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Abstract: 24 

The stable carbon isotope ratio of atmospheric CO2 (!13Catm) is a key parameter to decipher 25 

past carbon cycle changes. Here we present !13Catm data for the last 24,000 years derived 26 

from three Antarctic ice cores. We conclude that a pronounced 0.3‰ decrease in !13Catm 27 

during the early deglaciation can be best explained by upwelling of old, carbon-enriched 28 

waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial 29 

biosphere, changes in sea surface temperature, and ocean circulation governed the !13Catm 30 

evolution. During the Last Glacial Maximum, !13Catm and CO2 were essentially constant, 31 

suggesting that the carbon cycle was in dynamic equilibrium and that the net transfer of 32 

carbon to the deep ocean had occurred before then. 33 

 34 

One Sentence Summary: 35 

High-resolution ice core records of stable carbon isotopes in atmospheric CO2 constrain 36 

carbon cycle changes during the Last Glacial Maximum, the early deglacial, and the 37 

transition into the Holocene. 38 

 39 

 40 

 41 

Main Text: 42 

During the last 800,000 years (800 kyr), atmospheric CO2 concentrations have varied in 43 

close relation to Antarctic temperatures (1, 2) and the general waxing and waning of 44 

continental ice sheets. In particular, CO2 rose from a stable level of 190 parts per million by 45 
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volume (ppmv) during the Last Glacial Maximum to about 280 ppmv in preindustrial times, 46 

showing pronounced differences in atmospheric CO2 rates of change in the course of the 47 

last glacial/interglacial transition (3). Many processes have been involved in attempts to 48 

explain these CO2 variations, but it has become evident that none of these mechanisms 49 

alone can account for the 90 ppmv increase in atmospheric CO2. A combination of 50 

processes must have been operating (4, 5), with their exact timing being crucial. However, 51 

a unique solution to the deglacial carbon cycle changes has not been yet found. 52 

 53 

In this respect, high-resolution and precise !13Catm records from Antarctic ice cores are 54 

needed to better constrain the evolution of carbon cycle changes during the last 55 

deglaciation. On millennial time scales, !13Catm is primarily influenced by the !13C of 56 

dissolved inorganic carbon (DIC) (!13CDIC) and sea surface temperature (SST), which 57 

controls the isotopic fractionation during air/sea gas exchange. The continuous rain of 58 

isotopically light organic material to the interior of the ocean draws down carbon from the 59 

surface layer to intermediate and deep waters, where the organic carbon is remineralized. 60 

Consequently, a vertical !13CDIC gradient is established, controlled by the interplay of the 61 

ocean circulation with this so-called “biological pump”. The more intense the circulation, 62 

the smaller the gradients are for !13CDIC, DIC, oxygen and nutrients. Superimposed on these 63 

marine carbon cycle processes are climate-induced changes in terrestrial biosphere carbon 64 

storage, which result in a net change in the carbon isotopic composition of the 65 

ocean/atmosphere system. On orbital time scales, weathering and sedimentation of CaCO3 66 

affect !13CDIC, !13Catm and atmospheric CO2 as well.  67 

 68 
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Until recently (6), analytical constraints represented the fundamental limitation on the 69 

utility of !13Catm ice core records (7, 8). Here we provide evidence (Fig. 1) about possible 70 

causes of carbon cycle changes with measurements of !13Catm from two Antarctic ice cores 71 

(EPICA (European Project for Ice Coring in Antarctica) Dome C and Talos Dome), 72 

performed with three independent methods in two different labs (referred to as Bern 73 

sublimation, Bern cracker and Grenoble mill data) (6, 9). One of our records is based on a 74 

sublimation method (10) that avoids the effects associated with incomplete gas extraction 75 

and thus yields more precise results (see Supporting Online Material (SOM)). A stringent 76 

residual analysis of the three data sets shows virtually no offset between the two Bern data 77 

sets and only a small systematic offset between the Bern and Grenoble data of 0.16‰, 78 

which can be explained by a method-dependent systematic fractionation. After correction 79 

of this offset, we combined the three !13Catm records over the last 24 kyr using an error-80 

weighted Monte Carlo bootstrap approach. This method showed that all three data sets are 81 

essentially compatible within their analytical uncertainties. To make full use of the 82 

resolution and precision of the data, the inclusion of all three data sets is required, although 83 

all our conclusions are also supported by the individual records. The final data set consists 84 

of 201 individual measurements, each reflecting typically 2 to 4 replicates and with an 85 

analytical 1" error between 0.04 and 0.12‰. Since the resulting Monte Carlo Average 86 

(MCA) removes most of the analytical uncertainties, it contains less high-frequency 87 

variability compared to the raw data. This is in line with the centennial-scale low-pass 88 

filtering inherent to the bubble enclosure process at Dome C. Accordingly, the retained 89 



 5 

variability can be regarded as the signal most representative of millennial !13Catm changes 90 

(see SOM for details regarding the MCA and its uncertainty). 91 

 92 

Our !13Catm data is in good agreement with previously published lower-resolution records 93 

(6, 9). Our record shows a very stable level between 24 and ca. 19 kyr before present (BP, 94 

where present is defined as 1950), with an average !13Catm of -6.45‰ (Tab. S1 and S2), 95 

similar to the -6.35‰ of the Late Holocene (Fig. 2B). Given the fact that a large set of 96 

environmental parameters such as atmospheric CO2, global SST, terrestrial carbon storage, 97 

and ocean circulation have varied between the LGM and the Late Holocene, almost 98 

identical !13Catm values indicate that opposing effects must have offset each other (11). This 99 

becomes clear if we look at three first-order effects on !13Catm: A SST rise of 1 K translates 100 

into a 0.1‰ increase in !13Catm, due to temperature-dependent fractionation between 101 

atmospheric CO2 and marine DIC species (12). Assuming a global LGM-to-Holocene SST 102 

rise of 3 K would result in about 0.3‰ higher !13Catm for the Holocene, provided that SST 103 

distribution and CO2 gross flux exchange patterns remained constant. This effect is further 104 

augmented by the uptake of isotopically light carbon by the land biosphere and 105 

counterbalanced by the smaller vertical gradient in !13CDIC in the Holocene ocean, 106 

supported by marine data (13). The fact that both !13Catm and CO2 show little variation from 107 

24 to 19 kyr BP points to the carbon cycle being essentially in dynamic equilibrium at that 108 

time. As can also be seen in Fig. 2, the climate variations related to Heinrich stadial 2 109 

(HS2) and Dansgaard-Oeschger event 2 (DO2) had little effect on the global carbon cycle 110 

during this time interval. However, given the opposing trends for reconstructed atmospheric 111 
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#14C (#14Catm) (14, 15) and the expected #14Catm evolution (16) based on variations in 14C 112 

production rate (17, 18), the global 14C budget was not balanced (Fig. 2A).  113 

 114 

After a very small increase in !13Catm at the very end of the glacial, a sharp drop in !13Catm 115 

starting at 17.5 kyr parallels the onset of increasing atmospheric CO2. Taken at face value, 116 

this would point to an early SST rise that preceded the onset of the CO2 increase. When we 117 

apply a crude SST correction to our !13Catm data based on a global estimate of SST 118 

temperature changes during the transition (see SOM), this !13Catm increase vanishes (Fig. 119 

2B). Note, however, that this 0.06‰ excursion is within the uncertainties of our data and 120 

that other effects could also lead to this small enrichment in !13Catm. The 0.3‰ drop in 121 

!13Catm after the onset of the transition at 17.5 kyr BP is accompanied by a CO2 increase of 122 

about 35 ppmv and a 190‰ drop in #14Catm (19), which has been attributed to a release of 123 

old carbon from the deep ocean. This coeval drop in !13Catm and #14Catm during the so-124 

called “mystery interval”, 17.5 – 14 kyr BP (19), is arguably the most enigmatic carbon 125 

cycle change in the course of the transition and will be discussed in more detail below. 126 

 127 

After the broad !13Catm minimum is reached at about 16 kyr BP, !13Catm increases slightly 128 

by 0.1‰ during the pronounced Bølling-Allerød (BA) warming. Other than circulation 129 

changes in the Southern Ocean (20), the regrowth of the terrestrial biosphere in the northern 130 

hemisphere could contribute to this increase in !13Catm (4). However, since the SST-131 

corrected !13C evolution (Fig. 2B) does not show any increase, a robust process attribution 132 

requires precisely dated SST reconstructions and transient carbon cycle modeling.  133 
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 134 

An almost linear rise by 0.06‰ per kyr follows the second !13Catm minimum at 12.2 kyr 135 

BP, leading to maximum values of -6.33‰ at around 6 kyr BP. This rise might be largely 136 

explained by the continuing regrowth of the terrestrial biosphere (21), in concert with 137 

smaller contributions from SST warming and changes in circulation and export production 138 

(9, 22). From this mid-Holocene maximum, !13Catm values decline slightly to reach values 139 

of -6.35‰ at 0.5 kyr BP, as previously reported (6). 140 

 141 

As mentioned above, the carbon cycle changes during the mystery interval have been a 142 

matter of intense debate (19, 20, 23). Our high-resolution !13Catm record together with other 143 

records of carbon cycle changes and insights from models may help to constrain hypotheses 144 

put forward to explain the mystery interval. The rise in CO2 and the decline in !13Catm and 145 

#14Catm between 17 and 15 kyr BP fit the concept of bringing DIC-rich waters with old 146 

carbon into exchange with the atmosphere. Indicative 14C signals of upwelling of old, CO2-147 

enriched deep water were found in Pacific intermediate waters (24), but others (23) ruled 148 

out such old water in the northeast Pacific, and evidence for a 14C-depleted glacial deep 149 

ocean remains elusive (19, 23, 25). These #14C studies were usually confronted with 150 

variable reservoir age between benthic and planktonic foraminifera. A study using deep sea 151 

corals now circumvents this problem by applying absolute U-Th dating and shows that the 152 

deep glacial Southern Ocean indeed ventilated its 14C-depleted reservoir during the mystery 153 

interval (26). 154 

 155 
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The constant !13Catm values during the late glacial indicate that the build-up of such an old, 156 

DIC-rich reservoir must have occurred before 24 kyr BP. A large number of records mark 157 

the start of the deglaciation around 17 kyr BP (Fig. 2). Within the uncertainty in marine and 158 

ice core age scales, the CO2 increase, the pronounced #14Catm drop (15), the resumption of 159 

vigorous Southern Ocean upwelling as recorded in intense deposition of biogenic opal (20), 160 

and the launch of ice-rafted debris layers at the beginning of the Heinrich 1 stadial (27) all 161 

occurred simultaneously. Interestingly, our !13Catm record shows its largest deviation of 162 

0.3‰, i.e. the entire !13Catm decrease from the LGM to the Preboreal (PB), within the first 2 163 

kyr after the start of the deglaciation. Within the same interval, CO2 rose by 30 ppmv from 164 

190 ppmv to 220 ppmv, i.e. only 35% of the LGM-PB rise. Together with the trend reversal 165 

in !13Catm towards the end of the mystery interval, this indicates that only a fraction of the 166 

glacial/interglacial CO2 increase can be explained by an intensification of deep ocean 167 

ventilation bringing isotopically depleted and carbon-rich water to the surface of the 168 

Southern Ocean. Our new, high-resolution !13Catm data constrain the period of this release 169 

of isotopically depleted carbon from the deep ocean to the atmosphere to between 17.4 kyr 170 

BP and 15 kyr BP. This interpretation of the proxy records is quantitatively in line with 171 

dynamical ocean model results that link deep ocean ventilation, atmospheric CO2, !13Catm, 172 

!13CDIC, opal burial, and radiocarbon (28). 173 

 174 

Alternative hypotheses (29, 30) invoking the release of old carbon from permafrost or 175 

carbon locked under continental ice sheets are unlikely to explain the carbon cycle changes 176 

in the mystery interval because the amount of terrestrial carbon needed to account for the 177 
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14C drop is very large, at 5000 Gt (25), and would conflict with the moderate 30 ppmv rise 178 

in atmospheric CO2. Moreover, it would lead to an overall decline in !13CDIC, which is not 179 

observed in benthic foraminifera in the deep ocean (13, 22). Also, a carbonate dissolution 180 

event at the sea floor that would have to accompany such a large terrestrial carbon release 181 

into the atmosphere/ocean system is not imprinted in the deglacial marine CaCO3 record 182 

(31)  183 

 184 

Consequently, despite the fact that the search for an extremely 14C-depleted deep water 185 

mass in marine records has thus far not been successful (23) and might not even essential to 186 

explain the #14Catm anomaly (26), the release of carbon from the deep ocean remains the 187 

most plausible scenario to explain the early deglacial drop in our new !13Catm record. 188 

Furthermore, model results suggest that a !13Catm decrease of 0.3‰ and a CO2 increase of 189 

about 30 ppmv can be accommodated by relatively small (about 20‰) and spatially 190 

complex changes in deep ocean #14C (28). These changes may remain undetected in the 191 

search for the old abyssal water using benthic foraminifera (19, 25). However, they are also 192 

too small to explain the reconstructed #14Catm decline in the mystery interval. Based on 193 

these considerations, the currently available marine and ice core information cannot be 194 

reconciled with the atmospheric radiocarbon record in a straightforward manner. One 195 

possibility to resolve this issue is to also reconsider a larger change in 14C production 196 

between the Holocene and the glacial, and to work towards independent verification of the 197 

#14Catm  history.  198 

199 
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Fig. 1. Ice core reconstructions of atmospheric !13C and CO2 concentration covering the 273 

last 24 kyr. (A) !13Catm of atmospheric CO2 measured with three different methods on two 274 

different ice core drill sites. Blue circles: Bern cracker data, green squares: Grenoble mill 275 

data (9) after offset correction, red circles: Bern sublimation data. Red stars indicate values 276 

from the sublimation method but measured on Talos Dome Ice Core (TALDICE). Error 277 

bars represent the standard deviation of replicate measurements. The black line is the result 278 

of 4000 Monte Carlo simulations representing an error-weighted average of the different 279 

!13Catm data sets. The light and dark shaded areas represent the 2" and 1" error envelope 280 

around the Monte Carlo Average (see SI). (B) CO2 concentration. Black circles represent 281 

earlier measurements on EDC (3), other symbols are the same as in panel A. Note: All ice 282 

core records are plotted on a synchronized age scale (32). 283 

284 
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Fig. 2. Ice core reconstructions and marine records illustrating the evolution of major 284 

components of the Earth climate system over the last 24 kyr. (A) Reconstructed #14Catm 285 

from IntCal09 (14) and the 230Th-dated Hulu Cave #14Catm record (15) compared with 286 

modeled (16) #14Catm assuming a constant carbon cycle under pre-industrial conditions but 287 

considering temporal changes in 14C production (either based on 10Be (18), upper and lower 288 

estimates enveloped in gray lines, or on paleomagnetic field intensity (17), hatched area). 289 

(B) Monte Carlo simulations (this study) of the evolution of !13Catm before (red line 290 

represents the MCA, 2" and 1" envelopes are in gray) and after SST correction (gray line; 291 

see SI) (C) Opal flux in the Southern Ocean as a proxy for local upwelling (20). (D) Record 292 

of ice rafted debris (IRD) in the North Atlantic associated with Heinrich stadials (HS1 and 293 

HS2) (27). (E) Greenland temperature proxy !18O (33). (F) Reconstructed atmospheric CH4 294 

concentration (34) (G) Antarctic temperature proxy !D from the EDC ice core (35). (H) 295 

Compilation of reconstructed CO2 shown in Fig. 1B. Green bars indicate intervals with a 296 

strong net terrestrial carbon build-up, blue bars indicate intervals where sequestered deep 297 

ocean CO2 was released back to the atmosphere. Note: Ice core records are plotted on a 298 

synchronized age scale (32), other records are plotted on their individual age scales.  299 

 300 
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Materials and Methods 

 
Analysis of 13C on ice core samples 
 
 

The measurement of 13C on ice core samples follows well-established protocols 
which have been applied in other studies (6, 9, 10, 35). In short, all three methods rely on 
four main steps. First, enclosed atmospheric air from the ice sample is released using a 
dedicated extraction device (sublimation, needle cracker and a ball mill for the respective 
data sets: Bern sublimation, Bern cracker and Grenoble mill). In a second step, the CO2 
from the released ice core air is separated from the bulk air (N2, O2 and Ar) using 
cryogenic trapping. Third, a gas chromatographic column purifies the CO2 sample from 
other trace gases such as N2O. Finally, the stable carbon isotopic ratio of the CO2 sample 
is measured against a bracketing standard using an isotope ratio mass spectrometer. The 
typical measurement reproducibilities of the three methods are 0.05�‰ - 0.07�‰ for the 
Bern sublimation (6, 10), 0.07�‰ for the Bern cracker (6), and 0.10�‰ for the Grenoble 
mill data set (9). Note that the method used for the Bern sublimation data set employs a 
novel sublimation technique (10). Besides a somewhat better prevision, this technique 
offers the unique advantage of a quantitative gas extraction from the ice sample. The two 
other methods use conventional mechanic extraction devices (mill or cracker techniques), 
which extract only around 80% of the enclosed air in samples consisting of bubbly ice 
(usually the upper part, i.e. <600 m depth, of a deep ice core). This may become more 
problematic for ice from the bubble clathrate transition zone, where fractionation between 
different gases has been observed for incomplete gas extraction (36). Here we use only 
deglacial ice from Dome C located in the pure bubble zone and no gas extraction effects 
are to be expected for any extraction method used.  
 
 
 
Gravitational correction of the 13C data 

 
Since gases and their isotopes become fractionated in the diffusive firn column 

due to gravitational fractionation, the measured 13C values must be corrected for 
gravitational enrichment to derive the atmospheric signal ( 13Catm). To do this, measured 

15N on N2 serves as a proxy for the gravitational enrichment of the stable carbon 
isotopes of CO2. This approach can be used because the isotopic composition of N2 was 
constant over the covered time interval, and the gravitational fractionation is only 
dependent on the mass difference, m, of the molecules, i.e. m = 1 for both 15N and 

13C. The three data sets (Bern sublimation, Bern cracker, and Grenoble mill) were 
corrected using the same measured 15N data set provided by Dreyfus (37) and by 
following previously published procedures (6, 9, 35). The typical gravitational 
enrichment for the EDC core ranges between 0.42�‰ for glacial samples and 0.52�‰ for 
Holocene samples. The reproducibility of the 15N measurements is about 0.01�‰ (37).  

As the 15N measurements and 13C measurements are not carried out on exactly 
the same ice core sample nor at the same temporal resolution, an interpolation step must 

2 
 



 
 

first be performed. To prevent all measurement noise of 15N data from being transferred 
to the reconstructed 13Catm record, a spline interpolation is used, which is superior to a 
point-to-point interpolation for reasons discussed by Elsig (35). A second approach 
makes use of an empirical relation between 15N and the water isotopic composition D, 
which serves a proxy for relevant firn processes, i.e. accumulation rate, thickness of the 
diffusive column height and firn temperature (38). This 15N- D relation must be applied 
for time periods where 15N measurements are not available, which is the case for the 
time interval between 24 kyr and 22 kyr. As the glacial-interglacial shift of 15N for the 
EDC ice core is only 0.1�‰ and the 15N- D relation explains 88% of the variability (38), 
the differences between the two approaches to correct for gravitational fractionation are 
negligible compared to the reproducibility of the 13C measurement. Since the 
measurement reproducibility of 15N is with 0.01�‰ much lower than for 13C, the 
introduced error is between 0.01 and 0.02�‰ and mainly due the interpolation procedure 
described above.  
 
The ice core measurements and the calculated Monte Carlo Average are available at: 
http://doi:10.1594/PANGAEA.772713 
 
 
Extracting the atmospheric signal 
 
 

The following procedure describes the stepwise statistical data analysis to combine 
the three individual data sets (�“residual analysis�”) and to derive a robust atmospheric 
signal (�“Monte Carlo spline process�”). These steps make use of a bootstrap procedure to 
account for the specific measurement precision among the data sets and to allow for 
identification of outliers, i.e. data points which are incompatible with the common 
atmospheric signal in the data set. 

 
Residual analysis 

 

In the main text, we combine three independently measured 13Catm data sets of 
different precision, accuracy and resolution for the last 24 kyr. A unified 13Catm time 
series of the three individual time series has to account for offsets among the records as 
well as for the individual measurement precision.  

 
In the following, we quantify the overall differences in accuracy between the 

records. As our sublimation data (6) agree well with measurements from the Law Dome 
ice core (39), which have an overlap with firn air reconstructions and archived air from 
the Cape Grim air archive, we set the sublimation data as the reference (for details see 
discussion in Schmitt et al., 2011 (10)). To account for this agreement with the Law 
Dome record (39), the overlapping period of the Law Dome record is added to the 
combined data set for the Monte Carlo spline routine as additional data point (see Fig. 
S4). In the first step, the potential offsets between the Bern sublimation data to the Bern 
cracker data and the data from the Bern sublimation to the Grenoble mill are analyzed 
and quantified. As the procedure is the same for the Bern cracker and Grenoble mill data 
sets, we generally outline an offset calculation for the Bern sublimation to a 'non-
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sublimation' data set. In principle, residual 13C values between two datasets are 
determined where they overlap. The resulting mean systematic difference is called offset 
and represents the difference in the accuracy of the methods. However, the individual ice 
samples of the three data sets are not measured at exactly the same depth, hence gas age, 
which complicates direct calculation of the 13C residuals. For each data point of a non-
sublimation record, we choose the nearest available Bern sublimation data point in time. 
The overall mean time difference between compared points is t = 29 ± 171 years for the 
Bern cracker and t = 34 ± 175 years for the Grenoble mill data set (Fig. S1B and S2B). 
This t is sufficiently small compared to the width of the gas age distribution in EDC and 
Talos Dome ice (40, 41). This is also illustrated in Fig. S1B and S2B, which show that 
the absolute values of the residuals do not increase with larger t. Hence, we can safely 
assume that the differences in the compared data points arise essentially from differences 
in the accuracy and precision in all three methods. The calculated individual 13C 
residuals are sorted into bins and plotted in a histogram.  

 
Performing a Gaussian fit yields the mean offset and the standard deviation between 

sublimation and non-sublimation data set. To account for the relatively small sample 
number for the residual distribution we performed a Monte Carlo procedure to determine 
the mean and standard deviation of the distribution. In a first Monte Carlo iteration, the 
procedure is repeated 100 times, randomly varying the input data within their 1  standard 
deviation. From each of the obtained 100 Monte Carlo runs, a Gaussian fit is calculated 
providing a mean offset and 1  standard deviation after averaging over the 100 runs. 
Figure S3 shows the histogram of the residuals for the Bern cracker (A) and the Grenoble 
mill (B) data set. On top of the histogram, a Gaussian distribution is drawn using the 
average mean and standard deviation from the fitted distributions of the 100 Monte Carlo 
runs.  

If the residuals are only due to the stochastic measurement errors in the two methods 
compared, then their distribution has to be Gaussian with the width of the distribution 
given by the propagated error of both methods. This is perfectly fulfilled for the residuals 
between the Bern sublimation and Bern cracker data (Fig. S3A). For the Bern cracker 
record, the calculated offset of -0.01�‰ ± 0.11�‰ to the sublimation record is very small 
and in line with a similar analysis done on the Holocene data set (6). The distribution of 
the residuals is Gaussian, and its width can be entirely explained by error propagation of 
the individual measurement error of both methods. For the Grenoble mill data the 
distribution is reasonably Gaussian but the width is slightly larger than expected from the 
propagated measurement errors. An offset of 0.16�‰ ± 0.17�‰ between the Grenoble mill 
data and the Bern sublimation data is observed and correcting for this offset improves the 
combined record. To apply a constant offset correction, the offset has to be constant with 
time. Therefore, we performed a second analysis for the case of the 13C  residuals 
varying with time. Fig. S1A and Fig. S2A show these residuals as a function of the age of 
the respective data point. The Bern cracker data shows no temporal dependence of the 
offset, the Grenoble mill data shows a slight tendency to higher offsets for younger ages 
(higher CO2 concentrations), however, this trend is statistically not significant. Due to the 
small sample number available for the residual analysis we refrained from correcting this 
insignificant trend. Instead we only shifted the Grenoble data set by its mean offset 
relative to the Bern sublimation data. The three involved labs in Bern and Grenoble also 
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conducted a round-robin exercise with three cylinders with working standards to identify 
possible scale differences among the labs. For the cylinders, we also measured offsets 
which range in the observed differences among Bern and Grenoble ice core data. We 
could not completely identify the reasons for these small differences. Note that in view of 
the complex analytical systems and the differences in the referencing strategy of the three 
methods, the observed systematic offsets are to be expected, rather small and 
reproducible. 

We acknowledge that the posteriori offset procedure introduces a systematic 
additional error to the Grenoble data set. However, we did not add this �“offset error�” to 
the measurement error since the Monte Carlo procedure would then put even less weight 
onto this data set and the calculated spline would be more biased towards the Bern data 
sets. Note that the outcome of the Monte Carlo spline procedure described below, is not 
significantly affected by the inclusion of the Grenoble mill data and that all of the 
conclusions drawn in our paper also hold, if that data set were to be excluded. However, 
inclusion of all three data sets is essential to obtain the highest temporal resolution 
possible for the 13Catm record. 

 
 

Calculating Monte Carlo splines of the combined record 
 

In a second step after the offset correction, cubic splines (42) of the combined 
13Catm time series were calculated. To exclude the high frequency measurement noise, 

splines with a cut-off period of 375 years were selected (see Fig. S4 showing 400 sample 
splines). This value was chosen as for the ice cores used in this study, variability on 
shorter time periods is strongly dampened in gas reconstructions due to the low-pass 
filtering of the primary atmospheric signal by the continuous bubble enclosure process in 
the firn column (43). The spline calculation is repeated 4000 times, with the input data 
randomly picked from their 1  error range. For replicate samples, the 1  standard 
deviation of these specific data points is used. In the case that the 1  standard deviation 
for replicate samples is better than the mean reproducibility of the method, the mean 
standard deviation of the data set is used. The same applies for points where only one ice 
sample was measured. Assigning the mean standard deviation of the data set to those data 
points prevents unjustified pinning of the spline evolution at these positions. As can be 
seen in Fig. S4 and S5, regions where data points have small error bars tend to pin the 
spline evolution (e.g., compare spline evolution in Fig. S4 at position (D) and the 
respective distribution in Fig. S5D). The arithmetic average, here called the Monte Carlo 
Average (MCA), is calculated from the 4000 splines. Due the variability of the individual 
splines, the calculated MCA is smoother than the individual splines (Fig. S4). This 
additional smoothing of the MCA is a function of the measurement precision of a data 
point and its temporal distance to its neighbors (i.e. temporal resolution). Since neither 
the individual records nor the combined data set are equidistant and the measurement 
error varies among the data sets and with time, the additional smoothing of the MCA 
varies with time (Fig. S4). In other words, the MCA cannot be characterized by a defined 
cut-off period. Instead, our procedure removes high frequency components of the splines 
at positions where these were not robust enough as measurement error and temporal 
resolution did not allow to constrain the individual splines sufficiently. On the other 
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hand, for time intervals with small error bars and dense data coverage, the individual 
splines are pinned. Here, the resulting distribution is narrow, and the high frequency 
components were retained (Fig. S5D). This procedure is superior to approaches 
calculating only one spline with a fixed cut-off period, hence constant smoothing 
characteristic, as the MCA can account for inhomogeneous measurement error and 
variable temporal resolution, a common feature of our data sets. Finally, the dark gray 
(light gray) shaded envelopes in Fig. 1 and 2 are obtained, marking the 1  (2 ) 
confidence interval of the Monte Carlo average. As the distributions of the splines at a 
given point in time are not truly Gaussian (see example histograms in Fig. S5), the 1  
and 2  confidence intervals serve as approximations for the true spline variability at each 
point in time. Table S3 provided digitally in the supplement lists the MCA and the 
1 envelope on the synchronized age scale (31). 

 
To investigate the robustness of the chosen approach to combine the three data sets, we 
also calculated MCAs for subsets of the combined data. Four cases are selected and 
shown in Fig. S6. In case A we tested if the outlier detection does actually improve or 
alter the MCA (see discussion below). As illustrated in Fig. S6A this is not the case. Case 
B is calculated without the TALDICE samples (which have a different gas age 
distribution than Dome C samples) and shows that removing this subset does not change 
the MCA. Removing the Grenoble subset in case D leads to only minor changes in the 
MCA between 12-15 kyr BP. When the MCA is calculated from the sublimation data 
only, the spline routine produces more wiggles as the temporal resolution of the 
sublimation data alone is not sufficient for this cut-off period. However, also in this 
extreme case the general shape of the MCA is still preserved and the MCAs agree within 
their 2 envelopes. This analysis shows that combining the two Bern data sets and the 
Grenoble data set is a beneficial approach as it increases the temporal resolution and 
provides a more robust result but does not create spurious trends.  
 
Outlier detection with bootstrapping 
 

Atmospheric stable carbon isotope measurements on the EDC ice core over the 
Holocene report a significant measurement outlier at 170 m depth, that can neither be 
explained by a climatic excursion nor by poor measurement precision, but is likely 
caused by problems during the ice core drilling (6). To test for further outliers in the 
combined data set, the above described Monte Carlo procedure is repeated, but each time 
one data point is excluded. If the calculated 2  confidence interval of the MCA does not 
overlap with the 2  error of the excluded data point, this data point is assigned as an 
outlier and excluded from the final spline calculation. This test is done for all data points, 
resulting in only four measurements excluded from the data set. Note that for this 
bootstrap procedure, all individual measurements were used instead of the replicate 
mean. In a last step, the bootstrap procedure was repeated using also the replicate means 
instead of the individual replicates. No data point was identified as an outlier during this 
final step. Since only four individual measurement points were identified as outlier, the 
calculated MCA is not dependent on whether the outliers are included or excluded during 
the Monte Carlo procedure as the respective MCA and 2  confidence intervals nicely 
overlap (Fig. S6A). In summary, if a data point cannot be identified a priory as an artifact 
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due to either measurement problems or during drilling (e.g. the 170 m depth outliers in 
the Holocene section) the bootstrap procedure does not improve the MCA. In other 
words, the observed scatter in the combined data set can be explained already by the 
combined measurement error and errors due to offset corrections.  
 
 
Correction for SST changes 
 
 

With changing sea surface temperature (SST), not only the partial pressure of 
dissolved CO2 in water (pCO2) but also the isotopic fractionation during the gas exchange 
is altered. The 13C of atmospheric CO2 becomes isotopically heavier by roughly 0.1�‰ 
per 1 K increase as the fractionation factor decreases (12, 44, 45). In the following, we 
attempted to roughly quantify this effect of changing SST on 13Catm over the transition.  

The temperature at 19 kyr BP is set as a reference point, as changes in global mean 
sea surface temperature at earlier glacial times are small compared to the variations 
during the glacial termination. The isotopic ratio of atmospheric CO2 t years after 19 
kyr BP is calculated according to: 

 
   13C (19 kyr BP + t) = 13C (19 kyr BP) + 13C), (1) 
where 
 
   13C) = T, with  = 0.1�‰/K.    (2) 
 
The evolution of the past global mean SST can be approximated from direct marine 

proxies, such as alkenones or Ca/Mg ratios. For regions and time periods without marine 
proxy records, scaled temperature evolutions of Greenland and Antarctica serve as crude 
representations of the surrounding oceans. In the course of this work, we use the 
estimations compiled by Köhler et al. (4) that have been used in other modeling studies 
(11). In this compilation, the surface ocean is divided into five regions (corresponding to 
the surface boxes used in Köhler et al. (4)): the North Atlantic, the Equatorial Atlantic, 
the Southern Ocean, the Equatorial Indo-Pacific and the North Pacific. For each box, 
temperature proxies are used to account for the change in SST. The stable water isotopic 
signal 18O from the GISP2 (46) and D from the EDC (47) ice cores were rescaled to a 
glacial/interglacial amplitude of 4 K and used to quantify the SST evolutions of the 
Northern boxes and the Southern Ocean, respectively. Temperature changes in lower 
latitude boxes were adapted from foraminifera records (48). The SST approximations for 
the five surface boxes are shown in Fig. S7B (equatorial boxes) and Fig. S7C (high 
latitude boxes), together with the area-weighted temperature average (gray curve in Fig. 
S7B). Note that gas exchange and thus the isotopic fractionation are largely inhibited for 
sea-ice covered areas. Therefore, only areas dominated by open water were used for the 
calculation of the area-weighted SST average. These areas are calculated internally 
within the BICYCLE model (4). Accounting for the change in sea-ice area leads to a 
difference of only 0.8 K in the area-weighted SST estimate over the period between 19 
kyr and 10 kyr. The total shift from 19 kyr BP to the Holocene in this reconstruction is 
2.8 K.  
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This global SST record is used to calculate the SST-corrected evolution of 13Catm 
according to equations (1) and (2) (gray line in Fig. S7A) by subtracting the SST-induced 

13C change from the Monte Carlo Average (red line in Fig. S7A). We note that our 
temperature approximation introduces further error to the one and two sigma confidence 
interval of the SST corrected record. However, a detailed error propagation analysis is 
beyond the scope of the overall approximation since the purpose of this correction was to 
provide only a rough estimate of the global SST change on our 13Catm record, i.e. to 
show that global SST changes likely shift the 13Catm by approximately 0.3�‰ from the 
LGM to the Holocene. Note also that the proxies used for our crude SST reconstruction 
are on their individual age scales; therefore, interpretations on the submillennial timescale 
are not possible. For illustration purposes, we also assumed a simple linear SST increase 
of 2.8 K between 19 kyr and 10 kyr and a constant SST during the Holocene (Fig. S7B). 
The resulting 13C anomaly was subtracted from the 13Catm evolution of the MCA, and 
this simple linear SST rise correction (Fig. S7A blue and orange line) is compared with 
the proxy-based SST correction. As the proxy based mean SST evolution during the 
deglaciation is already rather linear with only small deviations during the YD-BA 
oscillation, the two SST reconstructions are similar as well. In summary, our SST 
correction serves as an illustration of the effect of an overall glacial/interglacial warming, 
while small scale features in the corrected 13Catm record on sub-millennial time scale 
should not be interpreted. 
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Fig. S1. 
Residual plots for the Bern cracker data set. (A) Residuals plotted against the absolute 
age of the Bern cracker measurements. The data points are randomly scattered around the 
zero line showing no trend with time. However, the scatter shows a tendency to become 
larger for glacial ice with lower CO2 concentration. (B) Residuals plotted against t, i.e. 
the temporal difference between a Bern cracker measurement to its nearest neighbor in 
the Bern sublimation data. Most t values lie between +0.2 kyr and -0.2 kyr, with no 
trend of larger 13C residuals for larger t differences. 
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Fig. S2 
Residual plots for the Grenoble mill data set. (A) Residuals plotted against the absolute 
age of the Grenoble mill measurements. The data points are randomly scattered but show 
an offset to the zero line. (B) Residuals plotted against t, i.e. the temporal difference 
between a Grenoble mill measurement to its nearest neighbor in the Bern sublimation 
data. Most t values lie between +0.2 kyr and -0.2 kyr, with no trend of larger 13C 
residuals for larger t differences. 
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Fig. S3 
Histograms showing the offsets among the data sets: The histograms show the residuals 
of the measured mean value at a given sample depth for the Bern cracker (A) and the 
Grenoble mill (B) data sets to its nearest neighbor in the Bern sublimation data. The 
output of a Monte Carlo procedure (see text) was used to determine the mean and 
standard deviation of the Gaussian curve (black line). 
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Fig. S4 
Individual Monte Carlo splines: Compilation showing the color-coded 13Catm 
measurements. Squares indicate published data, circles new measurements, and triangles 
denote individual data points which were detected as outliers in the bootstrap routine. The 
Monte Carlo Average is plotted in gray and in black a sample of 400 Monte Carlo splines 
with a cut-off period of 375 years. Latin letters A to F connected to vertical lines denote 
time intervals where the frequency distribution of the 4000 splines is shown in Fig. S5. 
Numerals from 1-7 at the bottom axis mark the time intervals shown in Tab. S2. All 

13Catm records from this study are on a synchronized age scale (31); only the reference 
data point at 0.42 kyr from the Law Dome record (39) is on its original age scale.   
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Fig. S5 
Frequency distributions of the Monte Carlo splines at selected points in time: Histograms 
showing the distributions of the 4000 splines at selected points of our 13Catm time series 
(positions marked in Fig. S4 with brown Latin letters). Bars in dark gray mark the 1  
interval, light gray the 2  interval, and white bars are outside the 2  interval. The black 
(red) vertical line marks the mean (median) of the distribution. Note that some 
distributions are not Gaussian but have a broader shape; therefore, mean and standard 
deviation do not entirely describe the frequency distributions.  
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Fig. S6 
Comparison of Monte Carlo Averages for different data sets included. Each panel shows 
the final MCA in black, i.e. the MCA which is used in the main figures Fig. 1 and Fig. 2 
of the paper and on which the interpretations are based. The individual MCAs in the sub-
panels A-D are plotted in colors. The 2  envelope of the final MCA is in gray and the 2  
envelopes of sub-panels A-D are colored and overlapping 2  envelopes are in the 
respective mixed tones. A All three data sets but with the five outliers detected in the 
bootstrap routine included. B TALDICE samples excluded C Only Bern cracker and 
Bern sublimation data (i.e. Grenoble ball mill data excluded) D Bern sublimation data 
only. While the calculated MCA is insensitive to the outliers and the TALDICE samples, 
removing the Grenoble ball mill data and Bern cracker data has an effect on the MCA. In 
case of removing the Grenoble data, the calculated MCA deviates somewhat from the 
final MCA between 12 and 14 kyr, where there is the largest disagreement among the 
three data set. However, the overall shape is retained. When only the sublimation data is 
used, the MCA becomes unstable and pinned at individual data points, since the 
resolution is insufficient for the applied cut-off period of 375 years. All exclusion 
experiments show that the respective 2  envelopes overlap and thus record the same 
robust 13Catm atmospheric features seen in the final MCA. 
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Fig. S7  
SST correction of the 13Catm MCA evolution. A proxy-based SST reconstruction is 
compared with a linear temperature increase during the deglaciation. (A) Evolution of 

13Catm (red line) and proxy-based SST corrections (gray line) compared with a linear rise 
of 2.8 K between 19 kyr and 10 kyr (blue line) followed by constant SST during the 
Holocene (orange line). (B) SST evolution of the equatorial boxes (red lines) and the 
area-weighted average of all five surface boxes (gray), the latter being used for the proxy 
based SST correction above, (C) SST evolution of the three high latitude surface boxes 
(blue lines). 
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Table S1. 
Selected points of the Monte Carlo Average and their respective mean, median, and 1  
standard deviation as used to calculate the time intervals shown in Tab. S2.  
 

interval boundary 
 

(kyr BP) 

mean 13Catm 
 

(�‰) 

median 13Catm 
 

(�‰) 

 
 

(�‰) 
    

 5.7 -6.32 -6.33 ±0.03 

12.2 -6.69 -6.68 ±0.04 

13.3 -6.63 -6.63 ±0.04 

15.4 -6.70 -6.70 ±0.04 

16.0 -6.69 -6.69 ±0.06 

17.4 -6.40 -6.40 ±0.05 

19.3 -6.46 -6.46 ±0.03 

24.0 -6.40 -6.40 ±0.05 
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Table S2. 
Time intervals listing the trends in mean 13Catm and median 13Catm between two interval 
boundaries as listed in Tab. S1 and marked in Fig. S4. As a conservative estimate of the 
confidence of these differences, the last column lists the sum of both 1  standard 
deviations of 13Catm at the interval boundaries. Note that interval 1, 2, 3, 5 and 7 
represent the differences between local minima and maxima positions on the MCA. In 
contrast, intervals 4 and 7 were selected to represent relatively flat plateaus. Intervals 1 
and 5 are indicated in bold to indicate that most of the 13Catm variability is concentrated 
in these two intervals.  
 

interval 
 

       # 

interval boundaries 
 

(kyr BP) 

mean 13Catm 
 

(�‰) 

median 13Catm 
 

(�‰) 

 
 

(�‰) 
     

1 12.2 -   5.7 0.37  0.35  ±0.07 

2 13.3 - 12.2 0.06  0.05  ±0.08 

3 15.4 - 13.3 0.07  0.07  ±0.08 

4 16.0 - 15.4 0.01  0.01  ±0.10 

5 17.4 - 16.0 0.29  0.29  ±0.11 

6 19.3 - 17.4 0.06  0.06  ±0.08 

7 24.0 - 19.3 0.06  0.06  ±0.08 
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