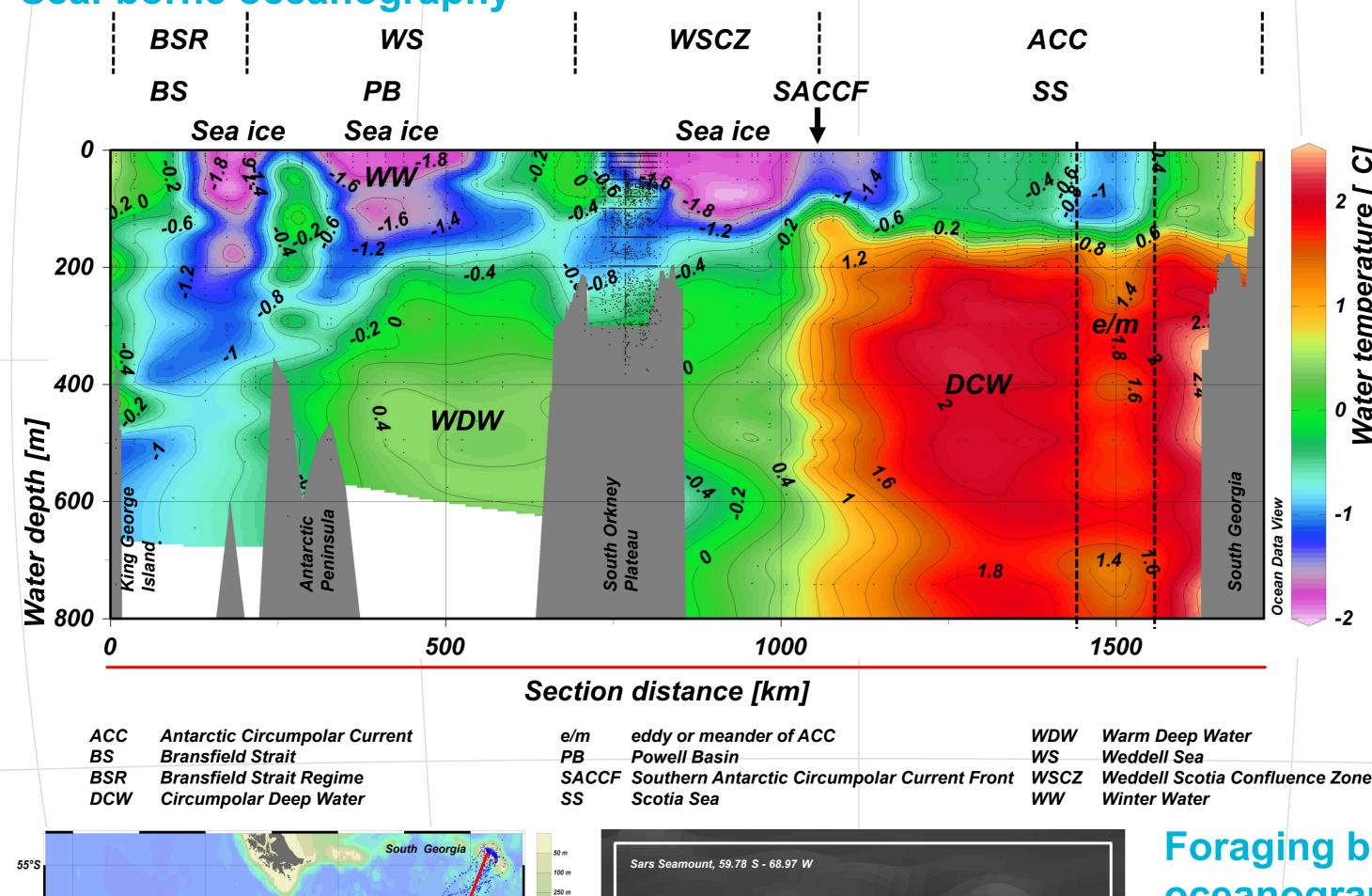


UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA Faculty of Natural and Agricultural Sciences

H. Bornemann⁽¹⁾, P.J.N. de Bruyn⁽²⁾, R.R. Reisinger⁽²⁾, M. Schröder⁽¹⁾, L. Fillinger⁽¹⁾, T. McIntyre^(1,2), C.A. Tosh⁽²⁾, M.E.I. Márquez⁽³⁾, M.N. Bester⁽²⁾ & J. Plötz⁽¹⁾

Winter foraging hot spots of southern elephant seal males from King George Island and oceanographic features


Foraging movements

Fifteen adult southern elephant seal males of the colony at Stranger Point on King George Island / Isla 25 de Mayo, were instrumented with ARGOS CTD-tags in April 2010. Seals travelled on extended latitudinal gradients in the Scotia or the Bellingshausen Sea. As far as we could track individuals, the majority of the post-moult movements were oriented to the east. Three seals remained in the vicinity of the South Orkney Islands (61°S 45°W), and six moved further north to South Georgia (55°S 38°W). Another three seals stayed in the Bransfield Strait (60°S 63°W), and two moved to and around the tip of the Antarctic Peninsula where transmissions

ended prematurely off Joinville Island (64°S 53°W) and Larsen "B" Ice Shelf (66°S 62W). Two males travelled in the opposite direction far south over the shelf of the Bellingshausen Sea, with last locations recorded off Charcot (70°S 80°W) and Thurston Island (72°S 102°W); the latter seal then moved to South Georgia and back to the Powell Basin. All straight line single (3) and return tracks (3) towards South Georgia took place before and after the breeding season. The pattern of movements seem to contradict implications for sexual segregation interpreted from earlier studies, suggesting more overlap between foraging grounds of

adult males and females then previously assumed. The seals' long and straight line movements at distances of more than 1500 km allowed for cross sectional analyses of hydrographic features and revealed data on the temperature and salinity regime during winter (Fig. 1). All seals tracked over long time periods showed extended residence times at circumscribed at-sea locations, considered as foraging hot spots (Fig. 2). These spots were widely distributed within the Scotia Sea, the northern Weddell Sea, and the Bellingshausen Sea and coincide with bathymetric features such as slopes, plateaus and seamounts (Fig. 3).

Seal-borne oceanography

500 n 750 n

1000 m 1250 r

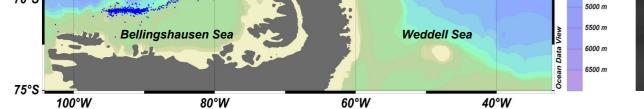
2000 r

2500 r

3000 m 3500 r 4000 r

Fig. 1: Temperature distribution in the ocean region between King George Island and South Georgia as measured by an elephant seal during the period C from April to October 2010. The 1700 km long temperature transect comprises 540 dive profiles down to a depth of 800 m. The ice cover in winter is also documented as is the Q separation of the oceanic regimes by the Southern Antarctic Circumpolar Current Ð a 0 Front (SACCF) and the very 3 deep mixed layer in the Bransfield Strait (BS). Even smaller structures at depth such as the location of the Deep Water core Warm (WDW) in the Powell Basin or an eddy or meander of the Antarctic Circumpolar Current (ACC) are shown in detail by the remote sensing data obtained via the seals.

See legend for abbreviations as inserted in figure.


Foraging behaviour and oceanographic features

Ocean Data View

-1

Modeling of data of the seals' diving behavior in relation to oceanographic features by using mixed-effects standard linear models indicates that the seals' : ...

... speed of travel is particularly influenced

·**

King George Island

60°S

65°S

Scotia Sea

at the deepest maximum dive depths; Fig. 2: Dense clouds of ARGOS locations (•) of 15 Fig. 3: ARGOS locations (••) indicate a foraging spot over Sars Seamount. The pattern of dots adult southern elephant seal males indicate ...bottom-time residuals (above mean) shows the spatial compression of individual dives productive winter foraging zones in the Scotia Sea, are influenced by seafloor depth, as well Weddell Sea, and Bellingshausen Sea between over the top and upper slopes of the seamount. as roughness of seafloor topography and April and October 2010. The red line represents the Surrounding sea floor depths exceed 4000 m, while steepness of slope; transect between King George Island and South dive depths went down to over 2300 m. Blue dots Georgia via the South Orkney Plateau as given in are projected to the seal's maximal dive depths, ...dive durations seem to have some level Fig. 1 (above). The white rectangle represents the orange ones to the seafloor, as they indicate misof influence on virtually all of the aforedetail as given in Fig. 3. All relevant bathymetric matches between predicted bathymetry and dive mentioned environmental parameters. and topographic features are labeled, unless geodepths (n = 412). Summit predictions up to 27 m below sea level are high likely overestimations, codes are given directly in text. since median deviations between the seal's dive depth and bottom depths amount to 280 m. ARGOS location accuracy contributes to these mismatches as well. (1) Alfred-Wegener-Institut (3) Instituto Antártico Argentino (2) Mammal Research Institute Acknowledgements Dirección Nacional del Antártico für Polar- und Meeresforschung University of Pretoria Our work involves scientists from South Africa (MRI), in der Helmholtz-Gemeinschaft Argentina (IAA) and Germany (AWI) and highlights our longterm collaboration within the "Year of Science" between www.awi.de www.dna.gov.ar www.up.ac.za South Africa and Germany in 2012/2013. All seal data and corresponding meta information are available in open access via PANGAEA Data Publisher for Earth & Environmental Science (www.pangaea.de).

by "track stage" (post moulting vs post breeding), seafloor depth, sea ice concentration, and the water temperature