between fac-
tors that give rise to organic shape (e.g., Gould
1970; Seilacher 1970). Expansions of the three
original factors of the constructional mor-
phology (Raup 1972; Hickman 1980; De Renzi
1982) and contributions from the science of
development and evolutionary theory (Wad-
dington 1968; Bonner 1982) are the theoret-
ical framework for the geometrical model
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presented herein. The model simulates the
basic morphology (chamber size and spatial
arrangement) of some planktic foraminiferal
shells. The model is intended to study func-
tional properties of the different morpholo-
gies rather than to describe shapes in terms
of a set of parameters. Although the second
approach supercedes model building in some
respects (Rohlf 1990), the simultaneous de-
scription of shape and the estimation of vol-
ume and surface area require a model-based
approach. Volume and surface area are
thought to have an important impact on shape
and vice versa. The model presented herein
belongs to a family of so-called “fixed-axis”
coiling models (see, e.g., Moseley 1938;
Thompson 1942; Raup and Michelson 1965;
Raup 1966; Berger 1969). However, the axis
of coiling may not be stable (e.g., streptospiral
coiling in Pulleniatina obliquiloculata [Parker
and Jones] or heteromorphic ammonites) and
often lacks a physical representation on shells.
More recently, models have been introduced
that describe accretionary growth indepen-
dent of an “axis of coiling” (Okamoto 1988;
Ackerly 1989). The advantage of these local-
coordinate models is that they describe growth
from an organismal vantage point, that is,
from the aperture. The perception of a unique
coiling axis may be an antropogenic inter-
pretation of spiral growth. However, it is dif-
ficult to estimate the orientations of apertural
planesin all but the most simply coiled forms.
Therefore we choose to use a fixed coiling
axis as a landmark.

Although there are no objections against
allometric growth, there are good arguments
to base the model on the principle of geo-
metric similitude. Quantitative support for the
assumption that planktic foraminifera grow
according to the laws of isometry comes from
indirect evidence. Isometric growth, or the
principle of geometric similitude, is the only
reasonable way to explain log-spiral patterns
of shell coiling (Thompson 1942; Berger 1969;
Scott 1970, 1972, 1973; Olsson 1971, 1972,
1973). Properties that are characteristic of log-
spirally coiling shells, such as a constant ratio
between the diﬁ&:ters of consecutive cham-
bers, have been reported for some planktic
foraminifers (see, e.g., Scott 1974 and refer-

ences therein). The phase transitions during
planktic foraminiferal ontogeny correlate
with size rather than with a specific number
of chambers (Brummer et al. 1986, 1987; Hu-
ber 1987, MS; Wei MS). These observations
suggest that a rather simple Bauplan underlies
foraminiferal architecture (see Norris 1991)
and provides support for the assumption that
the laws of construction are oriented toward
isometric shell morphologies.

Additional support may come from consid-
erations about the evolution of the group as
a whole. Planktic foraminiferal phylogeny is
characterized by two major periods of adap-
tive radiation, one at the Late-Early Creta-
ceous and one after the Cretaceous-Tertiary
boundary (see, e.g., Cifelli 1969; Hart 1980;
Tappan and Loeblich 1988). A minor period
of adaptive radiation starts after the Paleo-
gene-Neogene boundary, where the number
of species is markedly reduced. In periods of
radiation, the ancestral groups are small and
bear less shell complexity relative to their de-
scendants (Stanley 1973; Gould 1988). The de-
velopment from small to large has often been
used to demonstrate the adaptive significance
of allometry in ontogeny and phylogeny (see,
e.g., Gould 1966, 1968). In the absence of al-
lometry, the ratio of surface area to volume
must decline as size increases. However, the
collective increase of shell size and diversity
could also be explained in favor of isometry.
The ancestors in each radiation are small be-
cause isometric growth in general brings
along scaling problems that often determine
an upper limit for size. Only after solutions
to these problems were “invented,” could size
increase. Many such problems have their roots
in the disparate increase of body volume and
surface area with size (see, e.g., Gould 1966,
1968). The analysis of the relationships be-
tween these features and shape are of primary
importance for understanding planktic fora-
miniferal shell architecture. Properties like
biomass, shell weight, calcification effort, and
respiration rate are derived from the first two.
In this paper we consider the relationships
between size and shape to be of primary im-
portance for understanding planktic forami-
niferal shell architecture. The effects of vary-
ing chamber arrangement and their relative
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dimensions on shell volume and surface area
are quantitatively investigated.

In order to study some properties of fora-
miniferal shells, we have designed a simu-
lation model that accounts for size and
arrangement of spherical subunits in a three-
dimensional space. The model has been
implemented in a computer program (RE-
MAKER), written in PASCAL and run on an
MS-DOS personal computer. The structures
generated with the program are isometricand
resemble foraminiferal shells. Strictly speak-
ing we should refer to “geometric structures
consisting of overlapping subunits” but for a
better understanding and because we simu-
late foraminiferal growth we refer to “shells
made up of chambers.”

Assumptions of the Model

The structures, determined by the model,
are isometric provided the following two
conditions are met: (1) the shape of the sub-
units (chambers) is constant; and (2) the in-
crease in volume after the addition of a new
subunit is proportional to the preexisting vol-
ume of the structure.

The first condition restricts the application
of the model to those shells, or ontogenetic
stages, where chamber shape is constant
(structurally stable in the sense of Thom 1977).
The second condition refers to exponential
growth per stage. It is convenient to distin-
guish shell-size increase from cytoplasmic
growth because the first is discontinuous and
the second is continuous. In figure 1A, the
cytoplasmic size was derived using Gom-
pertz’s model (Lebreton and Milier 1982) and
shell growth according to the second condi-
tion of the model. Exponential, chamber-by-
chamber, shell size increase does not neces-
sarily imply an exponential function between
growth of the cytoplasm and time. The latter
usually follows a logistic pattern rather than
an exponential one (fig. 1A). As a conse-
quence of this uncoupling, a direct relation-
ship between shell volume and biomass can
be est;h;lshed only at the events of chamber
formation.

An exponential increase in shell size sug-
gests an exponential increase in biomass from
one stage to the next (i.e., exponential growth
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FiGure 1. A, Idealized representation of protoplasmic
growth (continuous line) and shell growth (stepped line).
B, Shell growth per stage. C, Rate of chamber formation.
Size in arbitrary units, and time in days.

per stage). Some clues sustain the assumption
of exponential biomass increase per chamber
increment in planktic foraminifers. If any
small portion of cytoplasm has the ability to
grow to a certain degree and all those por-
tions grow within a certain time, then the
biomass increases exponentially. An ideal-
ized representation of the relationships be-
tween shell growth and cytoplasmic growth
is shown in figure 1A.

Although the sequence of developmental
events cannot be referred to an absolute time
scale, it is useful to describe the relationship
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between shell size and time with two step
functions. The first one expresses shell-size
variation through the course of chamber in-
crement (fig. 1B) and can be measured from
specimens. The second relates chamber for-
mation to time and can only be obtained
through live observations (fig. 1C).

Translation into Mathematical Terms

From the second condition of the model
(exponential growth per stage), several prop-
erties may be derived (see Appendix A for a
full derivation of the relationships and Ap-
pendix B for a list of parameters and abbre-
viations). Chamber volume (CV) is propor-
tional to the shell volume (SV') at the previous
stage of growth,

CV,., = Ki5V, n=1,

(1)

where the constant Kt is the first parameter
of our model. As a result, the ratio between
shell volumes at two consecutive stages must
be constant as well:

SV!:+IISVJI = (Kf + l) n= 1-

(2a)

Consequently, the ratio between the volumes
of consecutive chambers is constant and also
equals Kt + 1 (the ratio of the volumes of the
first two chambers is Kt):

CV,a/CV,=(Kt + 1) (2b)

Therefore, shell volume and chamber volume
at any stage of growth may be written in terms
of the volume of the first chamber:

n=1.

SV, = CV,(Kt + 1) n=1
CV, = CVKHKt + 12  n=1.

(3a)
(3b)

The above relationships and properties apply
to any isometric structure, regardless of the
shape of the chambers. The scope of the mod-
el is purported to simulate shell growth where
consecutive chambers are contiguous and ar-
ranged in an orderly manner. Thus, there ex-
ist only three possible kinds of chamber ar-
rangements: (1) linear (uniserial), (2)
completely involute, and (3) log-spiral (in-
cluding multiserial forms).

At this point, it is convenient to distinguish
between the basic shape and the effective shape
of the ehambers. The basic shape of achamber

is a sphere, but the effective shape is a sphere
missing one or more sections because of over-
laps with earlier chambers. In isometric
growth, the basic chamber shape and the ef-
fective chamber shape must be constant.

In log-spiral arrangement, the configura-
tion of most planktic foraminiferal shells, the
effective shapes of early chambers vary fol-
lowing changing overlap patterns. The sec-
ond chamber overlaps only with the first,
whereas the third overlaps with the second
and possibly with the first, and so on until a
constant pattern of overlap is reached (fig. 2).
The chamber at which the effective shapes
become constant is defined as the first regular
chamber (FRC). From there onward, the
chambers have exactly the same pattern of
overlap and thus the same effective shape. In
shells with linear or involute chamber ar-
rangements, the first regular chamber is the
second chamber. In log-spiral shells, the first
regular chamber is usually not reached before
the second whorl.

Provided that the basic shape of the cham-
bers is a sphere, the volume of the nth cham-
ber may be expressed as

CV, = (4w/3)R,%,, (4)

where R is the radius of the basic chamber
shape, and ¢ is the ratio between the volume
of the effective chamber and the basic cham-
ber. By combining equations (3b) and (4), a
general expression for the radius of any
chamber is obtained:

R, = Kt(Kt + 1)""2 R,?/,, (5)

where R, is the radius of the first chamber.
Consequently, the ratio between radii of con-
secutive chambers is constant when 6 does
not change (from one chamber to the next).
In early chambers, the loss of volume with
respect to a corresponding sphere increases
because of the increasing overlaps. Conse-
quently, §, decreases from the second cham-
ber toward the first regular chamber. From
that chamber onward, ¢ is constant. In gen-
eral,

(Rn—ilaau-lrl)f(Ruaarr) = Kt + 1 (6)

Because the size of the first chamber is sig-
nificant with respect to that of the following
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chambers, the difference in the relative losses
of volume with respect to their original
spheres is also considerable. Consequently, if
the chamber radii are in geometric progres-
sion, the ratios between their volumes are not
in agreement with the second condition of
the model before the first regular chamber.
In order to maintain exponential growth per
chamber increment, it is necessary to com-
pensate for these losses of volume in the
chambers before the first regular chamber.
Apart from changing chamber shape, two so-
lutions are of special interest to bring either
size or position of the chambers before the
first regular chamber in agreement with the
second condition of the model.

First, if all chambers are strictly arranged
according to a logarithmic spiral, §, decreases
from the second chamber to the first regular
chamber. To maintain exponential growth per
chamber increment, the ratio of successive
radii must increase from the second chamber
onward (see eq. 6). From the first regular
chamber onward, this ratio stabilizes at (Kt +
1)! 3. Thus, the ratio between the radii of con-
secutive chambers is larger in chambers be-
fore the first regular chamber than in later
ones.

Second, if early chambers deviate from log-
spiral coiling, their new positions may be such
that the volumes of the consecutive chambers
remain in geometric progression. Conse-
quently, 6 is constant from the second cham-
ber onward and equals (Kt + 1)'/3 (=0gc). To
keep the volumes of consecutive chambers
in geometric progression before the first reg-
ular chamber, the following solutions are
possible: (1) a more planispiral shell before
the first regular chamber and a more tro-
chospiral shell after the first regular chamber;
(2) a decreasing number of chambers per
whorl toward the first regular chamber, and
a constant number of chambers per whorl
from the first regular chamber onward; or (3)
a larger umbilicus before the first regular
chamber than thereafter. Each of these fea-
tures or combinations thereof are character-
istic for early ontogenetic shell development
in some recent and fossil planktic foramini-
fers (Brummer et al. 1986, 1987; Huber MS;
Wei MS). From the first regular chamber on-
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FIGURE 2. Diagram indicating the pattern of overlap be-
tween the chambers of the structure of figure 5B and 5E.
Solid bar, the two chambers of the corresponding row
and column overlap each other.

ward, the size and position of the chambers
are compatible with the second condition of
the model; that is, the rate of radius increase
is constant and the centers of the chambers
are log-spirally arranged.

Size of the Chambers.—Four parameters and
two scaling factors suffice to determine fully
the size and position of the chambers in the
shells. Although equation (5) provides a
method to calculate the size of any chamber
in the structure, the factor 6, complicates a
straightforward application. Assuming that
all radii are in geometric progression, as seems
to be the case in planktic foraminifers,

R} = (Kt + 1)~ R 2, ?)

Equation (7) will turn out to be in disagree-
ment with equation (5). However, according
to equation (6), equations (5) and (7) are in
agreement after the first regular chamber. For
chambers following the first regular cham-
ber, equation (5) may then be rewritten as

R.? = KKKt + 1)"2 R /denc. (8)

Although both R, and R, represent the ra-
dius of the initial chamber in equations (7)
and (8), they are fundamentally different. R,
is merely a scaling factor for the computer to
calculate the following radii. R,, on the other
hand, is a measure of the size of the first
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FRONT

BASE

FIGURE 3. Graphic representations of the structures (four
chambers per whorl (¢ = 7/2)) as projections over three
perpendicular planes (front, base and side). The y axis is
parallel to the coiling axis. A, Projection over the front
plane of a simple structure made up with four spheres.
B, Projection of the same structure over the base plane.

chamber (proloculus) in a structure growing
according to the two conditions of the model
(i.e., according to the principle of isometry).
A relationship between R, and R, for the
chambers after the first regular chamber can
be established by equating equations (7) and
(8):

R = R (Kt + 1)8grc/KE. 9)

In the following we will refer to R, as the
effective initial radius. Although the discrep-
ancy between R, and R, is not important for
comparing the effects of the different param-
eters on the shape of planktic foraminiferal
shells, it should be considered when com-
paring the volumetric properties of the shells.
In those instances, the effective initial radius
must be used. Equation (9) provides the cor-
rection factor to calculate the effective radii

of the chambers when using equation (7) in-
stead of equation (5). It further follows from
equation (9) that the effective initial radius
can only be calculated when the d;xc is known.

The first sphere merely acts as a starting
point in our model. Its size, as indicated by
the radius, is a scaling factor. The role of the
initial chamber in our simulation model may
be equivalent to that of the proloculus, that
of the two-chambered shell, or that of the
three-chambered shell. However, since the
proloculus differs from subsequently formed
chambers in various aspects (Brummer et al.
1987), we prefer not to establish a definite
relationship between the initial radius and
specific stages of test formation. In conclu-
sion, the size of the chambers is defined by
one parameter Kt and one scaling factor R,.
Three additional parameters have to be in-
troduced for locating the chambers in a three-
dimensional space.

Position of the Chambers.—The position of
any chamber is given by its center in a system
of cylindrical coordinates. In log-spirally
coiled shells, the centers of the successive
spheres lie on a three-dimensional curve (fig.
3). The projection of this curve on a plane
perpendicular to the coiling axis (the XZ plane
in fig. 3) is a logarithmic spiral that can be
described by the following equation in polar
coordinates,

X(0) = X et® (10)

where X (@) is the radial distance from the
coiling axis to a point placed at ® radians from
the origin of angles, b is a constant specifying
the tightness of coiling, and X, is the distance
from the first point in the curve to the coiling
axis (fig. 3). In order to keep the effective
shape of the chambers constant, the angle
between centers of consecutive chambers
measured in a plane perpendicular to the coil-
ing axis must also be constant. This angle (¢)
is the second parameter and equals 2x divided
by the number of chambers per whorl. Thus,
the position of the center of any chamber on
the curve according to equation (10) is deter-
mined by

X, 1= Xpetm. (11)

In the model, the size and the position of
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the chambers are not independent from each
other. If we define Kr as the ratio between
consecutive chambers radii, '

Kr= (Kt + 1)'"?, (12)

the following expression relates the rate of
radius increase to the tightness of coiling and
the number of chambers per whorl,

Kr = e'. (13)

Thus, b needs not to be a new parameter of
the model, but is a constant dependent on Kr
and ¢ (cf. Signes et al. 1988).

The displacement of the chambers along
the coiling axis (rate of translation) is deter-
mined by Ky, the third parameter, which is
defined by the following equation,

AY[AX = (Y, 1 — Y )/ (X1
= Ky’

— X")
(14)

where Y, is the distance between the centers
of the first and nth chamber measured along
the coiling axis (fig. 3). When Ky = 0, the
shell is planispiral.

The relative distance from the center of any
chamber to the coiling axis, D, is the fourth
and last parameter of the model. It is defined
as the distance from the center of a chamber
to the coiling axis divided by the radius of
the chamber. The value of this parameter is
constant for all chambers after the first reg-
ular chamber:

D = XN/RJ'I‘ (15)

When D equals one, all chambers are tangent
to the coiling axis. If D is larger than one, an
umbilicus results.

In addition to the initial radius, a second
scaling factor is necessary to determine a
structure, namely, the total number of spheres
in the structure, N.

In summary, four parameters (K¢, ¢, Ky, D)
and two scaling factors (R,, N) must be sup-
plied to the program in order to simulate fully
a foraminiferal shell. Although the chambers
are represented by spheres in the above mod-
el, the conclusions of this study apply to shells
with any chamber shape as long as the struc-
tures are isometric, that is, meet the two con-
ditions of the model.

The Morphospace

By definition, the four parameters (K¢, ¢,
Ky, and D) are independent from each other
in the model, and any different combination
determines a different shell structure. All the
possible combinations determine the mor-
phological scope, or morphospace, of the
model. According to chamber arrangement,
four nonoverlapping regions may be defined:

1. Shells consisting of a set of isolated (un-
connected) chambers. This is the region where
the overlap, defined as the ratio of the radius
of a chamber to the distance between its mid-
point and the one of the succeeding chamber
(Berger 1969), is smaller than 1/(Kr + 1). The
other three regions are filled with construc-
tions consisting of overlapping spheres
which, however, do not necessarily occur in
planktic foraminifers.

2. Shells made up of linearly arranged
chambers (i.e., only consecutive chambers
overlap each other). Uniserial shells result
either when both D and ¢ are large, or when
Ky is large and the number of chambers per
whorl is one. Uniserial planktic foraminifers,
however, do not exist.

3. Shells with completely involute cham-
bers, so that every new chamber encloses the
whole shell. These types emerge from all
combinations of parameters that yield a
chamber overlap (O-lap) value greater than
1/(Kr — 1) (see eq. 17). Involute arrangements
are found in P. obliquiloculata but only the
adult stage of Orbulina universa d’Orbigny is
completely involute.

4. Shells with chambers arranged in a log-
spiral mode. These types result from combi-
nations of parameters intermediate between
2 and 3.

The region of the morphospace occupied
by structures resembling planktic foramini-
fers is relatively small, probably because some
morphologies are out of the scope of the de-
velopmental programs running in planktic
foraminifera (they are impossible to construct
whereas others are not compatible with the
planktic way of life, i.e., they are unadaptive).
Some morphologies, however, appear to be
highly adaptive. Although most morpholog-
ical patterns have arisen independently in
each period of radiation, many homeomorphs
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FiGURE 4. Axial views from the three perpendicular
planes. Structures are shown in side (left) and frontal
(right) view. Ky is varied (see table 1 for other parameters
and variables). A, Ky = 0, planispiral. B, Ky = 1, low
trochospiral. C, Ky = 2, high trochospiral.

have evolved (Norris 1991). This phenome-
non, in which very similar shell morpholo-
gies develop in unrelated groups of planktic
foraminifera, is called iterative homeomor-
phy (Cifelli 1969; Hart 1980). The “polyphy-
letic” origin of several lineages pointed out
by several authors (Banner 1982; Kennett and
Srinivasan 1983) may be a consequence of this
phenomenon. The convergence may be so
strong that it is difficult to distinguish be-
tween Neogene taxa and their Paleogene
homeomorphs (e.g., Subbotina linaperta-Globi-
gerinoides sacculifer; Globorotalia (Turborotalia)
centralis-Globorotalia (Turborotalia) inflata).

The vast majority of modern planktic fo-
raminiferal shells ranges between planispiral
and high trochospiral (fig. 4). A nearly flat
spiral side is typical of many species. In terms
of our model, this means that most shells have
values for the translation rate between 0
(planispiral) and a little more than 1 (slightly
spiroconvex).

The umbilicus is a morphological feature
widely used in taxonomy. In naturally oc-
curring shells, chambers embrace the coiling
axis or have a wide umbilicus (fig. 5). In terms
of the model, the values of D vary between
a little less than 1 or about 2. A very low value
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D E F

FIGURE5. Spiral (A-C)and corresponding umbilical (D-
F) views. Aand D, D = 0.8; Band E, D = 1, all chambers
are tangent to the coiling axis; C and F, D = 1.2, the
umbilicus is open. See table 1 for other parameters.

of D is found for the spherical stage of O.
universa.

The number of chambers per whorl is an-
other feature that differs among species and
usually changes during ontogeny. Higher
values are commonly found during early on-
togeny, abruptly decreasing in later stages.
The most important change occurs during the
transition from the juvenile to the neanic stage
(Parker 1962; Brummer et al. 1987). In gen-
eral, the number of chambers per whorl nor-
mally varies between three and seven. In
terms of the model, the angle between con-
secutive chambers ranges between 27/3 and
21 /7 radians (fig. 6). '

Whereas the absolute dimension of any
chamber can be measured by its radius (fig.
7), the relative proportions of the chambers
are measured by ratio between consecutive
chamber radii. During normal development,
every chamber is larger than the previousone
(except for a variety of terminal chambers,
such as kummerform ones). This sets the low-
er limit for the rate of radius increase higher
than one. The most common values for this
variable are between 1.1 and 1.3 even though
higher values (ca. 3-4) may be recorded in
certain ontogenetic stages such as for the ter-
minal spherical chamber of O. universa. When
the rate of radius increase equals 1.1, the vol-
ume of a new chamber is by definition one-
third of the previous shell volume (see egs.
1 and 12). When the rate of radius increase is

1.3, the volume of every new chamber is 1.2
times the previous shell volume (fig. 8). The
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A B C

D E

FIGURE 6. Spiral views of structures with varying number of chambers per whorl (C/W). A, 3 C/W; B, 4 C/W; C,
5C/W; D, 6 C/W; E, 7 C/W. See table 1 for the other parameters.

rate of radius increase in combination with
the number of chambers per whorl deter-
mines the lobateness of the shell. A high val-
ue for the rate of radius increase in combi-
nation with a low number of chambers per
whorl produces “lobate” structures. In con-
trast, a low value for the rate of radius in-
crease in combination with a large number
of chambers per whorl gives rise to a more
rounded outline in spiral or umbilical views.

Stereometric Properties of
Shell Architectures

The shell volume provides a first-order
measure for the biomass and may be second-
arily related to the size of the food items or
to amount of food needed. The outer surface
area (OSA) is defined as the surface area, at
each growth stage of the shell, which is in
contact with the environment. The surface
area available for exchange between the cy-
toplasm and the outer environment (gases,
nutrients etc.) is only secondarily related to
the outer surface area because it also depends
on the porosity. By analogy to benthic rotaliid
foraminifers, we assume that the exchange of
gases takes place through the pores (Berthold
et al. 1976; Leutenegger and Hansen 1979).
The respiration rate may thus also be per-
ceived as a derivative of the outer surface
area.

The calcification process of planktic fora-
minifers was described with the so-called bi-
lamellar calcification model (Reiss 1957). This
model conjectures that both the outside and
the inside of a new chamber are calcified. The
new calcite layers not only cover the new
chamber but also extend over earlier cham-
bers. The new calcite layer extends over a
maximum of about four chambers on the in-
side and over a maximum of roughly two
chambers on the outside. The thickness of the

inner layer is approximately one-fourth of
the outer one. On both sides the new calcite
layer tapers toward the earlier chambers. Be-
cause of the complexity of the calcification
process and because of individual variation,
it is difficult to assess the total amount of cal-
cite that has been secreted at a certain stage.
For first approximation, we assume that the
total amount of calcite that has been secreted
is related to the total surface area (TSA). The
total surface area is defined as the sum of the
outer surface area from the initial chamber to
the one under consideration:

TSA, = D, OSA..
i=1

Both the volume and surface area of the
geometric structures were determined with a
computer program. As it is extremely difficult
to calculate the volumes and surface areas of
these complex structures by numerical anal-
ysis, we have developed a new method to
estimate these variables (Ott et al. 1992). The
memory of a personal computer is configured
as a cube with an edge length of 150 bytes
(1200 bits). The structure under study is de-
fined within this “bitspace.” It is scaled up or
down to fit in the cube as close as possible.
The bits inside and outside the structure are

A B C

FIGURE 7. Spiral views of three structures differing in
“prolocular size.” The ratio of their initial radii are ap-
proximately 1:24. A, R, =24, B, R, =47, C, R, = 9.5.
See table 1 for the other parameters. In order to keep the
same scale as in figures 4-8, fewer chambers have been
drawn for B and C.
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®
A B

)

C D

FIGURE 8. Spiral view of structures with values of Kt increasing from 0.3 to 1.5. A, Kt = 0.3; B, Kt = 0.5; C, Kt = I;

D, Kt = 1.5. See table 1 for the other parameters.

assigned 1 and 0 respectively. Scanning the
cube bitwise, the 1’s are added up to estimate
the volume and the number of transforma-
tions between 0 and 1 are added up to esti-
mate the surface area. The volume estima-
tions in turn allow the calculation of the -
(see Appendix A). From equation (9) the ef-
fective radius may then be calculated. A scal-
ing factor derived from the discrepancy be-
tween the effective initial radius (R,) and the
initial radius supplied to the computer (R,) is
used to correct for the radii that fit the model.
This method provides estimates for the shell
volume and the outer surface area with rel-
ative errors smaller than 2% and 5%, respec-
tively.

In order to know how the volume, the outer
surface area, and the total surface area of the
structures are affected by the parameters of
the model, 70 structures grouped into five
series have been studied (table 1; figs. 4-8).
All these structures are within the region of
the morphospace corresponding to modern
planktic foraminiferal morphologies. Within
each series, only one parameter is varied.
Comparison of the structures within and be-
tween the five series are made on the basis
of equal volume (biomass). As the parameters
that affect volume (R, and Kt) are kept con-
stant in the first three series, equal chamber
number implies equal volume. As a result,
comparison on the basis of an equal number
of chambers is also possible (fig. 9). On the
other hand, in the structures of the last two
series where the initial radius and the ratio
of the chamber volume to the volume of the
preexisting shell are varied, similar volumes
are reached at different chamber numbers (fig.
10).

The data for volumes and surfaces of the
five series of structures are summarized in

figures 9 and 10. The results have been scaled
down to the same effective initial radius ex-
cept in the fourth series where the effect of
its variation is studied. Only the chambers
after the FRC are compared. In these exam-
ples, the FRC is the ninth chamber; that is,
the discussion is restricted to chambers 9
through 21. '

In the first series, the values of the trans-
lation rate are such that the structures range
from planispiral to high trochospiral (table 1;
fig. 4). The increase in the OSA going from
planispiral (Ky = 0) to low trochospiral (flat
spiral side; Ky = 1) is insignificant (<1%). For
a translation rate larger than one, the outer
surface area changes more drastically. A high
trochospiral structure (Ky = 2) has about 14%
more outer surface area than the former two.
These variations, however, are small in com-
parison to the increase in the outer surface
area with size. As a consequence of definition,
the total surface area and the ratios of outer
surface area to shell volume and total surface
area to shell volume vary in the same pro-
portion as the outer surface area (fig. 9J-M).

In the second series, the relative distance
to the coiling axis (D) is varied between 0.8
and 1.2 (table 1). This corresponds to a shift
from a nonumbilical structure to a more evo-
lute structure with an open umbilicus (fig. 5).
In the second structure all chambers are tan-
gent to the coiling axis (D = 1) and the outer
surface area is 8% larger than in the first struc-
ture where D = 0.8. For values of D larger
than one, the outer surface area changes more
drastically. The structure where D = 1.2 has
25% more outer surface area than that where
D = 0.8. The variations between the structures
are rather small compared to the increase of
the outer surface area with size (fig. 9E-H).
The proportionality is the same for the total
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FIGURE 9. Outer surface area (OSA), total surface area (TSA) and both relative to shell volume (5V) as a function of
chamber number. A-D, Data for five structures differing in the number of chambers per whorl. E-H, Data for three
structures differing in D; J-M, Data for three structures differing in trochospirality. See text for further explanation.

surface area, the outer,surface area per shell
volume, and the total surface area per shell
volume.

In the third series, ¢ is progressing from
values corresponding to three to seven cham-
bers per whorl (table 1; fig. 6). The outer sur-
face area decreases very little with an increase
in the number of chambers per whorl (fig.
9A-D). At equivalent stages of growth, a
structure with seven chambers per whorl has
6% less outer surface area than a structure
with only three chambers per whorl. Note
that these changes are small in comparison
with the increase of outer surface area with
size, that is, from one chamber to the other.
Therefore, the relationships between the out-
er surface area and the chamber number of

the five structures are very similar and appear
as one (fig. 9A-D). The total surface area and
the ratios of outer surface area to shell volume
and total surface area to volume decrease pro-
portionally.

In the fourth series, the initial radius (R,)
is varied from 2.4 to 4.7 to 9.5, the approxi-
mate proportions are 1:2:4 respectively (table
1; fig. 7). Because this is a scaling factor af-
fecting size, an increase in the initial radius
implies that the same size or equivalent vol-
ume is reached at an earlier chamber number
(fig. 10A-E). Since this parameter does not
affect shell morphology, a doubling of the the
initial radius leads to an increase of the sur-
face area by a factor of four and to an increase
of the volume by a factor of eight at equiv-
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alent chamber increments. If the structures
in this series are compared at stages of equiv-
alent shell volume, there are neither differ-
ences in the outer surface area nor in the total
surface area. These relationships have been
used in all other series in order to establish
comparisons between structures having the
same effective initial radius.

In the fifth series, the ratio between the
chamber volume to the volume of the pre-
existing shell (Kt) is varied between 0.3 and
1.5 (table 1). This parameter is the most im-
portant one controlling size. Contrary to the
initial radius, Kt affects both size and shell
morphology. For instance, the lobateness in-
creases (fig. 8). A small increase in Kt pro-
duces an exponential rise in shell volume and
in the total surface area (fig. 10F-K). Com-
parisons between the structures are made on
the basis of equal volume. Although the outer
surface area is not appreciably affected by a
change in K, the total surface area is. For
instance, in the second, third, and fourth
structure of this series, a very similar volume
is reached at the twenty-first, thirteenth, and
tenth chambers, respectively, whereas the
outer surface area remains constant as does
the ratio between outer surface area and shell
volume. The total surface area at the tenth
chamber of the fourth structure is, however,
90% smaller than in the second structure with
21 chambers. In other words, for a given shell
volume, the total surface area decreases with
increasing Kt. The explanation is, that with
lower Kt more chambers are needed to attain
a certain size, and therefore, the equation for
the total surface area contains more terms.

The effects of the parameters on surface
area, volume, and derived properties may be
summarized as follows. The outer surface area
and the total surface area and their ratios to
shell volume vary little with the number of
chambers per whorl, the relative distance from
the center of the chamber to the coiling axis,
or the displacement of the chambers along
the coiling axis. The variation in the outer
surface area and in the total surface area be-
tween two consecutive chamber increments
is greater than the difference measured at the
same chamber number (equal size) between

. 20| A ez 20 |F

5 sl===F | 8| et

= 10|= 10 |l - -

--""--

= & e
9 12 15 18 21 9 12 15 18 21

<

w

Q

=

<

%)

E

£

>

v o2 c.8 i

=3 D 0.6

< D S

A 0.4 ~ae

o T, i 0.2 :--"""‘-- .-.-_"""'---
o | ——— MLt
9 12 15 18 21 9 12 15 18 21

>

w 3 N

< 2 [S~o

L i

Prrtreite Y T -

GROWTH STAGE GROWTH STAGE

FIGURE 10. Shell volume, outer surface area, total sur-
face area and the latter two relative to shell volume as a
function of chamber number. A-E represent data of three
structures differing in the size of their initial spheres:
solid line, R, = 2.4; long-dashed line, R, = 4.7; long-and
short-dashed line, R, = 9.5. F-K represent data of four
structures differing in Kt: solid line, Kt = 0.3; long-dashed
line, Kt = 0.5; long- and short-dashed line, Kt = 0.95;
dotted line, Kt = 1.46. See the text for further explanation.

structures with different shell morphologies
(fig. 9A,B,E,F,J K). The influence of size is most
important at later ontogenetic stages.

With respect to the parameters that directly
affect size (i.e., the initial radius and the ratio
between the volumes of consecutive cham-
bers), the variation in the surface area, vol-
ume and derived ratios is more pronounced.
In any case, the variation decreases with in-
creasing size (figs. 9, 10). Size by itself is the
most important factor controlling the varia-
tion in the outer surface area and the total
surface area and their ratios to the shell vol-
ume.
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Discussion

The central hypothesis of our approach is
that the laws of development in planktic fo-
raminifera give rise to isometric growth. It
should be noted that, even if each isolated
ontogenetic growth phase is isometric, the
shell as a whole may be allometric. Yet, isom-
etry is the most important feature of our mod-
el. At this point, it is important to define what
is meant by isometric growth. Within the
framework of the model proposed herein, iso-
metric growth is achieved when the effective
chamber shape is constant and the volumes
of consecutive chambers are in geometric pro-
gression. In terms of Bookstein (1989), size-
free shape variables and shape-free size vari-
ables do not change after the first regular
chamber. Because it seems impossible to de-
termine the effective chamber shape in actual
specimens, the external chamber shape has
been used in morphometric studies. Because
the shell walls are not infinitisimally thin,
wall thickness increases with increasing
chamber size, and because of the bilamellar
calcification mode, isometric growth may be
obscured.

According to Olsson (1971, 1972, 1973) and
Wei et al. (MS) some planktic foraminifers
grow allometrically. Olsson used the loga-
rithmic spiral for shape description in several
species of Globorotalia. Three variables were
recorded for each specimen in spiral view:
the maximum width of the chamber, the
chamber radius (defined as the maximum dis-
tance from the coiling axis to the edge of the
chamber), and the angle of rotation. The latter
variable is equivalent to ¢ in our model.
Chamber width and chamber radius were
converted to a logarithmic scale, plotted first
as a function of the accumulated angle of ro-
tation and then against each other. A linear
regression analysis was performed for each
of the three pairs of variables. In most cases
the data closely fitted to one straight line or
more because of ontogenetic variation. Al-
though the slopes in the plots of the loga-
rithm of chamber radius versus the logarithm
of chamber width were always very close to
one, Olsson qualified foraminiferal shells as
allometric.

Wei et al. measured 20 linear distances be-
tween reference points defined at two ori-
entations of G. inflata. Sheared principal-com-
ponent analysis suggested that this species
grows allometrically, that is, that shape varies
with test size.

These conclusions represent a challenge to
our conception of foraminiferal morphology.
Geometric patterns of coiling arise as a con-
sequence of a characteristic mode of growth.
Log-spiral patterns of coiling are explained
as a result of exponential growth per chamber
increment while keeping chamber shape con-
stant. Because chamber size determines cham-
ber position, in log-spirally coiled shells, we
expect the slope of the regression of the log-
arithm of chamber radius versus the loga-
rithm of chamber width to be one.

Several comments may be made with re-
spect to the procedure followed by Olsson
and Wei etal. (1) All measurements were taken
from specimens where the outline of early
chambers is blurred by multiple layers of cal-
cite (see figs. in Olsson 1971, 1972, 1973; plate
2 in Wei et al. MS; cf. Brummer et al. 1987;
Plate I-1a,b). True chamber shape variations
during ontogeny and apparent chamber shape
changes caused by later calcification also in-
fluence the measurement. Thus, data from
early chambers are less reliable than those
from later ones. (2) During ontogeny, plank-
tic foraminiferal morphology may change
rather drastically (Parker 1962; Olsson 1971,
1972, 1973; Brummer et al. 1986, 1987, Wei et
al. MS). Uniform spiral coiling may thus be
confined to ontogenetic stages rather than to
the shell as a whole. Consequently, the value
of the parameters that determine size and po-
sition of the chambers may not be the same
for all chambers. (3) Olsson’s regression lines
may not be significantly different from 1, as
neither standard errors, confidence intervals
nor tests for comparison of the slopes are re-
ported. These considerations show that de-
viation from 1 may be an artifact. As his graphs
are nevertheless very close to 1, his results
can also be interpreted in favor of isometric
growth. Malmgren and Kennett (1976) stud-
ied the biometry of Globigerina bulloides d'Or-
bigny and concluded that it grows isometri-
cally.
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TaBLE 2. Relationships between the parameters of the model presented here (REMAKER) and those of the models
of Raup (1966) and Berger (1969). A continuous line indicates equivalence; a dashed line indicates that both parameters
have similar roles but are differently defined. “Implicit” means that the parameter can be derived from parameters

of the current model. See the text for further explanation.

Raup 1966 REMAKER Berger 1969
S none none
o ———— D implicit
T L Ky none
w implicit (b) implicit
None ¢ A-angle
None | S et Q-ratio
None implicit O-lap

Comparison with Other “Fixed-Axis” Mod-
els.—There are important affinities between
the . model presented here and the models of
Raup (1966) and Berger (1969). First of all,
they deal with log-spirally coiling and iso-
metric structures. The model of Raup (1966)
was designed to simulate the basic shape of
accretionary shells, like those of gastropods,
cephalopods, pelecypods, and brachiopods.
The model of Berger (1969) and the one pre-
sented here have been designed to simulate
discrete shell growth, typically that of plank-
tic foraminifera. The relationships between
the parameters of the three models serve as
a basis for their comparison (table 2).

In our model, the parameter D is defined
in a slightly different way than its homonym
in the model of Raup (1966). He defined this
parameter as the relative distance from the
generating curve to the coiling axis. D is 0
when the chambers are tangent to the coiling
axis. The equivalent situation in our model
arises when D equals 1. The displacement of
the chamber centers along the coiling axis
(Ky) is equivalent to the whorl translation
rate (T) of Raup. The whorl expansion rate
(W) of Raup controls the coiling around the
axis and relates to b in our model according
to the following equation (derived from
equations 11 and 13):

W = g2 or b=1InW/2r. (16)
There is no parameter equivalent to Raup’s
shape of the generating curve (S) in our mod-
el orin Berger’s. In the latter models, chamber
shape is constant and spherical.

Berger (1969) did not explicitly mention
that his model generated isometric structures.
Thus, he probably chose his parameters be-

cause of their frequent usage in micropale-
ontological terminology, rather than because
of their affinity with isometric growth. He
used the chamber radius increase, the number
of chambers per whorl, and the overlap be-
tween successive chambers as parameters for
his model. Because he did not use a parameter
for the whorl translation rate, his model is
restricted to handle planispiral structures. Be-
cause isometry was not his main considera-
tion, he did not account for the difference
between the initial radius (R,) and the effec-
tive initial radius (R,), nor did he compensate
for the different relative losses of volume
caused by overlap in early chambers, that is,
the early stages of his model do not grow
exponentially.

Three parameters define his model; the
A-angle and the angle ¢ are the same but the
first is given in degrees and the second in,
radians. The Q-ratio is exactly the same as Kr
and O-lap can be expressed in terms of our
model as follows:

O-lap
= [D cos a(Kr* — 2Kr cos ¢ + 1)']"!, (17)

where « is the angle between a plane per-
pendicular to the coiling axis and the line
connecting the centers of two successive
chambers. In planispiral structures a equals
0. This angle can also be expressed in terms
of our model as

a = cotg[Ky(Kr — 1)]

+ [(Kr* — 2Kr cos ¢ + 1)'2].  (18)

Conversely, the parameter D of our model can
be expressed in terms of the parameters of
the model of Berger as
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D =[O-lap(Q* — 2Q cos A + 1)'*] ' (19)

where Q is the Q-ratio and A is the A-angle.
A characteristic feature of Berger’s model
is that the first chamber in every structure is
forced to be tangent to the coiling axis. This
causes a deviation of early chambers from the
logarithmic spiral and, consequently, a dis-
crepancy between the position of these cham-
bers and the chambers in an analogous struc-
ture determined with our model. In other
words, if we restrict ourselves to planispiral
coiling, it is possible to determine nearly the
same structures with both models. The only
difference is the position of some of the early
chambers; these seldom exceed the first reg-
ular chamber. With respect to the volume and
surface area calculations, our method (Ott et
al. 1992) enables more accurate estimates.
Functional Significance.—The functional sig-
nificance of different morphological traits of
foraminiferal shells has received much atten-
tion (see, e.g., Marszalek et al. 1969; Hottinger
1984, 1986; Hemleben et al. 1989; De Renzi
1988). In a series of papers, Brasier (1982, 1986)
emphasized the role of the apertures in the
history of foraminiferal shell architectures as
they determine the lines of communication
between the organism and the environment.
Herein, we take a complementary approach.
We focus on general shell morphology and
its relationship with the outer surface area,
the total surface area, and shell volume be-
cause these may have played or still play a
major role in the evolution of these organ-
isms. These magnitudes change exponential-
ly with size and have important conse-
quences on physiology and functional
requirements. In combination with the po-
rosity, the outer surface area may govern the
maximal rate of gas exchange and may thus
be connected to the respiration rate. The vol-
ume (biomass), on the other hand, is related
not only to the amount of oxygen needed but
also to the amount of prey needed. The total
amount of calcite secreted is directly related
to the total surface area. The latter is thus
proportional to shell weight. In a second or-
der relationship, the total surface area per
unit of volume is proportional to shell den-
sity and thus to buoyancy (a relationship also

anticipated by the modeling of Brasier 1986).
Because of its relationship to the total amount
of calcite in the shell, the total surface area is
an indicator of the calcification effort. The
calcification effort must be expressed per unit
of volume because the calcium pool is prob-
ably biomass dependent (Anderson and Faber
1984). The calcification effort may be ex-
pressed per chamber or for the whole shell.
We define the total calcification effort as the
ratio between the total surface area and the
shell volume, and calcification effort per in-
crement as the ratio between the outer surface
area of chamber n and the shell volume (OSA,, /
SV). A high total calcification effort implies
that more calcification matrix has to be pro-
duced and that more energy is required for
calcium-pump activity. Thus, energetic ar-
guments may counteract development to-
ward a high total calcification effort. The size
of the calcium pool, on the other hand, may
limit the calcification effort per increment.
Usually, if the calcification effort per incre-
ment is small, the total calcification effort is
large. For instance, the general trend in
planktic foraminiferal ontogeny and phylog-
eny seems to be from a low to a high calci-
fication effort per increment and from a high
to a low total calcification.

Our model indicates that shell size is the
major factor that determines the value of the
ratio of surface area to biomass and the ratio
of total surface area to biomass. Only changes
in the initial radius (R,) and in the ratio be-
tween chamber volume and the existing shell
volume (Kt) are shown to have a significant
effect on the ratio between the outer surface
area and the shell volume and on the ratio
between the total surface area and the shell
volume. Changes in the initial radius do not
alter shell morphology. Thus, changes of shell
morphology, other than the one caused by
Kt, only provide a fine tune-up of these ratios,
mostly in the early stages of development.
During these early stages of development,
however, changes in the shell morphology as
a result of the other parameters may be rel-
atively important. For example, increases in
D and Ky may compensate for the lowering
in the ratio of the outer surface area to the
shell volume and of the total surface area to




MODELING FORAMINIFERAL ARCHITECTURE 87

the shell volume between consecutive cham-
ber increments.

An increase in the initial radius or in Kt
leads to a reduction in the number of cham-
bers before a given size or volume is reached
(fig. 10). However, only the increase of Kt will
reduce the total calcification effort. These ob-
servations stress the possible role of size as a
controlling factor during foraminiferal on-
togeny and phylogeny. The drastic morpho-
logical changes between consecutive stages
during ontogeny are also size-dependent
(Brummer et al. 1986, 1987).

Isometric development imposes restric-
tions on the organism’s strategy for chamber
arrangement, which are related to scaling.
Spherical chambers have the lowest possible
outer surface area to volume ratio. If the dis-
parate increase in volume respective to outer
surface area limits the growth of planktic for-
aminifers, shells with a large outer surface
area to volume ratio will be favored, that is,
small, highly spired shells with few chambers
per whorl. Examples of this strategy are the
biserial form Streptochilus globigerus (Schwa-
ger) and the triserial form Gallitellia vivans
(Cushman). They are small and can be re-
garded as extremely high trochospiral shells
with only two and three chambers per whorl,
respectively. A large ratio of outer surface
area to shell volume also seems to character-
ize specimens at the base of the adaptive ra-
diations. The Middle Jurassic species Globu-
ligerina bathoniana (Pazdrowa) is small and has
three to four chambers per whorl arranged
in a high trochospiral (Riegraf 1987). Early
Tertiary planktic foraminifers, on the other
hand, are also small but have more chambers
per whorl and are low trochospiral. Some,
however, have a large umbilicus that also in-
creases the outer surface area to shell volume
ratio (e.g., Eoglobigerina eobulloides). Appar-
ently, at this size, the ratio of the outer surface
area to the shell volume does not restrict the
development of features that tend to increase
the ratio. The transition from the juvenile to
the adult stage, which is generally marked by
a reduction of the number of chambers per
whorl and an increase in trochospiralness,
may be controlled by the ratio of the outer
surface area to the shell volume.

Deviations from isometry would provide a
solution to size constraints and would allow
the organism to attain larger sizes and pos-
sibly enhance the reproductive capacity. Our
model does not allow deviations from isom-
etry. However, the same two conditions that
explain log-spiral coiling after the first reg-
ular chamber also explain the deviation from
log-spiral coiling before the first regular
chamber. To maintain exponential growth
(keep Kt constant) before the first regular
chamber in structures with spherical cham-
bers, two alternatives were proposed: (1) to
maintain a log-spiral throughout ontogeny,
or (2) keep Kr constant. The first solution im-
plies that the chamber radii are not in geo-
metric progression; that is, Kr is not constant
before the first regular chamber. This con-
sequence makes the first solution very un-
likely, because log-spiral coiling is achieved
as a consequence of a constant Kt. As shown
earlier, the second solution demands modi-
fications of at least one of the three following
parameters, ¢, Ky, or D. Therefore, before the
first regular chamber, the number of cham-
bers per whorl must be higher, the structure
must be lower trochospiral or the umbilicus
must be larger than after the first regular
chamber. These adaptations or a combination
thereof imply that the chambers before the
first regular chamber deviate from a log-spiral
pattern of coiling. Neither of the two solu-
tions has mathematical priority. Which so-
lution, however, is realized in planktic fo-
raminifera? Many juvenile stages of planktic
foraminifers are characterized by a higher
number of chambers per whorl, flatter coil-
ing, and a more open umbilicus than neanic
or adult stages (Parker 1962; Brummer et al.
1987). These observations fit remarkably with
the second solution. Although additional
testing is required, these data support our ini-
tial assumption that isometry is an important
trait of planktic foraminiferal ontogeny. It
would suggest that the laws of growth behind
planktic foraminiferal architecture are ori-
ented toward the maintainance of exponen-
tial growth per chamber increment. Together
with a constant effective chamber shape, this
gives rise to isometric shells, if not for the
shell as a whole, then at least for each onto-
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genetic stage. Their ontogeny may be tenta-
tively explained as follows. The chamber ra-
dii of each ontogenetic stage are in geometric
progression and only the centers of juvenile
chambers deviate from the log-spiral. Appar-
ently, the first neanic chamber is equivalent
to the first regular chamber. Thus, from the
neanic stage onward, log-spiral coiling and
exponential growth per stage do not exclude
each other and isometric growth occurs. In
this context, the drastic morphological
changes during the neanic stage may be
viewed as a constructional bridge between
juvenile and adult architecture. In other
words, the neanic stage marks the transition
from a set of “juvenile” parameters to “adult”
ones while maintaining exponential growth
per chamber increment.

The size constraints caused by metabolic
limitation may have played a preeminent role
in the evolution and the diversification at the
species level (Brasier 1982, 1986). In planktic
foraminifers, the biomass determines the
number of gametes that can be produced.
Morphological changes occuring in later on-
togenetic stages, such as the transition from
neanic to adult or from adult to terminal, may
have first appeared in the course of the evo-
lution after developmental solutions allowed
the organism to attain bigger sizes. Changes
in chamber shape may be such a solution to
overcome the limits imposed by size. In our
model, the chamber shape is kept spherical
throughout ontogeny. In planktic foramini-
fers, however, chamber shape is not constant
during growth. Embryonic chambers tend to
be spherical, whereas the juvenile chambers
range from spherical to subspherical or ovoid
(Sverdlove and Bé 1985; Brummer et al. 1987).
The most prominent changes in chamber
shape occur in the adult stages of some large
species such as, for example, the development
of “clavate” chambers in Globigerina digitata,
and an involute globular chamber in Orbulina
universa. The secretion of kummerform and
saclike chambers in G. sacculifer is probably
related to the reproduction process and has
little to do with size or growth problems
(Bijma et al. 1990; Bijma and Hemleben MS).

Future investigations should focus on the
transformation of the shape parameters dur-
ing ontogenetic development and during the

evolution lineages, especially at the begin-
ning of the adaptive radiations.

Conclusions

We argued that very elementary laws of
construction may give rise to a Bauplan that
leads to growth according to the principle of
geometric similitude. Thus, isometry may play
a key role in the macroevolutionary patterns
of planktic foraminifers. Because this hy-
pothesis cannot be directly tested, a computer
simulation was performed. Exponential
growth per stage and log-spiral coiling could
be the most prominent characters of devel-
opment in planktic foraminifera. We have
reached the following conclusions.

1. The demonstration of isometry in plank-
tic foraminifera needs further empirical test-
ing from real life histories.

2. In terms of the model, the neanic stage
of Brummer (1986, 1987) is equivalent to the
first regular chamber, and the drastic mor-
phological changes from the juvenile to the
adult stage might represent the necessary
transition from one set of parameters defin-
ing juvenile architecture to the other set that
determines the adult shell configuration.

3. Thus, uniform coiling may be confined
to ontogenetic stages, rather than to the shell
as a whole; that is, the shell as a whole may
be allometric.

4. Size is the major factor determining the
values of the ratios of surface area to biomass
and the total calcification effort to biomass.

5. Of the parameters tested, only the pro-
portionality between consecutive chamber
volumes (Kt) may influence the surface area
to biomass ratio and the total calcification ef-
fort per unit of biomass to a large extent.

6. The other shape parameters only pro-
vide a fine tune-up of these ratios, mostly in
the early stages of development.

7. The above conclusions are not only valid
for structures that have spherical chambers,
but for any chamber shape as long as growth
is determined by the two basic conditions of
the model; that is, growth is isometric.
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Appendix A

The following volumetric relationships apply to any structure that is in agreement with the two hypotheses of
our model. Because the model largely eliminates chamber shape the relationships apply to any isometric structure
independent of the shape of the chambers (as long as the effective shape of the chambers is constant).

No. Chamber volume Shell volume
1 cv,=CV, SV, =CV,
2 CV,=Kt 5V, SV,=85V, + CV,=SV (Kt + 1)
3 CV,=Kit SV, =Kt SV, =CV,(Kt + 1) SV,=58V, + CV,=5SV (Kt + 1)2
4 CV,=Kt SV, =CVy (Kt + 1) SV,=8V,+ CV, =SV (Kt + 1)
n CV,=KtSV, = CV, (Kt + 1)-2 sV, =8V,_, +CV, = SV (Kt + 1)

In a further step, chamber shape may be introduced. Here, chambers are spherical.

No. Chamber volume Chamber radius
1 CV,=cR;?
2 CV,=cR,%, =Kt CV, R = KH(1/8,)R?
3 CV,=cR38, = (Kt + 1)CV, R2 = (Kt + 1)(5,/8,)R;?
4 CV,=cR2, = (Kt + 1)CV, R2 = (Kt + 1)(5,/8)R;
m CV, =cR,%, = (Kt + 1)CV,,_, R,*= (Kt + 1)(3,_,/8.)R,,_,
m+1 CV,.1 =cR,.%, = (Kt + 1)CV,, R,...* = (Kt + 1)(5,,/8,)R,* = (Kt + 1)R?
n CV, =cR%, = (Kt + 1)CV,_, R}?= (Kt + )R,

Where, ¢ = 47/3 and the
(i.e.,
Consequently, equation (5) may be derived: R,* = KH(Kt +

m + 1th chamber is the FRC. The 8(i) factor is defined as the ratio between chamber volume
the effective volume added to the shell by a chamber) and the volume of a sphere

with the same radius.
1)*~* R 2/5,. This applies to all chambers.
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Appendix B

List of parameters and scaling factors of the geometric model
and abbreviations in alphabetical order.

h
CV.
D

1

O gy

Kr
Kt

A constant specifving the tightness of coiling
Volume of nth chamber

Distance of the chamber center to the coiling axis di-
vided by the radius of this chamber (related to um-
bilicus)

Ratio between the volume of the chamber and that of
a complete sphere with the same radius

Ratio between the volume of any chamber after the
first regular one and the volume of a complete sphere
with the same radius

Ratio between consecutive chambers radii

Ratio between a chamber volume to the volume of the
preexisting shell (relates to exponential growth)
Expresses the displacement of the chambers along the
coiling axis (related to trochospirality)

AasA,

QOuter surface arca of the shell after secretion of the
nth chamber

Radius of the nth chamber

Initial radius

Effective initial radius

Shell volume after secretion of the nth chamber
Total surface area; addition of the outer surface arcas
of the first to the nth chamber

Angle between consecutive chombers (related to the
number of chambers per whorl)

Radial distance from the coiling axis to a point placed
at B radians from the origin of angles

Distance from the first point in the curve to the coiling
axis

Distance from the center of the nth chamber to the
coiling axis

Distance between the centers of the first and nth cham-
ber measured along the coiling axis




