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a b s t r a c t

A reconstruction of Holocene sea ice conditions in the Fram Strait provides insight into the palae-
oenvironmental and palaeoceanographic development of this climate sensitive area during the past 8500
years BP. Organic geochemical analyses of sediment cores from eastern and western Fram Strait enable
the identification of variations in the ice coverage that can be linked to changes in the oceanic (and
atmospheric) circulation system. By means of the sea ice proxy IP25, phytoplankton-derived biomarkers
and ice rafted detritus (IRD) increasing sea ice occurrences are traced along the western continental
margin of Spitsbergen throughout the Holocene, which supports previous palaeoenvironmental recon-
structions that document a general cooling. A further significant ice advance during the Neoglacial is
accompanied by distinct sea ice fluctuations, which point to short-term perturbations in either the
Atlantic Water advection or Arctic Water outflow at this site. At the continental shelf of East Greenland,
the general Holocene cooling, however, seems to be less pronounced and sea ice conditions remained
rather stable. Here, a major Neoglacial increase in sea ice coverage did not occur before 1000 years BP.
Phytoplankton-IP25 indices (“PIP25-Index”) are used for more explicit sea ice estimates and display a Mid
Holocene shift from a minor sea ice coverage to stable ice margin conditions in eastern Fram Strait, while
the inner East Greenland shelf experienced less severe to marginal sea ice occurrences throughout the
entire Holocene.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The extent of sea ice coverage in Fram Strait, the major gateway
connecting the Arctic with the Atlantic Ocean, is intrinsically tied to
the advection of warm Atlantic Water along the continental margin
of West Spitsbergen. As these temperate waters head to the north,
they encounter polar water (and air) and sea ice from the Arctic
Ocean, which causes cooling, freezing and thus brine rejection, and
subsequent descent of AtlanticWater into the Nordic Sea’s deep sea
basins via the Greenland Sea Gyre (Fig.1; Aagaard,1982; Rudels and
Quadfasel, 1991; Watson et al., 1999). These processes are of crucial
importance for the so-called Nordic heat pump, which bestows
a comparatively temperate climate upon Europe (e.g. Broecker,
1992). The climate-shaping impact of sea ice that exits Fram Strait
became particularly evident during the “Great Salinity Anomaly” in
the 1970s, when an enormous discharge of Arctic sea ice hampered
the thermohaline convective overturn in the North Atlantic (in
.
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terms of a vast low salinity freshwater lense), which resulted in
a significant cooling in the North Atlantic area (Dickson et al., 1988;
Belkin et al., 1998; Dima and Lohmann, 2007; Sundby and
Drinkwater, 2007). Recently, Spielhagen et al. (2011) identified
and linked natural fluctuations in the advection of Atlantic Water
towards Fram Strait with shifting warm and cold climate intervals
like the Medieval Climate Anomaly or the Little Ice Age. Further-
more, an unprecedented warming of North Atlantic Water
throughout the past 120 years is reconstructed that highlights the
importance of the direct feedback mechanisms between the
atmospheric (global) warming, the oceanic heat transport through
Fram Strait and the sea ice decline in the Arctic realm (Spielhagen
et al., 2011). These dynamic interactions account for the Arctic
amplification, which impacts not only on the Arctic Ocean but also
on adjacent terrestrial (permafrost) areas and finally the global
climate system (Lawrence et al., 2008; Serreze and Barry, 2011).
Overland and Wang (2010), for example, put emphasis on the loss
of Arctic sea ice and the resulting changes in large-scale atmo-
spheric circulation patterns and the consequences for mid-latitude
weather (wind) regimes.
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Fig. 1. Oceanographic setting and location of core sites in the study area. Red arrows
refer to warm Atlantic Water carried by the Norwegian Current (NC), the Irminger
Current (IC), and the West Spitsbergen Current (WSC). Blue arrows refer to polar water
and sea ice carried by the East Greenland Current (EGC), the Jan Mayen Current (JMC),
and the minor Sørkapp Current (SC). The Greenland Sea Gyre (GSG) and the modern
winter sea ice margin (dotted line) are indicated as well. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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The finding of past variations in the sea ice distribution in Fram
Strait thus supports the identification of palaeo-fluctuations in the
intensity of Atlantic Water inflow and may reveal periods of
a strengthened or weakened thermohaline circulation and/or
atmospheric (North Atlantic Oscillation; NAO-like) forcing. The
influence of the NAO on climate and sea ice conditions in the (sub)
Arctic realm frequently has been appraised as fundamental, though
hardly assessable or predictable due to its highly variable temporal
evolution (e.g. Dickson et al., 2000; Hurrell and Deser, 2010). In
short, positive NAO phases are accompanied by stronger westerlies
carrying moist air over Europe and Siberia, an increased Atlantic
Water inflow through Fram Strait, and warmer temperatures in the
Arctic, which lead to a reduction in sea ice formation. During
intervals of a negative NAO these phenomena occur to be reversed
(Dickson et al., 2000; Kwok, 2000; Hurrell and Deser, 2010). Within
their thorough review about Arctic sea ice and its interaction with
the atmosphere Bader et al. (2011) illustrate comprehensively how
the current sea ice reduction leads to a poleward shift and an
intensification of storm tracks, while the immediate impact on the
NAO itself remains undetermined. Vice versa, the distinct impact of
the NAO on the sea ice extent (e.g. in the Nordic Seas) has been
acknowledged and documented more often (Deser et al., 2000;
Dickson et al., 2000; Vinje, 2001). Given the lack of instrumental
records of the NAO variability prior to 1932 (the first calculation of
the NAO index dates back to 1932; Walker and Bliss, 1932) the
attempts to link atmospheric fluctuations with climate changes are
restricted to proxy reconstructions or numerical model experi-
ments (e.g. Rimbu et al., 2004; Lorenz et al., 2006; Trouet et al.,
2012). For instance, an Early to Late Holocene decrease in North
Atlantic SSTs is interpreted to reflect a general long-term weak-
ening of the NAO-like atmospheric circulation pattern (Rimbu et al.,
2003). On shorter time scales, however, it seems essential to
distinguish between the intensity and the frequency of cyclones in
the North Atlantic to reasonably relate proxy data to Late Holocene
NAO shifts (Trouet et al., 2012).
Though Northern Hemisphere climate (boundary) conditions
throughout the Holocene are generally considered as fairly stable
(Grootes and Stuiver, 1997), variations in sea surface temperatures
(SSTs), glacier growth or terrestrial vegetation communities are
increasingly substantiated within marine and terrestrial Arctic
palaeoclimate studies (Birks, 1991; Svendsen and Mangerud, 1997;
Andersen et al., 2004; for recent review see; Miller et al., 2010).
Recently, Risebrobakken et al. (2011) demonstrated reasonably
that, when interpreting marine proxy derived climate information
(e.g. SSTs) in the Nordic Seas, the individual impacts of orbital
forcing (mainly affecting sea surface conditions) and oceanic heat
advection (affecting deeper parts of the ocean and convective
processes) requires careful consideration as these are different
mechanisms of climate change. Thus, the partly contradictory
Holocene SST reconstructions in the Nordic Seas, which are based
on coccolithophore-derived alkenone or foraminifer data (Calvo
et al., 2002; Risebrobakken et al., 2003) can be explained by the
simple fact that different proxies may respond to different mech-
anisms (Risebrobakken et al., 2011).

Concerning sea ice conditions, Holocene changes in the ice
coverage in the Nordic Seas, however, have been deduced mainly
indirectly from microfossil or geochemical data (Andrews et al.,
2001; Jennings et al., 2002; Bonnet et al., 2010). A quantitative
approach using diatom transfer functions in the Nordic Seas has
been presented by Justwan and Koç (2008). By means of a sediment
core north off Iceland, they reconstruct relatively constant sea ice
concentrations of ca 5%e10% for the Early Holocene and slightly
higher sea ice concentrations of about 10%e20% during the Late
Holocene (Justwan and Koç, 2008). The application of this prom-
ising approach, however, may be limited by the comparatively high
silica dissolution rate in the High Northern Latitudes (Kohly, 1998;
Schlüter and Sauter, 2000).

The molecular sea ice proxy IP25 e a biomarker lipid associated
with sea ice diatoms e seems to be a direct and thus valuable tool
for the reconstruction of a previous spring sea ice cover in the Arctic
(Belt et al., 2007; Brown, 2011). Besides the identification of highly
branched C25 and C30 isoprenoids as diatom specific biomarkers
(e.g. Rowland and Robson, 1990; Volkman et al., 1994; Massé et al.,
2004) that even may be found in Cretaceous sediments (Damsté
et al., 2004), the derivation of the monounsaturated C25 highly
branched isoprenoid (i.e. the IP25 alkene) from diatoms that live
within the Arctic sea ice has been strengthened in various studies
(Belt et al., 2008; Brown et al., 2011; Brown and Belt, 2012). With
regard to this distinct association of IP25 with sea ice, the detection
even of trace abundances of this molecule in a sediment sample,
which indeed is a question of instrumental sensitivity, may directly
serve as an indication of a previous ice cover. The increasing use of
IP25 for palaeo sea ice assessments and its agreement with other
proxy (Massé et al., 2008; Müller et al., 2009; Vare et al., 2009,
2010; Belt et al., 2010) and instrumental data (Müller et al., 2011)
on sea ice occurrences hence supports the applicability of this
biomarker.

In 2009, Vare et al. andMüller et al. presented reconstructions of
sea ice conditions based on the IP25 content in sediment cores from
the central Canadian Archipelago and northern Fram Strait,
respectively, which cover the entire Holocene. Both studies suggest
gradually increasing (spring) sea ice occurrences from the Mid to
the Late Holocene, presumably as a response to the Neoglacial
cooling (Müller et al., 2009), but do not provide an in-depth anal-
ysis of the palaeoenvironmental and palaeoceanographic setting.
The Neoglaciatione the general use of this termwas first suggested
by Porter and Denton (1967) e covers the period characterised by
glacier advances, southward migration of the northern treeline and
colder sea surface conditions in different regions of the Northern
Hemisphere that followed the warm Early to Mid Holocene (for



J. Müller et al. / Quaternary Science Reviews 47 (2012) 1e14 3
further review see Wanner et al., 2008; Miller et al., 2010 and
references therein).

The main objective of this study is to estimate to what extent
this Holocene cooling affected the sea ice distribution in the Fram
Strait and the East Greenland shelf. For this purpose, organic
geochemical and IRD analyses were performed on sediment cores
from the western continental margin of Spitsbergen and the
continental shelf of East Greenland. This provides for a reconstruc-
tion of the spatial and temporal evolution of the sea ice coverage
within the two most important oceanic (in and outlet) pathways
that characterise the Fram Strait and influence the Arctic Ocean
heat budget. The findings are compared and contextualised with
previous palaeoenvironmental reconstructions for the study area.

2. Regional setting

The environmental setting in Fram Strait is controlled by
a dynamic ocean current system and, owing to the high latitude,
a distinct seasonality. Warm and saline Atlantic Water is directed
northwards towards Fram Strait by the Norwegian Current (NC)
and the West Spitsbergen Current (WSC), thus constituting the
northernmost area of open (ice-free) water in the Arctic during
winter (Fig. 1; Vinje, 1977; Aagaard, 1982). South of Spitsbergen
these temperate waters encounter cold water and sea ice, which is
carried by the minor Sørkapp Current (SC) from the Barents Sea
along the southern tip and west coast of Spitsbergen (Swerpel,
1985). Further to the north at about 79�N, the WSC splits in two
current systems, with an eastern (Svalbard) branch flowing along
the northeastern shelf of Spitsbergen and a western (Yermak)
branch following the western flank of the Yermak Plateau where it
is partly recirculated southward (Fig. 1; Bourke et al., 1988).

The western part of Fram Strait experiences a huge discharge of
polar water and sea ice that originates from the Arctic Ocean (i.e.
predominantly from the East Siberian and the Laptev Sea) and is
exported along the continental shelf of East Greenland by the East
Greenland Current (EGC; Aagaard and Coachman, 1968; Rudels
et al., 1999). Currently, only the proximal (inner) shelf of East
Greenland and northern Fram Strait remain ice-covered until early
summer (NSIDC, Boulder, USA). During periods of extremely cold
winter (and spring) months with severe temperature and sea ice
conditions in the Arctic, the ice flux may extend towards the east
(and south), such that also the eastern part of Fram Strait experi-
ences an intensified (drift) sea ice coverage (for association with
NAO variability see Dickson et al., 2000; Vinje, 2001). This is also
substantiated through IRD studies of sediment trap material from
the continental slope of West Spitsbergen by Hebbeln (2000), who
shows that fine-grained lithic material may be released from sea ice
originating not only from Spitsbergen but also from the north (i.e.
the Arctic Ocean).

3. Sediment material and methodology

The sediment cores MSM5/5-712-2 and MSM5/5-723-2 were
obtained from the western continental margin of Spitsbergen (at
78�54.94 N, 6�46.03 E; 1487 m water depth, and at 79�09.66 N,
5�20.27 E; 1349 m water depth, respectively) during a Maria S.
Merian cruise in 2007 (Budéus, 2007). The core sites are both
located in close vicinity to themodernwinter sea icemargin (Fig.1).
Sediment cores were stored at �30 �C until further treatment. For
organic geochemical analyses subsamples were taken each cm,
freeze-dried and homogenised. Sedimentary total organic carbon
(TOC) contents were determined by means of a carbon-sulfur
determinator (CS-125, Leco) after the removal of carbonates by
adding hydrochloric acid. Total carbon (TC) contents measured by
a CNS analyser (Elementar III, Vario) were used to calculate
carbonate contents (CaCO3 ¼ (TC � TOC) � 8.333). Core MSM5/5-
712-2 was further studied for ice rafted detritus (IRD). Lithic
grains of freeze-dried subsamples were counted on a representa-
tive split (>100 grains) in the 150e250 mm size fraction. Further
IRD grain size and mineralogy analyses of these cores are subject of
a forthcoming study.

Sediment core PS2641-4 from the East Greenland shelf (73�9.3N,
19�28.9 W; 469 m water depth) was obtained during Polarstern
cruise ARK-X-/2 (Hubberten, 1995). TC and TOC (and thus also
carbonate) contents of freeze-dried and homogenised subsamples
(5e10 cm sampling intervals) from this core were determined by
means of a Heraeus CHN-O-Rapid Elementar Analyser. We note
that the freeze-dried sediment material was stored at room
temperature for ca 15 years before it was analysed for its biomarker
composition. This probably promoted some chemical alteration of
the organic matter, which needs to be considered when looking at
the absolute concentration profiles of the biomarkers.

For lipid biomarker analyses ca 1e4 g of sediment were
extracted by an Accelerated Solvent Extractor (DIONEX, ASE 200;
100 �C, 5 min, 1000 psi) using dichloromethane:methanol (2:1 v/
v). Prior to this step, 7-hexylnonadecane, squalane and
cholesterol-d6 (cholest-5-en-3b-ol-D6) were added as internal
standards for quantification purposes. Further separation of alkanes
and sterols was carried out via open-column chromatography using
SiO2 as the stationary phase. Hydrocarbons were eluted with n-
hexane (5 ml) and sterols with methylacetate:n-hexane (20:80 v/v;
6 ml). The latter were silylated with 500 ml BSTFA (60 �C, 2 h).
Compound analyses of both fractions were carried out on an Agi-
lent 6850 GC (30 m HP-5MS column, 0.25 mm i.d., 0.25 mm film
thickness) coupled to an Agilent 5975 C VL mass selective detector.
The GC oven was heated from 60 �C to 150 �C at 15 �C min�1, and
then at 10 �C min�1 to 320 �C (held 15 min) for the analysis of
hydrocarbons and at 3 �C min�1 to 320 �C (held 20 min) for sterols,
respectively. Operating conditions for the mass spectrometer were
70 eV and 230 �C (ion source). Helium was used as carrier gas. The
identification of individual biomarkers is based upon comparison of
their retention times and mass spectra with published data (Boon
et al., 1979; Volkman, 1986; Belt et al., 2007). Biomarker concen-
trations were calculated on the basis of their individual GCeMS ion
responses compared with those of respective internal standards.
For the quantification of IP25 via its molecular ion a calibration
factor was considered that was obtained from calibration experi-
ments using a sediment with known IP25 concentration, which thus
serves as a substitute for synthetically produced IP25. The IP25
concentration of this sediment has been verified through GC
analyses. Aliquots of the hydrocarbon fraction of this sediment
were then used for GCeMS calibration experiments (using a serial
dilution), which rest upon correlations of different (quantified via
GC) IP25 concentrations obtained from total ion current analyses
with the respective IP25 concentrations determined by selected ion
monitoring analyses (m/z 350 for IP25 and m/z 266 for 7-
hexylnonadecane). Within this study hydrocarbon fractions from
sediment core PS2837-5 (Müller et al., 2009) were re-analysed and
their IP25 contents accordingly calibrated, which eases the
comparison with the results obtained from core PS2641-4 and the
Maria S. Merian cores. The herein presented PIP25 indices are
calculated following the equation by Müller et al. (2011), where
concentration balance factors are used to account for the disparity
between the generally low concentrations of IP25 and the high
concentrations (due to multiple phytoplankton sources) of phyto-
plankton biomarkers in the sediments. Accordingly, the accumu-
lation rates of IP25, brassicasterol, and dinosterol were averaged
over the whole core sections and the mean values were then used
to calculate the balance factors for the respective cores (PIP25-
equations with individual balance factors are also given in Fig. 8).
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4. Core chronologies

The chronology of the sediment cores MSM5/5-712-2 and
MSM5/5-723-2 is based upon AMS 14C ages obtained from tests of
the polar planktic foraminifer Neogloboquadrina pachyderma (sin.),
whereas the age model of the sediment core PS2641-4 is based
upon AMS 14C ages that were obtained from tests of benthic fora-
minifera. Additionally, AMS 14C ages were derived from shells of the
bivalve Bathyarca glacialis (Evans et al., 2002). For the Maria S.
Merian cores a marine reservoir correction of 408 years has been
assumed to convert radiocarbon ages into calibrated calendar years
before present (cal years BP) using the calibration software CALIB 6
(see Table 1; Stuiver and Reimer, 1993; Stuiver et al., 1998; updated
to CALIB 6.0 by Stuiver et al., 2005; see CALIB at http://calib.qub.ac.
uk/). A reservoir age of 550 years has been assumed for the
correction of radiocarbon ages of the PS2641-4 core according to
Hjort (1973). For the age model of this core we omitted one 14C age
at 90.5 cm (1705 � 110 ¼ 1091 cal years BP) because this sample
contained only a very little amount of carbon (0.06 mg). Further-
more, this dating would imply an enormous sedimentation rate
(>500 cm/1000 years) compared to the adjacent intervals (<50 cm/
1000 years). Such an “event” of extreme sediment deposition,
however, cannot be identified in the sediment structures of the
respective core section. Anticipating linear sedimentation rates at
the core sites, ages of sediment intervals between 14C-dated hori-
zons are based on linear interpolation (Fig. 2). Mass accumulation
rates (g/cm2/1000 years) were calculated on the base of these
sedimentation rates, density and porosity data (Evans, 2000), and
were finally used to convert absolute sedimentary biomarker
contents into flux rates.
Table 1
AMS radiocarbon ages for Maria S. Merian cores obtained from tests of the planktic
foraminiferNeogloboquadrina pachyderma sin. For these dates amarine reservoir age
of 408 years has been assumed according to Hughen et al. (2004). AMS radiocarbon
ages for the Polarstern core were obtained from tests of mixed benthic foraminifera.
In addition, two AMS 14C dates (labelled with a star) determined in shells of the
bivalve Bathyarca glacialis (Evans et al., 2002) were used. For radiocarbon ages of this
core a reservoir age of 550 years has been assumed according to Hjort (1973). The
age obtained from benthic foraminifera at 90.5 cm sediment depth in PS2641-4 has
been ignored for the calculation of the age model. Superscript numbers in the lab
reference indicate 14C dates provided by Robert Spielhagen (1), Jacques Giraudeau
(2), Christian Hass (3).

Sediment core Lab reference Core
depth (cm)

AMS 14C age Calibrated
age BP (2 s)

MSM5/5-712-2 KIA 452171 11 815 � 25 459 � 49.5
KIA 410241 21 1570 � 25 1130 � 82.5
KIA 452181 28 1985 � 25 1544 � 96.5
KIA 452191 41 2565 � 25 2242 � 83
SacA 191132 60.5 3365 � 30 3240 � 97.5
SacA 191142 94.5 4915 � 30 5256 � 104
SacA 191152 139 6440 � 30 6927 � 106.7
KIA 380801 169 7305 � 35 7767 � 93.5
KIA 410251 192 7815 � 45 8285 � 97

MSM5/5-723-2 KIA 387383 11.5 675 � 25 319 � 68
KIA 387003 51.5 2125 � 25 1714 � 93
KIA 438513 102.5 3820 � 30 3769 � 99
KIA 387393 131.5 4950 � 35 5294 � 119
KIA 438533 181 6120 � 40 6545 � 108
KIA 387403 231.5 7290 � 40 7752 � 98

PS2641-4 LuS 8471 20 995 � 60 451 � 139
LuS 9500 43 1240 � 90 644 � 182
LuS 8469 58 1645 � 60 1033 � 176.5
LuS 9124 90.5 1705 � 110 1091 � 247
LuS 9125 128 2835 � 100 2382 � 296.5
LuS 9502 181.5 3775 � 150 3519 � 407
LuS 8468 230 4625 � 60 4640 � 198
LuS 8470 261.5 5400 � 60 5598 � 192
AAR-2422* 375 6980 � 130 7327 � 278.5
AAR-2688* 413 7600 � 70 7893 � 196
LuS 8467 461.5 8415 � 80 8783 � 256.5
5. Results

5.1. West Spitsbergen continental margin (cores MSM5/5-712-2
and MSM5/5-723-2)

On the base of our organic geochemical and IRD records the
sedimentary sequence of core MSM5/5-712-2 can be separated into
three intervals covering the past 8500 years BP (Fig. 3). Results
obtained on core MSM5/5-723-2 cover the past 7000 years BP
(Fig. 4).

In core MSM5/5-712-2 the late Early Holocene (8500e7000
years BP) is characterised by lowest IRD counts (<20 grains per
gram sediment), reduced TOC (0.8e1 wt%) and moderate to
maximum CaCO3 contents (10e16 wt%). Accumulation of
phytoplankton-derived biomarkers (dinosterol and brassicasterol;
Boon et al., 1979; Volkman et al., 1998) is at its maximum during
this interval, whilst the accumulation of the sea ice proxy IP25
becomes significantly reduced after 8300 years BP (Fig. 3). Within
this period, at about 8200 years BP, a short-term increase in the IRD
content coincides with minimum TOC values and lowered phyto-
plankton biomarker flux rates. Meanwhile, an abrupt decline in
previously high IP25 values is observed between 8300 and 8100
years BP. Further short-term lows in brassicasterol and dinosterol
accumulation rates at 7600 and at 7100 years BP are not reflected in
the IRD, TOC, or IP25 data (Fig. 3). Maximum CaCO3 contents peak at
about 7400 years BP.

During the Mid Holocene (7000e3000 years BP), TOC contents
of both Maria S. Merian cores reach slightly elevated values (ca
1 wt% in MSM-5/5-712-2; ca 1.2 wt% in MSM5/5-723-2) between
6400 and 5800 years BP and between 4200 and 3400 years BP
(Figs. 3 and 4). CaCO3 contents of both cores decrease and maintain
at minimum values (8e12 wt%). Continuously decreasing
accumulation rates of phytoplankton biomarkers in core MSM5/
5-712-2, however, are associated with consistently rising IRD and
fluctuating IP25 contents throughout this period (Fig. 3). Consider-
able dinosterol minima occur at about 5000 and 3200 years BP. The
IP25 record of core MSM5/5-723-2 shows that a period of slightly
higher IP25 flux rates between ca 6200 and 5200 years BP is fol-
lowed by an IP25 minimum at about 5000 years BP (Fig. 4).
Thereafter, a gradual increase in the accumulation of IP25 is
observed for the Mid Holocene.

The Late Holocene (3000e300 years BP) is marked by further
increasing TOC and CaCO3 contents in both sediment cores
(Figs. 3 and 4). The IRD content in core MSM5/5-712-2 increases
as well and reaches maximum values at ca 500 years BP (>160
grains per gram sediment; Fig. 3). We note that the accumulation of
biomarkers in this core is highly variable throughout the past 3000
years (Fig. 3), whereas the increase in IP25 at core siteMSM5/5-723-
2 occurs to be rather gradual and maximum values are reached at
about 300 years BP (Fig. 4). In core MSM5/5-712-2 we observe that
during intervals of an elevated IP25 accumulation at ca 2800, 2300
and 1600 years BP, the flux rates of brassicasterol and dinosterol
and also the TOC contents are increased as well (Fig. 3). Vice versa,
intermediate periods of lowered IP25 accumulation correspond to
periods of reduced phytoplanktonmarker contents. Divergent from
these in-phase fluctuations, we find minimum phytoplankton
marker flux rates that coincidewith the youngest IP25 peak at about
500 years BP (Fig. 3). The TOC content, however, reaches maximum
values at this time.

5.2. Inner East Greenland shelf (core PS2641-4)

In comparison with the data from core MSM5/5-712-2, we
obtained rather monotonous TOC and CaCO3 records from the
Holocene section of core PS2641-4 (Fig. 5). TOC contents of

http://calib.qub.ac.uk/
http://calib.qub.ac.uk/


Fig. 2. Age model for sediment cores MSM5/5-712-2, MSM5/5-723-2, and PS2641-4 (thin grey lines refer to 5- and 7-point polynomial fits, respectively). Reservoir corrected and
calibrated 14C ages with respective error bars are indicated for each ageedepth correlation. Red 14C ages were determined on shells of the bivalve Bathyarca glacialis (Evans et al.,
2002). 14C age at 90.5 cm core depth is not included in the age model of PS2641-4. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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0.8e1.3 wt% remain relatively stable until a distinct increase of
similar magnitude than in the cores from the West Spitsbergen
slope is observed during the Late Holocene. Notably low CaCO3
contents (0.3e1.6 wt%) contrast those of the sediment cores from
eastern Fram Strait, and refer to the shift from an Atlantic Water
influenced to an EGC dominated sea surface within Fram Strait
(Hebbeln and Berner, 1993; Henrich, 1998; Huber et al., 2000).
We note that the accumulation rates of biomarkers (in particular of
IP25) are significantly higher at core site PS2641-4 than at the West
Spitsbergen margin, which probably can be attributed to the basi-
cally higher mass accumulation at the East Greenland shelf due to
ice rafting.

The late Early Holocene (8500e7000 years BP) is characterised
by highest CaCO3 contents and elevated phytoplankton marker
flux rates, whereas the accumulation of IP25 fluctuates from
minimum to moderate values (Fig. 5). The most remarkable
feature of the biomarker distribution of this core is a lack of
dinosterol and brassicasterol between 7900 and 7600 years BP. This
interval seems to interrupt the late Early Holocene section of
relatively high phytoplankton marker contents (Fig. 5).

During the Mid Holocene (7000e3000 years BP), the
accumulation of phytoplankton biomarkers decreases until ca
5300 years BP and thereafter increases again. Meanwhile, the IP25
flux rate first peaks at about 6000 years BP, then decreases and
maintains relatively low values between 5200 and 2300 years BP.

For the Late Holocene, we note an increasing accumulation of
brassicasterol, dinosterol, and particularly of IP25 since ca 3000
years BP (Fig. 5). The highest phytoplankton marker contents reach
values similar to those seen between 7500 and 6500 years BP.
Considerable maxima in all biomarker records and also TOC
contents are observed for the past 1000 years BP. CaCO3 contents, in
contrast, become successively reduced during the past 1000 years
BP.
6. Discussion

With the identification of the sea ice biomarker IP25 in the
sediment cores MSM5/5-712-2, MSM5/5-723-2, and PS2641-4 we
yield novel and direct information about the development of the
sea ice conditions along the West Spitsbergen continental margin
and the continental shelf of East Greenland throughout the Holo-
cene (Fig. 6). Coincident with the sustained cooling, which is
inferred from decreasing d18O values in the NGRIP Greenland ice
core (NGRIP-Members, 2004) and a decline in Northern Hemi-
sphere insolation (Laskar et al., 2004), a general upward trend in
IP25 concentrations is observed in theMaria S. Merian cores and also
in core PS2837-5 (Fig. 6) located on the Yermak Plateau close to the
modern summer sea ice margin (Müller et al., 2009). This increase
in IP25 concentrations e most pronounced during the past 3000
years BP e points to a successive (spatial and temporal) extension
of the spring sea ice coverage in eastern Fram Strait, possibly due to
a lowering of sea surface temperatures (SST). Previous studies from
the Nordic Seas and adjacent areas that are based on diatom (e.g.
Jiang et al., 2002; Andersen et al., 2004) or foraminifer assemblages
(e.g. Slubowska-Woldengen et al., 2007) or alkenone temperatures
(Marchal et al., 2002; Sicre et al., 2008) support cooler ocean
temperatures during the Late Holocene. Low orbital forcing,
reduced Atlantic water advection as well as a higher ice discharge
from the Arctic Ocean towards eastern Fram Strait may have
promoted such a cooling. IP25 concentrations in core PS2641-4
remain, within a certain range of variability, relatively constant
throughout the Holocene until a remarkable increase occurs during
the past 1000 years BP (Fig. 6). We thus suggest that a continuous
export of Arctic sea ice towards this core site persisted throughout
the Holocene but not all changes in this discharge system can be
traced in sediments from the inner shelf of East Greenland. The
consistent atmospheric cooling recorded in the nearby ice cores
from Greenland possibly had no significant net effect on the
intensity of the sea ice cover and IP25 sedimentation at core site
PS2641-4 until a temperature threshold was reached at 1000 years
BP. The previously reported lack of gravel IRD (>2 mm) in the
Holocene section of this core (Evans et al., 2002) thus may relate to
the generally low melting rates in the central EGC (preventing
iceberg melt/debris release). Hence we assume that a strengthened
ice discharge from the Arctic Ocean may have resulted in a broad-
ening of the EGC towards the east, which would not have neces-
sarily intensified the sea ice conditions near the coast of East
Greenland. A notablyweaker increase in sea ice coverage at the East
Greenland shelf (compared to eastern Fram Strait), however, is also
described in a palaeo-modelling experiment using NAOSIM (for
model details see Kauker et al., 2003) between 6000 years BP and
pre-industrial times (supplement to Müller et al., 2011). An influ-
ence of the nearby Kejser Franz Joseph Fjord system on the sedi-
mentation regime and hence the biomarker deposition at the inner
shelf needs to be considered too.
6.1. The late Early Holocene (8500e7000 years BP)

Based on the high phytoplankton biomarker flux rates and
minimum IP25 and IRD contents in core MSM5/5-712-2



Fig. 3. IRD, TOC, and CaCO3 contents and biomarker accumulation rates of sediment core MSM5/5-712-2. Bold curves represent 5-point smoothed averages. Curve fillings highlight
values above the calculated mean level. Grey vertical bars indicate cooling intervals. Black-white triangles denote glacier advances on Spitsbergen (Svendsen and Mangerud, 1997).
Black dots refer to AMS datings.
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comparatively warm sea surface conditions along the West Spits-
bergen shelf can be assumed for the late Early Holocene (Fig. 3).
This is also supported by the relatively high (even maximum)
CaCO3 contents, which, given the low IRD values, may result from
a higher productivity of calcareous-walled organisms (e.g. fora-
minifers, coccoliths) rather than from detrital CaCO3 input. We
suggest that this interval represents the latest phase of the Holo-
cene Climate Optimum in eastern Fram Strait and consider that in
addition to higher insolation values an intensified Atlantic Water
inflow likely supported phytoplankton growth, whereas the
(spring) sea ice margin was located further northward (i.e. the core
site experienced only minor sea ice occurrences during the late
winter/early spring months). This aligns with maximum SSTs
reconstructed for the western continental margin of the Barents
Sea by Sarnthein et al. (2003) and findings of Salvigsen et al. (1992),
who report optimum climate conditions for thermophilous
molluscs on western Svalbard for the period between 8700 and
7700 years BP. Likewise, foraminifer-based reconstructions of
ocean circulation changes along the West Spitsbergen shelf by
Slubowska-Woldengen et al. (2008) reveal a strengthened inflow of
Atlantic Water at that time.

The abrupt reductions in the phytoplankton marker contents of
core MSM5/5-712-2 at about 8300, 7600 and 7100 years BP that
punctuate the late Early Holocene probably point to short-term
deteriorations of the sea surface conditions. Since the decline at
ca 8200 years BP e a prominent cooling event in the High Latitudes
(Alley et al., 1997; Clarke et al., 2004; Kleiven et al., 2008) e coin-
cides with a (somewhat retarded) minor short-term increase in IRD
and a rapid decrease of previously high IP25 contents, we assume
that the core site was affected by a massive ice discharge that



Fig. 5. TOC and CaCO3 contents and biomarker accumulation rates of sediment core PS2641-4. Curve fillings highlight values above the calculated mean level. Black dots refer to
AMS dating points.

Fig. 4. TOC and CaCO3 contents and IP25 accumulation rates of sediment core MSM5/5-723-2. Bold curves represent 5-point smoothed averages. Curve fillings highlight values
above the calculated mean level. Black dots refer to AMS datings.
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Fig. 6. Comparison of IP25 concentrations (normalised to gram organic carbon) of sediment cores from northern, eastern, and western Fram Strait. Summer insolation for 80�N (red
curve) taken from Laskar et al. (2004) and d18O values from the NGRIP ice core (NGRIP Members, 2004) support a Holocene cooling. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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reduced not only the growth of phytoplankton but also that of ice
algae. This agrees with reduced SSTs along the Barents Sea margin
for this period (Sarnthein et al., 2003). Similarly, Müller et al. (2009)
interpreted minimum fluxes of IP25 and brassicasterol as indicative
for a near-perennial sea ice cover at the western Yermak Plateau in
northern Fram Strait at about 8200 years BP.

Relatively warm conditions probably also prevailed along the
East Greenland shelf during the late Early Holocene since at core
site PS2641-4 accumulation rates are relatively high for dinosterol
and brassicasterol, and only moderate for IP25 (Fig. 5), which may
point to a reduced (not absent) ice cover at the inner East
Greenland shelf. Minor sea ice cover, a higher release of nutrient
rich freshwater from the melting Greenland ice sheet and changes
in the local (Fjord) circulation system thus may have promoted the
growth of phytoplankton. Similarly, e.g. Bauch et al. (2001) and
Andersen et al. (2004) reconstruct rather warm sea surface
conditions in the central Nordic Seas and at the East Greenland
shelf for the late Early Holocene by means of foraminifer and
diatom assemblages. This period likely corresponds to the retreat of
the Greenland ice sheet from the inner shelf as is reconstructed by
Evans et al. (2002) on base of sediment lithology and d18O data from
core PS2641-4. The sudden lack of the phytoplankton markers
between 7900 and 7600 years BP could point to a short-term
deterioration in sea surface conditions, which is not reflected in
the IP25 contents (Fig. 5). Increased meltwater discharge from the
adjacent Kejser Franz Joseph Fjord either could have caused
a strong stratification of the upper water layer, thus reducing the
ventilation and availability of nutrients required for phytoplankton
growth or, in contrast, it may have increased the turbidity, which
may suppress phytoplankton productivity as well. Another possi-
bility would be that local sea ice formation benefited from the
episodic release of cold and freshmeltwater from the Greenland ice
sheet. If this was the case, however, we do not see a notable effect
on the accumulation of IP25.

6.2. The Mid Holocene (7000e3000 years BP)

Lowered CaCO3 contents, continuously decreasing accumulation
rates of phytoplankton markers, the sustained increase in IRD and
slightly higher IP25 contents in sediment core MSM5/5-712-2 (and
MSM5/5-723-2; Figs. 3 and 4) point to a gradually reduced
phytoplankton productivity due to a cooling of the sea surface and
a successive growth and extension of (winter/spring) sea ice at the
continental slope of West Spitsbergen during the Mid Holocene.
This agrees with a concurrent increase in IRD contents of sediment
cores along the West Spitsbergen continental shelf and margin
documented by Jessen et al. (2010) and Slubowska-Woldengen
et al. (2007), who assume a Mid Holocene ice advance.
Decreasing SSTs off and enhanced glaciation on West Spitsbergen
(Hald et al., 2004) support this interpretation. To what extent this
Holocene cooling trend observed in the subpolar North Atlantic
domain (e.g. Andersen et al., 2004; Hald et al., 2007; Miller et al.,
2010) may be related to the lowered Northern Hemisphere inso-
lation and/or a reduced Atlantic Water advection and/or changes in
the atmospheric circulation remains unknown. A general recovery
of the Arctic’s sea ice after its significant recession during the
Holocene Climate Optimum (see e.g. Polyak et al., 2010 for review),
however, occurs as a plausible and natural response to the



Fig. 7. Scheme illustrating periods of Neoglacial sea ice advance (left) and retreat (right) at the continental margin of West Spitsbergen due to variations in the inflow of warm
Atlantic Water via the WSC and/or weakened/strengthened westerlies. Associated fluctuations in the productivity of ice algae (white patches) and phytoplankton (green patches)
are indicated. Periods of ice retreat promote glacier growth on Spitsbergen due to an increased moisture supply from the sea. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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mitigation of orbital forcing. Sustained oceanic surface cooling that
stimulated the sea ice formation during winter and retarded its
retreat/melt during the late spring and early summer months is
also supported by e.g. Rasmussen et al. (2007) and Jennings et al.
(2002) who reconstruct increasingly cooler conditions along the
West Spitsbergen shelf and an increased sea ice export through
Fram Strait by means of benthic and planktic foraminifera and IRD
records. Furthermore, on the bases of e.g. increasing d18O values,
increasing abundances of N. pachyderma (sin.) and diatom data,
Rasmussen et al. (2007), Bauch et al. (2001) and Koç et al. (1993)
strengthen that the southwestern continental margin of Spitsber-
gen and the Nordic Seas experienced an intensified water mass
exchange with the Arctic Ocean for the period after 7000 years BP
and continuous surface cooling (in-step with the lowered insola-
tion) since ca 6000 years BP. Reduced winter SSTs are also recon-
structed for the western continental margin of the Barents Sea and
have been related to a weakened heat input with the WSC and
a strengthened East Spitsbergen (Sørkapp) Current leading to
periods of extended sea ice coverage (Sarnthein et al., 2003).

Successively reduced phytoplankton marker contents in core
PS2641-4 indicate that also the East Greenland shelf became
gradually cooled between ca 6600 and 3000 years BP (Fig. 5). A
higher accumulation of IP25 around 6000 years BP may point to an
increase in sea ice cover at this time. Similarly, Ran et al. (2006)
interpret higher abundances of Arctic diatom taxa in a sediment
core from the northern shelf of Iceland as indicative of a strength-
ening of the EGC between 6800 and 5500 years BP. The subsequent
relatively low and uniform (i.e. with some minor fluctuations) IP25
and phytoplankton marker flux rates, however, suggest that largely
constant sea ice conditions prevailed at the inner East Greenland
shelf between 5000 and 2500 years BP. Recent reconstructions by
Jennings et al. (2011) document that an intensified Irminger
Current carried more warm Atlantic Water to Denmark Strait
between 6800 and 3500 years BP. This could be related to a weak-
ening of the EGC during this period, but is not reflected in the IP25
or phytoplanktonmarker data at our core site, which may reveal an
influence of the nearby Fjord circulation and sedimentation
processes. Moros et al. (2006), in turn, observe a long-term trend of
increasing drift ice export via the EGC towards the North Atlantic
since the past 5000 years. With respect to our biomarker data, we
suggest that Mid Holocene variations in the strength or extent of
the EGC, however, are not clearly recorded in sediments from the
inner shelf but rather could be traced at the outer shelf of East
Greenland where the environment is less affected by Fjord
conditions.

6.3. The Late Holocene (the past 3000 years BP)

Maximum IRD release and a sustained increase in the accu-
mulation of IP25 during the past 3000 years e a period that is
widely acknowledged as Neoglacial cooling phase (for recent
review see Miller et al., 2010) e point to intensified sea ice occur-
rences at the West Spitsbergen continental margin. Forwick and
Vorren (2009) and Forwick et al. (2010) assume an enhanced
formation of shore-fast sea ice and/or a permanent sea ice cover
along the West Spitsbergen coast that trapped IRD laden icebergs
within the Isfjorden system during the past ca 4000 years BP. Thus,
the elevated IRD contents at core site MSM5/5-712-2 may suggest
a transport of lithic grains by sea ice rather than by icebergs orig-
inating from Spitsbergen glaciers. Further reconstructions of
gradually cooled sea surface temperatures, lowered productivity
and a higher polar water ouflow to the Nordic Seas during the past
3000 years BP support this general increase in sea ice coverage (Koç
et al., 1993; Andrews et al., 2001; Calvo et al., 2002; Jennings et al.,
2002, 2011; Andersen et al., 2004).

We suggest that the in-phase fluctuations of IP25 and phyto-
plankton marker contents in core MSM5/5-712-2 (Fig. 3) can be
attributed to periods of a rapidly advancing and retreating sea ice
margin at this core site until ca 1200 years BP. Accordingly, the less
variable though steadily rising accumulation of IP25 at core site
MSM5/5-723-2 e ca 40 km further to the north of core site MSM5/
5-712-2 e relates to a continuously increasing ice coverage during
the past 3000 years BP. As marine primary productivity is
demonstrably stimulated in the marginal ice zone (release of
nutrients from the melting sea ice triggers the bloom of the
phytoplankton algae in the proximity of the ice edge; Hebbeln and
Wefer, 1991; Ramseier et al., 1999; Sakshaug, 2004; Smith et al.,
1987), we conclude that the periods of peak IP25 and phyto-
plankton marker contents in core MSM5/5-712-2 at about 2800,
2300 and 1600 years BP reflect beneficial living conditions at the ice
edge for both sea ice algae and plankton thriving in open water
(Müller et al., 2009, 2011). Interestingly, Svendsen and Mangerud
(1997) report concurrent (with minor temporal shifts) periods of
abrupt glacier advances on West Spitsbergen. Since glacier growth
requires a higher winter precipitation (and the main moisture
source for the Svalbard archipelago is the subpolar North Atlantic;
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Dickson et al., 2000; Humlum et al., 2005), we hence assume that
these intervals of glacier advance and ice edge conditions at the
core site may have been triggered by a temporarily strengthened
WSC and/or changes in the atmospheric circulation pattern, which
caused these recurrent northward retreats of the sea ice cover
(Fig. 7). This is also supported by findings of Sarnthein et al. (2003)
who identify two intervals of remarkably warmer SSTs and peak
abundances of the foraminifer Turborotalita quinqueloba at the
western continental margin of the Barents Sea at about 2200 and
1700 years BP, which they attribute to short-term pulses of warm
Atlantic Water advection. Intermediate periods of lowered IP25 and
phytoplankton marker contents accordingly point to a weakened
WSC eweakened through a lowered heat and/or volume transport
e and probably an increased ice discharge from the Arctic Ocean
that permitted sea ice advances beyond the core site (Fig. 7).
Intensified sea ice advection via the Sørkapp Current is possible as
well. Such a fluctuating ice margin (due to a variable Atlantic Water
inflow) is also described in a recent study byWerner et al. (2011) on
the bases of foraminifer and IRD data obtained from a box core that
was recovered at the same core site. Both short-term anomalies in
atmospheric pressure fields (controlling the intensity and strength
of wind and oceanic sea surface current patterns) or even variations
in the thermohaline circulation may have caused these sea ice
fluctuations. Given the comparatively “sluggish” behaviour of
thermohaline convection processes, the latter, however, appears to
be a less probable explanation for such rapid oscillations.

The notably reduced accumulation of dinosterol and brassicas-
terol in core MSM5/5-712-2 during the past 1300 years BP may
indicate a deterioration of the sea surface conditions that limited
the productivity of phytoplankton at the West Spitsbergen margin.
Meanwhile increasing IP25 flux rates and highest IRD contents at
about 600 years BP suggest an increase in sea ice coverage and the
occurrence of icebergs that probably carried organic material,
which could account for maximum TOC values. The possibility that
a general increase in sea ice algal blooms during spring could
account for this increase in TOC may be considered too. The Late
Holocene maximum content of CaCO3 thus could be related to
a higher productivity of calcareous-walled plankton grazing on ice
algae if it is not due to a higher input of calcareous IRD. Maximum
IP25 concentrations in sediment core MSM5/5-723-2 (Fig. 4),
however, support this Late Holocene sea ice advance.

In contrast to the finding for eastern Fram Strait, the stepwise
increase in IP25 flux rates at the East Greenland shelf since 2500
years BP is accompanied by a continuously rising accumulation of
brassicasterol and dinosterol (Fig. 5). The onset of this increase in
IP25 aligns with findings of Sicre et al. (2008), who document that at
about 2500 years BP a trend of slightly warmer SSTs north off
Iceland was reversed by a cooling tendency towards present. The
short interval of warmer SSTs during the Medieval Warm Period
(around 1000 years BP), however, is not clearly distinguishable in
core PS2641-4. Instead, maximum fluxes of IP25 and phytoplankton
biomarkers point to favourable living conditions for both ice and
phytoplankton algae at the East Greenland shelf during the past
1000 years BP. Further reduced CaCO3 contents in this core hence
may possibly be attributed to calcium carbonate dissolution due to
an increased formation of corrosive bottomwaters linked to higher
sea ice production and/or organic matter (originating from phyto-
plankton blooms) remineralisation (Steinsund and Hald, 1994).
Alternatively, this reduction in CaCO3 may indicate a shift of the
provenance of ice rafted (carbonate) material. The highest IP25
contents determined for the past 600 years BP in all cores are
tentatively attributable to the ‘Little Ice Age’ cooling that is also
recorded in further marine (e.g. Andersson et al., 2003; Moros et al.,
2006; Bendle and Rosell-Melé, 2007; Spielhagen et al., 2011) and
also terrestrial archives from the subpolar North Atlantic (e.g. Nesje
et al., 2001; Seppä and Birks, 2002). The occurrence of a broad and
severe (i.e. perennial) sea ice cover during this period, however,
seems to be contradicted by the elevated phytoplankton marker
contents in core PS2641-4. We hence conclude that during the past
ca 600 years BP, stable marginal ice zone (probably polynya-like)
conditions established at the inner East Greenland shelf, whereas
eastern Fram Strait experienced an ice advance that reduced
phytoplankton productivity. Assumptions that this ‘Little Ice Age’
North Atlantic cooling may result from a weakening of the Gulf
Stream and a slowing of the thermohaline circulation (Broecker,
2000; Lund et al., 2006) would support the interpretation of high
IP25 and IRD contents in sediments from the West Spitsbergen
slope as indicative of an extended ice cover at these sites. The
preceding ‘Medieval Warm Period’, however, is not reflected (or
resolved) in the biomarker records, though we note a short-term
decrease in IRD in MSM5/5-712-2 at about 1100 years BP suggest-
ing reduced iceberg occurrences.

6.4. Sea ice fluctuations and North Atlantic Oscillation

With respect to the Late Holocene cooling that is observed at
various sites in the subpolar North Atlantic and also in more remote
areas, the hypothesis evolved that a continuous transition from
a positive towards a negative NAO phase characterised the Holo-
cene climate development (e.g. Andersen et al., 2004). Reduced
Siberian river discharge during the past 2000 years BP and vege-
tation changes in northeast European Russia, for example, are
interpreted to reflect the development of a colder and dryer climate
in the Eurasian Arctic and could be related to negative NAO-like
conditions (Stein et al., 2004; Salonen et al., 2011). And also
Jessen et al. (2011) relate changes in Late Holocene pollen records
from southern Greenland and the Labrador Sea to a distinct
reduction of south-westerly air masses in favour of colder air
originating from the north and thus conclude that the atmospheric
circulation pattern in the subpolar North Atlantic likely shifted
from a more positive to a more negative NAO. Sicre et al. (2008)
attribute short-term SST changes off North Iceland during the
Late Holocene to low frequency NAO forcing that partly seems to be
associated with fluctuations in the meridional overturning circu-
lation (Latif et al., 2006) and thus (large-sale) alterations in the
Atlantic hydrological cycle. Regarding the comparatively rapid sea
ice oscillations at core site MSM5/5-712-2 between 3000 and 1200
years BP, we consider that a relationship between sea ice extent and
oceanic-atmospheric (i.e. NAO-like) forcing fields, in fact, could
explain the observed fluctuations. As no (instrumental) records of
the long-term (centennial- to millennial-scale) development of the
NAO are available, its influence on Late Holocene environmental
conditions in the subpolar North Atlantic remains elusive. Proxy-
and model-based reconstructions of NAO conditions (e.g.
Luterbacher et al., 2001; Trouet et al., 2009 and references therein)
thus may provide valuable palaeoenvironmental information,
though they are mainly confined to the past 1000 years BP e

depending on the availability of respective proxy data for calibra-
tion. Trouet et al. (2009), for example, find that the ‘MedievalWarm
Period’ was associated with a positive NAO mode, while a negative
mode prevailed during the ‘Little Ice Age’. A genuine attempt to
directly compare (and link) the biomarker fluctuations in core
MSM5/5-712-2 during the past 3000 years with reconstructed NAO
indices proves problematic as no NAO reconstructions are available
for this time period. Shifting NAO conditions, however, could
account for respective changes in the strength of westerly storm
tracks and Atlantic Water advection to the continental margin of
Spitsbergen (Kwok and Rothrock, 1999; Dickson et al., 2000;
Hurrell and Deser, 2009). Neglecting the temporal resolution of this
core (1 cm represents ca 40 years) and that IP25 fluctuations follow
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a rather multi-centennial than an annual to decadal (NAO-specific)
pattern, we may link our findings with atmospheric circulation
shifts. Positive NAO-like conditions could have prevailed during
periods of elevated IP25 and phytoplankton biomarker contents and
glacier advances on Spitsbergen, while a negative NAO-like forcing
may have promoted the recurrent southward advances of sea ice
that punctuated these ice edge productivity intervals. Previously,
the observation of fluctuating glacier extents in southwest Norway
lead Nesje et al. (2001) and Imhof et al. (2012) to establish a rela-
tionship between Late Holocene glacier advances and positive NAO
phases causing more humid and wet winter conditions over
Scandinavia. Similarly, Giraudeau et al. (2010) credit both an
increased advection of Atlantic Water into the Norwegian Sea and
a coincidently strengthened polar outflow towards the western
Nordic Seas to positive NAO intervals during the Late Holocene.
Such a seesaw pattern between warmwater input through eastern
and cold water output via western Fram Strait, however, is not
observed in our records. With general regard to the Holocene
climatic development, we notice that the sea ice conditions at core
site PS2641-4 obviously were less prone to variations in the
strength of the oceanic (and atmospheric) circulation system than
the sites in eastern Fram Strait. The rapid sea ice fluctuations
reflected in the record of core MSM5/5-712-2 during the past 3000
years BP and the likely associated changes in the advection of warm
(WSC) and polar (EGC) water masses are not fully traceable in the
record of core PS2641-4. Due to its location in the vicinity of the
Arctic and Atlantic oceanic (and atmospheric) fronts, core MSM5/5-
712-2 apparently experiencedmore significant palaeoceanographic
and environmental changes, while the setting at the inner shelf of
East Greenland remained relatively unaffected.

6.5. PIP25 index and sea ice estimate

We recently demonstrated that the coupling of the environ-
mental (sea surface) information carried by IP25 and phytoplankton
biomarkers by means of a phytoplankton-IP25 index (PIP25) proves
a valuable approach for quantitative reconstructions of (spring) sea
ice coverage (Müller et al., 2011). A distinct connection between the
Fig. 8. PBIP25 and PDIP25 indices calculated for sediment cores MSM5/5-712-2 (top) and
accumulation rates and respective balance factors following Müller et al. (2011). Blue shadi
extended ice cover) according to Müller et al. (2011). (For interpretation of the references t
sea ice distribution and sedimentary IP25 and phytoplankton
marker contents is strengthened through correlation analyses of
PIP25 indices determined on surface sediments from the subpolar
North Atlantic with sea ice concentrations derived from satellite
andmodelling data (Müller et al., 2011). According to the respective
phytoplankton biomarker used for the calculation (brassicasterol or
dinosterol), this index is specified as PBIP25 or PDIP25, respectively.
Highest PIP25 (PBIP25 and PDIP25) values in the range of 0.75e1 seem
to reflect extended ice coverage throughout spring and summer,
whilst minimum values refer to predominantly ice-free (spring/
summer) sea surface conditions. Intermediate values (0.5e0.75)
characterise sites within the productive marginal ice zone.

Throughout the past 8000 years BP, PBIP25 and PDIP25 indices
calculated for core MSM5/5-712-2 sediments rise gradually (Fig. 8)
and thus point to a general increase in (spring) sea ice coverage at
the West Spitsbergen continental margin. Minimum and close to
zero values denote a period of significantly reduced ice cover
between 8200 and 7800 years BP. With reference to the findings of
Müller et al. (2011) these values may refer to a sea ice concentration
of less than 20%. Given the infancy of this approach, this interpre-
tation of PBIP25 and PDIP25 values in terms of sea ice concentrations,
however, needs to be considered as a very rough estimate. A sus-
tained increase in sea ice occurrences at the core site is reflected by
further rising PBIP25 and PDIP25 values, which finally pass the
“threshold level” of 0.5 designating marginal ice zone conditions
from ca 4800 years BP on. Maximum PBIP25 values determined for
the past ca 1000 years are in the range of 0.75e0.80 and thus
indicate a shift towards severe ice coverage (presumably > 70%
ice concentration).

PBIP25 and PDIP25 indices calculated for core PS2641-4 show
minimum values during the late Early Holocene (8700e7200 years
BP; Fig. 8) that point towards a variable or less pronounced sea ice
coverage at the inner shelf of East Greenland. Given the lack of
brassicasterol and dinosterol between 7900 and 7600 years BP,
PBIP25 and PDIP25 values are 1 for this interval, which would refer to
a significantly extended (spatially and temporally) ice cover.
Throughout the past 7000 years BP, PBIP25 and PDIP25 indices of core
PS2641-4 fluctuate between values of ca 0.4 to 0.6 (Fig. 8), which
PS2641-4 (bottom). Indices were calculated using IP25, brassicasterol, and dinosterol
ngs refer to estimates of sea ice conditions (PIP25 > 0.1 variable, >0.5 marginal, >0.75
o colour in this figure legend, the reader is referred to the web version of this article.)
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may denote variable to stable marginal sea ice conditions (20e50%
ice concentration) in western Fram Strait throughout the Mid and
Late Holocene. The observation that PBIP25 and PDIP25 indices
obtained from this core are largely in the same range or even
lower than those from core MSM5/5-712-2 occurs somewhat
surprising as sea ice conditions at the East Greenland shelf are
generally considered to be more severe due to the pronounced
discharge of sea ice and icebergs via the EGC. In a previous study,
the absence of coarse-grained IRD in the PS2641-4 sediments has
been interpreted to reflect a sedimentation regime that is domi-
nated by meltwater discharge rather than by iceberg rafting (Evans
et al., 2002). This prompts the assumption that much of the bras-
sicasterol and dinosterol identified in this core could originate from
the adjacent Fjord systems and is advected through massive
meltwater releases in summer. In fact, higher concentrations of
algae-specific fatty acids, brassicasterol and dinosterol (pointing to
a higher phytoplankton productivity) are observed in the surface
sediments from different East Greenland Fjords compared to
sediments from the East Greenland shelf at similar latitude
(Kierdorf, 2006; Müller et al., 2011). While calculating the PBIP25
and PDIP25 indices, the amount of “in-situ” phytoplankton accord-
ingly could be overestimated due to lateral advection of
biomarkers, which would result in (too) low PBIP25 and PDIP25
values.

The short-term variability observed in the biomarker records of
core MSM5/5-712-2 during the Late Holocene (Fig. 3), however, is
not reproduced by the PBIP25 and PDIP25 indices of this core. The in-
phase fluctuations of IP25 and phytoplankton marker contents
referring to rapid advances and retreats of the sea ice margin seem
to be counterbalanced through the index calculation. Coevally high
amounts of IP25, brassicasterol, and dinosterol (indicating beneficial
ice -edge conditions) as well as coevally low biomarker contents
(suggesting an unfavourable/severe ice cover) thus give the same
PIP25 values e as was already suggested by Müller et al. (2011). We
hence conclude that for the proper identification of different sea ice
conditions individual biomarker concentrations need to be known
and accordingly interpreted.

Nonetheless, we consider these PIP25 indices to describe sea ice
conditions a promising means, as they may enable a more quanti-
tative assessment of the ice coverage (once the modern analogue
calibration data set has been extended) and thus provide valuable
information that can be used for e.g. palaeo freshwater budget
estimates.

7. Conclusions

The Holocene sea ice evolution in eastern and western Fram
Strait is reconstructed by means of the sea ice proxy IP25, IRD data
and the phytoplankton-derived biomarkers brassicasterol and
dinosterol. In line with a lowered Northern Hemisphere insolation
and decreasing temperatures, the (spring) sea ice coverage along
the western continental margin of Spitsbergen increased between
8500 and 1000 years BP. In contrast, sea ice conditions at the inner
shelf of East Greenland probably remained relatively constant over
this period. Estimates of the sea ice conditions based on phyto-
plankton-IP25 indices (PBIP25 and PDIP25) reveal a Mid Holocene
shift from a reduced ice cover to marginal ice zone conditions in
eastern Fram Strait, whereas the inner East Greenland shelf e

according to PIP25 estimates e would have experienced a predom-
inantly marginal ice cover throughout the past 7000 years BP.
During the Neoglacial, a rapidly advancing and retreating sea ice
margin characterised the environmental setting at the West
Spitsbergen slope. This points to a highly variable inflow of warm
Atlantic Water, which, in turn, could be associated with short-term
changes in the oceanic-atmospheric forcing pattern. This variability
is not clearly reflected in the core from the East Greenland shelf,
where only a delayed Late Holocene ice advance (i.e. a pronounced
increase in IP25 contents) is observed for the past 1000 years BP. The
use of IP25 and phytoplankton markers, however, proves a valuable
combinatory approach for the assessment of sea surface conditions.
Regarding the PBIP25 and PDIP25 indices we recommend that the
reconstruction of sea ice coverage should not be solely based on
these ratios but that individual biomarker contents need to be
considered as well.
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